

Electrochemical and electrocatalytic properties of self-assembled single-walled carbon nanotube/organo-iron hybrid systems on gold electrodes

A dissertation submitted in fulfilment of the

requirements for the degree of

DOCTOR OF PHILOSOPHY

of the

UNIVERSITY OF PRETORIA

by

DUDUZILE NKOSI

Promoter: Dr K I Ozoemena

October 2009

© University of Pretoria

DEDICATION

This dissertation is dedicated to my promoter, Dr K. I. Ozoemena, for everything he has done.

DECLARATION

I declare that the thesis hereby submitted to the University of Pretoria for the degree of Doctor of Philosophy has not been previously submitted by me for a degree at any other University, that it is my own work in design and execution, and that all material contained therein has been duly acknowledged.

Nkosi D _____

ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to the following people and institutions whose interest and financial support made it easy for me to prepare and complete this thesis. A special thanks goes to my supervisor, Dr K.I. Ozoemena, for believing in me and always being prepared to drop his own work at a moment's notice to assist me throughout this project. I can never thank you well enough. To my family, my Dad, Mr W.B. Nkosi and my Mom, Mrs M. N. Nkosi, my two boys Amanda and Nkosinathi for taking care of themselves when I was not at home. To all my friends and colleagues in the Chemistry department for the interactions we have shared over the years.

I will remain eternally grateful to NRF for financial support and the University of Pretoria for the time given to me to finish this project. To Mr M. Bierman and Prof T. Von Moltke of the IMMRI, Dept of Material Science and Metallurgical Engineering (Universiry of Pretoria) for access to XPS equipment and Dr C. Claasens (MinTeK) for AFM and helpful discussions on these surface techniques. Mr J. Pillay for AFM images and finally, the referees of the published work from this thesis, for their constructive concerns and criticisms. Most of all, I thank the Almight father in Heaven for all the blessings and what He still has in-store for me.

v

ABSTRACT

This work describes, for the first time, the electrochemical and electrocatalytic properties of self-assembled layers of single-walled carbon nanotubes (SWCNTs) intergrated with selected organo-iron complexes and Cysteamine (Cys) forming a base on gold electrodes. The organo-iron complexes selected for this study were octa(hydroxyethylthio)phthalocyaninatoiron(II) (FeOHETPc), tetraaminophthalocyninatoiron(II) (FeTAPc),

tetraaminophthalocyninatocobalt(II) (CoTAPc), ferrocene

monocarboxylic acid (FMCA), ferrocene dicarboxylic acid (FDCA) or a mixture of SWCNT and FMCA or FDCA. The successful fabrication of these electrodes were established using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and electrochemical techniques such as cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), square wave voltammetry (SWV) and chronoamperometry (CA)

The Au-Cys-SWCNT-FeOHETPc electrode exhibited strong dependence on the reaction of the head groups and the pH of the working electrolytes. The high electron transfer capability of the Au-Cys-SWCNT-FeOHETPc electrode over other electrodes as the Au-Cys-SWCNT or the Au-Cys-FeOHETPc or the Au-FeOHETPc suggests that

SWCNT greatly improves the electronic communication between FeOHETPc and the bare gold electrode. The electron transfer rate constant (k_{app}) of Au-Cys-SWCNT-FeOHETPc in pH 4.8 conditions (~1.7 x 10⁻² cm s⁻¹) over that of the electrode obtained from SWCNT integrated with tetraaminophthalocyninatocobalt(II) (Au-Cys-SWCNT-CoTAPc) (5.1 x 10⁻³ cm s⁻¹) is attributed to the possible effect of both the central metal on the phthalocyanine core and subsituents on the peripheral positions of the phthalocyanine rings.

This work clearly proved that the aligned SWCNTs arrays exhibit much faster electron transfer kinetics to redox-active species in solutions compared to the randomly dispersed (drop-dried) SWCNTs. The advantageous electron transfer properties of the aligned Au-Cys-SWCNT-FeOHETPc electrode, coupled with its ease of fabrication and electrochemical stability, could be found useful in electrochemical sensing and catalysis.

Thiocyanate ion was used as an analytical probe to examine the electrocatalytic properties of these modified gold electrodes. This work shows that SWCNT-FeOHETPc hybrid exhibits excellent sensitivity towards the detection of thiocyanate compared to electrodes containing SWCNT or FeTAPc or FeOHETPc only, indicating the ability of the SWCNTs to function as effective conductive nanowires for the detection of this important analyte. The electrochemical response of

vii

the FeOHETPc based electrodes was greater than their FeTAPc-based electrode counterparts, indicative of the impact of peripheral substituents on the phthalocyanine core towards electrocatalytic behaviour of these types of hybrids. Nevertheless, the exchange of the central metal as seen with the case of CoTAPc (see chapter 3), provide useful comparative electrochemical activity of this complexes versus FeTAPc with the same chemical environment with an indication of iron being the best as metal centre.

FMCA or FDCA were covalently attached to the base Cysteamine monolayer to form the Au-Cys-FMCA and Au-Cys-FDCA, respectively. The same covalent attachment strategy was used to form the mixed SWCNTs and ferrocene-terminated layers (i.e., Au-Cys-SWCNT/FMCA and Au-Cys-SWCNT/FDCA). The impact of neighbouring SWCNTs on the electron transfer dynamics of the ferrocene molecular assemblies in acidic medium (0.5 M H₂SO₄) and in a solution (pH 7.2) of an outersphere redox probe ([Fe(CN)₆]⁴⁻/ [Fe(CN)₆]³⁻) was explored. The electron transfer rate constants in both solution media essentially decrease as Au-Cys-FMCA > Au-Cys-SWCNT/FDCA > Au-Cys-FDCA > Au-Cys-SWCNT/FMCA. This trend has been interpreted in terms of several factors such as the locations of the ferrocene species in a range of environments with a range of potentials, the proximity /interactions of the ferrocenes with one another, and electrostatic

interaction or repulsion existing between the negatively-charged redox probe and the modified electrodes.

Square wave voltammetry was used to examine the catalytic behaviour of the electrodes. Au-Cys-SWCNT/FDCA proved to be the best electrode, possibly due to the repulsive interactions between the negatively charged SCN⁻ and high number of surface –COOH species at the SWCNT/FDCA. This novel study has provided some useful insights as to how CNTs co-assembled with ferrocene-terminated thiols could impact on the heterogeneous electron transfer kinetics as well as the electrocatalytic detection of the self-assembled ferrocene layers.

TABLE OF CONTENTS

Dedication	iii
Declaration	iv
Acknowledgements	v
Abstract	vi
Table of contents	x
Abbreviations	xvi
List of Symbols	xviii
List of Figures	xxi
List of Schemes	xxxi
List of Tables	xxxii

SECTION A

CHAPTER 1

INTRODUCTION

1.1 Ge	neral Overview of Thesis: Problem Statement	2
1.1.1	Self-assembly in electrode fabrication	2
1.1.2	Carbon nanotubes as electron-conducting nanowires	3
1.1.3	Metallophthalocyanines as electrocatalysts	4
1.1.4	Carboxylated ferrocenes as electrocatalysts	5
1.1.5	Aim of thesis	6
1.2 Ov	erview of Electrochemistry	8
1.2.1	Basic concepts	8
1.2.2	The electrode-solution interface	9
1.2.3	Faradaic and Non-Faradaic process	10
1.2.4	Mass transport processes	11

1.3 Voltammetric techniques15
1.3.1 Cyclic voltammetry15
1.3.1.1 Reversible process15
1.3.1.2 Irreversible process
1.3.1.3 Quasi-reversible process23
1.3.2 Square wave voltammetry 24
1.3.3 Chronoamperometry 26
1.3.4 Linear sweep voltammetry 28
1.4 Chemically modified electrodes
1.4.1 Methods of modifying electrode surface
1.4.1.1 Self-Assembly/chemisorption
1.4.1.1.1 Characterization of SAM-modified electrodes 37
1.4.1.1.2 Application of SAM modified electrodes
1.4.1.2 Electrodeposition
1.4.1.3 Drop-dry method
1.4.1.4. Dip-dry coating 40
1.4.1.5 Spin coating 40
1.4.1.6 Vapour deposition 41
1.4.1.7 Langmuir-Blodgett 41
1.4.1.8 Electropolymerisation
1.5 Organo-iron complexes and carbon nanotubes
1.5.1 Metallophthalocyanine modified electrodes
1.5.2 General overview on ferrocene-derivatised self-assembled
monolayers 45
1.5.3 Introduction to carbon nanotubes
1.6 Physico-chemical characterization of modified electrodes 51
1.6.1 Electrochemical Impedance Spectroscopy (EIS) 51
1.6.1.1 Basics of electrochemical impedance spectroscopy 51

1.6.1.2 Applications and data representation	54
1.6.1.3 Factors affecting rate of electron transfer	60
1.6.2 Atomic Force Microscopy	62
1.6.3 Scanning Electron Microscopy	66
1.6.4 X-ray Photoelectron Spectroscopy	67
1.7 Background on the studied analytes	69
1.7.1 Potassium thiocyanate	69
REFERENCES	70

CHAPTER 2

EXPERIMENTAL

2.1 Introduction	84
2.2 Reagents and material2.2.1 Functionalization of carbon nanotubes	84 86
2.3 Instrumentation	
2.4 Electrode modification procedure	
2.4.1 Electrode pre-treatment	
2.4.2 Self-assembling technique	
2.4.2.1 SWCNT-phthalocyanine based electrode	
2.4.2.2 SWCNT-ferrocene based electrodes	
2.4.2.3 Nano-gold indium tin oxide electrode	
REFERENCES	

SECTION B

CHAPTER 3

RESULTS AND DISCUSSION

SPECTROSCOPIC, MICROSCOPIC AND ELECTROCHEMICAL PROPERTIES OF IRON-PHTHALOCYANINE SINGLE-WALLED CARBON NANOTUBE BASED ELECTRODES

3.1 SAM formation strategies	8
3.2 Atomic force microscopy characterization	0
3.3 XPS characterization 10	3
3.4 Cyclic voltammetric characterization 10	17
3.4.1 Pretreatment of SWCNT-FeOHETPc 10	7
3.4.2 Interfacial capacitance 10	9
3.4.3 Surface coverage 11	2
3.5 Electrochemical impedimetric characterization 11	5
3.5.1 Electron transport behaviour of the SAMs	5
3.5.2 Impact of solution pH on electron transfer	9
3.5.3 Impact of single-walled carbon nanotubes on electron transfer122	
REFERENCES	0

CHAPTER 4

ELECTROCATALYTIC PROPERTIES OF IRON-PHTHALOCYANINE-SWCNT BASED ELECTRODES:THIOCYANATE AS A MODEL ANALYTE

4.1	Square wave voltammetric detection of SCN ⁻	136
4.2	Influence of scan rates on electrocatalysis of $SCN^{\text{-}}$	139
4.3	Rotating gold disk electrode experiments	144
4.4	Chronoamperometric investigations	147
4.5	Real sample analysis with smoker's saliva	152
REF	ERENCES	154

CHAPTER 5

MICROSCOPIC AND ELECTROCHEMICAL PROPERTIES OF FERROCENE SINGLE-WALLED CARBON NANOTUBES BASED ELECTRODES

5.1	SAM formation strategies	157
5.2	Atomic force microscopic characterization	160
5.3	Electron transfer dynamics in 0.5 M H_2SO_4 solution	162
5.	3.1 Cyclic voltammetric characterization	162
	5.3.1.1 Surface coverage	166
	5.3.1.2 Repetitive scanning	168
5.	3.2 Electrochemical impedimetric characterization	171

5.4	.4 Electron transfer dynamics in a redox probe, [Fe(CN) ₆] ⁴⁻		
	/[F	⁻ e(CN) ₆] ³⁻	177
5.4	ł.1	Cyclic voltammetric characterization	177
5.4	1.2	Electrochemical impedimetric characterization	178
REFE	RE	NCES	183

CHAPTER 6

ELECTROCATALYTIC PROPERTIES OF FERROCENE SINGLE-WALLED CARBON NANOTUBES BASED ELECTRODES: THIOCYANATE AS A MODEL ANALYTE

6.1	Square wave voltammetric detection of SCN ⁻	187		
6.2	Influence of scan rates on electrocatalysis of $SCN^{\text{-}}$	189		
6.3	Rotating gold disk electrode experiments	192		
6.4	Chronoamperometric investigations	194		
6.5	Gold nanoparticle-modified indium tin oxide electrode			
	experiment	198		
REF	ERENCES	199		
CONCLUSIONS AND FUTURE PERSPECTIVE				
APPENDIX A				
Publications in peer-reviewed journals form this Thesis				
APPENDIX B				
List	of Conference Presentations from this Thesis			

ABBREVIATIONS

A	Electrode surface area (cm ²)
AFM	Atomic force microscopy
Ag	Silver wire pseudo-reference electrode
AglAgCl	Silver/silver chloride reference electrode
CME	Chemically modified electrode
C.E.	Counter electrode
CMEs	Chemically modified electrodes
CV	Cyclic voltammetry
Cys	Cysteamine
CV	Cyclic voltammogram
D	Diffusion coefficient (cm ² s ⁻¹)
DCC	Dicyclohexylcarbodiimide
DMF	Dimethylformamide
EIS	Electrochemical impedance spectroscopy
Ep	Peak potential
E _{pa}	Anodic peak potential
Epc	Cathodic peak potential
E ^o	Standard potential
$E^{\rm o'}$ or $E_{1/2}$	Formal redox potential
F	Faraday's constant
FeOHETPc	Iron-octahydroxyethylthiophthalocyanine

Fe(CN) ₆ ⁴⁻	Hexacyanoferrate(II)
Fe(CN) ₆ ³⁻	Hexacyanoferrate(III)
İ _{for}	Forward current
i _{rev}	Reverse current
I _{pa}	Anodic peak current
I _{pc}	Cathodic peak current
ΙΤΟ	Indium tin oxide
LoD	Limit of detection
MPc	Metallophthalocyanine
MPc-SAM	Metallophthalocyanine-self assembled monolayer
Рс	Phthalocyanine
R	Gas constant
R.E.	Reference electrode
R _s	Solution resistance
SAM	Self-assembled monolayer
SEM	Scanning electron microscopy
SWCNTs	Single-walled carbon nanotubes
SWV	Square wave voltammetry
т	Temperature (K)
t	Time(s)
W.E.	Working electrode
XPS	X-ray photoelectron spectroscopy

LIST OF SYMBOLS

α	Transfer coefficient
ω	Angular velocity
٤	Extinction coefficient
Γ	Surface coverage or concentration
π	Pi bonding
λ	Wavelength
γ	kinematic viscosity
С	Molar concentration of analyte
с	Speed of light
С	Capacitance
C _{dl}	Double-layer capacitance
CPE	Constant phase electrode
C _m	Monolayer capacitance
C _{ox}	Concentration of the oxidised form of an analyte
C _{red}	Concentration of the reduced form of an analyte
D	Diameter
D	Diffusion coefficient
E _{pa}	Anodic peak potential
E _{pc}	Cathodic peak potential
E	Potential
E°	Standard potential

E _{1/2}	Half-wave potential
ΔE_{p}	Anodic-to-cathodic peak potential separation
f	Frequency
F	Faraday's constant
h	Plank's constant
Hz	Hertz
i _{pa}	Anodic peak current
<i>i</i> _{pc}	Cathodic peak current
k	Heterogeneous electron transfer coefficient
<i>k_{et}</i>	Electron transfter rate constant
<i>k</i> f	Rate of forward reaction
<i>k</i> r	Rate of reverse/backward reaction
k _{obs}	Observed rate constant
К	Kelvin
К	Equilibrium constant
Ka	Dissociation constant
K _{aap}	Electron transfer rate constant
n	Number of electron
N _A	Avogadro's constant
q	Electrical charge
Q	Electrical charge (C)
r	Radius of electrode

R	Universal gas constant
R _{ct}	Charge transfer resistance
R _s	Resistance of electrolyte
Sub	Substrate
Sub _(ox)	Oxidised substrate
v	Scan rate
V	Volts
Z _{im}	Imaginary impedance
Z _{re}	Real impedance
Zw	Warburg impedance

LIST OF FIGURES

Figure 1.1:	Model of the electrode-solution double layer regions in
	a case of a negatively charged electrode10
Figure 1.2:	The potential waveform applied to W.E in the cyclic
	voltammetry experiment16
Figure 1.3:	Typical cyclic voltammogram for a reversible redox
	process17
Figure 1.4:	Typical cyclic voltammogram for an irreversible
	process22
Figure 1.5:	Square wave waveform potential sweep25
Figure 1.6:	(a) Waveform of the potential step and (b)
	Chronoamperometric response28
Figure 1.7:	Models of an organized monolayer35
Figure 1.8:	Geometric structure of metallophthalocyanines43

Figure 1.9:	The structure of ferrocene, ferrocenemonocarboxylic
	acid (FMCA) and ferrocenedicarboxylic acid (FDCA)46

Figure 1.10: Graphical representation of SWCNT and MWCNT......48

Figure 1.11:	(a) Applied voltage and (b) resulting current	
	response	53

Figure 1.13:	Typical Bode plots indicating the phase angle and	
	logarithm of impedance versus frequency	56

Figure 3.2: Survey X-ray photoelectron spectra for the full (a) and the expanded regions for the sulphur (b), nitrogen (c) and carbon (d) for the bare Au (i), Au-Cys (ii), Au-Cys-SWCNT (iii), and Au-Cys-SWCNT-FeOHETPc (iv) electrodes......105

- Figure 3.3: Cyclic voltammetric profile of the various electrodes studied compared with the bare Au in 0.5 M H_2SO_4 at the scan rate of 25 mV s-1. Other scans heve been excluded for clarity109
- Figure 3.4: Typical cyclic volammograms of the indicated electrodes towards the reversible couple $Fe(CN)_6$ ³⁻/ $[Fe(CN)_6]^{4-}$ in 0.1 M PBS (pH 4.8). scan rate: 25 mVs⁻¹......117

Figure 3.5:	Impedance spectral responses of the indicated electrodes	,
	obtained at +0.10 V vs AglAgCl in $Fe(CN)_6$] ³⁻ / [Fe(CN) ₆] ⁴⁻	•
	0.1 M PBS (pH 4.8)11	.8

Figure 3.9: Bode plots, phase angle vs log f (a) and log Z vs log f (b),of the impedance spectra of the modified electrodes in redox probe ($[Fe(CN)_6]^{4-}$ / $[Fe(CN)_6]^{3-}$) in 0.1 M PBS solution (pH 4.8). Others have been removed for clarity but the EIS data are shown in Table 3.1......128

Figure 4.1:	Typical comparative square wave voltammetric response	
	of the various electrodes in PBS solution (pH 4.8)	
	containing 1 mM SCN ⁻ . Au-Cys voltammogram omitted	
	for clarity13	8

Figure 4.2:	(a) Typical examples of cyclic voltammetric evolutions	
	At varying scan rates (50, 150, 200, 400, 600 and	
	800 mVs ⁻¹ , inner to outer; outer omitted for clarity);	
	and (b) Plot of current function $(I_p/v^{1/2})$ versus scan	
	rate (v) ranging from 50 to 1000 mVs ⁻¹ .	
	[SCN ⁻] = 1 mM	141

Figure 5.1: Topographic images of the electrodes: (a) Au bare, (b)

Au-Cys, (c) Au-Cys-SWCNT, (d) Au-Cys-FDCA and (e) Au-Cys-SWCNT/FDCA.....162

Figure 5.2:	Comparative cyclic voltammetric evolutions of the
	modified gold electrode in 0.5 M H ₂ SO ₄ , Au-Cys-FCA,
	Au-Cys-FDCA, Au-Cys-SWCNT, Au-Cys-SWCNT/FMCA
	and Au-Cys-SWCNT/FDCA163

Figure 5.3:	Comparative cyclic voltammetric evolutions of the
	modified gold electrode in 0.5 M H_2SO_4 obtained at
	the 1^{st} and the 20^{th} scans for (a) Au-Cys-SWCNT/FDCA,
	(b) Au-Cys-FDCA,(c) Au-Cys-SWCNT/FMCA and (d)
	Au-Cys-FMCA170

Figure 5.4:	Nyquist plots (a) of the modified electrodes in the	
	H_2SO_4 solution and (b) Equivalent circuit used in	
	fitting figure (a)	.173

Figure 5.5: Bode plots, phase angle vs log f (a) and log Z vs
log f (b) of the logarithm impedance spectra
versus frequency of the modified electrodes in
0.5 M H ₂ SO ₄ 177

Figure 5.6: Comparative cyclic voltammetric evolutions of the bare and modified gold electrodes obtained in 0.1 M [Fe(CN)₆]⁴⁻/[Fe(CN)₆]³⁻ (PBS, pH 7.2); bare Au, Au-Cys-FDCA, Au-Cys-FMCA, Au-Cys-SWCNT/FDCA and Au-Cys-SWCNT/FMCA......178

Figure 5.7: Nyquist plot (a) and the electrical equivalent and the circuit (b) used to fit the impedance spectra of bare Au modified electrodes obtained in 0.1 M $[Fe(CN)_6]^{4-}/$ $[Fe(CN)_6]^{3-}$ (PBS, pH 7.2)......180

Figure 6.2:	Cyclic voltammetric evolutions at varying scan
	rates and insert is the plot of current (I_p) versus
	scan rate (v) ranging from 25 to 900 mVs ⁻¹ .
	[SCN ⁻] = 1 mM
Figure 6.3:	The plots of (a) peak current against the square root
	of the scan rate and (b) peak potential against log of
	scan rate for the Au-Cys-SWCNT/FDCA electrode in
	1 mM SCN ⁻ 19

Figure 6.5:	Typical double potential step chronoamperometric	
	transients at Au-Cys-SWCNT/FDCA in PBS solution	
	(pH4.8) following addition of SCN ⁻ Inset is the plot	
	of chronoamperometric current at $t = 10$ sec	
	vs [SCN ⁻]	.195

Figure 6.6: Typical Cottrell equation plots obtained from the chronoamperometric evolution at Au-Cys-SWCNT/FDCA in PBS solution (pH 4.7) following addition of SCN⁻......197

Figure 6.7: Plots of I_{cat}/I_{buff} vs t^{1/2} obtained from the

chronoamperometric evolution at Au-Cys-SWCNT/FDCA

in PBS solution (pH 4.7) following addition of SCN⁻......198

Figure 6.8: Chronoamperometric evolutions at ITO-nanoAu-Cys-SWCNT/FDCA electrode in PBS solution pH 4.7 containing 1 mM SCN⁻. inset: Plot of peak current vs concentration obtained from chronoamperometric evolutions for the ITO- nanoAu-Cys-SWCNT/FDCA electrode......199

LIST OF SCHEMES

Scheme 3.1:	Schematic representation of the self-assembly processes
	of the SWCNT and SWCNT-FeOHETPc on gold
	electrode100
Scheme 5.1:	Schematic representation of the gold electrode
	modification routes for Au-Cys, Au-Cys-FCA and
	Au-Cys-FDCA159

Scheme 5.2: Schematic of the gold electrode modification route for Au-Cys-SWCNT/FMCA and Au-Cys-SWCNT/FDCA......160

LIST OF TABLES

Table 1.1:	The diagnostic criteria for reversible, irreversible and
	quasi-reversible cyclic voltammetric processes24
Table 2.1:	List of reagents, their purity and suppliers
Table 3.1:	Summary of estimated EIS parameters130
Table 5.1	Summary of estimated voltammetric data obtained in
	0.5 M H ₂ SO ₄ 166
Table 5.2:	Summary of estimated EIS parameters obtained in
	0.5 M H ₂ SO ₄ 175
Table 5.3:	Summary of estimated EIS parameters obtained in
	0.1 M [Fe(CN) ₆] ⁴⁻ / [Fe(CN) ₆] ³⁻ (PBS, pH 7.0)181