
Chapter 1 

Introduction 

Based on a classification of the different networking and switching modes, three types of 

networking techniques are in existence today. A network can be packet-switched or circuit­

switched and a packet-switched network can either be connectionless (CL) or connection­

oriented (CO). Circuit-switched networks are, by their very nature, connection-oriented. 

In such networks, the switching action is based on the "position" of the arriving bits. 

"Position" is determined by the incoming interface number and time slot in a Time Division 

Multiplexing (TDM) switch, or wavelength in a Wavelength Division Multiplexing (WDM) 

switch. In CO packet-switched networks, packets that arrive on the connection after 

it has been set up carry the labels corresponding to the connection in their headers . 

When packets arrive at a switch in a CO packet-switched network, the mapping tables are 

consulted, labels are modified to corresponding values for the outgoing link (if needed), and 

packets are forwarded to the next node. No resources are reserved along the path between 

hosts communicating over a CL packet-switched network before data exchange is initiated 

between them. Each packet header contains the complete address of the destination and 

the packet is routed through the CL network based upon this information. Example 

networks from the above categories are presented in Table 1.1. 

Networking mode 

Switching mode Connection-oriented Connectionless 

Packet-sWl·tching 

Circuit-sWl·tching 

ATM,RSVPIIP,MPLS IP 

Telephony TDM network, 
SONET/SDH,WDM 

Table 1.1: Classification of networking techniques 
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~ Consuming end 
Sending en~ Live Stored 

Live InteractiveILive streaming Recording 

Stored Stored streaming File transfers 

Table 1.2: Classification of data transfers 

Data transfers can be classified according to Table 1.2. The three categories where 

either the source or destination is "live" can be classified as "real-time" where the data is 

either sent live by the source or consumed live by the destination or both. Examples of 

these transfers include telephone conversations, telnet sessions, video and audio streaming 

(using compression techniques). These data transfers typically generate bursty traffic, 

have delay and jitter constraints, and endure for long sessions. For these applications the 

use of CO packet-switched networks are ideal because bandwidth is not wasted between 

bursts of data, which will occur when circuit-switched connections are used. 

The remaining category involves file transfers. The data transferred is stored both at 

the sending and receiving end. Bulk-data transfers from applications such as web accesses, 

file transfers and electronic mail, could be "small" or "large." If the time to transfer a 

file is much larger than call setup delay, the file is classified as "large." Otherwise it is 

considered small. Small transfers are best handled by a CL network to avoid the overhead 

of call setup delay. Schwartz [5] (page 511), McDonald [6] (page 195) and Miyahara et al 

[7] shows that large bulk-data transfers are better handled in a circuit-switched mode than 

in a CL packet-switched mode. This is because the per-packet header and acknowledgment 

overhead in CL networks is greater than call setup overhead in circuit-switched networks. 

There is no intrinsic burstiness since a large file consisting of bits can be simply transferred 

across a network at a constant rate . This results in better performance (lower delays) when 

a large file is transferred over a circuit-switched network. Nevertheless, in practice, CL IP 

(TCP lIP) networks are mostly used for bulk data transfers. Using a CO packet-switched 

network for bulk transfer will suffer similar delays because the connection setup overhead 

together with the packet header and acknowledgement overhead will contribute to larger 

delays when transferring bulk data using a CO packet-switched network than transferring 

the same data using a circuit-switched network. 

Two types of circuit-switched networks are in use today. Time Division Multiplex­
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ing (TDM) is the simplest circuit-switched network where the switching action is per­

formed based on the incoming interface number and time slot. Wavelength Division 

Multiplexing (WDM) switches base their switching decision on the incoming interface 

number and wavelength of the arriving bits. Currently, in both types of circuit-switched 

networks, on-demand (referred to as "switched" mode of operation as opposed to "pro­

visioned" mode) circuits can only be obtained at the DSO (64 Kbps) rate, and the only 

application that uses switched circuits is telephony. All higher rate circuits are used in 

provisioned (hardwired) mode where circuits are established a priori aCross the network 

and are changed infrequently. 

To support large bulk-data transfers from applications such as web accesses , file trans­

fers and electronic mail, a network will have to accommodate high-bandwidth (higher than 

DSO) on-demand circuits between any two nodes of the network. Considering that the high­

speed circuit-switched network, Synchronous Optical Networks/Synchronous Digital Hier­

archy (SO NET/SDH), is able to provide circuits with bandwidth from OCI (S1.84Mbps) up 

to OC768 (40 G bps), there is a need for a mechanism to set up on-demand circuits for the 

benefit of increasing performance experienced by file transfer applications. Transferring a 

large file over even the least-bandwidth SONET circuit (S1.84Mbps) will improve delays 

considerably when compared to the commonly used TCP protocol over the connectionless 

IP network. 

In a CO network, connection setup and release procedures, along with the associated 

message exchanges, constitute the signalling protocol. Moving away from the telephony 

application, a new signalling protocol is required for the circuit-switched networks to 

support these high-bandwidth on-demand circuits. 

Signalling protocols are typically implemented in software. This is due to the com­

plexity of signalling messages, and the amount of state information that needs to be kept 

by all switches participating in connection setup. The fact that signalling protocols are 

implemented in software points to a shortcoming in circuit-switched networks. Switch 

fabrics are continually improved to handle data at faster speeds, but that is only after a 

connection has been set up. Implementing signalling protocols in hardware could signifi­

cantly increase switches' call handling capabilities. The expected increase in call handling 

capacities of switches will dramatically affect the role circuit-switched networks play in 

future data transfer applications. This dissertation presents a novel signalling protocol 

intended tor hardware implementation. 
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In support of the new signalling protocol, an accompanying routing protocol (to be 

implemented in software) is designed. The routing protocol provides enough information 

to the signalling protocol for efficient connection setup along the shortest path between 

the source and destination. 

An experimental analysis of circuit-switching, done as part of this research, suggests 

that an improvement in network utilization can be expected based on an important char­

acteristic of file transfer applications. The characteristic of interest is that if a file is 

transferred over a circuit-switched network (that implements preventative congestion con­

trol as opposed to reactive congestion control in TCPlIP networks), the holding time of 

the required connection can be deduced from the file size. In connection-oriented networks, 

connections are admitted without knowledge of the call holding time. If resources are not 

available, the connection request is simply denied and connection release procedures are 

initiated by the signalling protocol. This dissertation explores the option of queueing calls 

in connection-oriented networks instead of blocking them when network resources are una­

vailable. A simple call queueing algorithm is to hold up call setup messages at each switch 

along an end-to-end path until resources become available. This approach is used in the 

analysis described in Miyahara et aI's paper [7]. This scheme suffers from poor network 

utilization and long call queueing delays. However, if calls have known holding times, it 

is possible to design call scheduling algorithms that result in reduced call queueing delays 

and improved network utilization. Algorithms for such call scheduling are proposed and 

the quantitative benefits of algorithms that exploit knowledge of call holding times are 

demonstrated. 

The author was a member of the CATT (Center for Advanced Technology in Telecom­

munications) research group at Polytechnic University, Brooklyn, New York, and is re­

sponsible for the design of the signalling protocol, the supporting routing protocol as well 

as the design and simulation of the scheduling algorithms. The scheduling algorithms 

presented in Chapter 5 has a US patent pending, reference number IDS 122874. Other 

CATT team members are currently exploring hardware implementation of the signalling 

protocol presented in Chapter 3, and busy designing a transport protocol to be used over 

a circuit for bulk data transfers. 

Chapter 2 explores the performance gains that can be expected when a circuit-switched 

network is used for bulk data transfers. To provide a better understanding of the per­

formance gains an experiment was designed to compare data transfer characteristics of 
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Chapter 2 

Analyzing file lfansfer delays in 


ircuit-switched am.l TCP/lP network.s , 


Chap"'r 5 
SdeduJing calls with 
known holJing times 

Figure 1.1: Chapter layout 

TCP lIP and circuit-switched networks. Chapter 3 introduces the signalling protocol for 

use in a connection-oriented circuit-switched network , in this case a TDM network, and 

Chapter 4 provides a solution for the supporting routing protocol. Chapter 5 describes 

some solutions that can be used to improve connection admission by making use of the 

holding time of the connection to schedule the start of a connection for a later time if the 

requested resources are not available at the time of connection request. Chapter 6 notes 

future work, which is the transport protocol that is required to enable the reliable transfer 

of data over a circuit-switched network. 

Excluding the introduction and conclusion, the layout of the chapters can be presented 

with Figure 1.1. The conclusions drawn in Chapter 2 showed the need for a signalling 

protocol for circuit-switched networks (described in Chapter 3) and a transport protocol 

that enables the reliable transfer of data between a source and destination connected with a 

circuit-switched connection (discussed in Chapter 6). Chapter 5 investigates the queueing 

mechanism used in the comparison presented in Chapter 2. The signalling protocol requires 

a routing protocol to be able to set up a connection along the shortest path between a 

source and destination, this protocol is described in Chapter 4. 
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Chapter 2 

Analyzing file transfer delays in 

circuit-switched and TCPlIP 

networks 

2.1 Introduction 

In theory circuit-switched networks have been shown to 

have lower response times for large data transfers than 

packet-switched networks [5] (page 511), [6] (page 195) 

and [7]. Since transferring a large stored file from one 

computer to another has no intrinsic burstiness associated 

with it, the total per-packet header and acknowledgement 

overhead in packet-switched networks is greater than the 

call setup overhead in circuit-switched networks. 

To be able to transfer files over a circuit switched network, it is necessary that the 

network provide high-bandwidth on-demand circuits. We need high-bandwidth to be able 

to transfer large amounts of data quickly, and on-demand circuits are needed because 

these transfers could occur between any two nodes connected to the network. Currently 

in circuit-switched networks, connections of T1(1.5Mbps) and higher rates are set up in 

provisioned mode. This lack of flexibility might be the single biggest obstacle standing 

between circuit switching and its success in data networks. Indeed, currently we primarily 

use packet switching techniques like IP and ATM for the majority of network traffic, 

including large file transfers. 
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This chapter attempts to associate real world numbers with the comparisons in [5J and 

[7], starting by moving from general packet switching techniques to TCP lIP. TCP lIP is 

currently the packet switching technique of choice when large files are transferred over the 

Internet. Comparing TCP lIP to circuit-switching under laboratory conditions is intended 

to help us understand the performance we currently experience and to anticipate the 

performance we should expect if we decided to make use of circuit-switching for all large 

file transfers. Note that in this discussion, a large file is considered to be a file for which 

the total transfer time of the per-packet overhead and the acknowledgement overhead is 

greater than the call setup overhead in circuit-switched networks. 

Due to the unavailability of a circuit-switched network that provides high-bandwidth 

on-demand circuits, we used UDP together with a simple network configuration to simulate 

circuit-switching. Section 2.2 describes the equations we designed for the comparison, 

Section 2.3 introduces the reader to the testing environment and the goals of the specific 

tests , Section 2.4 describes the results of the tests and Section 2.5 is the conclusion . 

2.2 Comparing TCPlIP to circuit-switched networks 

When transferring a file, delay can be categorized as follows: 

• propagation delay 

• emission delay 

• queueing delay 

• processing delay 

In a large network with long round trip times, propagation delay will have a significant 

influence on the transfer time when TCP l IP is used. This is because of the presence of 

ACK messages. Before the maximum window size is used by the client , the propagation 

delay incurred by the ACKs will be significant. 

Emission delays (time taken to put the bits on the wire) are also more significant 

when TCPlIP is used to transfer a file. When transferring data using TCP l IP, emission 

delays are present at the sending host and all the routers along the path. In the case of 

circuit switching, emission delays are only present at the sending host (see Figure 2.1). 

However, on closer examination, under optimal conditions pipelining could occur as will 

be explained below. 
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Figure 2.1: Emission delays, TCP lIP vs. circuit switching 

The queueing and processing delays (experienced at routers when incoming packets 

are queued and processed) are also only present when sending the file via TCP lIP, not 

when the file is sent using circuit switching. Once a circuit has been set up between the 

source and destination hosts, the data is switched by each intermediate switch without it 

experiencing queueing and processing delays. 

To better understand the total time taken to transfer a large file using TCPlIP vs. a 

fast circuit , we first propose mathematical models of the time delays in each respective 

case. Sections 2.2.1 and 2.2.2 present the mathematical models for circuit-switching and 

TCPlIP respectively. 

2.2.1 Circuit-switched networks 

Tckt = Tsetup + kTwait + Ttransjer (f) (2.1 ) 

8 + OVhd)
Tsetup = kTproc + Tr.t .prop + 2 (k + 1) ( 

(2.2)
rate 

fTl (f) _ Tr.t.prop f + ovhd 
.1transjer - 2 + t (2.3) 

ra e 

In the above equations, all the times (T) are the average times, s is the length of the 

signalling message, f is the file size, Tr.t.prop denotes the round-trip propagation delay and k 

indicates the number of switches. Twait is the time to wait for the requested resources to be 

freed (assuming a queueing mode of operation is used, as opposed to a call blocking mode). 

Tproc indicates the total processing delay that includes route determination, Connection 

Admission Control (CAC) and switch programming, incurred at a switch to set up a 

connection. 

8 


 
 
 



The overhead (ovhd) included in Equation (2.2) and (2.3) is the overhead introduced 

by the data link layer (for example SONET). If the transport layer implements a FEC 

(Forward Error Correction) scheme (supplemented with NAKs), the overhead will include 

more than just the headers added by the lower protocol layers. 

Equation (2.1) is the total time needed to transfer a file using a circuit. Together with 

the processing delay (Tproc) experienced by a connection request captured in the term 

Tsetup, the signalling message requesting the connection is also placed in a queue at each 

switch to wait for the required resources to be released . Only when the connection request 

reaches the head of the queue, and its requested resources are available, will the request 

be passed on to the next switch. Hence the term kTwait . 

Equation (2.2) includes the processing delay at switches, propagation delay, and emis­

sion delay (which is the length of signalling messages divided by the data rate used for 

signalling). It is assumed that a circuit is set up using two messages: typically a SETUP 

is sent in the forward direction from the source to the destination; if all the switches along 

the path and the destination are able to handle the connection, a SETUP SUCCESS mes­

sage is sent in the reverse direction from the destination to the source. After processing 

each of these messages at each switch, a signalling message has to be re-introduced to the 

circuit-switched network. This has the consequence that the emission delay is computed 

for each switch (each switch places the signalling message "on the wire" to the next switch) 

as well as for the end hosts responsible for sending the message. Thus signalling messages 

have to be placed on (k + 1) links during connection setup in both the forward and reverse 

directions. Hence the term 2 (k + 1). 

During file transfer (see Equation (2.3)), there is no queueing delay since these are 

circuit switches and only emission and propagation delays are incurred. The emission delay 

is also only incurred at the sending host. This is because after a circuit has been set up, the 

host initially places the bits on the wire after which it is switched by each intermediate 

node without experiencing queueing, processing or emission delays. It is assumed that 

the file transfer is initiated from the sending host, and the connection is closed by the 

sending host after the error free file transmission has completed. The consequence of this 

assumption is that the file transfer does not include a round trip delay, but only delay for 

transfer in one direction. 

Time to release a circuit incurs the same three delays as to set up a circuit. When 

the sending host closes the connection, it sends a message with its request to its ingress 
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switch. After receiving a reply to this message, the connection is considered closed by the 

sending host. The total time for release is not directly included in the file transfer delay 

model given here, but the effect of release messages on queueing delays of setup messages 

should be considered. 

2.2.2 TCPlIP 

The following equations are obtained if it is assumed that there is no loss of packets and 

hence that the congestion window grows steadily with the sender sending 1 segment, and 

then 2, and then 4 and so on, until the whole file is sent. One ACK is assumed for 

each "group" of segments. It is also assumed that ssthresh is not reached and that TCP 

continues operating in slow start. In these equations k indicates the number of routers, m 

indicates the maximum segment size (in bytes) in TCP lIP and e-e indicates end-to-end . 

TTCP = Te-esetup + TtransJer (f) + Te- eclose (2.4) 

Equation (2.4) is the total time needed to transfer a file using TCP. 

8 + OVhd)
T e-esetup = T e-eproc + Tr.t.prop. + 3 (k + 1) ( rate (2.5) 

Equation (2.5) represents the three-way handshake that is needed to set up a TCP 

connection. It includes the processing delay at routers (which includes queueing delay 

and service time), propagation delay, and emission delay. The term Te- eproc captures the 

total queueing and processing delay experienced by all the routers along the path to the 

destination. The emission delay is the byte size of signalling messages (8) divided by the 

data rate. In the case of TCP the signalling messages are all 40 bytes. The emission delay 

should also take into account the overhead added by the data link layer. For example, if 

Ethernet is used to transfer the messages, the overhead is 58 bytes . 

c + OVhd)
Te-eclose = Te-eproc + Tr.t.prop. + 2 (k + 1) rate (2.6)( 

Equation (2.6) represents the closing of a TCP connection. Although there are more 

than 2 messages involved in closing a connection, this equation should typically only 

correspond to the last 2 messages. This is because only the last two messages do not 

contain data or acknowledgements corresponding to received data. The time delays caused 

by other segments responsible for closing the connection are included in the file transfer 
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time computation. The time taken to close a TCP connection incurs the same three delay 

components as were discussed in setting up a connection. 

Ttransjer (1) = NTr.t.prop + Temission + Ttotal-svc + Ta ck (2 .7) 

Equation (2.7) represents the total transfer time of a file of size f. 

(2.8) 

Equation (2.8) represents the number of groups of segments (N) needed to transfer 

a file of size f in segments that are m bytes in length. In the special case where the 

file size is such that each segment in each of the N groups is fully utilized, then: f = 

(1 +2+4+8+ 16+ ... +2N- 1 )m = (2N -1)m. That is, N = [092 (£ + 1). In the 

general case the relationship 2N -1 < £+ 1 S; 2N holds, justifying the ceiling function in 

Equation (2.8). 

The first term in Equation 2.7 results from our assumption that one ACK is sent for 

each group of segments. Thus, a round trip propagation delay is incurred for each of the 

N groups of segments. 

Equation (2.9) is obtained if we assume the emission delay on each link is pipelined. 

Per-link emission delay is the time to transmit a segment at the data rate rate. We first 

consider the emission delay experienced by groups in which each segment is fully utilized , 

1that is, group x contains 2x - segments. For n = 0, ... ,(N - 2), consider the (n + 1)st 

group. Each such group contains 2n segments whose emission delay must be explained. 

Given that the emission delay experienced by one segment when it is placed on a link is 

m-::t~hd , the first segment of the group will experience (k + 1) (m-::t~hd) emission delay. If 

there are k switches on the path, there are k + 1 links. The remaining 2n - 1 segments 

will each experience m-::t~hd delay due to pi pelining. Hence the term (k + 2n) (m-::t~hd) 

for emission delays. 

The second term in equation (2.9) handles the emission delay experienced by the last 

group of segments that may not contain a number of segments that is an integer power of 2. 

The first segment of group N experiences (k + 1) (m-::t~hd) emission delay, the remaining 

1number of segments, which is r£1- 2N- , each experience m~::ehd emission delay. 
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n N 1
T',',l-,", ~ ~ (k + 2 - 1) Tdp + (k + r~1- 2 - ) Tdp (2.10) 

Equation (2.10) is obtained if we assume the processing delay is pipelined at each 

router. In this equation the per-packet processing delay at routers , which includes queueing 

delays, is Tdp . Again, we first consider the emission delay experienced by groups in which 

each segment is fully utilized. For n = 0, ... ,(N - 2) , consider the (n + l)st group. The 

first segment of each group takes kTdp to reach the far end. After it has reached the 

destination, at the expiration of each Tdp one of the remaining 2n - 1 segments completes 

being processed. Hence the term (k + 2n - 1) Tdp represents the processing delays of group 

(n + 1). The first term is the sum of these delays for n = 0,1, ... ,N - 2. 

The second term of equation (2.10) corresponds to the processing delay experienced by 

the last group of segments that may not contain a number of segments that is an integer 

power of 2. The first segment of group N experiences kTdp processing delay on its way 

to the destination. The remaining r-In1- 2N
-

1 segments each experience Tdp processing 

delay. 

40 + ovhd 
Tack = N + NTqueue + NTsvc (2.11)

rate 

The total delay experienced by ACK messages is given by Equation (2.11). For each 

group of segments, one ACK message is sent. This equation includes the emission delay, 

queueing delay and service time experienced by each ACK message traversing the network. 

The propagation delay experienced by ACKs are already included in the first term of 

Equation (2.7). 

2.3 Laboratory experiment 

This section describes an experiment run in a laboratory, measuring file transmit delays. 

Since the nodes were closely located in the laboratory, the influence of propagation delay 

on the overall transmission time was negligible. Instead, the emission and queueing delays 

were kept in mind when the network configuration was made. 

Tests were conducted with a Sun SPARC4 workstation, an Intel PIII500 workstation 

and two Cisco 2500 routers, all connected with 10 Mbps Ethernet. 

In all experiments the term "server" refers to the machine that sends a large file to 

the "client" that requested the file. 
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The network configurations presented in Figure 2.2 and Figure 2.3 were used. 

Fi le tnnsfe! from 128.238.62.102 to 118.238.64.103 

serve! client 

Figure 2.2: Network configuration used when transferring file with TCPlIP 

The configuration used in the TCPlIP tests resembles a typical network . In this 

way the typical emission and low-load queueing delays were reproduced. Also, no extra 

load was introduced to this network . The only other traffic on the network was some 

negligible routing updates. This enables the measurement of the best case transfer time 

using TCP lIP. 

UDP does not have the slow start and connection admission feature of TCP and 

consequently simply sends data at a constant rate. This enables us to emulate file transfer 

over a circuit (without the connection setup phase) by transferring a file using UDP. The 

network configuration used for the UDP test shows the "dedicated channel" between the 

sending and receiving host. Thus to emulate the absence of queueing delays in a circuit­

switched network , we used a direct connection between the client and server. In our first 

experiment we realized the need for flow control with UDP. For this reason the client was 

the PIII500MHz machine receiving a file from the slower Sun SPARC4 - to prevent the 

client's buffers to overflow. 

To measure the time taken to transfer a file with UDP, the client sent one ACK message 

back to the server to indicate that the file was received correctly. In all the tests, the times 

were measured at the server. 

File lransfer from 128.238.62.10210 128,238.62, IOJ 

server cliet11 

[-~[ 

128.2J8.62.102 128.2J8,62,IOJ 


Figure 2.3: Network configuration used when transferring file with UDP 
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http:128,238.62


13:44:38.354435 128.238.62.102.32788 > 128.238.64.103.6234: S 

1569190891:1569190891(0) win 8760 <mss 1460> (OF) 

13:44:38.354482 128.238.64.103.6234 > 128.238.62.102.32788: S 

169214293:169214293(0) ack 1569190892 win 32120 

<mss 1460> (OF) 

13:44:38.356011 128.238.62.102.32788 > 128.238.64.103.6234: 

ack 1 win 8760 (OF) 

Figure 2.4: Establishing a TCP connection 

2.4 Numerical results 

In this analysis, the contribution of propagation delay is ignored in all experimental cases. 

Considering the network configuration used in these tests, with a typical distance of 7 me­

ters between hosts, the propagation delay would be 2.3;108 = 0.0304ns, which is negligible 

in these tests. 

Tests done with the help of the traceroute command found on most networked machines 

revealed that the average processing time for one packet in the end hosts is O.4ms (this 

is the total processing time for both hosts). The average per-packet processing delay at 

each router (Tdp) , which includes queueing delays, is O.6ms. 

2.4.1 TCP lIP 

End-to-end call setup using TCP lIP is handled by a three-way handshake. Fig­

ure 2.4 shows message exchanges of a successful connection establishment between hosts 

128.238.62.102 and 128.238.64.103 in tcpdump [1] format . 

s + OVhd)
Te- esetup = 3 x k X Tdp + 3 x (k + 1) x ( (2.12)

rate 

By ignoring propagation delay from Equation (2.5), it can be changed to Equa­

tion (2.12). The processing and queueing delays experienced by the three connection­

establishment segments is given by (3 x k x Tdp). The second term denotes the emission 

delay experienced by the three segments when they pass through a network with k routers 

(k + 1 links). Our tests were run over an Ethernet network, introducing an overhead of 18 

bytes. The message size in this case is 40 bytes , which is 20 bytes for the IP header and 
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13:44:51.427515 128.238.62 . 102.32788 > 128.238.64.103.6234: F 

9730049:9731181(1132) ack 1 win 8760 (OF) 

13:44:51.427536 128.238.64.103.6234 > 128.238.62.102.32788: 

ack 9731182 win 30987 (OF) 

13:44:51.427775 128.238.64.103.6234 > 128.238.62.102 . 32788: F 

1:1(0) ack 9731182 win 32120 (OF) 

13:44:51.429244 128.238.62.102.32788 > 128.238.64.103.6234: 

ack 2 win 8760 (OF) 

Figure 2.5: Closing a TCP connection 

20 bytes for the TCP header. 

After a file has been transferred with TCPlIP, the connection is closed gracefully. The 

server sends a FIN segment containing the last segment of data. This segment is ACKed 

by the client after which it sends a FIN segment of its own. On receipt of this FIN segment 

the server closes the connection, the client closes the connection after it receives the ACK 

for the FIN segment from the server. An example of this exchange of messages is shown 

in Figure 2.5. 

The first two segments of the closing sequence will be handled by Equation (2.7). So, 

this equation is only applicable to the last two segments. 

The propagation delay will be ignored, so the equation applied to our tests will be 

Equation (2.13) . 

c + OVhd)
Te- eclose = 2 x k x Tdp + 2 x (k + 1) x (2.13)( rate 

In Equation (2.13) the processing and queueing delay experienced by the last two 

segments is given by (2 x k x T dp ) , and the second term denotes the emission delay expe­

rienced by the two segments when they pass through a network with k routers. 

The TCPlIP implementation used for the tests implemented the ACK strategy of 

"ACK every other segment." This is different from our assumption used in Section 2.2 , 

which stated that an ACK is generated for every group of segments. In none of our tests 

was delay introduced at the server due to a late acknowledgement. For this reason, the 

term Tack shall be ignored in our analysis . This change to Equation (2.7), together with 

the removal of the term containing propagation delay produces Equation (2.14) in which 
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the emission and processing delays are represented. Equations (2.9) and (2.10) respectively 

model these delays. 

Ttransjer (J) = Ttotal-svc + Temission (2.14) 

2.4.2 UDP as an emulator of the circuit switched mode 

There is no connection setup phase in UDP, so the total transfer time can be given by 

Equation (2.15) which is similar to Equation (2.3) (the equation for the time taken to 

transfer a file of size J over a circuit switched network) . The reason why the propagation 

delay is not halved to indicate the transfer time is because, in the UDP case, an ACK 

message is sent from the client to the server to indicate successful receipt of the data. 

The propagation delay will still be ignored due to its insignificant size, so the equations 

can be thought of as exactly the same in the laboratory environment. The second term 

of Equation (2.16) shows the ACK that is sent from the client to the server to indicate 

successful receipt of the file. 

J + ovhd 
Ttran s j er = Tr.t.prop + t (2.15)

ra e 

J = Jilesi ze + 512 (2.16) 

2.4.3 The experimental results 

Figure 2.6 shows the results for different file sizes J given in Table 2.1, ranging from 13 to 

25661582 bytes , and the corresponding experiments done to compare the predicted values 

against real world tests. In the TCP tests, the number of routers (k) is 2, the message 

size (m) is 1024 bytes and the overhead (ovhd) is 58 bytes (per message of size m). In the 

UDP tests, the overhead (ovhd) is 46 bytes per segment. 

In the graph (Figure 2.6) the predicted values (using our mathematical models) for 

TCP lIP are also plotted. To predict the file transfer delay using TCP lIP, we attempted 

to provide bounds for the experimental results by computing the file transfer delay under 

the assumptions of ideal pipelining ("optimistic") and no pipelining ("pessimistic"). Both 

the optimistic and the pessimistic graphs were plotted using Equations (2.12), (2.13) and 

(2.14). The difference between the graphs is in how the emission and processing delays 

(the terms Ttotal-svc and Temission from Equation (2.14)) are computed. In the optimistic 

graph the emission and processing delays are based on ideal pipelining and expressed by 
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I File sizes (bytes) 

13 

1205 

4820 

5898 

14460 

24796 

62039 

332008 

544541 

1091306 

3309132 

5654721 

6120664 

9731180 

12226702 

15918652 

25661582 

Table 2.1: Values used for file sizes (J) in comparison of circuit-switching and TCP lIP 
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Figure 2.6: Comparison of transport protocols TCP and UDP 
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Equations (2.9) and (2.10) respectively. The pessimistic graph represents the emission and 

processing delays based on no pipelining as expressed by Equations (2.17) and (2.18). 

Ll x(m + OVhd)Temission = xk (2.17) 
m rater 

Ttotal-svc = r~1x T dp X k (2.18) 

To see if UDP is a good emulator of circuit-switching Equation 2.15 was also plotted 

in Figure 2.6 (line "UDP"). 

A closer look at the TCP results suggests that the pipelining does occur. The "opti­

mistic" graph presents a much better estimate of TCP performance than the "pessimistic" 

graph. Even if the TCP connection passes through k routers the dominant value is the 

emission delay on one link and the service time at one router, as anticipated in Section 2.2. 

The graph also indicates that UDP is a good emulator of circuit-switching. 

The difference between the delays experienced with the two transport protocols is 

mostly due to the service time experienced by segments while passing through the network. 

For example, using Equation 2.14 and assuming ideal pipelining, the transfer of a file with 

a size of 12226702 bytes results in a total transfer time of 18.015 seconds of which 7.341 

seconds is the service time (computed using Equation (2.10)). Using equation (2.15), the 

transfer of the same file will only take 10.221 seconds in the UDP network. 

2.4.4 The analytical results 

The laboratory did not allow much freedom to note the behaviour of the two transport 

protocols under operational conditions where large propagation delays might occur or a 

large number of routers might be in place (for analysis of emission delays in TCPlIP). 

Nevertheless, the experimental results from the previous section suggest that our equations 

provide a good estimate of the delay we can expect when a file is transferred using TCPlIP 

and a circuit-switched network. Thus, we continue to apply our equations with variables 

that indicate different network conditions and configurations. This allows us to compare 

the performance of TCPlIP to circuit switching more thoroughly. 

The two network conditions of most interest are large propagation delays and large 

emission delays (large number of hops in a TCP lIP network). In a TCPlIP network, 

large propagation delays typically coincide with many hops. To divide the contributions 
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I 

Table 2.2: Parameters used in analytical comparison of circuit-switching and TCP 

made to the total delay by the propagation and emission delays respectively, two scenar­

ios are explored and the behaviour of TCP lIP and circuit-switching in each scenario is 

examined. Firstly, a network with large propagation delays, but few intermediate hops 

was investigated. Secondly, a network with a large number of hops, but a relative smaller 

propagation delay was used. 

The baseline for these analytical investigations was obtained from the following ex­

periments. Testing with traceroute and ping revealed that the average round trip time 

between a certain machine in the USA and a certain machine in Europe is 554.5 ms. 

Another traceroute test between a machine in the USA and a machine in South Africa 

revealed a hop count of 22. 

The same round trip time and number of hops is assumed in the circuit switching and 

TCP lIP computations. It is assumed that circuit switching is done with SONET (thus 

introducing a 4.4% overhead). The same rate of 10M bps is also assumed in the formulae 

for computing circuit switching and TCP lIP times. It is assumed that lOOms of queueing 

and processing (parameter Tproc from Equation (2.2)) is required at each circuit switch to 

be able to set up a connection. 

In each scenario the analysis of TCP was conducted for two implementations. In the 

first implementation there is only one ACK sent for each group of segments (using Equa­

tion (2.7)). The second implementation considered was the "ACK every other segment" 

strategy commonly used in TCP implementations. When making use of this strategy, the 

destination of a file transfer sends an acknowledgement for every second data segment 

received (except the fist data segment when the group's size is one segment, in which case 

Effect of propagation delay Effect of emission delay 

Parameter circuit-switching TCP/IP circui t-swi tching TCP/IP 

f Table 2.1 Table 2.1 Table 2.1 Table 2.1 

m 1024 bytes 1024 bytes 1024 bytes 1024 bytes 

ovhd 4.4% 58 bytes 4.4% 58 bytes 

rate lOMbps 10M bps 10Mbps 10Mbps 

k 2 2 22 22 

Tproc 100 100 

Tr.t.prop 554.5ms 554.5ms 50ms 50ms 
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an acknowledgement is sent for one segment). This acknowledgement indicates the suc­

cessful receipt of two data segments. Acknowledging every two data segments rather than 

every group of segments enables the source of the transfer to enlarge the group size while 

transmitting data, without waiting for an explicit acknowledgement that a group has been 

successfully received by the destination. Thus, once the group size is sufficiently large, the 

source will continue sending data without pausing to wait for an acknowledgement. 

The "ACK every other segment" strategy is difficult to capture analytically. During the 

transfer of the first few groups, delays experienced by the ACK messages will not entirely 

be "absorbed" by the transfer of the actual data. A compromise was made to only include 

the last ACK message in the file transfer delay computation. That is Equations (2.7) and 

(2.11) were changed to Equations (2.19) and (2.20) respectively. This is just an estimation 

of the transfer time until a more appropriate equation can be found that captures the 

behaviour of the "ACK every other segment" strategy. 

Ttransfer (f) = Tr .t.prop + Temission + Ttotal-svc + Tack (2.19) 

40 + ovhd 
Tack = + Tqueue + Tsvc (2.20)

rate 

Table 2.2 provides a summary of the parameters used in the analytical comparison. 

Isolating effect of propagation delay 

The propagation delay component can be isolated for the first scenario by combining 

the round trip time from the baseline with a small number of routers (hops). In this 

scenario the round trip time was chosen to be 554.5 ms and the value for k, the number 

of routers/switches was chosen to be 2. 

Using Equation (2.3) for circuit switching, Equations (2.7), (2 .9), (2.10) and (2.11) for 

TCP/IP with an "ACK every group of segment" strategy, Equations (2.9), (2.10), (2.19) 

and (2.20) for TCP/IP with an "ACK every other segment" strategy with the variables 

described above results in the graph presented in Figure 2.7. The interesting part shall 

be seen when we zoom into the graph where smaller files are concerned, which is shown 

in Figure 2.8. Looking at Figure 2.8 it is clear that TCP is much better suited for the 

transfer of small files, whereas circuit switching proves to be the network technique to use 

for the transfer of large files. It can also be seen that using the technique of "ACK every 
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Figure 2,8: Effect of propagation delay on TCP and circuit switching, smaller files 

other segment" seems to be more efficient than the "ACK every group" technique when a 

network with large propagation delays is used, 

Isolating effect of emission delay 

The emission delay component can be isolated for the second scenario by combining the 

number of routers (hops) from the baseline with a small propagation delay, The value 

50ms was chosen for the propagation delay and the number of hops was chosen to be 22. 

The same equations that were used in the examination of the propagation delay con­

tribution are used with the new variables, and the results of this is shown in Figure 2.9. 

Again, a section of the graph is shown in Figure 2.10. The point at which the emission 

delay when using TCP lIP becomes more significant than the call setup delay in circuit 
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switching can be seen clearly in Figure 2.10. Sending any file larger than the file size at 

that point (just over 1GB) with circuit switching will result in smaller delays than using 

TCPjIP. 

2.5 Conclusion 

Queueing delays has changed over the years. In particular with the introduction of differ­

entiated services it became necessary that all packet classification actions be performed 

at "wire speed" [8]. Thus, the processing of incoming packets has become fast enough 

to keep up with the rate of incoming packets. Queueing delay is instead incurred at the 

output port where the link insertion time and the number of packets destined for that link 

determine the queueing delay. An analysis of the contribution of queueing delay to the 

total delay is absent in the foregoing investigation. However such an analysis is unlikely 

to affect the broad conclusions to be drawn from the investigation. This is because the 

impact of queueing delay in circuit-switched networks is only present during connection 

setup. During data transfer, all data is switched without experiencing queueing delay. On 

the other hand, queueing delay will always contribute to the delay experienced by data 

transfers over CL packet-switched networks. 

Thus the evidence we have seen generally suggests that circuit switching is better suited 

for large file transfers than TCP. Using TCP, emission, propagation and queueing delay 

all contribute significantly to the total delay when a large file is transferred. Propagation 

delay and call setup time does contribute to the total delay experienced when a large file 

is transferred using circuit switching. The result of interest is the fact that there is always 

a certain file size, that serves as the dividing marker between TCP and circuit switching. 

Transferring any file larger than this size using circuit switching will result in transfer 

speeds faster than if TCP was used. 

The need for transferring large files increases every day. Workstations are currently 

equipped with more storage space than would have been imagined a few years ago. There 

has also been an increase in the number of large file transfers over the internet. The in­

crease is caused, for example, by the increase in occurrence of multimedia content available 

for free and by the availability of large software packages for download over the internet. 

Continuing this trend, the need to use circuit-switching will come to the fore more force­

fully. However, as pointed out at the start of this chapter, circuit switching as a strategy 

can only succeed in an environment that provides high-bandwidth on-demand circuits. 
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Chapter 3 will propose a potential way of achieving this, based on appropriate original 

protocols . 
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Chapter 3 

Signalling protocol 

3 .1 Introduction 

Two types of circuit switched networks are in use today. 

Ciul't12 Time Division Multiplexing (TDM) is the simplest where 
Analy1jngfik'""lo",.,i in 


i,,,,'·,,,i.h<d aOO TCPIlP ",~.o\, 


the switching action is performed based on the incoming 

interface number and time slot. Wavelength Division Mul­

tiplexing (WDM) switches base their switching decision on 

the incoming interface number and wavelength of the ar­

riving bits. This work focuses on a TDM based circuit 

switched network . 

Existing TDM circuit switched networks support the Plesiochronous Digital Hier­

archy (PDH) up to the T3 (45 Mbps) rate and the Synchronous Optical Network 

(SONET)/Synchronous Digital Hierarchy (SDH) for higher rates up to OC768 (40 Gbps). 

Currently, on-demand (referred to as "switched" mode of operation as opposed to "pro­

visioned" mode) circuits can only be obtained at the DSO (64 Kbps) rate, and the only 

application that uses switched circuits is telephony. All higher rate circuits are used in 

provisioned mode. From Chapter 2 we note that for large file transfers, circuit switched 

networks that operate at higher data rates than the DSO rate could be efficient to use. 

Also, since any end host can download files from any server, a switched mode of operation 

is necessary. These requirements introduce us to the need for a signalling protocol for 

high speed TDM networks that will enable them to offer the required switched mode of 

operation. This chapter discusses the design decisions made for such a signalling protocol 

and presents the protocol itself. Sections 3.2 to 3.4 describe the decisions made during the 
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design of the signalling protocol and an overview of the protocol itself. Sections 3.5 to 3.8 

explain the protocol specification, and Section 3.9 introduces some future improvements 

to the signalling protocol. 

3.2 Implementing the signalling protocol in hardware 

One of the early decisions we made before designing the signalling protocol was to imple­

ment the protocol in hardware. Typically signalling protocols are implemented in software 

due to the complexity of the protocols and the need to keep the implementation flexible 

for evolution reasons. On the other hand, hardware implementations would yield a perfor­

mance improvement so significant that the role and use of high speed circuit switched net­

works would change dramatically. To obtain such a performance gain while retaining some 

flexibility we recommend the use of reconfigurable hardware such as Field Programmable 

Gate Arrays (FPGAs). 

Hardware implementations of networking protocols are on the rise. It has been quite 

common to implement physical-layer and data-link layer protocols in hardware. For ex­

ample, Ethernet chips have been available for a long time for use in network interface 

cards. An Ethernet chip in a network interface card plugged into a host (workstation or 

pc) simply performs a 6 byte (MAC) address matching function. Chips are also avail­

able to perform Ethernet switching, where frames are switched on their destination MAC 

addresses. 

Moving up the protocol stack, network-layer protocols are now being implemented 

in hardware. First, chipsets were created for ATM header processing as well as ATM 

switching. ATM is the network-layer protocol of a packet-switched Connection-Oriented 

(CO) network. In such networks, since a connection is first set up, the identifiers on 

which the switching is performed are simpler than in a packet-switched connectionless 

network-layer protocol, where switching is performed on destination addresses as in IP. 

More recently, network-layer protocols for even connectionless networks, such as IP, are 

being implemented in hardware. The throughput ofIP routers (now called IP "switches" ) 

is greatly improved with hardware implementations. Also, the latency incurred per packet, 

which includes queueing and processing delays at each switch, is reduced. Thus there are 

many advantages to hardware implementations of networking protocols. Loss of flexibility 

as protocols are upgraded is cited as the main drawback of hardware implementations. 

However, now with reconfigurable hardware , this drawback should no longer be a serious 
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concern. It is also feasible to use hardware only for the basic operations of the protocol 

and relegate more complex and infrequent operations (for example, processing of options 

fields in the IP header) to software. 

All of the protocols discussed above are used to carry user data, and are hence re­

ferred to as "user-plane" protocols. Our interest is in applying this same technique of 

improving performance through hardware implementations to "control-plane" protocols. 

Signalling protocols are control-plane protocols used to set up and release connections. 

These protocols are only needed in CO networks. 

Current implementations of signalling protocols for both circuit-switched and packet­

switched CO networks are done in software. Call setup signalling messages are queued 

at processors associated with switches and handled typically on a first-come-first-serve 

basis. Queueing delays are incurred under moderate and heavy load conditions. These 

delays add up across the switches dominating propagation delays and causing end-to­

end call setup delays to be significant. Also, the processors handling signalling messages 

often become bottlenecks [2]-[4]. Hardware implementations of signalling protocols will 

greatly help improve both call setup delays and call handling capacities. By implementing 

the signalling protocol in hardware the throughput will increase significantly, thus a CO 

network will be able to admit more connections in a time period. 

There are many challenges to implementing signalling protocols in hardware that have 

not been encountered in hardware implementations of user-plane protocols. The main 

difference is that in handling signalling protocols, the hardware needs to maintain state 

information of connections, whereas all the user-plane protocols implemented in hardware 

are stateless. Ethernet frames, ATM cells and IP datagrams are simply forwarded without 

any state being maintained for each packet or "flow". 

The work items to provide a practical environment for such a signalling protocol in­

clude: 

1. 	 specification of a signalling protocol 

2. 	 implementation of the signalling protocol in hardware (using FPGAs) 

3. 	 design and analysis of how these signalling protocol chips can be used in a switch 

controller, and 

4. 	 design and analysis of end-to-end applications that can use high bandwidth on­

demand circuits. 
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Figure 3.1: Ideal network in which signalling protocol will be used 

This chapter only discusses the first work item, the specification of the signalling 

protocol. Work has already begun on prototypes of the hardware implementing a scaled 

down version of the signalling protocol and future work in this project shall deal with the 

other pending work items. 

3.3 Mode of transport for signalling messages 

The end goal of the signalling protocol is to be able to set up circuit switched connections 

on-demand. Before the specification of the protocol can be dealt with, one first has to 

consider the delivery of the signalling messages. Ideally the signalling messages should 

traverse the same type of network in which the connection is being set up. For example, 

in Figure 3.1 when end host A requests a connection to end host B, it should send its first 

signalling message requesting a connection (SETUP) to its ingress switch . In a circuit 

switched network, this means that there has to be a connection between end host A and its 

ingress switch. Also, for the signalling messages to traverse the network to the destination 

host (end host B), there has to be a dedicated signalling channel between all the switches 

and end hosts. To reserve such a channel in a TDM network for signalling results in a 

waste of valuable bandwidth. For example, if the circuit switch is a SONET/SDH switch 

with a cross connect rate of OC1 (51.84Mbps), the smallest channel available is OC1 

which, when dedicated to signalling, would be very wasteful. 

The proposed solution is to use another network as depicted in Figure 3.2. We propose 

carrying signalling messages on IP as out-of-band messages. Thus , when end host A wants 

to set up a connection to end host B, it sends a SETUP message to its ingress switch via 

its closest IP router. This has the consequence that routes and end hosts are identified by 

their IP addresses in signalling messages. Using IP to transport the signalling messages has 

two very important disadvantages: reliability and security. These issues will be considered 

under the improvements to the signalling protocol discussed in Section 3.9. 

Using IP to send the signalling messages has a side benefit of reducing the size of the 

SETUP message by eliminating the need to include the source address in the SETUP 
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Figure 3.2: Typical network in which signalling protocol will be used 

Signaling process 

SEND RECY 

IP Module 

Figure 3.3: Primitives used between signalling process and IP module 

message. IP provides the functionality of specifying source and destination addresses of 

the signalling messages in the IP header, the source address is needed at the receiving host 

to be able to reply to the connection request (SETUP SUCCESS). For example, when a 

connection is being set up between host A and B, the SETUP message sent from switch 

a to switch b in Figure 3.2 carries the source and destination addresses of end hosts A 

and B as parameters of the message, but carries the addresses of switch a and b in the IP 

header source and destination address fields. Each transit node can store the IP address 

of the previous node to use for the reverse SETUP SUCCESS message without it ever 

being included in the SETUP message. 

The interface between the signalling process and the IP layer is implementation depen­

dent. The following is from the IP specification [10] . "The functional description of user 

interfaces to the IP is, at best , fictional , since every operating system will have different 

facilities." Hence, the interface between IP and the signalling process should be developed 

according to the implementation. An example upper layer interface, consisting of two 

calls, that satisfies the requirements for the user (in this case the signalling process) to IP 

module communication is depicted in Figure 3.3. 

The parameters of the calls are as follows ( "=>" means returns) [10], the addition of 

the SpecDest parameter to the RECV call is in accordance with [11], which updates [10] 
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I Parameter Description Length(bits) 

src source address 32 

dst destination address 32 

prot protocol 8 

TOS type of service 8 

TTL time to live 8 

BufPTR buffer pointer Implementation 

dependent 

len length of buffer Implementation 

dependent 

Id (optional) Identifier 16 

DF Don't Fragment 1 

opt option data Implementation 

dependent 

result response 

OK = datagram sent ok 

Error = in arguments or local network 

Implementation 

dependent 

Table 3.1: Description of parameters in SEND primitive [10] 

in this respect: 

SEND (src,dst,prot,TOS,TTL,BufPTR,len,Id,DF,opt => result) 

The description of the parameters in the SEND primitive is given in Table 3.1. 

RECV (BufPTR, prot, => result, src, dst, SpecDest, TOS, len, opt) 

The description of the parameters in the RECV primitive is given in Table 3.2. 

Due to the freedom allowed in these two calls' specification, both have been changed to 

reflect the requirements of the signalling process. The changes are limited to the omission 

of unnecessary parameters. The Id is already optional, and not required by the signalling 

process and no optional data needs to be passed between the signalling process and the IP 

module. The length of the signalling messages (which are the only messages/data passed 

30 


 
 
 



I Parameter I Description I Length (bits) 

BufPTR buffer pointer 1mplementation 

dependent 

prot protocol 8 

result response 

OK = datagram received ok 

Error = error in arguments 

Implementation 

dependent 

len length of buffer Implementation 

dependent 

src source address 32 

dst destination address 

(may be broadcast or multicast address) 

32 

SpecDest specific destination address 32 

TOS type of service 8 

opt option data Implementation 

dependent 

Table 3.2: Description of parameters in RECV primitive [10] 
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between the signalling process and the IP module) is either included in the signalling 

message itself, or it can be deduced from the message type. This eliminates the need for 

the IP module to include the length of the message when it is passed to the signalling 

process (the RECV primitive). The remaining parameters have the same description and 

length as before. The SEND call has been changed to: 

SEND (src,dst,prot,TOS,TTL,BufPTR,len,DF =) result) 

The RECV call have been changed to the following: 

RECV (BufPTR, prot, =) result, src, dst, SpecDest) 

Other implementation decisions are: 

• 	 The Type of Service (TOS) parameter indicates to the IP network the quality of 

service desired for the data transfer. It shall always be set to 0001 0100 which 

indicates a request for low delay and high reliability when a signalling message is 

transferred. 

• 	 The len parameter will be a 16 bit value that is an exact copy of the message length 

information element in the SETUP message. For all the other messages, it shall 

contain the length of the signalling message. 

• 	 The usage of two destination address parameters (dst and SpecDest) in the RECV 

call is required due to the IP facility for broadcasting and multicasting. The specific­

destination address (SpecDest) is defined to be the destination address (dst) in the 

IP header unless the header contains a broadcast or multicast address, in which case 

the specific-destination is an IP address assigned to the physical interface on which 

the datagram arrived [11]. No signalling message should be destined for a multicast 

group or sent as a broadcast message over the network. For this reason, the signalling 

message shall immediately be discarded when the two destination parameters are not 

equal. 

• 	 Use 8 bits for the result parameter, and the value 200 shall indicate success. 

• 	 The protocol value of 253 will be used to indicate the signalling layer. This value is 

currently unassigned according to [21]. 
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• 	 When data is passed to the IP layer, the TTL parameter will always be set to 16. 

This number indicates the maximum acceptable number of routers between TDM 

switches. 

• 	The DF parameter shall always be set to 1, which indicates that this message may 

not be fragmented by the IP network . This is because the maximum size for the 

SETUP message is 407 bytes and given that the IP specification, [10], dictates that 

all hosts must be prepared to accept datagrams of up to 576 bytes, the message will 

never need to be fragmented by the IP network (even if a maximum sized header is 

included in the datagram). 

3.4 Signalling protocol description 

This signalling protocol is intended to be used in a circuit-switched CO network where 

connections are used for large file transfers, which have been proven to be the ideal appli­

cation for high speed circuit-switched CO networks. Also, in a quest for a simple design 

of this protocol, a homogeneous network (where all the switches operate at the same cross 

connect rate) is assumed to be the target network. Changes to the signalling protocol 

when it is used in a heterogenous network will be discussed under the improvements to 

the signalling protocol in Section 3.9. With the above implementation considerations, 

certain assumptions can be made in the design of this protocol. They are: 

• 	 Only unidirectional two-party connections are allowed. The reason for this is that 

the primary application is large file transfers. Connections would then primarily be 

needed to transfer a large file from a server to a client. 

• 	The setup requests are generated by the sending end of the unidirectional connec­

tions. 

• 	 The bandwidth requested in a SETUP message is either equal to, or an integral 

multiple of the (homogeneous network) switch cross connect rate. The bandwidth 

can be requested with the specification of a range that indicates minimum and max­

imum bandwidth requirements. Using these two parameters, the network attempts 

to allocate the maximum requested bandwidth. If any node along the path of the 

connection cannot provide the requested bandwidth, the highest bandwidth less than 

the maximum requested and larger or equal to the minimum requested is reserved. 
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Data rate OC192Destination Data rate OCl 

node 

address 

Next hop Next hop Next hop 

option 1 option 2 option 3 

Next hop Next hop Next hop 

option 1 option 2 option 3 

Table 3.3: Routing table 

Again, the file transfer application permits this since a file can be transferred at any 

rate, unlike streamed video or audio where a specific data rate is required . 

Connection setup consists of four steps: 

• Route determination 

• Connection admission control (CAC) and interface selection 

• Time slot selection 

• Switch fabric configuration 

On completion of data transfer, corresponding release procedures are executed to free 

all resources reserved for the connection. These connection setup and release procedures, 

along with the associated message exchanges, constitute the signalling protocol. 

There are two types of routing, hop-by-hop routing and source routing. In hop-by­

hop routing each node determines the next-hop node to reach the destination. In source 

routing, the ingress switch determines the end-to-end route , which is then carried in the 

connection setup signalling message. Each intermediate node merely consults this param­

eter to determine the next-hop node to which to route the connection. In both cases, 

routes can either be computed dynamically when a connection setup message arrives or 

can be precomputed and stored in routing tables as shown in Table 3.3. Since we are tar­

geting hardware implementation of this protocol, we select hop-by-hop routing and route 

precomputation. Due to the granularity of the rates available in a TDM network, the 

construction of the routing table is simplified in that next hop nodes need only be kept 

for each rate provided by the network. 

This simplifies the route determination action performed at the node to a simple 

routing table lookup. It also simplifies the parsing of SETUP messages by not requiring the 
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N ext hop node Interface number Total bandwidth Available bandwidth Cost 

Table 3.4: Available bandwidth table including cost 

hardware to process a source route parameter. The signalling protocol essentially trusts its 

associated routing protocol to ensure loop-free routing data. However, to prevent indefinite 

looping, we do provide for a Time-To-Live (TTL) field in the SETUP message requiring 

switches to decrement the TTL field at each hop, and to stop a SETUP request received 

with the TTL field equal to 1. Making use of route precomputation has the consequence 

that real-time parameters (for example, the current load in a node) are typically not taken 

into account. This means the next-hop node according to the routing table might not have 

resources available for a connection at the time when the connection request arrives. This 

introduces the need for more next hop options which is included in the routing table as 

shown in Table 3.3. Including more than one "next hop" allows a node to send a request 

for a connection to an alternative node in the case when a previously chosen "next hop" 

does not have enough resources available. 

Connection admission contTol (CAC) in a TDM switch consists of determining whether 

there is sufficient available bandwidth for the connection on any of the interfaces to the 

next-hop node identified in the route-lookup step. The connection admission control action 

is performed by examining the available bandwidth column of a table such as the one shown 

in Table 3.4, or by using some other connection admission mechanisms as will be discussed 

in Chapter 5. In this table a record of available bandwidth is kept on a "per-interface" 

basis. Signalling protocol hardware reads and writes data into the "available bandwidth" 

column of this table as it admits and releases calls. The other columns are written by the 

node administrator during configuration, except the "cost" column that will be discussed 

in Chapter 4. 

The incoming interface numbers are obtained from information in the SETUP message. 

As connection setup proceeds hop-by-hop, each switch places its outgoing interface number 

as a parameter in the SETUP message. Assume node I receives a SETUP message from 

its neighbour I-I indicating an outgoing interface number O. The interface number 0 

corresponds to an interface on node I-I. Node I needs to determine the number of its 

interface(s) that is connected to interface 0 on node 1-1. This is done by consulting a 
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Neighbour node Interface number 

Address Interface number 

Table 3.5: Connectivity table 

connectivity table, as shown in Table 3.5. 

For example, interface number 5 on node I is connected to interface number 2 in its 

neighbour node I-I as shown in Figure 3.4. If the SETUP message received from node I-I 

indicates that the connection has been routed on its interface number 2, node I needs to 

use 5 as the incoming interface number. 

Time slot selection is closely coupled with the interface selection that occur during 

CAC. Once it has been determined that there is enough bandwidth available on an inter­

face, time slot selection will determine which time slots on the chosen interface will be used 

for data transfer. The time slots on an interface that will be used for the actual connection 

can be determined by the node during processing of the SETUP message, or the next-hop 

node may choose the time slots and provide the current node with the information in the 

success reply (SETUP SUCCESS) message. Whichever mechanism is used, the next-hop 

and the current node has to agree upon the time slots used for the connection before data 

transmission commence. With the introduction of maximum bandwidth selection, a node 

cannot know during processing of the SETUP message the exact amount of bandwidth 

that can be allocated by all nodes along the path to the destination. The bandwidth for 

a connection will only be known during the processing of the SETUP SUCCESS message. 

For this reason it is necessary for the next-hop node to include the time slots that will be 

used for the connection in the SETUP SUCCESS message. 

One more benefit is received when the next-hop node is responsible for time slot se­

lection. When time slot selection and/or switch configuration is done by a node upon 

receipt of a SETUP message the processing required when a connection has to be released 

is increased significantly. Keeping in mind our goal of hardware implementation, the pro­

cessing in any node has to be kept to a minimum, which is accomplished by including the 

time slot numbers in the SETUP SUCCESS message. 

Switch fabric configuration consists of writing data tables that map incoming interface 

and time-slot numbers to outgoing interface and time-slot interfaces as shown in Table 3.6. 
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Figure 3.4: Connectivity information 

Incoming channel identifier Outgoing channel identifier 

Interface number Time-slot number Interface number Time-slot number 

Table 3.6: Switch mapping table 

The connection setup actions, route determination and connection admission con­

trol/interface selection, occur sequentially as the setup procedure moves from node-to­

node. Time slot selection is initiated upon receipt of the SETUP SUCCESS message, and 

switch fabric configuration is initiated either on a timer trigger, or with another message of 

which the SETUP SUCCESS message sent in the reverse direction is an example. When 

the SETUP SUCCESS message reaches the starting end host, it can send data on the 

newly established connection. 

A connection could be released by the node that requested the connection (source), the 

node to which the connection was requested (destination) or any intermediate switch as a 

result of an error (for example, the physical connection breaks). At each node that forms 

part of the connection, the connection release procedure releases all resources reserved for 

the connection by editing the available bandwidth and switch mapping tables. 

3.5 Signalling protocol specification 

3.5.1 Messages 


This section deals with the specification of the four messages of the signalling protocol, 


they are SETUP (Table 3.7), SETUP SUCCESS (Table 3.8), RELEASE (Table 3.9) and 

RELEASE CONFIRM (Table 3.10). 
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Information element Length (bits) Reference 

Message type 4 Section 3.5.2.1 

Destination address 32 Section 3.5.2.2 

Source address 32 Section 3.5.2.3 

Connection reference (previous) 12 Section 3.5.2.4 

Time to live (TTL) 8 Section 3.5.2.5 

Min bandwidth 8 Section 3.5.2.6 

Max bandwidth 8 Section 3.5.2.6 

Interface number 8 Section 3.5.2.7 

Checksum 16 Section 3.5.2.8 

Table 3.7: SETUP 

Information element Length (bits) Reference 

Message length 16 Section 3.5.2.9 

Message type 4 Section 3.5.2.1 

Connection reference (previous) 12 Section 3.5.2.4 

Connection reference (own) 12 Section 3.5.2.4 

Bandwidth 8 Section 3.5.2.6 

Time slot number(s) 8-1536 Section 3.5.2.7 

Checksum 16 Section 3.5.2.8 

Table 3.8: SETUP SUCCESS 

Information element Length (bits) Reference 

Message type 4 Section 3.5.2.1 

Connection reference (own) 12 Section 3.5.2.4 

Cause 8 Section 3.5.2.10 

Checksum 16 Section 3.5.2.8 

Table 3.9: RELEASE 
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Information element Length (bits) Reference 

Message type 4 Section 3.5.2.1 

Connection reference (own) 12 Section 3.5.2.4 

Cause 8 Section 3.5.2.10 

Checksum 16 Section 3.5.2.8 

Table 3.10: RELEASE CONFIRM 

3.5.2 	 Description of Information elements 

3.5.2.1 	 The Message type information element indicates the type of the received message . 

I t can be any of four messages as depicted in Table 3.11. The protocol might be 

expanded to include more message types, which can be used for status enquiries, 

general notifications and updates. To support the scheduling scheme in Chapter 5 

additional messages may be needed to trigger the programming of the switch fabric . 

Bits 

432 1 

000 1 

o0 1 0 

o0 1 1 

o 1 0 0 

Message type 

SETUP 


SETUP SUCCESS 


RELEASE 


RELEASE CONFIRM 


Table 3.11: Message types 

3.5 .2.2 

3.5.2.3 

Destination address is the IP address of the end host to which a connection is 

being requested . 

Source address is the IP address of the end host requesting the connection. 

3.5.2.4 A 	Connection reference can be assigned locally or globally. When only one node 

is responsible for the assignment of connection references that will be used by all 

the nodes forming part of a connection (globally assigned) , complexity is added to 

the signalling protocol. For this reason, each node will be responsible to select a 

number that is used by the signalling protocol processing engines to keep track of 

connections. This number has local significance, changes hop by hop, and remains 

fixed for the lifetime of a connection. The connection reference is assigned by the 
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signalling protocol to identify the node forming part of the connection (as opposed 

to a link of a node). This is to enable the signalling protocol to be as light-weight 

as possible. By allowing the signalling protocol to select a connection reference 

from one range only (as opposed to a range associated with each outgoing link), its 

connection reference assignment is simplified. The SETUP message contains the 

connection reference being used by the node that sent the message. The RELEASE 

and RELEASE CONFIRM messages contain the connection reference being used 

by the node to which the message is sent. In reply to a SETUP message, the 

SETUP SUCCESS message to the previous node contains the connection reference 

of the node to which the message is being sent (which is the same as the one 

included in the received SETUP message), and the connection reference reserved 

for the connection by the node that sent the SETUP SUCCESS message. That 

is, the SETUP SUCCESS message sent from node i to node i-I contains the 

connection references assigned by node i and node i-I. 

3.5.2.5 	The Time to live (TTL) information element is used to prevent indefinite looping. 

It is decremented at every node, and if it reaches the value 1 at any transit node 

(which is any node except the end nodes), the setup is deemed a failure . 

3.5.2.6 	The Min bandwidth and Max bandwidth information elements contain the minimum 

and maximum bandwidths requested for the connection in the SETUP message. 

The Bandwidth information element in the SETUP SUCCESS message contains 

the bandwidth agreed on for the connection. These information elements should 

contain the bandwidth in multiples of OCI connections. Thus, when an OC48 

connection is requested, the bandwidth (minimum and maximum) field shall con­

tain "00110000". This allows for a request for a connection with bandwidth of up 

to OC192. 

3.5.2.7 	The interface number and time-slot number(s) information elements contain the 

values selected for the channels that will carry user data. Like connection refer­

ences, these numbers also change at each hop. We allow for multiple time slot 

numbers in case the requested bandwidth is greater than the switch cross connect 

rate. Due to synchronization problems when one connection is handled by more 

than one interface, a connection is only able to be handled by one interface with 

the usage of one or more time slots. 
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3.5.2.8 A 	checksum information element allows for error checking on the received mes­

sage. If the checksum fails, the message is immediately discarded by the signalling 

process . 

3.5.2.9 	The Message length information element is needed in the SETUP SUCCESS mes­

sage because multiple time slots might be needed to accommodate the connection's 

requested bandwidth on the selected interface. The Message length information 

element indicates the number of 16 bit words of the message contents, that is, in­

cluding the bytes used for the message length and the message type. If the message 

length cannot be expressed as a number of 16 bit words, padding may be used. 

3.5.2.10 	The cause information element indicates to the receiver of a RELEASE or 

RELEASE CONFIRM message the reason why the connection is being cleared. 

These values can follow the messages as defined in ITU-T Recommendation Q.2610. 

According to this recommendation, the information element has a variable length, 

but we shall only need the definitions of the different types of errors and their 

respective values. 

3.5.3 	 Tables 

The signalling protocol relies on the use of five tables, four of which have been discussed 

in Section 3.4, they are: 

1. Routing table, Table 3.3; 

2. Available Bandwidth table, Table 3.4; 

3. Connectivity table, Table 3.5; 

4. Switch mapping table, Table 3.6; and 

5. State table, Table 3.12. 

The state of every connection being established, released, or in use is maintained both 

at the end hosts and at the switches. The state diagram for the signalling protocol is 

as shown in Figure 3.5. In the Setup received state, two of the connection setup actions 

are performed. The last two connection setup actions, time slot selection and switch 

pr-ogramming, is performed upon entering the Established state. In the Release received 

state, the release actions are performed. 
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Connection Outgoing channel 

references State Bandwidth Previous- Next­ identifiers 

node node 

address address 

Own Prev Next Interface Time 

node node slot 

Table 3.12: State table 

A state table such as the one shown in Table 3.12 is updated each time a signalling 

message is received. Since connection references are local, the connection references used 

by the previous and next nodes forming part of the connection are stored in the state 

table. The signalling protocol will always use the connection reference it assigned to the 

node (own) as an index to this table. 

The state entry indicates the state of each connection with a number assigned to each of 

the states shown in Figure 3.5. The bandwidth, previous- and next-node address fields are 

maintained for each connection. The last column stores the outgoing channel identifiers 

of which there could be many per connection. 

There are six states defined for this protocol. They are: 

1. 	 Closed No connection exits 

2. 	 Setup received This state exists in a succeeding node after it has received a SETUP 

message from the preceding node, but has not yet responded. 

3. 	 Setup sent This state exists in a preceding node after it has sent a SETUP message 

to the succeeding node, but has not yet received a response. 

4. 	 Established This state exists when a connection has been established. 

5. 	 Release received This state exists when a node has received a request from a 

preceding or succeeding node to release the connection, or when the higher layer 

(application) requests a connection release. 
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Figure 3.5: Signalling protocol state transition diagram 

preceding node succeeding node 

01------0 

Figure 3.6: preceding/succeeding 

3.6 Setup and release procedures for homogeneous networks 

The setup and release procedures and the corresponding message exchanges are now briefly 

explained for switches setting up a unidirectional connection. 

In these explanations preceding node refers to a network node that comes immediately 

before another network node in the connection setup path. Succeeding node refers to a 

network node that comes immediately after another network node in the connection setup 

path, see Figure 3.6. For clarity, the use of the IP network to carry signalling messages is 

ignored in this description. 

3.6.1 Connection request 

On receipt of a SETUP message from a preceding node, a node shall enter the Setup 

received state and execute all connection admission procedures. If there are not enough 

resources available for the connection, connection clearing procedures will be initiated 

by sending the message RELEASE CONFIRM to the preceding node with the "cause" 

field set to bandwidth unavailable. The node shall also return to the Closed state. If 

enough resources are available the node shall perform interface selection and the connection 
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establishment shall continue. 

Connection establishment is initiated by the preceding node by sending a SETUP 

message to the succeeding node which is determined by a route table lookup. After 

sending the SETUP message, the preceding node enters state Setup sent. If, after a 

certain timeout, there has been no response to the SETUP message, the message may be 

retransmitted. After the second expiration, the preceding node enters state Closed and 

sends the message RELEASE CONFIRM to the node it received the SETUP message 

from with the "cause" field set to timer expired. 

On receipt of the SETUP message, the succeeding node shall enter the Setup received 

state, and the above procedures are repeated at that node. 

On receipt of a SETUP message, the node decrements the TTL. If the value results in 

1, it shall enter the Closed state and send a RELEASE CONFIRM message to the node 

it received the SETUP message from. The "cause" field shall be set to TTL expired. 

3.6.2 Connection establishment 

Upon receiving a response from the application that the connection has been accepted, 

the destination node initiates the final phase of connection setup by choosing available 

time slot numbers on the incoming interface and sending the message SETUP SUCCESS 

to its preceding node. After this it enters the Established state. This message indicates to 

the preceding node that a connection has been established from its interface to the called 

party. On receipt of a SETUP SUCCESS message, a switch finalizes connection setup by 

performing the switch configuration step. The SETUP SUCCESS message propagates to 

the end host that requested the connection, which on receipt of the message, may start 

with data transmission. 

Figure 3.7 shows an example of the message sequence when connection establishment 

is initiated by Hostl, and is successful. 

Figure 3.8 shows an example of the message sequence when connection establishment 

is initiated by Host1, but is rejected by Host2. 

3.6.3 Clearing a connection 

A call clearing request can be initiated by any of the two parties involved in data trans­

mission. It is also possible for any node forming part of the connection to initiate call 

clearing due to a failure, administrative action or some other exception. 
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Figure 3.7: Successful setup of a connection 
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Figure 3.8: Unsuccessful setup of a connection 
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ELEASE CONFIRM 

Figure 3.9: Normal connection release 

Clearing the connection is initiated by the preceding node by sending a RELEASE 

message and initiate procedures for clearing the connection. These procedures are the 

notification of the application if appropriate, releasing resources held by the connection 

and clearing from all data tables the information of the connection. After this, it enters 

the Release sent state. In this state it expects the RELEASE CONFIRM message, after 

which it shall enter the Closed state. 

Upon receipt of the RELEASE message, the succeeding node shall enter the Release 

received state and initiate the procedures for clearing the connection. After this, the 

succeeding node shall send a RELEASE CONFIRM message to the preceding node, send 

a RELEASE message to the next node in the connection and enter the Closed state. 

Figure 3.9 shows an example of connection release initiated by the host that received 

the request for the connection. 

Being a unidirectional connection, it is assumed that all connection releases will be 

initiated by the host receiving the request for a connection. This is because when a 

unidirectional connection is used to transfer a large file from a source to a destination, the 

destination is the only party that will know when data transmission has completed. Thus, 

if this end host receives a RELEASE message, there had to be an error in the network 

and the software should receive an interrupt indicating an error. 

Figure 3.10 shows an example of message exchanges when an intermediate node re­

quests the release of a connection. 

During connection release it becomes apparent why the need exists to store three 

connection references in the state table. On receipt of a RELEASE message, a node has 

to determine which connection the message refers to. In the RELEASE message there are 
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Hostl SwitchA SwitchB SwitchC Host2 

Connection active from Hosti to Host2 

RELEASE CONFIRM RELEASE CONFIRM 

Figure 3.10: Connection release by an intermediate node 

two indications, firstly there is the connection identifier in the message itself, secondly 

there is the source address which can be obtained from the IP header. 

When a RELEASE message is received, the connection it refers to is found easily in the 

state table by using the connection reference included in the message as an index to the 

table. The source address (from the IP header) is then compared to the previous and next 

node entries in the state table to determine where the message came from. For example, if 

the message came from the previous node, a RELEASE message is sent to the "next" node 

containing the "Next node connection reference" and a RELEASE CONFIRM message is 

sent to the previous node containing the "Previous node connection reference." 

3.7 Error conditions 

The cause values and timers used by the signalling protocol are defined in this section. 

An 8 bit cause value is inserted in every RELEASE and RELEASE CONFIRM message 

to indicate the reason for failure. Depending on the cause value, the recipient of the 

RELEASE or RELEASE CONFIRM message may retry a connection request by altering 

the error causing parameters. For example, if a RELEASE CONFIRM message with a 

cause value of 1010 0010 (Bandwidth unavailable) is received in response to a SETUP 

message, the end host requesting the connection has the option of reducing the bandwidth 

requested and sending a new SETUP message. 

This section also defines two timers that will be used in the signalling protocol. 
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3.7.1 Cause values 

The cause values use the same format, and some values as specified in [13], although the 

definition and usage of the cause values may differ. This format for the cause values has 

also been used in [14J and [9J. 

In the RELEASE and RELEASE CONFIRM messages, the cause value field is 8 bits 

long, with the first (most significant) bit always set to 1. The cause value is divided into 

two fields, a class (bits 5 through 7) and a value within the class (bits 1 through 4). The 

cause classes are given in Table 3.13 and the cause values are given in Table 3.14. 

I Class I Nature of event 

000 normal event 

001 normal event 

010 resource unavailable 

101 invalid message 

110 protocol error 

Table 3.13: Cause classes 

3.7.2 Timers 

Whenever a signalling message fails a checksum test, it will be discarded immediately. 

There are no retransmission requests included in the current protocol. This, together 

with the usage of an unreliable network protocol (IP) to transfer the signalling messages 

prompts the requirement for some mechanism to handle erroneous or lost signalling mes­

sages. A solution is to make use of two timers in this signalling protocol , T1 and T2 . 

T1 is started whenever a SETUP message is sent. It is stopped when a SETUP 

SUCCESS or RELEASE CONFIRM message is received . On first expiry, the SETUP 

message is resent (and T1 is restarted). On second expiry, the connection is released with 

error Nr. 11, Timer Tl expired and the Closed state is entered. 

T2 is started whenever a RELEASE message is sent . It is stopped when a RELEASE 

or a RELEASE CONFIRM message is received. On first expiry, the RELEASE message 

is resent (and T2 restarted). On second expiry, the connection is released with error Nr. 

12, Timer T2 expired and the Closed state is entered. 

The usage of timers becomes more apparent in the case when no reply is received for 

48 


 
 
 



I Nr. I Class I Cause value I Definition 

1 000 0001 Unallocated (unassigned) number 

2 000 0011 No route to destination 

3 001 0000 Normal/unspecified connection release 

4 010 0010 Bandwidth unavailable 

5 101 0001 Invalid connection reference value 

6 110 0000 Mandatory information element is missing 

7 110 0001 Message type non-existent or not imple­

mented 

8 110 0011 Information element / parameter non­

existent or not implemented 

9 110 0100 Invalid information element contents 

10 110 0101 Message not compatible with call state 

11 110 1000 Timer T1 expired 

12 110 1001 Timer T2 expired 

13 110 1111 Protocol error, unspecified 

14 110 1010 TTL in SETUP expired 

Table 3.14: Cause values 
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a RELEASE message. It is now possible for a connection to be released by a node, but 

if its communication with its neighbour is interrupted during the connection release, the 

neighbour will have resources reserved for the connection indefinitely. The addition of 

the T2 timer will only be able to solve this problem if we have a reliable network or a 

reliable transport protocol for the signalling messages. Section 3.9 shall attempt to solve 

this problem by introducing a reliable transport protocol. 

3.7.3 Handling of error conditions 

This section describes the actions to be taken when certain errors occur during connection 

setup. 

• 	 Whenever the integrity check of a message (using the included checksum) fails, the 

message shall be discarded. 

• 	 When a SETUP message is received with an illegal destination address, for example 

127.0.0.1, a RELEASE CONFIRM message will be sent to the previous node with 

cause value Nr. 1, "Unallocated (unassigned) number". 

• 	 If there is no entry in the routing table that matches the destination node, a 

RELEASE CONFIRM will be sent to the previous node with cause value Nr. 2, 

"No route to destination". 

• 	 A RELEASE CONFIRM message with cause value Nr. 4, "Bandwidth unavailable" 

will be sent to the previous node if there is insufficient bandwidth available on the 

outgoing interface connected to the next hop. 

• 	If a RELEASE message is received indicating a connection reference value which 

is not recognized as an active connection, or a connection setup in progress, a 

RELEASE CONFIRM message with cause value Nr. 5, "Invalid connection ref­

erence value" is sent in reply. Remain in the Closed state. 

• 	If a SETUP SUCCESS message is received indicating a connection reference value 

which is not recognized as a connection setup in progress, a RELEASE CONFIRM 

message with cause value Nr. 5, "Invalid connection reference value" is sent in reply. 

Remain in the Closed state. 
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• 	 When a SETUP message is received with a call reference value indicating an active 

connection or a connection in the process of being set up, the SETUP message should 

be ignored. 

• 	 When a RELEASE CONFIRM message is received with a call reference value which 

is not recognized as an active connection or a connection in the process of being set 

up, it should be ignored. 

• 	 Whenever an unexpected RELEASE message is received (for example in response to 

a SETUP message), the connection shall be released and a RELEASE CONFIRM 

message sent in reply. A RELEASE CONFIRM message is sent to the previous 

node in the connection and the Closed state is entered. If there is no cause value in 

the received RELEASE message, the cause value should be Nr. 13, "Protocol error, 

unspecified". 

• 	 Whenever an unexpected RELEASE CONFIRM message is received (for example 

in the Established state), the connection shall be released. A RELEASE message 

should be sent to the previous node and the Release Received state entered. If there 

is no cause value in the received RELEASE CONFIRM message, the cause value 

should be Nr. 3, "Normal/unspecified connection release". 

• 	 When a SETUP message is received which has one or more information elements 

missing, a RELEASE CONFIRM message with cause Nr. 6, "Mandatory informa­

tion element is missing" shall be returned. 

• 	 When a RELEASE message is received with the cause value missing, the actions shall 

be the same as if a RELEASE message with cause value Nr. 3, "Normal/unspecified 

connection release" was received. Only, the RELEASE CONFIRM message to the 

node from which the RELEASE message was received shall contain a cause value 

Nr. 6, "Mandatory information element is missing". 

• 	 When a RELEASE message is received with an invalid cause value, the actions shall 

be the same as if a RELEASE message with cause value Nr. 3, "Normal/unspecified 

connection release" was received. Only, the RELEASE CONFIRM message to the 

node from which the RELEASE message was received shall contain a cause value 

Nr. 9, "Invalid information element contents". 
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Figure 3.11: Connection setup with minimum and maximum bandwidth requirements 

• 	 When a RELEASE CONFIRM message is received with a missing or invalid cause 

value, it will be assumed that a RELEASE CONFIRM message with a cause value 

Nr. 3, "Normal/unspecified connection release" has been received . 

3.8 Maximum bandwidth selection 

When an end host requests a connection, it may specify that the minimum and maximum 

bandwidth should be the same, in which case all the nodes along the path shall attempt 

to establish a connection of the requested bandwidth. If any node cannot provide the 

bandwidth, it shall send the RELEASE CONFIRM message as described in Section 3.6.1. 

A node can also specify a range of bandwidth, specified by a minimum and a maximum. 

These two values (minimum, maximum) indicate to the receiver of the SETUP message 

that the preceding node requests a connection of bandwidth max bandwidth, but if the 

request cannot be satisfied, the requesting host will be satisfied with any bandwidth larger 

than or equal to min bandwidth. If max bandwidth cannot be satisfied, but another value 

larger than (or equal to) min bandwidth can, then the SETUP message shall be changed to 

indicate the new maximum bandwidth - which may result in the minimum and maximum 

bandwidths being equal somewhere along the path. The resource reservation shall continue 

as specified in Section 3.6.1. This may result in different bandwidth allocations along the 

path of the connection, but it shall be rectified at the receipt of the SETUP SUCCESS 

message. The end host to which the connection is being set up shall place the last value of 

max bandwidth in the bandwidth information element of the SETUP SUCCESS message. 

While the SETUP SUCCESS message traverses the network, all nodes which form part of 

the connection shall edit their allocations accordingly. 
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For example in Figure 3.11, Host 1 requests a connection with bandwidth OC48, it 

also indicates that it will be satisfied by a connection with bandwidth of OC3. Switch 

A does not have enough resources available, but it does have resources available for an 

OC12 connection which it reserves for the connection. Switch A goes ahead by editing 

the SETUP message to reflect the changes and passes the request on to Switch B. Switch 

B does have enough resources available for the OC12 connection, and so has Switch C. 

Unfortunately, Host B only has enough resources for an OC3 connection. So, it reserves the 

resources for the OC3 connection and sends the SETUP SUCCESS message to Switch C 

with the bandwidth information element containing OC3. Switch C changes the allocation 

it made previously (only reserving resources for an OC3 connection instead of an OC12 

connection) and passes the message to Switch B. In this way the message traverses the 

network , and an OC3 connection is successfully set up between Host A and Host B. 

This solution has the unavoidable drawback that resources that are not going to be 

used are unavailable for a short time. 

3.9 Improvements to signalling protocol 

3.9.1 Routing through heterogenous nodes 

So far in the discussion we assumed the network is always homogeneous. Now, this as­

sumption is relaxed and we consider the problem associated with hetemgenous networks 

(which are networks consisting of switches with different cross-connect rates). First we 

consider a simple example illustrated in Figure 3.12. In this example end host A requests 

a connection with rate OC1 to end host B. Switch Sl receives this message but its imme­

diate neighbour has a higher cross-connect rate, and hence an OC1 connection cannot be 

provided. 

The routing protocol which is described in Chapter 4 will construct a routing table in 

which the "next-hop node" entry of node I may be a node that is not directly connected 

through a physical or logical link to node 1. It is considered a "neighbour" if it is the next­

hop switch that operates at the same or lower rate as node I through which a connection 

must be routed. 

Connection setup in a heterogenous network can now be explained as follows . If the 

"next-hop node" entry in the routing table indicates a node that is not an immediate 

neighbour of node I (physically or logically) as determined by examining the connectivity 
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Figure 3,12: Connection setup in heterogenous network 

table, the routing table is queried again to locate which immediate neighbour should 

be used to reach the "next-hop node" of node 1. Assume that node J is the immediate 

neighbour and node K is the "next-hop node". Node I must determine the cross-connect 

rate of node J and request a connection setup at this rate between itself and node K. Once 

this is complete, the setting up of the lower rate connection can proceed over the newly 

created logical link between nodes I and K. 

In the example of Figure 3.12, the routing table of switch Sl will look as follows. For 

data rate OC1 and destination B the "next-hop node" shall be given as S3. According to 

the information in the connectivity table (Table 3.5) S3 is not a neighbour of S1. So, it 

has to search the routing table again to look for the entry where S3 is a destination. The 

lowest data rate at which there is an entry for S3 shall be used as the requested rate when 

a connection is set up between itself and S3. Once this connection is established, nodes 

S1 and S3 become immediate neighbours on this newly created logical link. Switch S1 can 

then send the OC1 Setup request to switch S3 for further routing as shown in Step 2 of 

Figure 3.12. 

Another example is given in Figure 3.13. In this example end host A starts by sending 

a setup request to switch S1 for a connection of rate OC12 to end host B. Switches S1, S2 

and S3 can all handle the connection requirements due to their cross-connect rates being 

smaller or equal to the requested rate. We shall follow the progress of the connection setup 

from switch S3. 

Switch S3 receives the setup request for an OC12 connection, to pass the connection 

setup request on to the next hop it queries the routing table. The routing table has an 

entry for data rate OC12 that indicates that switch S6 is the "next-hop node" (Table 3.15). 
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Figure 3.13: Connection setup in large heterogenous network 

Querying the connectivity table, switch 83 realizes that 86 is not an immediate neighbour, 

so it searches the routing table again for an entry with switch S6 as a destination. Because 

OC192 is the highest data rate on the path to switch S6, there shall be no entry for S6 

under data rate OC48, but there will be an entry with data rate OC192 which is presented 

in Table 3.15. According to Table 3.15 the next hop is switch S4. This switch is directly 

connected, so switch 83 requests a connection with rate OC192 from itself to switch S6 

with the next hop being S4. After this connection is set up , S3 can send the request for 

an OC12 connection directly on the new logical link. 

The question of when the logical link is released has not received much attention, 

but it should be noted that the logical link can be held open even when the connection 

that prompted its setup is closed. This enables the setup of other connections over this 

logical link without the added overhead of setting up the logical link. Considering the first 

example again, the logical OC12 link between switch Sl and switch 83 can be held open 

even if the OC1 connection closes. With the help of the routing protocol, this link can be 

advertised, and new OC1 connections can be set up over it. Once the last OC1 connection 
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closes, a timer can be started, if no new requests for OCI connections are received before 

the timer's expiration, the logical link can be closed. 

Note that when a connection passes through a switch with a lower cross connect rate, 

for example by realizing an OCl2 connection as 12 OCI connections, some mechanism 

of multiplexing/demultiplexing is required. These actions have been assumed to occur 

transparently because of the synchronous nature of the SONET network. 

3.9.2 Transport of signalling messages 

Transporting the signalling messages over the IP network has already introduced two 

important limitations. Firstly, using IP without TCP implies unreliable transmission. 

The network does not provide any guarantee that the signalling message will reach its 

destination, there is no indication if the signalling message has reached its destination 

and if the message reaches the destination, there is no guarantee the data is intact. As 

described in Section 3.7.2, the unreliable nature of the network can cause some switches 

to waste valuable resources. The second limitation is security. Although this is not the 

focus of this research, the lack of authentication mechanisms, together with the use of a 

public network for the transport of the signalling messages might introduce some security 

risks, for example denial of service attacks, to the circuit switched network. The use of a 

private IP network just to transport signalling messages is wasteful of resources. 

The IETF Signalling Transport working group is currently working on the Stream 

Control Transmission Protocol (SCTP) [22]. SCTP started out as a transport protocol 

for PSTN signalling messages over the IP network, but the capabilities of this protocol 

will solve the problems introduced when only IP is used to transfer the signalling mes­

sages. SCTP provides acknowledged error-free non-duplicated transfer of user data and is 

resistant to flooding and masquerade attacks [22]. However, with our goal for hardware 

implementation, it still needs to be determined if SCTP or TCP can be implemented in 

hardware. 

Another option is to carry the signalling messages using SONET. Inside a SONET 

frame there are three section overhead bytes (named Dl, D2 and D3) and eight line over­

head bytes (named D4 to DI2). These bytes are termed the section data communications 

channel (DCC) and line data communication channel (DCC) respectively and are used for 

operations, administration, maintenance and provisioning (OAM&P). Carrying signalling 

messages on one of these point-to-point DCC channels will eliminate the need for an IP 

56 


 
 
 



network. 

3.10 Conclusion 

Signalling protocols in current TDM networks only provide low-bandwidth (DSO) circuits 

on-demand to one application (telephony). This chapter describes a new hardware imple­

mentable signalling protocol that is able to provide high-bandwidth on-demand circuits for 

applications such as bulk data transfers. The signalling protocol presented in this chapter 

requires a supporting routing protocol. The routing protocol that will be presented in 

Chapter 4 is responsible for the creation of the routing table entries that are required by 

the signalling protocol. 
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