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Chapter 4 

Routing protocol 

4.1 Introduction 

An accompanying routing protocol is required for the sig­

nalling protocol presented in Chapter 3. Recall from Sec­

tion 3.4 that we selected to use hop-by-hop routing and 

route precomputation for the signalling protocol. This 

means that when a request for a connection arrives at a 

node, the routing table should contain all the informa­

tion required to produce a next-hop node address for any 

address reachable through itself. 

The routing table produced by the routing protocol should also contain enough in­

formation to be able to accommodate connection setup in a heterogenous network. The 

"next-hop node" entry, J, in the routing table of node I may be a node that is not directly 

connected through a physical or logical link to node 1. In order for node J to be considered 

a "next-hop node" by node I, node J must operate at the same or lower rate as node 1. As 

a result, on a physical path from node I to the next-hop node J there may be one or more 

intervening nodes that are not regarded as next-hop nodes. If the "next-hop node" entry 

in a routing table indicates a node that is not an immediate neighbour of node I (physi­

cally or logically), a second entry is needed indicating which immediate neighbour should 

be used to reach the "next-hop node". Section 4.2 starts by introducing the addressing 

scheme that will be used by the routing protocol, Section 4.3 continues with the design 

decisions, and Section 4.4 describes the routing protocol. 
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Figure 4.1: Routing network 

4.2 Addressing 

For an efficient, low overhead routing protocol, the need exists for an addressing scheme 

that allows for summarization. Address summarization refers to the use of address prefixes 

to represent a collection of end host addresses that begin with the same prefix. Only the 

address prefixes need to be distributed between nodes participating in the routing protocol 

and represent the reachability of all end hosts. This section presents an addressing scheme 

for use in SONET networks. It is proposed that a second set of IP addresses be used to 

identify all nodes forming part of the SONET network, an addressing scheme that lends 

itself to address summarization without reducing the number of IP addresses available to 

the IP network 

A benefit of using IP addresses is that recent work on route lookups in hardware, [8] 

and [16]-[18], can be leveraged for the first action of route determination needed in call 

setup. 

Figure 4.1 shows an example network in which the signalling protocol presented in 

Chapter 3 will be implemented. In the figure all IP hosts are indicated by a dashed 

rectangle and all SONET hosts are indicated by a solid rectangle. This example network, 
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where only some interconnections are indicated, shows the co-existence of the IP and 

SONET networks. All SONET hosts and SONET switches are IP hosts, and some IP 

routers are hosts of the SONET network. It is assumed that all SONET hosts and switches 

will have IP interfaces, for example in the form of Ethernet interfaces. For example, in 

Figure 4.1 the link between SONET host A and SONET switch 1 is a SONET interface, 

while the link between SONET host A and IP router 1 could be an Ethernet interface. IP 

routers are hosts of the SONET network in the Internet today where there are provisioned 

dedicated channels set up between routers interconnecting large sites. 

With the above network design, the decision to make use of IP addresses for signalling 

and routing in the SONET network becomes plausible. Although every SONET switch 

and host already has an IP address, the usage of these addresses will introduce an immense 

strain on the routing protocol by increasing the sizes of the routing databases considerably. 

The reason for this is that in the construction of the network, it cannot be guaranteed that 

two neighbouring (connected by a point-to-point link) SONET nodes will be part of the 

same IP subnet. As a consequence, each SONET node has to be identified by its complete 

32 bit IP address in the routing protocol, preventing the usage of address summarization. 

For the routing protocols to make use of IP addresses while retaining the capability 

of address summarization that is provided with the use of subnet addressing, two precon­

ditions are met. Firstly, in the network presented in Figure 4.1, it can be seen that one 

node of one network type can only be a host of the other network (as opposed to a router 

or switch). For example, an IP node (router or end host) can only be an end host of the 

SONET network , not aswitch. Similarly, a SONET node can only be an end host of the 

IP network , not a router. Secondly, an IP address is assigned to each interface, IP and 

SONET, forming two distinct sets of IP addresses, which do not need to be disjoint. 

If iPR indicates an IP address of an IP interface, and ips indicates an IP address 

assigned to a SONET interface, Figure 4.1 presents a possible address assignment to 

SONET host A. Host A has an ipR of 128.238.144.8 assigned to its interface that is 

connected to IP router 1. It also has the ips address of 128.238.146.4 assigned to the 

interface connected to SONET switch 1. Figure 4.1 also shows that SONET host A and 

IP host B now share an IP address. Although it is the same IP address, there shall never 

be any conflicts due to the context in which the addresses are used. Any IP address used 

in an IP header will always be an ipR address and any IP address used in the called 

party address field of a SONET circuit signalling message will be an ips address. All 
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signalling and routing messages of the SONET network will be carried as IP packets with 

iPR addresses in the headers and hence will reach the appropriate SONET destinations 

because they are hosts in the IP network. The SETUP message (without the IP header) 

contains two IP addresses that identify the source and destination nodes of the SONET 

network between which a connection has to be set up. These two IP addresses are always 

ips addresses. It is to find a route between this source and destination pair that a routing 

protocol is needed. So, the IP addresses used for the actual signalling will never be present 

in an IP header, only in the SETUP message. Because these addresses will never be used 

in the same context, it allows the SONET network to have nodes identified by IP addresses 

already used in the IP network. 

In a network as depicted in Figure 4.1, there will always be two routing protocols 

running concurrently. The IP routers exchange information about reachability of nodes 

with iPR addresses , and the SONET switches exchange information about reachability of 

nodes with ips addresses. These two routing protocols never exchange routing information 

between each other . 

It is now possible to assign IP addresses to SONET interfaces independent of the IP 

address assigned to their IP interfaces, allowing for a SONET switch and all its neighbours 

to share a subnet address. Thus allowing for address summarization. 

All data tables discussed in the signalling protocoi description shall contain ips ad­

dresses. The tables concerned are the Routing table, the Connectivity table and the State 

table. This introduces the need for a new table that provides a mapping between iPR 

and ips addresses of which Table 4.1 is an example. While participating in connection 

setup, a switch will always send a signalling message to a neighbour. Note that this might 

not be an immediate neighbour (connected via a point-to-point link) in a heterogenous 

network - it could also be a node to which a connection has already been set up - a logical 

neighbour. In a homogeneous network, this table can be set up by the administrator due 

to the fact that signalling messages will only be sent to immediate neighbours (two nodes 

connected with a point-to-point link). In a heterogenous network, the initial information 

in the ips to ipR mapping table (which is a mapping of the addresses of a node's immediate 

neighbours) is entered by the administrator. To be able to handle connection setup in a 

heterogenous network the signalling protocol should be able to send signalling messages 

to logical neighbours. For this functionality, the signalling protocol needs to add one more 

step during connection setup. Once a connection has been set up between two switches , 
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128.238.146.4 128.238.144.8 

Table 4.1: zPs to iPR mapping table kept by SONET switch 1 

the source switch needs to update the ips to iPR mapping table to include the ips to iPR 

mapping of the destination. This mapping can be inserted upon the receipt of a SETUP 

messages, and removed upon receipt of a RELEASE CONFIRM message. 

The signalling protocol now requires an extra step before a signalling message is sent: 

each time a signalling message needs to be sent, the address mapping table has to be 

queried to determine the IP address that needs to be placed in the IP header. An example 

step when SONET switch 1 receives a request for a connection from SONET host A to 

SONET host B. Switch 1 first queries its routing table to find the ips address of the next 

hop to which the SETUP message should be sent. Then after CAC and switch fabric 

configuration it queries the ips to iPR mapping table to find the iPR address of the next 

hop node. It constructs a SETUP message and requests the IP network to deliver it to 

the SONET node with IP address ipR. 

4.3 Design decisions 

The usage of IP addresses by all the nodes of the SONET network allows for the use 

of an existing routing protocol, for example OSPF [19] . Using a routing protocol like 

OSPF will only require two changes: first, before any routing messages are sent on the IP 

network, the ips to iPR mapping table has to be queried to find the iPR address. Second, 

the construction of the routing table has to be changed to enable routing in heterogenous 

networks. OSPF even contains rudimentary support for Quality of Service (QoS), which 

allows the exchange of node state (real-time) parameters, for example the current available 

bandwidth of outgoing interfaces. 

Although an existing IP routing protocol may be used, this discussion shall conti­

nue with the design of a lightweight routing protocol designed specifically to be used in 

conjunction with the signalling protocol described in Chapter 3. 

The presence of the IP network will be ignored in the rest of the routing protocol 

description. The arguments for the creation of the hop-by-hop, link-state routing protocol 
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that creates a routing table by constructing a shortest path tree is described next. 

Section 3.4 briefiy mentioned the decision that the options of route precomputa­

tion and hop-by-hop routing (as opposed to source routing) will be used in the routing 

protocol. Using SONET it is possible to make full use of route precomputation due to the 

granularity of the multiplexing rates. As depicted in Table 3.3, next-hop entries are only 

kept for the SONET rates of OCl, OC3, OC12, OC48 and OC192. This simplifies the 

connection setup procedure in that the route determination step is just a table lookup. 

There are two reasons for the decision of hop-by-hop routing. Firstly, by using hop-by-hop 

routing the parsing of the SETUP message is simplified at each hop allowing for hardware 

implementation. Secondly, when source routing is used it is possible that conditions change 

as connection setup proceeds from a given source node toward a destination, and by the 

time the setup request reaches an intermediate node, the selected source route is no longer 

available, in which case crankbacks are needed. Crankbacks require the management of 

more state information, which leads to increased hardware complexity. 

The routing protocol should be executed in parallel by all the SONET switches, without 

segmenting the network. This allows all the nodes to have an identical copy of the routing 

database. The reason that the current routing protocol proposal requires a fiat network 

structure (no segmentation) is for simplicity. The moment a network is segmented, the 

different "areas" can receive summarized information regarding the real time parameters 

in the other areas. Because the information is summarized, some mechanism similar to 

Generic CAC (GCAC) from PNNI needs to be applied to a connection request before 

it is passed on to the next hop (together with the CAC performed by the node itself). 

GCAC allows a node to predict the outcome of the actual CAC performed at another 

switching system given that node's advertised additive link metrics. Performing GCAC 

will add complexity to the signalling protocol, and will heighten the risk that the real 

CAC performed by a switch further along the path (possibly in another area) may faiL 

This failure will introduce crankback. A fiat network structure avoids this problem. 

Routing databases tend to be very large. Using a routing protocol to distribute real 

time parameters, for example the available bandwidth of an interface, requires the pro­

tocol to always have up to date information in the database and to respond quickly to 

any changes in the database. A distance-vector routing protocol such as RIP [20] would 

be inefficient when used in large networks (large routing databases). A distance-vector 

algorithm, such as the Bellman-Ford algorithm used by RIP, does not perform well when 

63 


 
 
 



there is a large database and a topology change occurs or a change in a node's real time 

parameters occurs. This is because a change in the network results in a convergence period 

which might not be fast enough for the routing protocol to be usable. 

In distance-vector algorithms, each node keeps a table with an entry for every possible 

destination reachable though itself. The entry indicates the distance to the destination 

and the next-hop node to the destination . The distances are continually compared and 

updated as routing update messages are received by a node. Once a topology change 

occurs (for example a link goes down), and the changes to the distances are distributes 

through the network , the routing tables will not immediately see the change because some 

nodes will still consider the link as active and reflect that in their advertisements. This is 

the cause of the convergence period that is the time for a node's routing table to reflect 

the correct distance values to the affected destinations. 

It is thus proposed to make use of a link state routing algorithm. In this algorithm 

each node has an identical routing database containing the identity (address) and con­

nectivity of each node in the network from which a routing table is constructed. The 

routing table entries are calculated by constructing a shortest path tree. By using a link 

state routing algorithm, any changes in the network topology or real-time parameters of 

nodes in the network will be received by all the nodes executing the routing protocol very 

quickly, thus enabling all the nodes to have the most up to date information regarding 

topology and real time parameters. With this information the routing protocol is able to 

make more accurate routing decisions than a distance-vector routing protocol. 

Information distributed by the switching systems participating in the routing protocol 

should contain enough detail about their respective identity (reachability) and capabil­

ity. Information concerning individual end hosts' capability (for example an end host's 

interface rate) cannot be distributed due to the usage of address summarization. This 

information (identity and capability) can also be described as nodal information and in 

this implementation it describes the node's address (the ips address) and the cross con­

nect rate of the switching system. Together with the nodal information, the protocol also 

distributes topological information, which is information regarding the links between the 

switching systems. The topological information is a non-negative cost assigned to an out­

going interface based upon the amount of available bandwidth at the interface: the higher 

the available bandwidth of an interface, the lower the cost value. A lower cost value thus 

indicates a higher probability for this interface to be chosen. 
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At initialization, a node advertises that it has an available bandwidth equal to the 

interface rate (resulting in a low cost value). It is proposed that the distribution of 

subsequent topological information be based upon threshold computations. That is the 

node participating in the routing protocol should not send a routing update message every 

time a connection is admitted or released. Only when the available bandwidth reaches a 

certain threshold should it send out a routing update message containing a higher cost 

value to indicate a change in its available bandwidth. 

As with the signalling protocol, the routing protocol also makes use of the IP network to 

distribute routing database updates. Considering the delay involved in the connectionless 

network, the usage real-time parameters might introduce some connection setup failures. 

For example, if node I passes a connection request to node 1+1 based on the information 

in its routing database that states that node 1+1 does have enough bandwidth available, 

and at the same time, node 1+1 sends out a routing update message that it does not have 

enough bandwidth available - the connection request will fail. For this reason multiple 

next hop entries are kept in the routing table. If the connection request fails, the setup 

request is reconstructed and sent to the second (or third) option for a next hop node. 

4.4 Protocol description 

The routing protocol will be described through its four components. All the switching 

systems in the network have an identical routing database that describes the nodal and 

topological information of each node in the network. This database allows each node to 

construct a directed graph representing the network. From this directed graph, each 

switching system constructs the shortest path tree with itself as the root, and using 

this tree it is now possible to compute the routing table entries. 

An example network is shown in Figure 4.2. This example, and all the examples in 

this chapter will refer to the switching systems by their names (SwitchA, SwitchB, etc.). 

Note that this representation is used to simplify the explanations, an implementation 

would use the IP (ips) addresses. Each directed line indicates a unidirectional connection 

between two switching systems. A cost is associated with each outgoing interface. The 

cross connect rates are also depicted because these values play an important role in the 

construction of the routing table. 
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Figure 4.2: Example network configuration for routing protocol 

Next hop node Interface number Total bandwidth Available bandwidth Cost 

Table 4.2: Available bandwidth table including cost 

4.4.1 Routing database and directed graph 

For this routing protocol, each switching system needs to know to which other nodes it is 

directly connected. This information is currently stored in the Connectivity and Available 

bandwidth tables used by the signalling protocol. All connections will be unidirectional, 

so we are only interested in the succeeding, directly connected nodes. This information 

is stored in the Available bandwidth table. The cost associated with an interface is pro­

grammed into the Available bandwidth table, Table 3.4, of which Table 4.2 is a copy. The 

cost is a decreasing function of the available bandwidth of an interface - the higher the 

available bandwidth, the lower the cost. 

For each node n (including itself) in the network, the routing database of each switching 

system in the network contains information indicated by the first column of Table 4.3 . 

• Node id refers to the ips address of node n . 

• The sequence number characterizes the last routing update concerning node n. 
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Nodeid SwitchD 

Seq x 

Connectivity SwitchB, SwitchC, SwitchE 

Cost 9, 5, 3 

Cross connect rate OC1 

Table 4.3: Routing database entry for node D from network depicted in Figure 4.2 

This number is used to determine if a routing database update received from any 

node about node n does in fact contain new information, a higher sequence number 

indicates more recent information. The usage of the sequence number will receive 

more attention later. 

• 	 Connectivity indicates all the nodes directly connected to node n. That is, all 

the nodes of which node n is the preceding node in a unidirectional point-to-point 

physical connection. Nodes are identified by a combination of ips address and net­

mask. For example , an ips address of 128.238.144.0 and net mask of 255.255.255.0 

indicates that all the hosts on the 128.238.144 network are directly connected to 

(and consequently reachable through) node n. 

• 	 Cost refers to the costs associated with the interfaces connecting this node (n) to 

other nodes. Each entry is an indication of the available bandwidth on the interface 

connecting node n with a node indicated by the Connectivity information - the lower 

the cost, the higher the available bandwidth. 

• 	 Cross connect rate is given if node n is a switching system. 

With this information in the routing database it is straightforward to construct the 

directed graph. 

If x is the highest sequence number of a routing update received concerning SwitchD, 

an example of an entry in the routing database for SwitchD is shown in Table 4.3. This 

entry will be identical in all the nodes in the network. 

The cost assigned to interfaces which connect a switch to its end hosts should typically 

be equal. For example, if all the hosts on the 128.238.144 network are reachable through 

SwitchD, it shall advertise its connectivity with an ips address of 128.238.144.0, netmask 

of 255.255.255.0 and only one cost value. If there are different costs assigned to interfaces 
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connecting hosts (or switches) that have addresses that can be summarized, the highest 

cost of all the interfaces will be used in all routing databases. 

To limit the usage of network bandwidth a node initiates database exchange with its 

neighbour only on three occasions: 

• 	 At initialization. 

• 	 After any change occurs in its routing database. This includes any changes in its own 

connectivity, an increase over the threshold of the available bandwidth, a decrease 

below the threshold of the available bandwidth, or a routing update received from 

another node. 

• 	 After a very large time interval. It is assumed that the above two database ex­

change instances will guarantee database synchronization most of the time, but it is 

also necessary to have some error prevention mechanism, which is provided by this 

database exchange condition. 

When node n's routing database entry changes, it should only send the new database 

entry to its neighbours, after which it is distributed through the network. In the other two 

database exchange occasions , the whole routing database is distributed among the nodes. 

Routing databases are not flooded through the network. Each node shall send its 

routing database update message(s) to all of its neighbours that are reachable through itself 

(the "next-hop nodes" found in the Available bandwidth table) and that are participating 

in the routing protocol. For example, in Figure 4.2 SwitchA will send its routing database 

update message(s) to SwitchB and SwitchE, but these latter switches will not relay the 

messages on to SwitchC or SwitchD. 

Only one message type is needed for this routing protocol. For each node n in the 

network about which a node has information in its routing database, it shall construct a 

message as presented in Table 4.4. It is possible to include more than one full message in 

an IP datagram. 

The sequence number is only changed when the information it refers to has changed, 

and it is also only changed by the node to which the information refers. When a node sends 

its database to its neighbours after the large timeout it uses the same sequence number 

associated with its information in the database. Continuing the example this means that 

until a change occurs in SwitchD's information, the sequence number will continue to be 

x. 
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Information element I Size (bits) I 

Source node 32 

Sequence number 31 

Flag 1 

Cross connect rate 4 

Number of destinations (nr. dest) 12 

Destination (1) 32 

Netmask (1) 32 

Cost (1) 16 

... 

Destination (nr. dest) 32 

Netmask (nr. dest) 32 

Cost (nr. dest) 16 

Table 4.4: Routing update message 

The sequence number is a 31 bit unsigned integer. Each time there is a change in a 

node 's connectivity it shall increment the sequence number associated with its information 

in the database and initiate the routing database update with its neighbours. Thus, the 

larger the sequence number, the more recent the database update. The problem with 

using a sequence number is deciding what to do when the sequence number has to be 

incremented past 231 - 1. A solution for this problem is to have an extra bit (Flag) in 

the routing update message. When a sequence number reaches 231 - 1 a node can reset 

the sequence number to 0 and set the extra bit to 1 indicating that this is a new routing 

update. All nodes in the network should now treat this message as if a message with a 

higher sequence number has arrived. The extra bit in the routing message should be set 

to 0 on all other occasions. 

Using 12 bits to indicate the number of destinations allows any switching node to 

advertise 4095 different destinations reachable through itself. This is a worst case. The 

number of routes advertised by any node should typically be very low. 

The 4 bit cross connect rate value is the cross connect rate of a switching system or 

the interface rate of an end host (although an end host should not typically participate 

in the routing protocol). The possible values of this information element is presented in 
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Cross connect/Interface rate Value in routing message 

OC1 0001 

OC3 0010 

OC12 0011 

OC48 0100 

OC192 0101 

OC768 0110 

Table 4.5: Possible values for the cross connect rate of a switch 

From 

Switch A Switch B Switch C Switch D Switch E 

To 

Switch A 7 

Switch B 10 9 6 

Switch C 1 5 

Switch D 8 4 6 

Switch E 2 3 

Table 4.6: Directed graph 

Table 4.5. 

The directed graph for this network is represented in Table 4.6 and is identical at each 

node participating in the routing protocol. 

4.4.2 Constructing the shortest path tree 

The shortest path tree is constructed from the directed graph using the Dijkstra algorithm. 

The construction of the shortest path tree will be described next. The directed graph 

contains enough information for a switching system to construct the shortest path tree 

using itself as the root. We deviate from common graph terminology in this explanation by 

continuing to use terms from previous explanations. That is, instead of the normal usage 

of "vertex" or "edge" the words "node" and "link" will be used to explain the algorithm. 

The algorithm assumes the availability of a function w such that w (u ,v) returns the cost 

of the interface from u to v as retrieved from the directed graph. The algorithm proceeds 

as follows: 
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1. 	 Create the four data structures. V is a list (or array) of all the nodes in the network 

(identified by ips address and netmask combinations) whose shortest path have yet 

to be found, S is a list (or array) of nodes whose shortest paths from the root have 

already been determined, d is a list (or array) of the current cost estimate along the 

shortest path to each node, and pred is a list (or array) of of each node's predecessor 

on its shortest path to the root. 

2. 	 Set S to empty. 

3. 	 Denote the cost to node u by d[u]. Set d[u] = 0 if u is the root and d[u] 00 

otherwise. 

4. 	 Denote the predecessor of each node u by pred[u]. Set pred[u] = u if u is the root 

and pred[u] = NIL otherwise. 

5. 	While there are still nodes in V: 

(a) 	 Sort the nodes in V according to their current values in d. 

(b) Remove the closest node u from V. 

(c) 	 Add u to S. 

(d) For each node, v, that is adjacent to u in the directed graph. 

1. 	 if d[v] > d[u] + w(u,v) then: 

A. 	 d[v] = d[u] + w(u, v) 

B. 	 pred[v] = u 

Using the Dijkstra's algorithm the shortest path tree computed by SwitchB from Fig­

ure 4.2 is depicted in Figure 4.3. The shortest path from the root node to a node, n, can be 

found by traversing the predecessor links from n until the root node is encountered. If the 

node, n, has a NIL predecessor link, then there is no path from x to the root node. The 

predecessor list for SwitchB is presented in Table 4.7. Traversing the predecessor list to 

find the shortest path to SwitchE results in the path SwitchB-SwitchC-SwitchD-SwitchE. 

The first node in the shortest path will be used in the construction of the routing table. 

This will only produce one next-hop, in Chapter 3 the routing table (Table 3.3) contains 

three next-hop entries. To compute the additional two optional next hops that will be 

placed in the routing table (as shown in Table 3.3) , the root node can construct two ad­

ditional shortest path trees. After constructing the first shortest path tree, all links used 

71 


 
 
 



SwitchB 
[OCl] 

7 4 

SwitchA 
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Figure 4.3: Shortest path tree constructed by node B 

Node Predecessor 

SwitchE 
[OC3] 

SwitchA SwitchC 

SwitchB SwitchB 

SwitchC SwitchB 

SwitchD SwitchC 

SwitchE SwitchD 

Table 4.7: Predecessor list for SwitchB 

in the tree are removed from the directed graph. The new directed graph is then used to 

construct a shortest path tree from which the second routing table entries are made. The 

same procedure is followed to compute the third optional next hop entries in the routing 

table . 

4.4.3 Routing table 

The shortest path tree of a node has the information for a node to decide on the next bop 

node to the destination. The next hop to a destination can be found by traversing the 

predecessor list of the shortest path tree. In a homogeneous network, the routing table 

can be constructed by each node root by considering each node n in turn. The IP address 

of the first hop in the shortest path from node root to node n becomes the entry of node 

n in the routing table of node root. 

So far in the discussion it has been assumed that when a request for a connection 
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SwitchF SwitchE 
[OCI] [OC3] 

Figure 4.4: Shortest path tree constructed by node B, with extra node 

arrives, the first step would be to do a route lookup in the routing table to find the next­

hop node to the destination. It is also possible to first search the A vailable bandwidth 

table to find out if the destination is directly connected before the lookup is done in the 

routing table. This discussion will now continue the design where the routing table is 

always queried first. Thus if the destination is directly connected, the "next-hop node" 

entry will contain the IP address of the destination. 

For this explanation, the shortest path tree in Figure 4.3 has been changed to Fig­

ure 4.4. 

For this routing table to be useful in a heterogenous network, the construction of the 

routing table by a node (root) can be described as follows: 

Consider the shortest path P from root to destination node n . 

• 	If the next hop node next has the same or lower cross connect rate as node root, 

make an entry in the routing table under the section with the same cross connect 

rate as next. 

• 	 If the next hop node next has a higher cross connect rate than node root: 

Find the closest neighbour node on path P that has the same or lower cross 

connect rate as node root. 

* If the neighbour node is found and is not the same node as n: 

Place this node (neighbour) in the routing table as the "next-hop node" 
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used to reach node n. This entry is made at the cross connect rate of 

neighbour. 

Search the path from root to neighbour for the node with the highest 

cross connect rate (highrate). 

Place next in the routing table as the next-hop node to reach neighbour. 

This entry is made at the cross connect rate section highrate. 

* If the neighbour node turns out to be n or if no neighbour node is found: 

Search for the node with the highest cross connect on path P 

Place the entry for the next hop node next in the routing table at this 

cross connect rate section. 

Due to the granularity of the SONET network, each entry made using the above 

description can be inserted at all the rates higher than its original position, if there are 

outgoing interfaces that operate at these or higher rates. It is impossible for a switch to 

connect to another node at a rate lower than its cross connect rate, so all entries made to 

this respect has to be removed after the previous step has been completed. 

When SwitchB constructs the routing table according to the shortest path tree depicted 

in Figure 4.4, it will proceed as follows. The first node it considers is SwitchC, which has 

a higher cross connect rate than SwitchB. As explained above, SwitchB shall search the 

path to SwitchC for a neighbour, there is no neighbour on this path, and the highest cross 

connect rate is OC3 - so an entry for SwitchC will be made in the routing table block 

under the rate OC3. Next, consider node SwitchF. Again, the next hop node (SwitchC) 

has a higher cross connect rate than SwitchB. Searching the path for a node that has 

the same or lower cross connect rate than SwitchB reveals that SwitchA is the neighbour, 

an entry is made in the routing table indicating that SwitchA is the "next-hop node" 

to SwitchF. Searching for the node with the highest cross connect rate on the path to 

SwitchA produces SwitchC. So, an entry in the OC3 section will indicate that SwitchC is 

the "next-hop node" for SwitchA. The resulting routing table for SwitchB in Figure 4.4 is 

presented in Table 4.8. 

Another example network is depicted in Figure 4.5. This example network contains 

a path that is similar to the path describing the signalling protocol's operation in a het­

erogenous network given in Chapter 3. The path from Switch3 to Switch6 discussed in 

Section 3.9.1 can be found in Figure 4.5. The corresponding routing table, before removing 

the entries that Switch3 cannot accommodate due to its OC12 crossconnect rate, is given 
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Destination Data rate OC1 Data rates OC3 to OC192 

node 

address 

Next hop Next hop Next hop Next hop Next hop Next hop 

option 1 option 2 option 3 option 1 option 2 option 3 

SwitchA SwitchC 

SwitchC SwitchC 

SwitchD SwitchC 

SwitchE SwitchD SwitchD 

SwitchF SwitchA SwitchA 

SwitchG SwitchG SwitchG 

SwitchH SwitchG SwitchG 

Table 4.8: Routing table for node B 

in Table 4.9. 

4.5 Future work 

The segmentation of the network is a functionality that is required in a routing protocol 

when it operates in a large network. Without network segmentation the routing databases 

tend to grow very large. Despite route precomputation being used, this step (route pre­

computation) could still consume a lot of resources, even if nodes only exchange a small 

number of routing updates. The first step in adding this functionality would be to spec­

ify the usage of IP addresses in the network segments, and secondly, the creation of the 

routing table has to be re-examined. The costs advertised between network segments will 

contain summaries of the cost values in the particular network segment - the next hop 

entry in the routing table should now contain the next hop to a network path that is most 

likely to be able to handle the connection based on more relaxed parameters that basic 

CAC. 

In Section 3.9.1 an improvement to the routing protocol was briefly mentioned. The 

second improvement to the routing protocol concerns connections that have already been 

set up between switches in the form of logical links (links that have been used to set 
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Switch3 
Switch12[OC12] 
[OC12]Switch1 

[OCI] 

Switch4 Switch9 
[OC48] 

Switch6 
[OC3] 

Switch8 
[OC3] 

[OC3] 

Switch2 Switchl4 
[OC3] [OC12] 

Switch11 
[OC1] 

Figure 4.5 : Shortest path tree constructed by Switch3 

Switch10 
[OC3] 

Switch13 
[OC48] 

Destination Data Data Data Data Data 

node rate rate rate rate rate 

address OCl OC3 OCl2 OC48 OCl92 

Next hop Next hop Next hop Next hop Next hop 

option 1 option 1 option 1 option 1 option 1 

Switchl Switchl Switchl Switchl Switchl Switchl 

Switch2 Switchl Switchl Switchl Switchl Switchl 

Switch4 Switch4 Switch4 

Switch5 Switch4 

Switch6 Switch4 

Switch7 Switch4 Switch4 

Switch8 Switch7 Switch7 Switch7 Switch7 Switch7 

Switch9 Switch9 Switch9 Switch9 Switch9 

SwitchlO Switch9 Switch9 Switch9 Switch9 

Switchll Switch9 Switch9 Switch9 Switch9 

Switchl2 Switchl2 Switchl2 Switchl2 

Switchl3 Switch12 Switchl2 Switchl2 

Switchl4 Switchl2 Switchl2 Switchl2 

Table 4.9: Routing table for Switch3 (OCl and OC3 rates cannot be used) 
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up lower rate connections over switches with high cross connect rates) and provisioned 

connections. An improvement to the routing protocol would be to exchange information 

regarding available bandwidth on connections that have already been set up, not just 

available bandwidth of the interfaces. For example, if a unidirectional OC12 connection is 

set up between two switches (from switch I to switch 1+1) , and only one OC1 connection 

is currently active on it, switch I can advertise that it is directly connected to switch 1+1 

(even if there are switches between them), and the cost of the link is again a function of 

the available bandwidth of the connection. 
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Chapter 5 

Scheduling calls with known 

holding times 

5.1 Introduction 

This chapter explores the option of queueing calls in 

connection-oriented networks instead of blocking them 

when network resources are unavailable. A simple call 

queueing algorithm would be to hold up call setup mes­

sages at each switch along an end-to-end path until re­

sources become available. This simple call queueing al­

gorithm was modeled in Chapter 2, Section 2.2.1. This 

scheme will be shown to suffer from poor network utiliza­

tion and long call queueing delays. However, if calls have known holding times, it is 

possible to design call scheduling algorithms that result in reduced call queueing delays 

and improved network utilization. We propose algorithms for such call scheduling and 

demonstrate the quantitative benefits of algorithms that exploit knowledge of call holding 

times . 

In a simple connection setup scheme, a call setup message is held up at each switch 

sequentially along the end-to-end path until resources become available at each switch. 

There are two problems with this simple approach. Firstly, the total queueing delay 

incurred waiting for network resources can become rather large due to the sequential 

waiting period at each switch on the end-to-end path. Secondly, while call queueing 

schemes in general improve bandwidth utilization compared to call blocking schemes, the 
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kTwait scheme will not achieve the maximum improvement possible. The kTwait scheme 

was first used in Miyahara et aI's paper [7] for the comparison between circuit-switching 

and CL packet-switching for large file transfers. In this scheme the signalling message 

requesting the connection is placed in a queue at each switch to wait for the required 

resources to be released. Only when the connection request reaches the head of the queue, 

and its requested resources are available , will the request be passed on to the next switch. 

Hence the term kTwait. The reason an improvement in bandwidth utilization can be 

expected in call queueing schemes is that by having buffers to queue calls, less bandwidth 

is needed than for a strictly call blocking scheme. The reason why the kTwait scheme does 

not take full advantage of this improvement is that upstream switches hold resources while 

waiting for downstream switches to admit a call instead of using the wait period to admit 

shorter calls that only traverse upstream segments. 

To overcome these two problems, we started looking for ways to improve the call 

queueing algorithm. This led us to consider options where the switches agree upon a 

delayed start time for a given call c, and allow other calls sharing segments of the end-to­

end path of call c to use the network resources for other calls before call c starts. This 

would decrease call queueing delays and allow for the utilization gains of call queueing to 

be realized. However, scheduling calls for a delayed start time with mutual agreement at 

all the switches on the end-to-end path is only possible if call holding times are known. 

A switch cannot guarantee that resources will be available for a new call c at some later 

point in time if it does not know when existing calls will complete. Hence, we focus on the 

call queueing/scheduling problem for calls with known holding times that can be identified 

when satisfying the following two characteristics: 

• The data from the sending end of the call should be "stored," as opposed to "live." 

• The CO network should use preventive congestion control as opposed to reactive. 

We continued to design a call scheduling algorithm when call holding times are known. 

Such an algorithm could coexist with a traditional call admission control algorithm for 

calls with unknown holding times by partitioning network resources for calls with known 

holding times from resources for calls with unknown holding times. 

This proposed method for scheduling connections can be used In any type of 

connection-oriented (CO) network. CO networks are networks where resources are re­

served for a connection between end hosts before any data transmission may start . These 
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networks can either be packet-switched (for example ATM or X.25 networks) or circuit­

switched (for example SONET or WDM networks). 

The motivating applications for such an algorithm are described in in Section 5.2. 

Section 5.3 describes the proposed algorithm as applied to a simple one-switch network, 

Section 5.4 continues by explaining some extensions to the algorithm, which includes the 

algorithm 's behaviour in a network where multiple switches are involved. Some solutions to 

the distributed computing problem are proposed in Section 5.5 and Section 5.6 provides 

the results of simulations run to determine the feasibility of the solutions. Section 5.7 

introduces some problems that still need to be solved. Conclusions are made in Section 5.8. 

5.2 Motivating applications 

While the motivation for this work came from our interest in supporting end-to-end 

large file transfers on high-speed circuit-switched networks, we considered the question 

of whether there are other applications for which call holding times are known. Two 

characteristics of calls have been identified that allows us to determine the call holding 

time: 

• The data from the sending end of the call should be "stored," as opposed to "live." 

• The CO network should use preventive congestion control as opposed to reactive. 

Consider the first characteristic. Table 5.1 shows that the sending end and consuming end 

of any two-party (as opposed to mUlti-party) data transfer can each be "live" or "stored." 

If both ends are live and the communication is bidirectional, we classify such sessions 

as interactive. An example of this category is telephony, where the call holding time is 

unknown. Given that both ends are "live" and both ends can send traffic, the call could 

hold for any length of time. If both ends are live, but the communication is unidirectional, 

we refer to this case as a live streaming data transfer. An example is listening to/viewing 

a live radio/TV broadcast. The next category shown in Table 5.1 is recording, where 

the source is live, but the receiver is a storing device. In both the live streaming and 

recording categories, the call holding time mayor may not be known since it depends on 

the duration of the live "event." For e.g., the duration of coverage of a live parade could 

be known a priori and advertised by the audio/video distributor; on the other hand, the 

duration of a sporting event, for e.g., a tennis match, is not known beforehand. Therefore, 

in general we assume that if the sending end is "live," call holding times are unknown. 
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Consuming end 

Sending end Live Stored 

Live 

Stored 

InteractivelLive streaming Recording 

Stored streaming File transfers 

Table 5.l: Classification of data transfers 

However, if the sending end is "stored," call holding times are known if the CO network 

is used with preventive congestion control (rather than reactive). For example, transferring 

a stored file from a source to a receiver where it is also stored for later consumption 

(classified as file transfers in Table 5.1) on a TCPlIP network results in an unknown 

holding time since this network uses reactive congestion control. On the other hand, if 

the same file is transferred on a circuit established through a circuit-switched network, 

the holding time can be determined from the file size, the data rate of the circuit, and 

propagation delays. Similarly, applications in which stored audio or video clips (e.g., in 

a web-based class lecture or Video on Demand (VOD)) are consumed live (e.g., by a 

student listening) are classified as stored streaming in Table 5.1. If such data is sent on 

a packet-switched CO network (to take advantage of silences, packet-switched networks 

are better for this class of applications), and the network supports preventive congestion 

control, then the call holding time can be estimated with a high degree of confidence. For 

example, if an ATM Variable Bit Rate (VBR) connection is used rather than an Available 

Bit Rate (ABR) connection, the call holding time can be accurately predicted given the 

exact traffic characterization of the stored audio or video file. 

Thus, there are a number of applications, which when used on certain types of networks, 

have deterministic call holding times. Hence called known holding times. 

Example applications from the categories presented in Table 5.1 that may benefit from 

this scheduled mode of connection setup are as follows: 

• 	 A frequently used application in networks is file transfers, which is an example of 

an application that transfers data from a stored source to a destination where the 

data is also stored. A large file transfer has no intrinsic burstiness associated with 

it, and is hence best handled by a circuit switched network [5], [6] and [7]. This 

is relative to connectionless packet switching where the packet header overheads, 

acknowledgements, congestion control mechanisms, buffering etc. have an impact on 
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the end-to-end transfer time. Knowing the file size f and the data rate rate of the 

connection, the holding time h of a connection that will be used to transfer the file(s) 

is given by h = f+ov~:~:adx f + Tprop where overhead is the overhead added by the 

various protocol layers and Tprop is the propagation delay from the sending host to the 

receiving host. Examples of large file transfers are application downloads, downloads 

from web sites with significant multimedia content (even with compression, video, 

audio and image files tend to be large), downloads of books, technical specification 

documents, etc. Large file transfers also occur in the mirroring of web sites. For 

example, Metalab's Linux archive is reported to be mirrored by more than 70 sites 

across the world [23J . 

• 	 A second example of an application in which calls have known holding times is video 

on demand for stored video files. If the video file is sent out from a stored source and 

consumed live, this is an example of a stored streaming application. The implication 

of live consumption at the receiving end is that it is more efficient to use a variable 

rate connection for the video transfer given that most compression techniques take 

advantage of changing scene conditions. For example, during video transfer it is 

possible that there is a time frame during which there is a still image with only 

audio. Using a compression algorithm, this time frame would require less capacity 

than a normal time frame. Now, together with the holding time, traffic patterns 

can be associated with time frames allowing networks accommodating variable rate 

connections , for example ATM networks, to manage its resources more efficiently by 

setting up a connection that may vary in capacity and thus suit the transfer more 

efficiently. That is, the CO packet-switched network that implements preventative 

congestion control mechanisms reserves resources for the connection that vary over 

time. It is now possible for the network to decide to reduce the capacity allocated to 

one connection during a time frame and allocate the resources to another connection 

only during that time frame. Thus, even variable bit rate connections could have 

known holding times . A scheduling algorithm can, in principle , be designed for such 

packet-switched networks to take advantage of this knowledge and schedule calls 

for later start times instead of blocking calls when it does not have the resources 

available at the time when the request arrives . 

• 	 Leased lines are used commonly to interconnect two routers. This means that all 

traffic between the two routers concerned traverse a provisioned connection (also 
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known as leased line) set up between them. Currently, the resources allocated to 

such a provisioned connection (for example, bandwidth) is for the worst case, i.e. 

the highest expected traffic. For example, consider two routers connected through 

a SONET network. Assume that for the most of the time an OC12 connection 

is sufficient to carry the inter router traffic. But , from l1am to 3pm the traffic 

is predicted to increase significantly requiring an OC48 connection. To be able to 

handle this worst case, the provisioned connection needs to be an OC48. This has the 

consequence that a lot of bandwidth is wasted during the time when just an OC12 

would be sufficient. Making use of scheduled connection setup, it is possible to use 

traffic characteristics to schedule the setup of one or more extra connections between 

the routers during peak usage. Continuing our example, it should be possible to 

provision an OC12 connection for "permanent" usage, and schedule the setup of 

three additional OC12 connections from l1am to 3pm every day. Knowing the 

duration of the highest traffic load introduces a third example application, which is 

leased lines with known holding times. 

5.3 Proposed algorithm 

The general idea behind this method of admitting connections with known holding times 

is to have switches maintain a time-varying available capacity on each of its interfaces 

that reflects the scheduled start times of all admitted connections. Making use of this 

information the connection admission control (CAC) module of each switch, which is 

responsible for the management of the resources available to connections passing through 

the switch, determines the earliest possible time when a newly arriving connection with a 

known holding time can become "active" . 

An "active" connection is a connection that is currently transferring data, while an 

"admitted" connection is one that is either active or scheduled to become active at some 

point in time. As the simplest case, we explain our CAC algorithm using a one switch 

network as shown in Figure 5.1. Calls are generated by an end host connected to the 

switch to another end host on the same switch with a given desired capacity (c) and a 

known holding time (h) . The CAC module in the switch, as shown in Figure 5.2, keeps a 

time-variant available capacity ai (t) function for each outgoing interface i. Based on the 

destination of the connection a set of candidate outgoing interfaces (1) is selected from 

a routing table maintained by the routing module (see Figure 5.2). Next, based on the 
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conne(:tion 

Host 

Figure 5.1: A simple one switch network 

Signaling 
module Control subsystem 

Incoming OutgoingSwitch fabric and line cards interfaces in(enaces 

Figure 5.2: Block diagram of a switch 

desired capacity (C) and holding time (h) for the connection, the earliest possible start 

time (epst) and interface (i) is determined by the CAC module using (5.1). 

For each j E I determine 

epstj ~ current time 1\ aj (t) ~ c, epstj :; t :; epstj + h 

epst epsti where epsti = min{epstj J E I} (5 .1) 

ai (t) ~ ai (t) - c, for epst:; t:; epst + h (5.2) 


A switch is now able to respond with an earliest possible start time at which the end 


host that requested the connection may start transmission. The time-varying available ca­


pacity function for the chosen interface i is updated using (5 .2) to reflect the newly sched­


uled connection. Once the connection's scheduled time arrives the switch programming 


module shown in Figure 5.2 programs the switch fabric, thereby activating the connection. 
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Signal or PDU 
Start received 

Signal or PDU 
State generated 

Return to 
calling module/state 

Decision 

o ProcessTask 

Implementation specific 
process 

Figure 5.3: Keys used in flow diagrams 

Using the keys presented in Figure 5.3, the message handling module (called from 

the signalling module) can be represented with the flow chart of Figure 5.4. This flow 

chart assumes an error-free operation. Figure 5.5 is a flow chart that indicates possible 

adjustments to be able to handle certain error conditions. Figures 5.6 to 5.9 depict the 

flow charts for processes included in Figure 5.4 and 5.5 assuming error conditions can 

occur. 

In all these explanations, the destination host is treated as a "black box" which only 

returns "success" or "failure" when it replies to a connection request. That is, the switch 

includes the values of c,h and epst in the connection request sent to the destination, but 

the destination host does not change the value of epst. If the destination host can accept 

the connection its reply will indicate success. If it cannot accept the connection its reply 

shall indicate a failure. An example of the message exchanges for connection setup in a 

one switch network is given in Figure 5.1. 
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Message baodling module 
has. been invoked by the 

signaling module 10 handle 

connection setup reques1. 

Invoke routing module to 
do II route lOOKUp for 

lOOKUp 
Route 

destination address (d). 
A sel of interfaces (I) is 
relurned. 

Invoke CAC module 

10 schedule connection. 

Pass connection requesl 
on 10 nex! hop, include 
values for c, hand epst 

Receive success reply 

Send success reply to 

ho..·" requesl ing the con­
neclion. Include value of 

eps!. 

No 

Invoke switch programming 
module to program the 
switch fabric. 

Figure 5.4: Flow chart for the message handling module in a one switch network 
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Message handling module 

Handle has been in vokt!d by tJle 
incoming sig naling module to hand le 
messages connection setup request. 

Verify message 

i 
Error condition 

Send failure mCj.$ilge 
to host requesting the 

connection 

Ti meou t 

invoke switch programming 
module 10 p rogram lhe 
switch fabric. 

ERR Result? 

OK 

ROUle 
lookup 

No Success? 

No Succe.s.s ? 

Pass connection request 
on \0 next hop, include 
values for c, h and eps\. 

Set timeout for success 
reply 

Send success reply 10 

hasl requesting the con­
nection. Include vaJue 
oreps l. 

Invoke rouling module [0 
do a roule lookup for 
de~linalion addre:;.s (d). 
A set of inlerfaces (I) 
is reI limed. 

Invoke CAe modu le 
to schedule connection. 

Rece ive failure repl y 

Invoke CAe module to undo 
the sch~uJ j ng of new co o­
nec ll on. 

Send fa ilure message 
10 hoSI requesting the 
conneclio n 

Error condit ion 

Setup of connetl ion "fai ls 
Relum with fai lure 10 the 
signaling mod ule. 

Figure 5.5 : Flow chart for the message handling module 1ll a one switch network, with 
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Determine candidate set 

of outgoing interfaces (I) 

through which destination 
(d) is reachable. 

No Found at least one 
interface? 

Return with failure 

Return with success 

Yes 

Figure 5.6: Route lookup process included in the routing module 

Program switch fabric 
with jnformation for 
new connection 

Return with success 

Figure 5.7: Process to program the switch fabric in the switch programming module 
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Compute epst for connec­

tion using (5.1) 

No 
epst found? 

Return with failure 

Yes 

Using (5 .2), 

update time variant 

available capacity function 

a; (t) for interface; selec­

ted within set I. 


Reserve capacity c 
2 

from epst until epst+h 

Return with success 

Figure 5.8: Scheduling process included in the CAC module for a one switch network 
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Undo reservation of 
capacity c from epst 
until epst + h 

Update time variant 
available capacity function 

adt)(;-adtJ + c for 
epsts. t ~ epst + h 

Return with success 

Figure 5.9: Process m the CAC module to undo the changes made by the scheduling 

process 
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5.4 Extensions 

5.4.1 Request for start time included in connection request 

Continuing with our example of a simple one switch network, an extension to the CAC 

algorithm is to allow the host requesting the connection to specify a desired start time, 

which could be different from the implied "immediate" start time in current signalling 

protocols. This is definitely needed in the third example application where the extra 

connections between the routers will only be needed during certain times. Requesting the 

start time could also be very useful in the other two example applications, for example 

only mirroring a web site from lOpm, or a customer requesting a movie to start at 8pm. 

If a host is allowed to request a connection from a specific time req, epst is computed 

using (5.3). 

For each j E I determine 

epstj 2: req /\ aj (t) 2: c, epstj :S t :S epstj + h 

epst epsti where epsti min{epstj J E I} (5.3) 

The flow charts for this extension to the CAC algorithm can be depicted by changing 

block 1 in Figure 5.4 to "Request for new connection n to destination d arrives with 

requested starting time req, capacity c and holding time h" and replacing the flow chart 

for the scheduling process with Figure 5.10. 

5.4.2 More than one switch in the network 

Connections typically pass through multiple switches. A problem that arises in this case 

is that the switches may not compute the same value for epst due to the differences in 

their current state. 

To explain the problem and its solution, we use the example shown in Figure 5.11 

where Host1 requests a connection to Host2. The connection is shown to traverse through 

three switches. Assume the first switch, SwitchA schedules the connection and reserves 

resources for some time [epstA, epstA + h], where h is the holding time and epstA is the 

earliest possible start time that the connection can be scheduled for at SwitchA. SwitchA 

needs to pass the appropriate information to the next hop switch, SwitchB, to prevent 

the latter from scheduling the connection for any t < epstA. Now, assume SwitchB finds 
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No current time s 
requested start time? 

Yes 

Compute epst for connec­

tion using (5.3) 

No 
epst found? 

Return with failure 

Yes 

Using (5 .2), 

update time variant 

available capacity function 

ai (t) for interface i selec­

ted within set 1. 


2 
Reserve capacity c 
from epst until epst+h 

Return with success 

Figure 5.10: Scheduling process (allowing for a host to request a start time) included in 

the CAC module for a one switch network 
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Figure 5.11: Successful setup of a connection 

that it cannot schedule the connection for the same epst as SwitchA. Instead its epst is 

epstB. This could cause a problem because SwitchA may not have resources available 

for this connection in the time interval [epstB, epst B + h] . This later starting time could 

have been allocated to some other connection at SwitchA. This is a distributed computing 

problem caused by needing cooperative actions at multiple switches for which we propose 

solutions in the next section. 

5.5 Connection setup schemes 

Currently, on-demand (referred to as "switched" mode of operation as opposed to "provi­

sioned" mode) connections are set up in connection-oriented networks by using a blocked 

mode of operation. When a connection request arrives at a switch that does not have 

enough resources available, the request will not be queued until the resources become 

available. Instead the call is blocked and connection release procedures are initiated. 

The objective is to decrease the blocking probability of connections by making use of the 

known holding time to schedule a connection, thus providing the source that requested 

the connection with a later start time if resources are not immediately available. 

This section compares four queued connection setup schemes. Two schemes, kTwait 

and kTwait - T max , explore a queued mode of operation where the call holding time is 

not taken into account and connection setup requests are queued instead of blocked. Of 

all the schemes kTwait is the only one that guarantees a zero blocking probability. The 

kTwait - Tmax scheme extends the kTwait scheme by allowing the source to include a latest 

acceptable start time for the connection in its connection request. 

In the F scheme, the ingress switch selects an earliest possible start time (epst) for the 
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connection such that is has resources available for the connection from epst to epst +h+F, 

where h is the holding time of the call and F is some large time value. It holds the resources 

for this connection for this large time period hoping that the downstream switches will 

select an epst within this large time period. If a large enough value of F is selected, the 

probability of success will be high. 

In the timeslots scheme, the ingress switch selects multiple time ranges during which 

it can accommodate the call. Each downstream switch checks to see if it has available 

resources for one or more of these time ranges. Each switch along the path may narrow 

the time ranges until finally there exists at least one common time range (of length equal 

to the call holding time) during which the required resources are available at all switches. 

An analogy can be drawn between these scheduling schemes and the scheduling of a 

meeting involving several people. With the meeting duration known to all involved, one 

way to schedule its start is for the first person to send out a memo stating that he/she 

has "the whole of next week" available. Another solution is for the memo to read, "I 

am free from 2pm to 4pm Monday, 8am to Ipm Tuesday, and the whole of the following 

week." Tentatively, the sender of the memo holds these time ranges for this meeting until 

a response arrives from all other participants. The first solution corresponds to the F 

scheme and the second solution corresponds to the timeslots scheme. 

The F and timeslots schemes are call queueing schemes in that calls wait for resources, 

but they also block calls if the selected F value or number of time ranges is not large enough 

for success. These can be augmented with negotiations (i .e., multiple signalling exchanges 

on the same path), and/or searches on multiple paths to reduce call blocking probability. 

5.5.1 The kTwait scheme 

The kTwait scheme is the simplest queued connection setup scheme. In this scheme, 

switches do not take call holding times into account when connections are admitted. In­

stead, on receipt of a connection request it is placed in the queue of the interface that 

should be used by the connection. When the bandwidth requested by the connection 

request at the head of the queue becomes available, it is reserved for the connection and 

the connection request is passed on to the succeeding switch, or destination host. When 

the connection request reaches the destination host, a connection has already been set 

up from the source to the destination. If the destination host accepts the connection, it 

sends a success message back to the source. As this success message traverses the network 
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towards the source the connection is usually marked as "established". On receipt of the 

success message, the source can immediately start with data transmission. If Twait is the 

average time a connection request waits in a queue for resources to become available, and 

k indicates the number of switches on the connection, then the term kTwait forms a large 

part of the total connection setup time, hence the name kTwait as described in Chapter 2, 

Section 2.2.1. 

5.5.2 The kTwait - Tmax scheme 

The second queued connection setup scheme is designed by slightly modifying the kTwait 

scheme. When sending a connection request to its ingress switch, a source host might 

expect the connection to be established before a certain time. For example, the source host 

might request that a connection be established at most 50 seconds from when it requested 

it . This connection setup scheme also does not take the holding time into account when a 

connection is set up, but provides the source requesting the connection some control over 

the start time of the connection, hence named the kTwait - T max connection setup scheme. 

The kTwait - Tmax scheme works in the same manner as the kTwait scheme except that 

the source host is allowed to include a time, T max , in its connection request. The value 

of Tmax indicates the latest possible time that the source would accept as a start time 

for this connection. As in the kTwait scheme, switches place a connection request in the 

queue of the interface that should be used by the connection. The action taken when the 

connection request is at the head of the queue, and its requested bandwidth is available, 

differs in that the swi tch first checks if its current time is later than the time T max included 

in the connection request . If the current time is later, connection release procedures are 

initiated. 

5.5.3 The F scheme 

The first queued connection setup scheme that takes advantage of the call holding time 

is called the F scheme. In this solution the requested resources are reserved for a longer 

period of time than its holding time, until reverse messages are received, during the con­

nection setup procedure. In the forward phase of connection setup resources are held for 

a long enough time period that if a downstream switch selects a later value for epst, there 

is some likelihood that the earlier (upstream) switches of the path will have the resources 

available. Resources are held for this large time period only for the short duration it takes 
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for the setup request to reach the destination and the reply (setup success) to return. 

Using a large finish time during the scheduling of a connection works as follows: a host 

requests a connection from its ingress switch to a destination with the optional inclusion 

of a start time; the ingress switch selects a large time range (starting with the earliest 

time greater or equal to the requested start time) during which it is able to accommodate 

the connection. On receipt of a time range a switch searches for the largest time range 

inside the range it received from the preceding switch during which it can accommodate the 

connection. This time range is included in the connection request passed to the succeeding 

switch, or destination host. 

The computation of epst changes in that a pre-assigned value F is added to the holding 

time by the ingress switch, where F is a very large extra holding time. When a host 

requests a connection to destination d from time req with capacity c and holding time 

h, (5.4) can now be used at the first (ingress) switch to compute epst. The time-varying 

available capacity function for the chosen interface is updated using (5.5) in which Tend = 

epst + h + F. 

For each j E I determine 

epstj :2 req 1\ aj (t) :2 c, epstj :::; t :::; epstj + h + F 

epst epsti where epsti min{epstj J E I} (5.4) 

ai (t) f--- ai (t) - c, for epst :::; t :::; Tend (5.5) 

When the resources are reserved for this connection at the ingress switch, it indicates 

that this connection reserves capacity c from epst to epst+h+F. To enable all the switches 

in the connection to agree to the same value for epst, the value of epst, the holding time 

(h) and the time Tend are included in the connection request message passed to the second 

switch in the connection. The switch receiving this message shall handle this request as if 

a request for a connection from time epst, as included in the connection request, has been 

received. 

The setup request traverses the network and each switch along the path computes 

a (possibly) new value for epst and looks for the largest time period :::; F but :2 h, 

during which it will have enough resources available. If found, the requested resources 

are reserved for this connection (using (5.5)) for the period (epstnew, epstnew + h + Fnew) , 
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and the connection request containing epstnew , Fnew + hand h are passed on to the next 

hop. If a switch is unable to find a time period during which it can accommodate the 

connection, the call is blocked and release procedures are initiated. If the destination host 

accepts the request for a connection from the source, the final value of epst is passed from 

switch to switch until the source is notified of the new value of epst. 

As those success reply messages traverse the network to the source, all the switches 

change their resource reservation tables to reflect the new start time (the new value of 

epst), and the finish time to be epst + h. If epstlocal indicates the earliest possible start 

time as computed by a switch in the forward direction of the signalling procedure, and epst 

is the earliest possible start time it received in the success reply message, the time-varying 

available capacity function is updated using (5.6) and (5.7). 

ai (t) ~ ai (t) + c, for epstlocal ~ t < epst (5.6) 

ai (t) ~ ai (t) + c, for epst + h ~ t < Tend (5.7) 

The flow chart for the message handling module for the ingress switch is given in 

Figure 5.12. Block 1 in the scheduling process (given in Figure 5.10) changes to "Compute 

epst for connection n using Equation (5.4)", and block 2 changes to "Reserve capacity c 

from epst until epst + h + F.". The flow chart for the process "Update resource reservation 

and a(t)" is depicted in Figure 5.13. 

Figure 5.14 shows an example of scheduled connection setup using the F scheme. For 

this example, the value of F is 5 hours. End host A requests a connection with a holding 

time of one hour starting at 6pm, switch 1 computes that it will have enough resources 

available from 6pm until 12pm, which it reserves. The setup request message traverses 

the network, and every time epst is increased due to the unavailability of resources. At 

switch 2 resources are reserved from 7pm until 12pm, and epst is set to 7pm. When the 

setup request message reaches end host B, epst is already 9pm. End host B accepts the 

connection and the success reply from switch 4 contains the final value of epst (9pm) . As 

this reply message traverses the network, each node forming part of the connection now 

changes its respective resource reservations to indicate that the connection will be active 

from 9pm until lOpm. 

This scheme might have the disadvantage of underutilizing the channels between 

switches. To be able to guarantee a low blocking probability, the ingress switch has to 
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Figure 5.12: Connection setup at the ingress switch of a connection (F scheme) 

98 
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Figure 5.13: Process in the CAC module to update the changes made by the scheduling 

process in the reverse direction 
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HostA Switch 1 Switch2 Switch3 Switch4 HostB 

SETUP(6pm,12pm,h) 

SETUP(7pm,12pm,h) 

SETUP(8pm,llpm,h) 

SETUP(9pm, 1 Opm,h) 

SETUP SUCCESS 

SETUP SUCCESS(9pm) 

SETUP SUCCESS(9pm) 

SETUP SUCCESS(9pm) 

SETUP SUCCESS(9pm) 

Figure 5,14: Example of scheduled connection setup 

make use of a large value for F, Choosing a large value for F will increase the probability 

that downstream switches will find a time period corresponding to the one provided by 

the ingress switch during which it has enough resources available for the connection, The 

disadvantage of a large value for F is that the ingress switch might have resources avail­

able for the connection during time periods that are smaller than F, but large enough to 

handle the connection, These time periods will be ignored by this scheme, and will result 

in low utilization of the channels between switches, For example, Figure 5,15 describes the 

available bandwidth function for an OC1 interface if the current time is 2pm. Consider an 

F value of four hours. If the F scheme is used and a connection that has to be handled by 

this interface arrives, requesting an immediate start time and indicating a holding time of 

one hour; the earliest possible time this interface will be able to handle the connection will 

be at lOpm - even though resources are available from 3pm until 5pm. The next scheme, 

timeslots, shall attempt to solve this problem. 
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Figure 5.15: Available bandwidth of Switch1, interface i 

5.5.4 The timeslots scheme 

An improvement to the F scheme that will solve the aforementioned problem of utilization, 

without increasing the call blocking probability significantly, involves the use of several 

time ranges. Including more than one time range in the connection request will increase 

the expected utilization of the channels without increasing the call blocking probability 

significantly. In this scheme the ingress switch does not rely on a large value (F in the 

previous scheme) to admit a call, but rather a number n indicating the number of time 

ranges it should include in the connection request passed on to the succeeding switch. 

A time range j is identified by a start time tjs that is equal to or larger than the 

requested time (req) and the end time tje that is larger or equal to tjs + h, during which 

the switch has resources available to handle the connection. If I is the set of interfaces 

selected by the routing module as described in Section 5.3, the ingress switch selects n 

different time ranges by using (5.8). 

Find n time ranges such that, 


tIs;::: req, 


tIs < tIe < t2s < t2e < t3s < t3e < ... 


tje - tjs ;::: h, Vj, 1 ::; j ::; n, and 

ai (t) ;::: c, tjs ::; t ::; tje, Vj, 1 ::; j ::; n 

for any i E I (5.8) 
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Upon finding n time ranges, (tIs, tIe), (t2s, t2e),' .. , (tns , tne ), the required resources are 

reserved using (5.9). 

ai (t) - c, for tjs < t < tje , for 1 < J < n (5.9) 

The n time ranges are sent in the connection setup message to the next switch along 

with the holding time h. On receipt of a connection request containing time ranges, an 

intermediate switch attempts to admit the call during each of the time ranges or any part 

of each range greater than or equal to the holding time. The matching time ranges are 

passed on to the succeeding switch. If no matching time ranges are found, the call is 

blocked and connection release procedures are initiated. 

For example, if Figure 5.15 describes the available bandwidth function of an OC1 

interface of Switch1 and a connection request arrives requesting an immediate start time 

for an OC1 connection lasting one hour, the timeslots scheme enables the switch to pass 

the connection request to the succeeding switch containing the time ranges [3pm,5pm], 

[8pm,9pm] and [10pm,oo] in the case when n = 3. On receipt of a connection request 

containing time ranges, a switch shall attempt to admit the call during each of the time 

ranges Or any part of it greater than or equal to the holding time. The matching time 

ranges (of which there could now be more than n) are passed on to the succeeding switch. 

If no matching time ranges are found, connection release procedures are initiated. For 

example, Figure 5.16 shows the available bandwidth function of Switch2 before it received 

the connection request from Switch!. On receipt of the connection request, Switch2 shall 

admit the call during the timeslots [4pm,5pm], [lOpm,12am] and [lam,2am]. The new 

time ranges are then passed to the succeeding switch. 

If, after passing through all switches on the end-to-end path a time range greater than 

the holding time is found, the destination is offered the call. If it accepts, it creates a 

success message with the start time of the earliest time range in the connection request 

it received (epst). As this message traverses the network each switch releases reserved 
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Figure 5.16: Available bandwidth of Switch2, interface i 

resources during the unselected time ranges as shown in (5.10). 

For 1 ~ j ~ n, 

If tjs ~ epst ~ tje then 

ai (t) f--- ai (t) + c for tjs ~ t < epst and 

ai (t) f--- ai (t) + c for epst + h < t ~ tje 

else 

ai (t) + c, for tjs < t < tje (5.10) 

In the above description, we assumed that the number of time ranges sent from each 

switch is n, a constant. However, it is feasible to allow intermediate switches to create 

more time ranges than the number n of time ranges selected by the ingress switch. This 

could happen ifresources are not available at an intermediate switch for the whole duration 

of a time range selected by the ingress switch, but instead parts of the time range have 

available resources at that intermediate switch. Also, the number of time ranges selected 

at an intermediate switch could be fewer than n if it does not have the resources available 

during some of the time ranges. 
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5.6 Simulation and results 

5.6.1 Network model 

A comparison of the four different connection setup schemes was done using simulation 

with the help of the discrete event simulator OPNET Modeler [24]. The network model 

studied is presented in Figure 5.17. It is a circuit-switched connection-oriented network 

implementing a very simplified CAC mechanism in which each channel is able to provide 

one "bandwidth unit", which is requested by a connection. An analogy can be drawn 

between this network and a SONET (Synchronous Optical NETwork) network in which 

all the channels are OC1 channels. The network model consists of four switches and 

all the links shown in Figure 5.17 are unidirectional channels providing one bandwidth 

unit. In general networks will have much higher channel capacities. We chose only one 

bandwidth unit for the interfaces to decrease the startup settling time of the simulations. 

Connections were set up and released between Source and Dest, and between srcx and 

destx. The connections between Source and Dest were studied (hence called study traffic), 

and the connections between srcx and destx were created as "interference traffic" to create 

a more realistic network model. Interarrival times of the connection setup requests and 

the holding times of the connections are assumed to be exponentially distributed. The 

destinations always accepted any connection, allowing us to concentrate on the CAC 

performed by the switches. 

The mean call interarrival time and mean holding time for the study traffic was kept 

constant through all the simulations while the mean call interarrival time and holding 

times of the interference traffic was varied. This allowed us to simulate the behaviour of 

the different connection setup schemes' under different load conditions. The mean call 

interarrival time used by Source was 25 seconds and the mean holding time was 5 seconds. 

This computes to a mean load of 20% introduced to the network by Source. 

Table 5.2 presents the combinations of mean holding time and mean interarrival time 

used for the interference traffic generated by src1, src2 and src3. During each simulation 

run each of the sources generating interference traffic did so using the same mean holding 

time and mean interarrival time. With these different load conditions, the OC1 channels 

between switches will experience load varying from 25% to 95%, while the load on the 

channel between Switch4 and Dest is kept constant at 20%. 

Table 5.3 presents the parameters used for each scheduling scheme. There are no 

parameters for the kTwait scheme. The parameter Dmax for the kTwait - Tmax scheme 
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Figure 5.17: Network model 

shown in Table 5.3 indicates the maximum queueing delay that is acceptable. In other 

words, by adding Dmax to the time when the connection request is sent out by the source we 

get the value of Tmax. Each parameter from Table 5.3 combined with each combination of 

mean interarrival time and mean holding time comprised the parameters for one simulation 

run. For example, one simulation consisted of the scheduling scheme being timeslots, the 

number of time slots being 4, with the mean interarrival time of the interference traffic 

of 20 seconds and the mean holding time of the interference traffic of 9 seconds. Each 

simulation run simulated one hour of network activity and was repeated 201 times, each 

time with a different seed for the random variables. 

5.6.2 Results 

The results of most interest are the utilization of the channels, the call blocking probability, 

and the start time delay returned by the network when a request for a connection is made. 

In the timeslots and F schemes, the channels are either free or in use by a connection. In 

the two kTwait schemes the channels could be in one of three states: free, reserved or in 

use. The second state (reserved) is used to indicate that the channel has been reserved 

for a connection but the success reply has not yet been received, which means the channel 

is not "in use" (used to transfer data from the source to the destination). Hence, the 

utilization of the channels are measured by computing how much time a channel is "in 

use" by connections. The F and timeslots schemes also have a period in which resources 

are reserved but not in use, i.e., between sending the setup message and receiving the 

success reply. However, this time is far smaller (in the order of ms) than the wait time for 
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Mean interarrival time Mean holding time Load introduced by interference traffic 

100 5 5% 

50 5 10% 

40 6 15% 

25 5 20% 

20 5 25% 

20 6 30% 

20 7 35% 

20 8 40% 

20 9 45% 

10 5 50% 

20 11 55% 

20 12 60% 

20 13 65% 

10 7 70% 

20 15 75% 

Table 5.2: Different loads introduced by interference traffic 

resources (in the order of sec), and is hence neglected. 

The kTwait scheme does not block any calls. For all the other schemes, the call block­

ing probability is estimated by computing the ratio between the number of connections 

requested by Source and the number of connections released by any intermediate switch. 

The start time delay is the time difference between when Source requests a connection 

(req) and the value of epst as returned by the network. In the kTwait and kTwait - Tmax 

schemes, where there is no epst present, the start time delay is the difference between 

when the connection request is sent and the time when the network replies with success. 

Parameter Values 

F (F scheme) 20, 50 and 100 seconds 

t (tim eslots scheme) 2,3 and 4 

Dmax (kTwait - Tmax scheme) 100, 150 and 200 seconds 

Table 5.3: Parameters used in simulation of connection setup schemes 
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Figure 5.18: Percentage of calls blocked using different connection setup schemes 

Figure 5.18 shows the percentage of calls blocked when each connection setup scheme 

is used. The kTwait - Tmax scheme performs the worst, even with the usage of a Dmax 

value of 200 seconds the blocking percentage is almost 90%. The reason for this high 

blocking rate can be explained by looking at the queue at Switchl in which connection 

requests requiring access to the channel that connects Switchl to Switch2 are placed. 

With an increase in interference traffic, this queue grows very large and causes connection 

requests to experience delays larger than the Dmax value used, causing the connection 

to be blocked. Due to the poor performance of the kTwait - Tmax scheme (as shown in 

Fig. 5.20) we dismiss it from further comparisons. 

The call blocking percentages of the F scheme proves that increasing the value of F 

decreases the call blocking probability significantly. With the usage of a large F value 

by Switchl, the chances that a succeeding switch can admit a call during the same time 

Switchl is able to admit it increases significantly. Using a small F value (for example 20 

seconds) when the average call holding time is large (13 or 15 seconds) serves to increase 

call blocking. 

Increasing the number of time ranges used by the timeslots scheme decreases blocking 

probability significantly. Increasing the number of time ranges selected by the ingress 

switch improves the chances that an intermediate switch will find an overlapping time 
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Figure 5.19: Percentage of calls blocked using different connection setup schemes, constant 

mean interarrival times 

range during which it has the requested resources available. 

The drop of call blocking probability at the points "5/10" and "7/10" in many of the 

graphs indicates the dependence of the various schemes on actual values of mean holding 

times and mean interarrival times. A rerun of the simulation where the interarrival times 

are kept constant, only varying the mean holding times confirms this. Figure 5.19 contains 

the results. 

It is recognized that the blocking probabilities shown in Figure 5.18 and Figure 5.19 

are rather high. By using much larger numbers of timeslots, and/or adding multiple path 

searches, the blocking probabilities can be reduced to more acceptable values than the 

currently shown 12% at 95% utilization for the n = 4 timeslots scheme. 

The graph presented in Figure 5.21 shows, for all the remaining schemes, the difference 

in time from when Source requested a connection to Dest and the time when it is allowed 

to start data transmission for all successful connections. Using a large value for F in the F 

scheme has been proved to decrease the call blocking percentages, but now a disadvantage 

of a large value for F becomes apparent. Using a large value for F means that the host 

requesting a connection might receive a start time that is later than can in fact be handled 

by the network . This is because, in the case where F = 100 seconds, even if a connection 
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Figure 5.20: Queueing delay experienced by connection requests for connections requiring 

channel Switch1 -> Switch2 
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Figure 5.21: Start time delays for all connection setup schemes 
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will only be active for 5 seconds - the first switch will search for a time period of 100 

seconds during which it has enough resources available to handle the connection. Even 

if the channel is free for 50 seconds when the connection request arrives - the connection 

will not be admitted immediately. This is the reason for the poor performance of the F 

scheme when a value of 100 seconds is used. Reducing the F value to 50 seconds and 20 

seconds respectively reduces the start time delay considerably. 

The timeslot scheme proves to be the best choice when a connection needs to be admit­

ted as soon as possible. Note that the choice of different timeslots does not significantly 

affect the start time delay. This is because when the success reply is returned from the 

destination, it will always include the epst value as the start time of the earliest timeslot. 

The kTwait scheme's behaviour can be explained by looking at Figure 5.20. When 

the interference traffic contributes more than 50% to the total load, the queueing delay at 

Switchl grows exponentially. It appears that the kTwait scheme is not able to handle a 

load of more than 70%. The advantage of the kTwait scheme in that it does not block any 

connections now becomes insignificant. Even though the kTwait scheme does not block 

connections, it becomes unstable when the load is higher than 70%. A source may be 

content to use the timeslots or F scheme to set up connections, and even if a connection 

request fails, the sending of a request more than once will result in less delays in these 

schemes than if the kTwait scheme was used under high loads. Again, the dependence of 

the schemes on the actual values used for the mean interarrival time and mean holding 

time is illustrated in Figure 5.22. 

Figures 5.23 and 5.24 represents the utilization of the OC1 channel between Switchl 

and Switch2. The timeslot scheme performs the best, even when the load of the network 

is at 95% (20% study traffic and 75% interference traffic) , the first channel is utilized close 

to optimal. As expected, the F scheme performs poorly when a large value of F is used 

- although it still outperforms the kTwait scheme. The moment the interference traffic 

passed the 50% mark, the kTwait scheme's performance started dropping. The reason for 

this large drop is explained above. 

110 


 
 
 



1000 

900 

800 

700 
en 
"0 
c 
0 
u 600 
Q) 

~ 
>­
rn 500OJ 
"0 
Q) 

.§ 400 
1:: 
rn 
(jj 

300 

200 

100 

0 

F=20 --+-­
F=50 ---x--­

p" . F=100 .. . -liE ... 

kTwait .... o
/.",' n=2 _.- ... _. 

n=3 - , -0-.­
n=4 .........,../


/0 

" .­

ri 

"'. 
)IE-- __ *_ .. - . w-.---*-~~-_-

1/20 2/20 3/20 4/20 5/20 6/20 7/20 8/20 9/20 1 0/201 1/2012/2013/2014/2015/20 

mean holding time/mean interarrival time of "interference traffic" 

Figure 5.22: Start time delays for all connection setup schemes, constant mean interarrival 
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Figure 5.23: Utilization of channel Switchl->Switch2 
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Figure 5.24: Utilization of channel Switchl-> Switch2, constant mean interarrival times 

5.7 Further extensions and future work 

5.7.1 Switch programming delay 

Switch programming is the act of setting translation or mapping tables at switches to 

realize circuits. In the case of circuit-switched connections (circuits), it involves the correct 

time slot/interface number or wavelength/interface number translations at the switches. 

In the case of virtual circuits as in ATM networks , it involves label mapping or virtual 

path identifier/virtual channel identifier mapping tables. The problem introduced by the 

equations discussed so far is that a switch forming part of the connection will initiate the 

programming of its fabric at exactly epst , which is the same time at which the end host 

(source) will start transmission. This may have the consequence that data from the source 

host may arrive at a switch before the resources have been reserved for it . This section 

considers two possible solutions to this problem. 

Solving problem at switches 

This solution assumes that each switch forming part of the connection has a value 

pro9_delay associated with it , this is the value computed to be the delay from when a 

switch programming request is sent to the switch programming module until the switch 
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fabric has been programmed with the information for the connection. Once the switch 

fabric has been programmed, the connection is active. Taking the value prog_delay into 

account , (5.1) changes to (5.ll). 

For each j E I determine 

Xj 2: current time !\ aj (t) 2: c, Xj :::; t :::; Xj + h 

x Xi where Xi = min{xj J E I} epst X + prog_delay 

(5.ll) 

This change to (5.1) can be applied similarly to all the relations and assignments 

discussed so far ((5.1) to (5.4)) replacing the variable epst with X, and computing epst 

with the assignment epst f- X + prog_delay. 

Solving problem at end host 

Consider the value prog_delay(S) , which indicates the delay introduced when programming 

the switch fabric of switch S. If the source host knows this value for all the switches 

along the path to the destination, it can compute the maximum of all these programming 

delays. Now the source host could solve the programming delay problem by only starting 

its transmission at epst+ maximum programming delay along path to destination. 

5.7.2 Propagation delay computation 

In the introduction to this chapter, the first example application mentioned for scheduled 

connections was file transfers. In that discussion it was mentioned that the holding time of 

a connection used to transfer a file can be computed using the equation h = f+ov~:~:adx f + 

Tprop . 

The problem with this equation is the question of how Tprop is computed. All connec­

tions are unidirectional, so there is currently no way for two nodes in the circuit switched 

network to compute the propagation delay between them. The proposed solution to this 

problem is to choose a value P which is either an educated guess of the value of T prop , 

or some large value which should be larger than any propagation delay in the network. 

If a large value is chosen for P, the connection should be released by the sending host 

after transmission is completed, as opposed to the finish time being used by the switch 

for connection release. This makes the bandwidth used by the connection available to 
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other connections immediately after release. Bandwidth will not be wasted. There will 

nevertheless be a time frame from the actual release time until time P during which no 

connections will be scheduled. This problem resulting from the inability to compute Tprop 

needs more attention. 

5.7.3 Time 

All the connection setup schemes discussed so far will only succeed in a network where 

all the end hosts and switches are perfectly synchronized to a common clock. In the 

simulation environment this was easily modeled using one global clock. However, for an 

implementation of the connection setup scheme, some mechanism of clock synchronization 

has to be implemented. An extensive survey done in 1995 reported that most machines 

using NTP (Network Time Protocol) to synchronize their clocks are within 21ms of their 

synchronization sources, and all are within 29ms on average [12]. The consequences of 

different times at switches have not been examined, but it is expected that the scheduling 

mechanisms will not perform well in such an environment. This is because situations may 

arise when data is received before a connection is set up, or a connection is closed before 

data transmission is completed. Mechanisms that use relative time values or some such 

approach are needed to deal with these time differences. 

5.8 Summary and Conclusions 

This chapter described various scheduling algorithms for calls with known holding times. 

To support multiple-switch connections, two scheduling alternatives, the F scheme and 

timeslots scheme, were proposed. In the F scheme, resources are reserved for a long 

period F, longer than the call holding time, to guarantee that all switches would find a 

start time for the connection within this long period. In the timeslots scheme, multiple 

time ranges when the ingress switch can support the call are selected and sent downstream 

in the signalling message. Each intermediate switch then selects a subset from within this 

set, until the destination is reached. These two schemes were compared against a simple 

call queueing scheme, the kTwait scheme, which does not assume knowledge of call holding 

times, and a variant of this scheme. A simulation study of the schemes showed that 

(a) significant gains are possible by using knowledge of known call holding times, if that 

is available, and (b) of the two alternatives proposed for scheduling calls with known 

holding times, the timeslots scheme proved to be the better alternative. The kTwait 
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scheme becomes unstable when the traffic load exceeds 70%. At 70% loading, the timeslots 

algorithm that uses knowledge of holding times can offer start time delays that are 85% 

smaller than with the kTwait that does not assume knowledge of call holding times. Also, 

the timeslots scheme can be used with traffic loads of 95%. As a result, at 70" load a 

channel utilization increase of 37% is possible using schemes that exploit knowledge of call 

holding times, when compared to the kTwait scheme. The reason we consider the timeslots 

scheme the winner over the F scheme, is that at large values of F, call blocking is low, 

but the start time delay is high, and with small values of F, the inverse is true. On the 

other hand, in the timeslots scheme, both the call blocking probability and the start time 

delay are relatively low for all loads tested . Its drawback over the F scheme lies in the 

increased signalling overhead, which might be negligible if few time slots are used. 

The novelty of this work lies in its introduction of call queueing and providing delayed 

starts for connections. It culminates in a proposal to use known call holding times while 

scheduling to improve both network resource utilization and call queueing delays. 

Future work includes the incorporation of the timeslots scheduling scheme into the 

signalling protocol presented in Chapter 3. 
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Chapter 6 

Further work: The transport layer 

6.1 Introduction 

To enable an application to transfer bulk data, for exam­

ple large files, over a circuit switched network, a trans­

port layer is required to provide the application with the 

guarantee of a complete and error free transmission. The 

details of this discussion are beyond the scope of this 

research, and are currently used as guidelines for future 

work. 

The large bandwidths available in a SONET network 

means that the product of end-to-end delay and bandwidth is very large. The "band­

width*delay product" measures the maximum amount of data in transit between two 

nodes. For example, if the transport protocol TCP is used to transfer data between two 

SONET nodes, the "bandwidth*delay product" is the buffer space required at the sender 

and receiver to obtain maximum throughput on the TCP connection over the path, i.e., 

the amount of unacknowledged data that TCP must handle in order to keep the pipeline 

full [25]. Although solutions have been proposed in [25] to increase TCPs performance in 

networks with high "bandwidth*delay products", it is still not efficient enough to be run 

over a circuit switched network. 

NETBLT (NETwork BLock Transfer) [26] is a transport level protocol intended for 

the rapid transfer of a large quantity of data between computers. The protocol features 

also allow it to perform very well in networks with a high "bandwidth*delay product". 

NETBLT was initially designed to run over IP and therefor provides a service of connection 
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setup between the communicating nodes using a two-way handshake. In a circuit switched 

network, the transport layer does not need to set up a connection between the transport 

entities due to the fact that a (network layer) connection has already been set up between 

the communicating nodes. 

Instead of examining more transport protocols to find an ideal protocol to be used 

for file transfers in a circuit switched network, the functions of transport protocols are 

examined. Section 6.2 briefly discusses the transport layer capabilities that are envisioned 

to be ideal when a circuit switched network is used to transfer bulk data. These capabilities 

are currently being evaluated by the CATT research group for the design of a new transport 

protocol. 

6.2 Protocol requirements 

The transport protocol is responsible for guaranteeing a reliable data transport service 

between two nodes connected with a uni-directional (from the source to the destination) 

channel. A uni-directionallink limits the communication between the two transport enti­

ties, but creating a bi-directionallink between the transport entities will result in a waste 

of bandwidth. For example, the smallest channel available in a SONET network is OC1 

(51.84Mbps), which, when dedicated to communication between transport entities for the 

whole duration of a file transfer, will be very wasteful. Recall that all the nodes forming 

part of the SONET network will have interfaces connecting them to the IP network. It is 

therefore proposed that all messages from the destination transport entity to the source 

transport entity be sent over an IP network. These messages are few during a file transfer. 

They should not add an excessive load to the IP network. 

Figure 6.1 shows the paths TPDUs (Transport Protocol Data Units) will follow between 

two nodes connected by a network layer connection. 

The services provided by a transport protocol are: 

• 	 connection management, which is a mechanism needed to maintain state information 

regarding the data transfer at the source and destination; 

• 	 flow control to avoid buffer overflows at the destination; 

• 	 acknowledgements received by the source that indicate the reception of data (suc­

cessful or unsuccessful) by the destination; 

• 	 error handling that includes error detection and recovery schemes; 
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Figure 6.1: Transport layer in a connection oriented circuit switched network 

• congestion control to handle lost packets in network routers. 

Each service will be considered next, and recommendations are made for mechanisms 

that will be ideal for a transport protocol in a circuit switched network. 

To transfer a file completely and without error, the two corresponding transport layers 

(at the source and destination) have to keep a record of which data has been received 

(at the destination), and how much data may be sent without acknowledgement (at the 

source). This is the state information of the transport protocol. The updates of state 

information, which should only be sent by the destination, will have to be sent out-of­

band. That is, with the data being transferred over the circuit-switched network, the 

destination notifies the source about the progress of the transfer by sending messages over 

the connectionless packet-switched network (IP), as depicted in Figure 6.1. 

It has already been suggested that there need not be a connection set up between the 

two corresponding transport layers because of an existing connection at the network layer 

level. The existence of a network connection allows the transport protocol to make use of 

an implicit connec tion setup scheme in which a transport layer connection is opened when 

the network layer connection is set up. The transport layer connection can now either be 

closed when the network layer connection is closed and/or the closing of the connection 

can be based on a timer when a scheduling mechanism similar to the ones discussed in 

Chapter 5 is used to set up connections. 

The transport protocol has to bridge the gap between the services provided by the 
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network layer, and the services required by higher layers [27]. In our target application 

of file transfer over a circuit switched network, it is assumed that when the (transport 

layer) connection is set up, the applications would already have agreed on the transfer 

rate acceptable to both the source and destination, which has been negotiated during 

the setup of the network layer connection. The decision to use an implicit transport 

layer connection setup scheme implies that all transport layer parameters that need to be 

negotiated are agreed to during network layer connection setup. 

The rate at which the destination can accept data is taken into account when the 

circuit is set up. Because a circuit-switched network is used to transfer the data, the 

network will never become congested due to the reservation of resources in the network. 

But, once a connection is set up between the network layers of the source and destination, 

it is possible that, (due to variations in host tasks activity) the destination might not 

be able to accept data at the rate it had been able to handle when the network layer 

connection was set up. Thus, some flow control mechanism needs to be introduced to 

enable the destination to notify the source that it needs to limit the data transmission. 

For flow control, the mechanism of rate control is ideal. Using rate control the destination 

can ask the source to send data at a lower rate. For example, if an OC12 connection has 

been set up between the source and destination, the destination can request the source to 

send data at OCI rate. This has the consequence that some resources might be wasted in 

the circuit-switched network during the times that the destination is not able to handle 

the initial data rate. 

Data being transferred over a circuit-switched network will never be delivered out of 

sequence. This leaves the transport protocol with two responsibilities. First, all the data 

sent by the source has to reach the destination application free of bit errors (error fre e de­

livery). Second, all data transmitted by the source has to reach the destination (complete 

delivery) . The usage of sequence numbers is required for error correction. Byte-based 

sequence numbers (as used in TCP) allows for efficient error correction by indicating the 

exact amount of data that is missing or containing errors, but considering the amount 

of bytes that could be in transit between two nodes in a SONET network, the sequence 

numbers will get really large. Thus a packet based sequence numbering scheme is pro­

posed. Because the TPDUs will always arrive in sequence, a missing packet will be easily 

discovered. The destination can request the retransmission of a missing packet by sending 

a NAK (Negative Acknowledgement) to the source on the IP network. By making use of 
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NAKs, as opposed to positive acknowledgements (ACKs) only used for data received error 

free and in sequence, the signalling load is reduced considerably. 

Additionally each TPDU could include a FEC (Forward Error Correction) code that 

is able to handle the most frequently occurring error patterns. When an error is encoun­

tered in a TPDU, a NAK is sent to the source requesting a retransmission of the packet 

(identified by its sequence number), similarly to the mechanism summarized in [28]. 

To determine if all the data transmitted by the source has reached the destination 

(complete delivery), it is proposed that all TPDUs are always the same length, except 

possibly the last TPDU. The last TPDU also includes an indication to report that it is 

the last TPDU of the transmission, thus indicating a complete transmission. Once the 

transport protocol receives this indication, it can signal the SONET signalling process 

to close the network layer connection. Given that circuits are best used with continuous 

traffic (rather than bursty), our thinking is that it is appropriate to disconnect the circuit 

when transmission is done. 

6.3 Conclusion 

Only a few design decisions have been considered for the transport protocol. The decisions 

should result in a light-weight transport protocol that allows for the complete and error 

free data delivery in a circuit switched network. The interfaces between the transport 

layer and the network and application layers still needs to be defined, as well as the detail 

of all the mechanisms described above. 
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Chapter 7 

Conclusion 

This research set out to find efficient mechanisms for bulk data transfer. An analytical 

and experimental analysis of file transfer delay in circuit-switched and TCP lIP networks 

suggested that circuit-switching is ideally suited for bulk data transfer. 

To enable TDM networks to be used for bulk data transfer, a mechanism is required 

to enable the setting up of high-bandwidth on-demand circuits. This is because switched 

connections (as opposed to provisioned connections) are currently only available at the 

low rate of DSO(64Kbps) while data rates of OC1(51.84Mbps) to OC768(40Gbps) would 

be ideal for bulk data transfer. A signalling and supporting routing protocol that enables 

on-demand setup of circuits with rates of OC1 to OC192 was designed to reach this 

goal. For high throughput and a general increase in efficiency, the signalling protocol was 

designed to be implemented in hardware, and the routing tables used by it are updated 

by a routing protocol that was designed to be implemented in software. The signalling 

protocol is currently being implemented in hardware by the CATT research group. 

Bulk data has the characteristic that when it is transferred over a connection-oriented 

network that implements preventative congestion control mechanisms (as opposed to re­

active congestion control as implemented in TCP lIP networks), the duration or holding 

time of the connection can be determined by using the filesize, data rate and propagation 

delays. 

Two scheduling algorithms were designed that use these known holding times. These 

algorithms enable a switch to reply with a later start time if it is unable to accommodate 

the connection request at the time of its arrival. The scheduling algorithms are simulated 

and compared to a simple queueing mechanism where a connection request is queued until 

its requested resources become available, only then being forwarded to the next hop of the 
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connection. 

The use of such scheduling is shown to improve the efficiency of bulk data transfer in 

connection-oriented networks. The simulations show that at 70% loading, these schemes 

offer start time delays that are up to 85% smaller and channel utilization of up to 37% 

larger than a simple queueing mode of operation where call holding times are ignored 

when connections are set up. 

The evidence thus suggests that with appropriate signalling and scheduling, efficient 

bulk data transfer can be achieved on circuit-switched networks. Of course, a suitable 

transport protocol would be required to enable the reliable transfer of data between two 

hosts. While the ideal characteristics of such a protocol have been described in this 

dissertation, details of its design and implementation remain a matter for future research. 
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