

Phosphorus Limitation as a Method of Cyanobacterial Bloom Control

BY

GINA POCOCK

Submitted in partial fulfilment of the requirements for the degree of

Philosophiae Doctor (Microbiology)

In the Faculty of Natural and Agricultural Sciences, Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, South Africa

Supervisor: Prof. T.E. Cloete

© University of Pretoria

I, the undersigned, hereby declare that the thesis submitted herewith for the degree of Philosophiae Doctor to the University of Pretoria, contains my own independent work and has not been submitted for any degree at any other institution.

Signed:

Date:

Acknowledgements

The author would like to thank the following people and institutions:

Prof. Eugene Cloete for his support, advice and motivation, without whom this work would not have been possible. Thank you for giving me the means to reach my goals and follow my dreams.

Dr. A. Karen J. Surridge for her unfailing support, guidance and invaluable assistance, especially with the DGGE work.

The University of Queensland, for use of their laboratories, and Dr. Fouad Haghseresht for giving freely of his time, knowledge and patience while I was under his mentorship in Brisbane

The members of the microbiology laboratories, especially Candice Johnston, Alicia van der Merwe and Heinrich Geyer, who were my daily inspiration

My family and friends, especially my husband Trevor Pocock, for unfailing love, support and belief in my ability to succeed

Africa Geo-Environmental Services, Phoslock Water Solutions, THRIP and Eskom for their financial support

TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION		

1

CHAPTER 2	
LITERATURE REVIEW	6
1. Introduction	7
2. Toxins	8
2.1. Hepatotoxic cyclic peptides- microcystins and nodularin	9
2.1.1. Microcystins	9
2.1.2. Nodularin	13
2.2. Alkaloid toxins	14
2.2.1. Saxitoxins	14
2.2.2. Anatoxins	14
2.2.3. Cylindrospermopsin	15
2.3. Lipopolysaccharides	15
2.4. Toxin stability	17
2.4.1. Microcystins and nodularins	17
2.4.2. Anatoxins	17
2.4.3. Saxitoxins	18
2.4.4. Cylindrospermopsin	18
2.5. Toxin removal	18
2.5.1. Biodegradation of toxins	20
3. Why cyanobacteria become dominant	21
3.1. Nutrient physiology and the importance of the N:P ratio	21
3.2. Effect of zooplankton	23
3.3. Buoyancy in cyanobacteria	24
3.4. Recruitment of resting stages	25
3.5. CO ₂ concentration and pH	26
3.6. Effect of trace metals	27
4. Methods of control	27
4.1. Biological control of cyanobacteria	27
4.1.1. Cyanophages	29

	4.	1.2. Predatory bacteria	30
	4.	1.3. Fungal pathogens of cyanobacteria	34
	4.	1.4. Field application of biological control agents	34
	4.2.	Chemical control of cyanobacteria	35
	4.3.	Control using turbulent mixing	36
	4.4.	Eutrophication management	37
	4.	4.1. Nutrient limitation	37
	4.	4.2. Chemical removal of phosphorus	38
	4.	4.3. Physical sequestering of nutrients	39
	4.	4.4. Phoslock [®] as a eutrophication management tool	39
5.	Mic	robial community analysis	41
	5.1.	Culture independent assessment of microbial communities	42
	5.	1.1. Single-strand conformation polymorphism	44
	5.	1.2. Terminal restriction fragment length polymorphism	44
	5.	1.3. Amplified ribosomal DNA restriction analysis	45
	5.	1.4. Reverse transcription PCR	45
	5.	1.5. Denaturing gradient gel electrophoresis	46
		5.1.5.1. Community diversity analysis using DGGE banding patterns	48
		5.1.5.2. Limitations of DGGE	49
6.	Con	clusion	52
7.	Refe	rences	55

CHAPTER 3

CHARACTERISATION AND KINETICS OF PHOSLOCK [®]	
1. Introduction	70
2. Materials and methods	72
2.1. Column tests	72
2.1.1. The effect of pH on Phoslock [®] performance	72
2.1.2. Lake water with algal bloom	73
2.1.3. Lake water with algal bloom treated at high dose ratios	75
2.2. Beaker tests	76
2.2.1. Effect of initial phosphorus concentration	76
2.2.2. Lake water	76
3. Results	76

	3.1.	Pseudo-second order model	76
	3.2.	Column tests	77
	3.	2.1. The effect of pH on Phoslock [®] performance	77
	3.	2.2. Lake water with algal bloom	81
	3.	2.3. Lake water with algal bloom treated at high dose ratios	89
	3.3.	Beaker tests	92
	3.	3.1. Effect of initial phosphorus concentration	92
	3.	3.2. Lake water	93
4.	Disc	ussion	96
	4.1.	Column tests	96
	4.	1.1. The effect of pH on Phoslock [®] performance	96
	4.	1.2. Lake water with algal bloom	97
	4.	1.3. Lake water with algal bloom treated at high dose ratios	98
	4.2.	Beaker tests	98
	4.	2.1. Effect of initial phosphorus concentration	98
	4.	2.2. Lake water	99
5.	Con	clusions	99
6.	Refe	erences	100

CHAPTER 4

PHOSLOCK [®] FIELD TRIAL	
1. Introduction	103
2. Materials and methods	105
2.1. The site	105
2.2 Calculation of Phoslock [®] quantity needed for treatment	105
2.3. Product application	106
2.4. Sampling strategy	106
3. Results	108
4. Discussion	117
5. Conclusion	120
6. References	121

CHAPTER 5

ANALYSIS OF THE MICROBIAL COMMUNITY DIVERSITY IN PHOSLOCK[®] TREATED AND CONTROL AREAS OF HARTBEESPOORT DAM USING PCR-DGGE 122

1. Introduction	
2. Materials and Methods	
2.1. Sampling and DNA extraction	126
2.2. Polymerase chain reactions	126
2.2.1. General bacterial PCR	126
2.2.2. Cyanobacterial specific PCR	127
2.3. DGGE	128
2.4. Sequencing and phylogenetic analysis	129
3. Results	131
3.1. DGGE targeting filamentous cyanobacteria	131
3.2. DGGE targeting unicellular cyanobacteria	136
3.3. DGGE targeting all bacteria, including cyanobacteria	141
4. Discussion	148
5. Conclusion	
6. References	

CHAPTER 6

THE CONTROL OF TOXIC CYANOBACTERIAL BLOOMS USING BIOLO	OGICAL
CONTROL IN THE FORM OF PREDATORY BACTERIA, ALONE A	AND IN
COMBINATION WITH PHOSLOCK [®]	158
1. Introduction	159
2. Materials and Methods	161
2.1. Culture of bacterial strains	161
2.2. Host cyanobacteria and cultivation	161
2.3. Bacterial characterisation and identification	162
2.4. Critical predator-prey ratio	164
2.5. Collection, treatment and processing of environmental samples	165
2.6. Effects of Phoslock [®] on bacterial growth	166
2.7. Combined Phoslock [®] and bacteria treatment	166
3. Results	167

	3.1.	Bacterial identification	167
	3.2.	Critical predator-prey ratio	168
	3.3.	Effects of Phoslock [®] on bacterial growth	170
	3.4.	Combined Phoslock [®] and bacteria treatment	171
4.	Disc	ission	172
5.	Cone	clusion	173
6.	Refe	rences	174

CHAPTER 7:

THE PHYSICAL AND CHEMICAL CHARACTERISATION OF FLY ASH	176
1. Introduction	177
2. Materials and Methods	179
2.1. Fly ash samples	179
2.2. X-ray diffraction (XRD)	179
2.3. X-ray flourescence (XRF)	180
2.4. The effect of fly ash on the pH of water	180
2.5. Leaching of fly ash	180
2.6. Scanning electron microscopy (SEM) of fly ash samples	180
2.7. Particle sizing	181
3. Results	181
3.1. X-ray diffraction (XRD)	181
3.2. X-ray flourescence (XRF)	181
3.3. The effect of fly ash on the pH of water	185
3.4. Chemical leaching of fly ash in distilled water	186
3.5. SEM of fly ash samples	190
3.6. Particle sizing	192
4. Discussion	193
5. Conclusion	199
6. References	200

CHAPTER 8:

THE FLOCCULATION OF CYANOBACTERIA USING FLY ASH	201
1. Introduction	202
2. Material and Methods	205

2.1 Fly ash samples	205
2.2. Cyanobacteria samples	205
2.3. Flocculation experiments	205
2.4. Re-growth experiments	206
2.5. Scanning electron microscopy (SEM) of flocculated cyanobacter	ia 208
2.6. SEM of etched samples	208
2.7. Phosphate adsorption study	208
3. Results	209
3.1. Flocculation experiments	209
3.2. Re-growth experiments	214
3.3. SEM of flocculated cyanobacteria	215
3.4. Phosphate adsorption study	220
4. Discussion	221
5. Conclusion	225
6. References	226
CHAPTER 9 GENERAL DISCUSSION	228
CHAPTER 10 CONCLUSION	235
RESUMÉ	238
APPENDIX A	241
1. Sequences obtained from DGGE bands in Chapter 5	241
1.1 Partial 16S rDNA sequences obtained from from bands	in the
cyanobacterial specific DGGE gels	241
1.2. Partial 16S rDNA sequences obtained from from bands in the	general
bacterial DGGE gel	245
2. Sequence of unknown bacteria (Chapter 6)	250

APPENDIX B

PRESENTATIONS AND PUBLICATIONS ARISING FROM THIS RESEARCH	251
---	-----