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Die doel van hierdie verhandeling is om ‘n vereenvoudigde eindige element model te ontwikkel vir die

analise van tyd-afhanklike defleksies van plat blaaie.

Nuwe materiale en ontwerpbenaderings het tot gevolg dat diensbaarheidsfalings meer algemeen
voorkom. Hierdie tipe van faling is geneig om eers lank na die voltooiing van konstruksie voor te

kom en kan dus duur wees om te herstel.

Verskeie gesofistikeerde metodes, gebaseer op gelaagde elementmodelle, nie-lineére materiaalwette en
reologiese benaderings tot krimp and kruip probleme is al deur navorsers voorgestel. Hierdie metodes
het die nadele van kompleksiteit en uitermatige rekenaar verwerkingstyd. Gesofistikeerde modelle is
in baie gevalle nie geoorloof nie omdat die fisiese prosesse betrokke nie altyd goed verstaan o6f

akkuraat voorspel kan word nie.

Ontwerpers besef nie altyd die erns van sulke falings nie en ignoreer soms tyd-athanklike defleksies
van blaaie. ‘n Eenvoudige metode, wat maklik inskakel by bestaande ontwerp-metodiek, sal dus ‘n

gaping vul in huidige praktyk.

Die veld van studie sluit , in breé trekke, die volgende in:

* Die keuse van eindige element formulering vir die model. 'n 8-node Serendipity element,
gebaseer op ‘n Mindlin plaatanalise, vertoon stabiele resultate in *n groot verskeidenheid van
toepassings.

e Kraak van blaaie en die trek-verstywingseffek: Branson se effektiewe traagheidsmoment en
die Bilineére metode is in dié opsig vergelyk.

¢ Die gekombineerde invloed van krimp en kruip: Die bekende , Effective Modulus Method* is

gebruik om hierdie invloed te modelleer.
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Die voorgestelde metode is saamgevat in ‘n rekenaarprogram, waarvan die bronkode saamgevat word

in die aanhangsels, en word vergelyk met ander metodes en eksperimentele resultate.

Die program vertoon goeie resultate in vergelyking met eksperimentele werk, veral in verband met
kraak en trek-verstywing. Branson se benadering tot hierdie probleem lewer beter resultate as die
bilineére metode, veral waar wapening verhoudings laag is. Kruip en krimp resultate vergelyk ook
goed met die balk wat ondersoek is, asook die handberekening van ‘n bladpaneel se langtermyn
defleksies.

Die program maak gebruik van parameters wat algemeen voorkom in betonontwerp en vereis dus nie
spesialis kennis van materiaal eienskappe nie. Die metode, soos toegepas in ‘n eindige element
analise, maak voorsiening vir die plaat gedrag van blaaie en ‘n meer realistiese skatting van

langtermyn defleksies kan dus gemaak word.
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SUMMARY

A SIMPLIFIED FINITE ELEMENT MODEL FOR THE CALCULATION OF TIME-
DEPENDENT DEFLECTIONS OF FLAT SLABS

By: Renier Cloete

Supervisor: Prof. B.W.J. van Rensburg

Co-supervisor: Dr. J.M. Robberts

Department: Civil Engineering, University of Pretoria
Degree: Master of Engineering (Structural Engineering)

The aim of this dissertation is to develop a simplified finite element model for the analysis of time-

dependent deflections of flat slabs.

New materials and design approaches have caused an increase in the incidence of serviceability
failures. This type of failure tends to occur long after the completion of construction and can thus be

quite expensive to repair, if at all possible.

Various sophisticated methods based on layered element models, non-linear constitutive laws and
rheological creep and shrinkage models have been proposed by various authors. These methods suffer
from a high degree of complexity and become prohibitive in terms of computer memory storage
requirements and processing time. In many cases sophisticated models are uncalled for due to a lack
of understanding of the physical processes involved or an inability to accurately predict the influence

of these processes.

Broadly, the field of study includes the following:

e The choice of a finite element formulation for the model. An 8-noded Serendipity element,
based on a Mindlin plate analysis has proven itself as a good performer in a wide range of
problems and is the formulation of choice for this dissertation.

e Cracking and the tension-stiffening effect: Branson’s Effective Moment of Inertia method and
the bilinear method are compared in this regard.

e The combined effect of shrinkage and creep: The Effective Modulus method is used to model
creep and shrinkage is included using a free shrinkage parameter.

The proposed method was implemented in a computer program, the source code of which is

reproduced in the appendices, and compared to other methods and experimental results.
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The program achieved good results when compared to experimental work, especially as far as
cracking and tension stiffening are concerned. The bilinear method was found to produce results
inferior to Branson’s approach to tension stiffening, particularly when reinforcement ratios are low.
Creep and shrinkage results compared well with the beam considered as well as the hand-calculation

of the long-term deflections of a slab panel.

The program utilizes parameters commonly used in routine design, such as the creep coefficient and
free shrinkage, and therefore does not require specialist knowledge of material properties. The
method, as applied to plates in the finite element analysis, includes the plate behaviour of slabs and

thus allows a more realistic estimate of deflection than the equivalent frame method.
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1 INTRODUCTION

1.1 Background

The calculation of two-way slab deflections poses the dual difficulties of solving complex governing
differential equations and taking into account the effects of material non-linearity, i.e. cracking and

creep.

Various simplified methods of elastic analysis for two-way slab systems, suitable for hand calculation,
have been proposed and adopted in national building codes. Unfortunately these methods have limited
applicability when the slab supports are not rectangular in plan. In contrast, the finite element
approach provides a convenient method for analysis where support layouts are irregular. The
discretisation of the slab allows the analyst to model almost any shape of slab and the support layout is
limited only by node positions. Although the finite element method is a numerical approximation of
the ‘exact’ solution, careful modelling and choice of formulation yields results in good agreement with

classical methods.

Load induced cracking, which for the purposes of this dissertation occurs when the stress at the
tension face exceeds the modulus of rupture of the concrete, influences both the magnitude of
deflection and the distribution of bending moments and shear forces in the slab. At the cracked
section, it is assumed that the concrete is free of tensile stress, but this does not hold true for the
uncracked zones between fully cracked sections where tensile stresses are transferred to the concrete
by bonded reinforcement. The ability of uncracked concrete to contribute to the overall stiffness of a
member is referred to as tension stiffening. The simplest method of modelling this effect involves the
use of an average cracked section. Numerically, this implies a modification of the second moment of

arca.

Concrete response to load comprises instantaneous and time-dependent components. The time-

dependent component can be attributed to the related effects of creep and shrinkage.

The study of the creep deflection consists of two aspects:
s Prediction of the creep and shrinkage behaviour of a concrete element which includes material
and environmental factors. This prediction usually takes the form of a creep factor or function
and a shrinkage strain.

e Incorporating the predictive parameters in the analysis of a reinforced concrete member.
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This dissertation focuses on the latter aspect and no attempt is made to investigate the various creep
and shrinkage models that are currently in use. Numerous methods are available for time-dependent
analyses, ranging from complex rheological models to simple effective modulus methods. Faber’s
Effective Modulus method (Gilbert, 1988), where the elastic modulus of the concrete is adjusted with
a creep factor, is probably the best known method.

The method proposed here employs the finite element method in a semi-iterative approach to the
deflection problem. The instantaneous deflection is calculated using Branson’s Effective Moment of
Inertia (Branson, 1968) or the bilinear method (Favre et a/, 1985). The resulting member actions are

then used in a time analysis to establish the creep and shrinkage contribution to the final deflection.

The method derives from a simplified approach to slab tension stiffening suggested by Polak (1996).
Polak applied Branson’s effective moment of inertia to the finite element method using reduction
factors to account for cracking and tension stiffening. Reinforcement has the effect of reducing the
magnitude of creep deflections in concrete slabs. This effect is also accounted for using reduction

factors.

Rigorous approaches to the long term deflection of concrete slabs, as applied to the finite element
method, abound in journals such as Advances in Engineering Software published by Elsevier and are
even commercially available in structural simulation software such as DIANA, which is developed by
TNO Diana, a company based in the Netherlands. This dissertation proposes a simple method for use

and elaboration by practicing engineers.

1.2 Objectives of the Study

The study has the broad objective of establishing a simple method of analysis, based on the finite

element method, for the calculation of the long-term deflections of reinforced concrete flat slabs.

This objective is pursued under four components of deflection:
e Elastic deflection:
The Mindlin Serendipity plate element, as applied to slab problems, is investigated.
Convergence characteristics and the influence of aspect ratios are studied to verify the

applicability of the element in the current context.
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¢ Cracked deflection:
The results of previous studies of tension stiffening are reproduced and the bilinear method is
investigated as an alternative to Branson’s method. The alternative is attractive due to the
simple manner in which the influence of creep on the behaviour of a cracked section is
modelled.
e Creep deflection:
The objective of this section is to find a technique of incorporating the method of section
curvatures in the finite element formulation.
e Shrinkage deflection:
The resulting deformation of shrinkage is transformed into applied loading and the results are

compared to experimental results to verify the accuracy of the procedure.

1.3 Scope of the Study

1.3.1 Geometry and Supports

Although nothing in the method prohibits non-rectangular layouts, only this type of layout was
studied, mainly to avoid the use of distorted rectangular or triangular elements since distortion impacts

negatively on the accuracy of the finite element analysis.

1.3.2 Finite Element Formulation

An eight-noded, Serendipity plate element based on the Mindlin formulation was chosen for the
dissertation and no other element or plate formulation types were considered, although consideration is

given to the numerical issues pertaining to this element. Membrane effects are not considered.

An important aspect of the finite element formulation is the accurate modelling of supports or
boundary conditions. However, discontinuous boundary conditions such as those encountered with
the column supports of flat slabs pose some problems. The simplest approach is a support, fixed in
both translation and rotation, at a node placed at the column centre. Theoretically this implies infinite
stress resultants at the point of support, although with the finite element approximation this value is

finite but large.

This dissertation follows this simple approach and no consideration is given to alternative approaches

such as elastic supports. Admittedly the simple approach will tend to overestimate the actual long
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term deflection, due to the large numerical values of the support moments and the associated higher

degree of cracking.

1.3.3 Reinforcement Layout

Reinforcement directions are assumed to be parallel with the global x and y-axis. With the rectangular

layout constraint introduced in paragraph 1.3.1, this will almost always be the case.

1.3.4 Constitutive model

Concrete and reinforcement behaviour are assumed to be linear elastic, although modifications are
made for concrete creep and cracking. Reference is made to rigorous models, but no comparison is

done with the results of these methods.

1.4 Methodology

A finite element program was developed specifically for this dissertation. The program follows the
Object Orientated Programming (OOP) paradigm, which allows for easy extension and modular
problem solution. The finite element is encapsulated in an object and the various effects of cracking,

creep and shrinkage were added to this element object.

The results of the program are compared with the following analytical, experimental and hand-
calculation results:
¢ Linear elastic analysis: Classical thin plate and moderately thick plate solutions for simply
supported and clamped plates.
¢  Short term crack analysis: Experimental slab deflection results from two sources.
e Long term creep, crack and shrinkage analysis: Experimental results for a beam and hand

calculation results for a flat slab panel.

1.5 Software Development

The source provided by Hinton and Owen (1983) was used as the basis for the implementation. The
source was originally written in FORTRAN which was translated by the author to Object Pascal. The
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source was compiled for the Microsoft Windows environment using Borland Delphi 6.0, Borland
(2001).

The user interface components used in the program were donated by Prokon Software Consultants

which facilitated the process of input as well as the output of analysis results.

The OOP paradigm mentioned in section 1.4, adds a level of abstraction to software which allows for
modular programming and extensibility. The main program remains unaware of the implementation
details of the element object and the element formulation can thus be changed without influencing the

logic of the main program.

1.6 Organisation of the Report

The report is split into the following chapters:

Chapter 2 provides theoretical background to the topics introduced above under the following
headings:
e Analysis: The finite element and a hand-calculation method are considered.
o Cracked Sections: The bilinear method and the effective moment of inertia are compared.
e Creep: A single approach, based on the effective modulus method is presented.

e Shrinkage: A single approach based on basic theory is presented.

Chapter 3 presents the proposed method under the same headings as above and discusses the
implementation of the method in computer code. Selected parts of the program are included in the
Appendix for reference. Section 7.2 contains the source of the entire, self contained, finite element

object. Sections 7.3 to 7.6 contain the various analysis procedures.

Chapter 4 documents the results of various analysis runs compared to alternative methods and

published experimental data.

Conclusions regarding the accuracy and applicability of the proposed method are presented in

Chapter 5. Chapter 6 lists the references and chapter 7 contains the appendix.
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2 THEORETICAL BACKGROUND

2.1 Analysis

Analysis methods can be categorized into classical and numerical approaches. The classical approach
involves finding stress or displacement solutions that satisfy the differential equations of equilibrium,
compatibility requirements as well as stress-strain relationships, subject to the given boundary
conditions. Due to these stringent requirements, very few classical solutions are available for practical

plate bending problems.

This difficulty can be overcome by approximating plate behaviour with a crossing beam analogy such
as the equivalent frame method, Corley and Jirsa (1970). The results of such an equivalent frame
analysis, as well as the required reinforcement, are assumed known in the hand-calculation method

presented in 3.1.1.

Numerical approaches require discretisation of the problem, i.¢. a structure with an infinite number of
degrees of freedom is reduced to a finite number to simplify the calculation process. Two of the best
known methods are the method of finite differences and the finite element method. The method of
finite differences has the disadvantage of difficulty in satisfying irregular boundary conditions. The

finite element method, which is the method of choice in this dissertation, is presented in section 2.1.2.

2.1.1 Hand-Calculation Method

Short and long term deflections of two way slab systems can be calculated by the simplified method
outlined below. This method is recommended by various authors, such as Gilbert (1988), Ghali and
Favre (1986), as well as the ACI 318 (1999).

For flat slabs, the method involves calculating the mid-span deflections of the middle strip relative to
the column strip deflections, x and y-direction strips being treated independently. The middle strip
deflections are then added to the average of the column strip deflections and finally, the x and y-

direction mid-span deflections are averaged to arrive at a total mid-panel deflection.

The deflection calculations outlined above, make use of known curvatures which are modified with
factors to account for cracking, shrinkage and creep. These factors are discussed in detail in sections
3.2 through 3.4.
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The main drawbacks of the method are as follows:
* Only rectangular slabs are considered,
¢ Bending moment magnitudes are assumed to be known, although these moments can easily be
calculated using the Direct Design (ACI 318, 1999) or Equivalent Frame Methods,
e Curvatures are assumed to be parabolically distributed over the length of the strip considered,

+ Simple support or continuity is assumed.

Deflection at the centre of a strip is given by (Ghali & Favre, 1986):

IZ
96
where:
! = length of the strip
Y1, ¥, Y3 = curvatures at the left support, centre and right support of the strip.

Deflection at the centre of a panel can be expressed as the sum of the middle strip deflection and the

average of the column strip deflections.

1
D=8z + —2-(6,43 +68pc) (2.2)
1
D,=8,,+ 5(5,“} +85c) (2.3)
Dy = Y5(D+ D) (2.4)

The various deflection components in the equations (2.2) through (2.4) are illustrated in figure 2-1.
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Figure 2-1: Displacement components

Curvature and bending moment can be related with the following equations (Ghali & Favre, 1986):

1
= M. +vM 2.5
4 E c[g ( ¥ ) ( )
1
w,= (M, +vM,) (2.6)
E £
k3
[ =— 2.7
fo12(1-v?) @7
where:
E, = Young’s modulus of the concrete,
I = Effective moment of inertia of the gross concrete area of the strip,

M., M, =Moments at the section under consideration,
v = Poisson’s ratio of the concrete (usually taken as 0.2),

h = Slab thickness.
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2.1.2 Finite Element Method

This method involves the discretisation of continua problems into finite sub regions termed finite
elements. The approach yields approximate results based on an assumed stress field, displacement
field or a mixed, hybrid approach. These fields are defined by points, or nodes, in the finite element.
The approach presented here is limited to the displacement approach, due to its widespread use for

matrix analysis software.

The element used in the study is an eight-noded Serendipity element. These elements differ from
elements such as Lagrange elements in the derivation of their shape functions. Langrage elements can
contain nodes interior to the element and the Lagrange interpolation function is used to find these
shape functions. Serendipity elements on the other hand, usually consist of only edge nodes and the

shape functions are found by inspection.

Shape functions are approximations of element geometry and deflection behaviour. The same shape
functions (second degree polynomials) are used for the definition of geometry and displacement,

classifying this element as parabolic isoparametric.

The assumptions for the flexural formulation, due to Mindlin (1951), are as follows:
e The lateral deflection of the plate is small compared to its plan dimensions.
e Planes normal to the plate mid-surface remain plane, but not necessarily normal to the mid-
surface, after bending.

e Stresses normal to the plate mid-surface are negligible.

The Kirchhoff, or thin-plate, assumptions (Ugural, 1999) for plate bending differ only in the second
point above: Planes remain plane and normal to the mid-surface after bending. This implies that the

Kirchhoff model neglects shear effects.

The Mindlin elements were developed mainly to overcome inter-element continuity problems that
arose from the use of their Kirchhoff counterparts. Mindlin elements do pose some numerical

problems such as “shear locking” which is elaborated upon at the end of this section.

The generalised displacements of the plate are completely described using three degrees of freedom
per node where w denotes a displacement in the z direction and &, and 6, orthogonal rotations about

the y and x axis, respectively. This leads to following expressions for the plate deformations
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These physical quantities and the orientation of the global Cartesian coordinate system are illustrated

in figure 2-2.

Figure 2-2: Plate deformations

The formulation makes use of a natural (dimensionless), curvilinear coordinate system in £ and 7 with
origin at the geometric centre of the element. Although the directions of the &£ and 7 axes vary within

the element, the general positive directions are:
e Positive £is taken in the same direction as indicated by the nodal sequence 1-2-3.

e Positive 77is taken in the same direction as indicated by the nodal sequence 3-4-5.

The nodal numbering starts at any corner of the element and proceeds in an anti-clockwise direction as

shown in figure 2-3.

17512590
‘Otku ?—7(4&6
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Figure 2-3: Element numbering

The geometry of each element is defined by

RN

where N, is the parabolic shape function, or interpolation function, associated with node i. These

functions have a value of unity at the associated nodes and zero at every other node.

Similarly the displacement field over the element is defined by

w SN0 0w
=16,[=2|0 N, 08, (2.10)
6, “'lo o0 N|@

i
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The shape functions are given by

Nigm == 4-Ni-n)i+¢ +1)

N =5 -1-)

Ny(m =+ EXi-n)g-n-1)

N =+ Xt-n) -
N =+ )ten)e +7-1)

Ny&m =5 1-£)Yt+n)

N =5 (=)t + =g+ 1)

Ny(&m = - )-n)

The variational approach to the formulation of the stiffness matrix is used, specifically the

minimisation of potential energy principle. The potential energy functional consists of terms for

bending, shear and external work done by the applied lateral pressure denoted by p:
1 T T
m=- [({m} {w}+{0} {#})da—[pwaa (2.12)
A A
where {M} and {Q} are as defined in equations (2.15) and (2.16) respectively.

Positions of equilibrium are denoted by positions of stationary potential energy or dI'1 = 0, which leads

to equation (2.30). The curvatures and shear strains are defined as

08,
v, aag
wl=|w, |= —?yy— (2.13)

YV
_| 29, 99,
oy ox
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¢} = [:ij (2.14)

The stress resultants {M} (bending moment) and {Q} (shear force) are calculated by pre-integrating
the relevant stresses over the depth of the plate which is denoted by 4. The resultants are related to

element strains by the following expressions, illustrated in the figure below:

[ M,
{M}=| M, |=[D;]{v} @.15)

{0} = Q‘}[Dj]{(ﬁ} (2.16)

Figure 2-4: Sign convention (positive directions)

where [D;] and [D;] are the elasticity matrices,

£ v 0
[Df]='1-“2—(—1-—:;'2—) v 1 0 (2.1?)
0 0 ¥
L 2
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for flexure and shear, respectively. The elasticity matrices above are usually combined as the total

elasticity matrix:

E R Eyvh?
12(1-v?) 12(1-v?) ° 0
E{ylﬁ2 EnW : 0 0
[0]- 12(1-v?) 12(1-v?) 2.19)
0 L 0 0
12
0 0 0 Ghk O
0 0 0 0 Ghx|

where kK =3 6 is a shear correction factor, applicable only to rectangular sections. This factor is used

to transform the assumed parabolic shear stress distribution over the depth of the plate to an equivalent
constant stress distribution.

Strains are related to displacements by

{e}=[L]{s} (2.20)

el =| v, 2.21)

{6} is the generalised displacement vector and [L] is the matrix of displacement differential operators.

With the finite element method, {&} is approximated by N& within an element, where
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N, O ON, O 0 . 00N, 0 0
[N]J=]0 N, O 0 N, 0 O . 0 O Ng O (2.22)
O 0 N, 0 0 N, 00 . 0 0 N,

and
{647 =[6, 6, . . & . . & 2.23)

is the vector of nodal displacement components and §; is given by
{6}=16, (2.24)
o

Equation (2.20) then becomes

{e} =[£IV (o) =[B] {57} @29)
where [B] is known as the element strain matrix,

[B]=[B. B, . . Bi . . By (2.26)

and [B]; is calculated for each node as

0 —-@:" 0
Ox
0 0 _B_N_i
oy
ON, ON,
[B],. = 0 _-6; ‘“—gx— 2.27
@i -N, 0
Ox
% 0 -N,
| Oy A
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Finally the element stiffness matrix can be assembled as
[&°]= [[[B]" [P][Blaxdy = [[[B]"[D][B]|/id&an (228
where }J] is the determinant of the Jacobian matrix.

Distributed loads, denoted by p, must be represented as equivalent nodal loads in this method and the

following equation is used for this purpose:

{P}= jMpdA = HN@]J] dédn (2.29)

where A4, is the elemental area.

The linear system of equations per element is then
{Pe}+{pP}=[ K {o°) (2.30)
where P? denotes the nodal forces.

The element stiffness matrices are then assembled in the global stiffness matrix with the direct
stiffness method and the problem reduces to a system of linear algebraic equations. This system can

be solved with any suitable numerical method such as Gauss reduction or Cholesky decomposition.

A discussion on “shear locking”, introduced at the beginning of the section, follows. Thin plates,
modelled using Mindlin elements, often exhibit a high, incorrect shear stiffness which is termed shear
locking. Mathematically this can be studied using the energy contributions of shear and flexure to
equation (2.12). The flexural strain energy varies cubically with thickness whereas shear strain energy
varies linearly, this implies that flexural strain energy decreases more rapidly with reductions in depth

than shear strain energy.

When one takes into account that the shear strain energy is given by:

== [({¢}"[D.]){g})d4 and (2.31)

A

2O | e



-

W UNIVERSITEIT VAN PRETORIA

28 0 UNIVERSITY OF PRETORIA
ot

YUNIBESITHI YA PRETORIA

10
[D,]-ka[o J (2.32)

it appears that the shear strain energy should disappear as h-> 0. Due to the approximate nature of the
finite element method, zero strain energy is rarely achieved and under various conditions, the stiffness
matrix becomes ill-conditioned, Tesler & Hughes (1983), which leads to a gross overestimation of
stiffness.

This locking problem can be avoided with the use of reduced or selective numerical integration
(Zienkiewicz, Taylor and Too, 1971) . The basis of these integration schemes resides in the
assumption that shear locking can be avoided by not integrating the shear strain energy exactly. This

dissertation employs a reduced 2x2 Gaussian integration scheme.

Shear locking tendencies can be assessed using the constraint ratio, Hughes (1987), or the Kirchhoff

mode concept, Hughes & Tezduyar (1981).

The entire analysis process for a linear-elastic analysis is illustrated in figure 7-1.

2.2 Cracked Sections

Concrete members crack when the tensile stress at a section exceeds the tensile strength, usually taken
as the modulus of rupture for members subjected to flexure. The flexural stiffness along the member
then varies between two extremes:
» Condition 1: Where the tensile stress is below the modulus of rupture, the concrete remains
uncracked and the full section contributes to the stiffness.
o Condition 2: At sections where the tensile stress exceeds the modulus of rupture, the concrete
cracks over the full depth of the tension zone. Cracks at these sections are often referred to as
primary cracks. The flexural stiffness at such a cracked section can be estimated from the

fully cracked, transformed section.

Assuming a stiffness based on condition 2 would overestimate the deflection of the member, since the
regions between primary cracks remain uncracked or partially cracked. In these regions, the concrete

in tension contributes to the flexural stiffness and this is referred to as tension stiffening.
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Including tension stiffening in the deflection analysis of a concrete member involves interpolating
between conditions 1 and 2. Two empirical methods are considered here, the Bilinear Method and

Branson’s Effective Moment of Inertia.

2.2.1 The Bilinear Method

This method, first proposed for beam cracking problems by Favre et a/ (1985), is developed below:

Assuming that plain sections remain plane in bending for uncracked and cracked sections, strains
remain linearly distributed over the depth of a section. Although this is not strictly true at the cracked
section, the average strain measured over a number of primary cracks retains proportionality to the

distance from the neutral axis.

Subject to the assumption that no bond slip occurs, the strain in the tension reinforcement at uncracked

sections (condition 1), just prior to cracking, can be expressed as:

M4,

Eg =7~
IIEc

(2.33)

where M, is the cracking moment at the section under consideration, d, is the depth from the neutral
axis of the section to the level of the tension reinforcement, 7, is the moment of inertia based on the

uncracked transformed section and E, is the secant modulus of elasticity of the concrete.

The cracking moment for a rectangular section can be expressed as

M = i}:/rf& (2.34)
2

where f; is the modulus of rupture, /; is the moment of inertia of the gross concrete section neglecting

reinforcement and 4 is the section depth.

At fully cracked sections (condition 2), equation (2.33) changes to
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Md,

= 2.35
IE, (2.35)

832

where I, is the moment of inertia based on the fully cracked transformed section and M > M,. The
steel] stresses for condition 1 and 2 would then be
(2.36)

o, =Eg

s%s1

o,=Eg, (2.37)

assuming linear elastic reinforcement behaviour as illustrated in figure 2-5.

Between primary cracks, the reinforcement strain increases to a value larger than &, but smaller than
&>. The steel strain will gradually decrease from its maximum value at the crack to &; as bond
transfers tension from the reinforcement to the concrete. When the strain reaches &, another primary

crack forms and the process repeats itself.

i

Steel stress

& £2 Steel strain

Figure 2-5: Reinforcement stress-strain relation

Let &, represent the mean strain of the reinforcement in the member
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where Al is the change in member length at the level of the reinforcement and / the original length. As

mentioned in the preceding paragraph &, will be smaller than &, with the difference Ag,, thus
& = &~ Ag (2.39)

This difference has a maximum value of Ag,,,, at the onset of cracking. Experimental evidence has

shown that Ag, can be related to ¢, as follows, Ghali & Favre (1986)

f

Ag, = Ag oy —— = A&
632

IS

(2.40)

5 max

Note that equation (2.40) is based on the assumption that the uncracked concrete has the same effect

on the mean reinforcement strain in flexure as is the case with axial loading.

Equations (2.39) and (2.40) are shown graphically in figure 2-6 below.

A
Condition 1
e Es i
s
Q
g
= Condition 2
b €
£ <
el
5
m
M(Usz) _ Eon Ag,
M(c,) _
- A

Steel Strain

Figure 2-6: Variation of steel strains versus bending moment
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From the geometry of the graph, A&... can be written as

M,
A& e = (&, -«%D—M— (2.41)

Substituting equation (2.41) and (2.40) into equation (2.39) yields

Em=(1-C)e,+e, or (2.42)
l//sm =(1_5)WSI+§WSZ (2~43)
where ¢{'is a dimensionless parameter that measures the extent of cracking, zero for an uncracked

section and between zero and unity for a fully cracked section. The parameters ¥,; and ¢, represent

the curvatures at the uncracked and cracked states, respectively.

M 2
g=1-[M’J with M > M, (2.44)

The CEB-FIP Model Code 1990 (1993) introduces two additional parameters to account for the

difference in bond characteristics of deformed and plain bars, as well as long term effects

§=1~ﬂ1528ﬂ (2.45)

F equals 1 and 0.5 for deformed and plain bars, respectively. f;equals 1 and 0.5 for immediate

loading and sustained loading, respectively.

This approach to tension stiffening can be used in combination with the hand-calculation method

described in section 2.1.1. A curvature coefficient is calculated for condition 1 and 2:

I
Ky = £ 2.46
=7 (2.46)
I
K,=-*% 2.47
=7 (2.47)

These coefficients represent the influence of the reinforcement on uncracked and cracked curvatures.
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An effective coefficient is then found by interpolating with equation (2.44):

k,=(1-) kg +¢Ksn (2.48)
where:

I, =Moment of inertia of the gross concrete area, neglecting reinforcement;

I; = Moment of inertia of the uncracked, transformed section;

I,  =Moment of inertia of the fully cracked transformed section;

x,; = Curvature coefficient for condition 1;

k> = Curvature coefficient for condition 2.

2.2.2 Branson’s Effective Moment of Inertia

Similar to the bilinear method, this method proposes an effective moment of inertia, constant over the
length of a member, for the computation of deflections. The effective moment of inertia, developed

by Branson (1968), is expressed as:

Je=(i"£j Igﬁ{l—(M’J }12 (2.49)
M M

where I, is the moment of inertia of the gross concrete section neglecting reinforcement and m is a

power usually set to 3, although Branson suggested a value of 4 for calculating 7, at a specific section.

Although this equation was developed for beams, a study undertaken by Polak (1996), suggests that
sufficiently accurate deflection results are achieved for slabs using the equation in conjunction with

the finite element method. This method is set out below.

The difficulty in applying Branson’s equation to plate bending problems concerns the definition of
flexural rigidity. In the case of beams the flexural rigidity is simply the product EI, whereas in the
plate formulation, flexural rigidity is represented by the matrix [D/] as shown in equation (2.17).

Polak circumvented this difficulty by modifying £ and vinstead of 7.

The ratio of the cracked to gross second moments of inertia is used to modify [D] per element. This

implies that the cracked section properties are averaged across all nodes belonging to an element to
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arrive at a single partially cracked element. This is achieved by calculating average moments in the x
and y-directions for use in equation (2.49),

1 n
Mg = " Zi:l (lMxi

—
Mpe = ;ZH (‘My,«] +|M,,

+|M,,;

) (2.50)

) (2.51)

where n is the number of Gaussian sampling points and M,;, M,; are the moments calculated at
sampling point .

The elasticity matrix, modified for tension stiffening, takes the following orthotropic form:

En Ey h? ]
z 0 0
12(1-vy,) 12(1-vy,)
12?1/}}23 12 1Eyk3 0 0
[D] = ( _VXVY) ( WVXV)’) (2.52)
Gh
0 0 0 0
12
0 0 0 Gy 0
i 0 0 0 0 Gsh
where:
E=akF,, E =aE, (2.53)
v.,=ay, v,=ay (2.54)
G,=Gaua,, G,=Ga,, G,=Ga, (2.55)
I 1
ax = -EL R ay =2 (2.56)
Ig Ig

1. and I, are calculated using the average moments obtained from equations (2.50) and (2.51).

Bensalem (1997) pointed out weaknesses in Polak’s proposed method, many of which are intentional

approximations with a simple method in mind as pointed out in Polak’s closure.
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One of these weaknesses involves the calculation of the average moments. Bensalem argues that the
approach would only be valid for conditions when the signs of the moments are the same. Should
these signs differ, over- or underestimation of the average moments would occur. Typical rectangular

layouts lead to same sign moments and the approach remains valid.

The analysis algorithm, as given by Polak, is restated in simplified form in figure 7-2 for reference.

2.2.3 Rigorous methods

A number of sophisticated approaches to post-cracking behaviour and tension stiffening have been
proposed. These models usually incorporate non-linear constitutive relations and multi-layer elements

as the main components.

Chan et al (1994), utilises strain hardening plasticity theory to develop the constitutive model for a
finite element analysis and also present a bond stress distribution function to model tension stiffening,.
Principal stresses at integration points are evaluated and compared to the cracking strength of the
concrete. Should the cracking strength be exceeded, tangential concrete moduli are calculated using
the bond stress distribution. The constitutive matrix is modified with the tangential moduli and the

analysis proceeds in an iterative manner with continuous model updating.

Hu et al (1991), use a similar approach as above, except that an explicit tension stiffening function and
a layered finite element formulation is used. Crack directions are modified during the analysis to

ensure that cracks remain normal to the maximum principal stresses.

Due to the non-linear nature of the methods briefly outlined above, and in fact almost all sophisticated
methods, iteration, and all the associated numerical difficulties, is required. Large finite element

models using these approaches become bulky in terms of storage requirements and computing time.

2.3 Creep

Creep is a progressive increase in strain under sustained loading and is responsible for the largest
portion of long term deflections in concrete structures. The current state of the art with regards to

creep is perhaps best described in a paper by Bazant (2001) : “...despite major successes, the
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phenomenon of creep and shrinkage is still far from being completely understood, even though it has

occupied some of the best minds in the field on cement and concrete research and material science...”

A large number of predictive physical models have been proposed in the past and are still being
developed. Neville & Dilger (1970) and BaZant (2001) have provided detailed overviews of these
models and they will not be repeated here.

These physical models lead to mathematical models that facilitate structural analysis:
¢ Effective modulus method.
¢ Age-adjusted effective modulus method.
s Rate of creep method.
¢ Improved Dischinger method.

e Rheological models.

Analysis methods fall into two classes:
» Single step approximations.

e Step-by-step iterative solutions.

Of these, the simplest choice would be the age-adjusted effective modulus method using a single time-
step approximation. These single step approximations yield acceptable upper bound deflections for
routine design and are not plagued with the numerical problems of iterative rheological approaches,

such as creep divergence, BaZant (1993).

The discussion below is therefore limited to the effective modulus method and the related age-adjusted

effective modulus method.

In the study of creep effects, it is convenient to separate creep strain into the following components
(figure 2-7):

e Irrecoverable creep or flow, designated by &
e gis further divided into basic creep and drying creep.

e Recoverable creep or delayed elastic strain, designated by &,.

One of the main disadvantages of the effective modulus method is its inability to deal with decreasing

stress histories. As can be seen from figure 2-7, creep involves a measure of irrecoverable strain. The



% UNIVERSITEIT VAN PRETORIA

UNIVERSITY OF PRETORIA

37 & YUNIBESITHI YA PRETORIA

effective modulus method, due to its elastic nature, predicts complete recovery of creep strains, i.e. a
return to zero strain at unloading. This will lead to a severe underestimation of deflection for structures

subjected to cyclic loading.

€r -84
Ec

£ ¢

T -

Figure 2-7: Creep components due to a load pulse

The total creep potential of a concrete specimen is usually described by a creep coefficient, ¢z, 7),

which is expressed as,

P, 7) _ &0 (2.57)
&,

where:

&(t) = Creep strain at time ¢.

& = Instantaneous elastic strain.

T = Age at loading.

This coefficient increases with time and is highly dependent on the concrete maturity at first loading.
One of the largest uncertainties in creep problems is the magnitude of ¢. A vast number of procedures
are available for the calculation of ¢, many of which calculate contributing portions to ¢ for the

various components of the total creep strain.
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The effective modulus method involves replacing the modulus used in the analysis with an artificial,

effective modulus:

E
A, 7)=— 2.58
E(t,7) T+ 9.0) (2.58)

where:
E.t 7 = Effective modulus at time # for a specimen loaded at time .

E, = Concrete modulus of elasticity at time zero.

Equation (2.58) allows the calculation of total deflection at time ¢, If only the creep increment in

deflection is sought, equation (2.58) becomes:

E.
Ee t, = 2.59
#,7) H00) (2:59)

The age-adjusted method allows an improved estimation of ¢. Since the full loading is rarely
instantaneously applied at time 7, as suggested by figure 2-7, the total load causing deflection is only
active at some time later than 7. As mentioned earlier, ¢ is very sensitive to 7and should therefore be
modified to account for this gradual increase in load. The age-adjusted method suggests the use of a

factor, x(t, 7) smaller than unity, to reduce the magnitude of ¢
Equation (2.58) then becomes,

E.
R v vrr (2:60

As for ¢, various national building codes suggest procedures for the calculation of x(%, 7). For the
purposes of this dissertation it is assumed that ¢ and x are known and the focus falls on the

implementation of these quantities in a creep analysis.

The method set out below is often referred to as the “Section Curvature Method” and is taken from

Ghali and Favre (1986). The equation variables are illustrated in figure 2-8.


http:Ee(t,r)=------(2.60
http:Ee(t,r)=--(2.59
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The creep curvature increment of a plain concrete member subjected to flexure and assumed to be

uncracked may be expressed as:

Ay =¢(t, 7). (2.61)
where:
Ay =Creep increment in curvature;

&t ) = Creep coefficient at time ¢ for loading at time z;

W, = Elastic curvature at time 7.

Similar to equation (2.57), equation (2.61) modifies the elastic curvature for creep, based on the creep

coefficient and the assumption that strain is linearly related to curvature.

Reinforcement tends to restrict concrete creep and the magnitude of this influence is a function of
section geometry and reinforcement ratio. The effect of reinforcement on concrete creep can be

expressed by a dimensionless parameter x;, as shown in equation (2.62):

Ay = K{¢(1,r)[r/f€+eog—§ﬂ (2.62)

4

where:

k. = Creep curvature coefficient, defined by equation (2.64);

g0 = Axial strain at point O at time 7, point O is a reference point chosen at the centroid
of the age adjusted transformed section;

Y. = y-coordinate of the centroid of 4, at time 7 measured downwards from the centroid of
the age-adjusted transformed section.

r. = I/A,

I, = Moment of inertia of 4, about an axis through the centroid of the age-adjusted
transformed section.

A, = Effective concrete area, full area for uncracked sections and the concrete compression

zone for cracked members.
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This dissertation neglects the effect of membrane action in the slab and equation (2.62) can then be

simplified to:
Ay =k [p(t,7)v.] (2.63)

The parameter k. can be calculated from:

K, = wﬁ‘ﬁl (2.64)
I
where:
4y = y-coordinate of the centroid of the age adjusted transformed section, measured
downwards from the centroid of the transformed section at time 7.
I = Moment of inertia of the age adjusted transformed section about an axis through its

centroid.

Figure 2-8, taken from Ghali & Favre, illustrates the variables used in equations (2.62) to (2.64).

This approach is applied to the finite element method in section 3.2.

oAl LA,

= o

Centroid of A, ><:// 4 /// (/ Centroid of A,
. ; EREPN

a)

I Py
¥ e
/ NOY I 7,7 .
Centroidof -, . T f . ‘>< Centroid of
transformed // yoa Y . age-z}djusteéi
section 7 d— - 4 transforme:
a A, a A, section
b) i t>1
oA, o, A,
Centroid of A, it 7 k Centroid of A,
e g // 4 . /)//
/ : Ay () y
Centroid of ? "\ Centroid of
transformed ‘ tarif:?jusw;
secti ! orme:
o = _— section
oA, oA,

A, is equivalent to the hatched area

Figure 2-8: Creep section parameters for a) uncracked section; b) cracked section

(Reproduced from Ghali & Favre (1986))
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2.4 Shrinkage

Shrinkage occurs when a hygral gradient exists between a concrete member and the surrounding
environment. Pore and adsorbed water migrates from the concrete and causes a change in volume.
Should this change in volume be restrained by reinforcement or support conditions, tensile stresses
develop which could in turn cause cracking. When free shrinkage, denoted by &, is restrained by an
unsymmetrical arrangement of reinforcement about the neutral axis of a member, an increase in
curvature occurs.

The derivation below is taken from Kong & Evans {1987).

From basic theory, the shrinkage curvature can be written as,

&7 &
= —— 2.65
V=" (2.65)
From the geometry of figure 2-9,
Ey =&, ——’éz and (2.66)
E,
I _gf (267)
-t Ecs —p)
rd €2 P
A
d
N4 E1 i
A | l\

Figure 2-9: Shrinkage strains in a singly reinforced member
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From the requirements of equilibrium,

(fA4,) _(f;«is)es (d—e,) and

Ja= y (2.68)
(f4,)  (f4)e.
= + e, (2.69)
Ja=" I
where:
I = Steel stress due to shrinkage (E€,);
o1 = Concrete tensile stress at the tension reinforcement level due to shrinkage;
fe2 = Concrete tensile stress at the top fibre of the section due to shrinkage;
A = Eccentricity of the steel centroid with respect to the centroid of the transformed section;
A = Concrete cross sectional area;
A = Area of reinforcement;
I = Moment of inertia of the age-adjusted transformed section.
Equation (2.65) can then be rewritien as:
8csa ses
vy, = —;’é—— (2.70)
1
where a, is defined as
E
a,=— 2.7
E,

It should be noted that «, is based on the effective concrete modulus and 7 is based on the age-adjusted

transformed section.

Equation (2.70) holds for singly reinforced uncracked members, and very little error is involved by

applying the equation to cracked sections as well (Kong & Evans, 1987).

This approach for singly reinforced sections is applied to the finite element method in section 3.3.
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3 IMPLEMENTATION OF THE PROPOSED METHOD

3.1 Cracked Sections

Polak’s approach to the problem of tension stiffening was applied almost without change. The author

modified the algorithm suggested by Polak to allow for iteration after each model update, figure 7-3.
Both the Bilinear and Branson’s method were used in conjunction with Polak’s approach and
compared to experimental results in section 4.2. The bilinear method required further development

before being utilised in a manner similar to Branson’s method.

Assuming that elastic relations still hold on average for cracked sections:

M
- 3.1
¥, £l 3.1

M
=M 32
W, il (3.2)

where the subscripts 1 and 2 refer to conditions 1 and 2 as described in section 2.2.

Substituting equations (3.1) and (3.2) into equation (2.43) yields an effective moment of inertia

1= 1112
©(=4) 1L+,

(3.3)

I, can then be used to calculate e, and ¢, as described in section 2.2.2. It should be noted that the
procedure for instantaneous cracked deflection and long-term cracked deflection differs. For long-
term deflections a shrinkage analysis should precede the crack analysis, as shrinkage normally causes

additional member actions that contribute to cracking.

A very simple convergence check was used in the crack analysis as follows:
e Step 1 : Calculate deflections using /;;, where i denotes the iteration step. For the first
iteration I corresponds to [;.
e Step 2 : Calculate /.., using either of the two tension stiffening methods.
e Step 3 : Average .., and I; and calculate the reduction factors ¢, and a,.

e Step 4 : Loop back to step 1 and repeat until 1,4, ;, =I.
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This approach converged very quickly when using Branson’s method but the bilinear method often
exhibited oscillating divergence. This phenomenon was model and loading dependent and the

algorithm had to be modified on a case by case basis to achieve a convergent solution.

3.2 Creep

Using equation (2.64) the factors x; and «; can be calculated based on the reinforcement ratios in those
two directions, similar to @, and @, in section 2.2.2. To account for the different creep characteristics

of cracked and uncracked sections, a creep analysis must be preceded by a crack analysis as described

in section 3.1.

The elasticity matrix in equation (2.19) can then be modified as follows for the calculation of creep

deflection increments for a cracked element:

3 3
Eh Ey.h 0 0 0
12(1-vy,) 12(1-vy,)
3 3
iy miy
[D] = ( ViV ( —vay) 3 (3.4)
0 0 Gih 0 0
12
0 0 0 G,h O
i 0 0 0 0 G
where:
Ex—ax—E‘—, E=a, £ (3.5)
K P K,p
G =a.ua, , Gy,=a, G , G3-ay—g— (3.6)
KK, P P K P
- I+ AiyaAyx , = I, + AgycyAyy 37
I I,
v.,=ayV, v,=ay 3.8)

with a; <1, @, <I and ¢ the creep coefficient.
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The parameters «, and @, are based on short term properties and k, and k, are parameters smaller than

unity that modify the creep coefficient to account for the presence of the reinforcement.

The variables in equations (3.4) to (3.8) apply to cracked and uncracked section parameters as needed.
Uncracked elements and fully cracked sections pose little difficulty. Partially cracked sections, on the

other hand, require the calculation of an effective neutral axis.

It is proposed that the neutral axis for partially cracked sections be calculated based on the assumption
that since the parameter « provides a measure of the extent of cracking it can also be used directly to

modify the depth of the neutral axis:

Ye =X (3.9)
where:
ve = y-coordinate of the neutral axis of the partially cracked section, measured from the top

of the section. This value should be larger than the cracked neutral axis coordinate
and smaller than the uncracked value.
y; = y-coordinate of the neutral axis for the uncracked section, measured from the top of

the section.

The creep analysis algorithm is illustrated in figure 7-4.

3.3 Shrinkage

Equation (2.70) can be used to calculate x and y curvatures for each element, independent of loading.
These curvatures need to be transformed into equivalent nodal loads in order to model the effect of

boundary conditions on shrinkage in a finite element analysis.

Equivalent nodal loads are calculated simply from the following equation, utilising Gaussian

numerical integration over the 4 sampling points:
{P.} = [[B]"[D){£.}dA (3.10)
4

where [B] is calculated from equation (2.26) and [D] is calculated from equation (3.4).
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{€&4} is the vector of shrinkage strains:
BRI
Xy l/’ysk
{ea}=| 2w |=| 0 (3.11)
Px 0
4] L O

The vector of shrinkage forces for each element node is calculated as:

P, 0
{Puf=| M, |=| My, (3.12)
‘My A{yslz

All these forces are then assembled into a global force vector and the shrinkage deflections and forces

are calculated with [D] modified for creep.

The shrinkage analysis algorithm is illustrated in figure 7-5.
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4 COMPUTATIONAL EVALUATION
4.1 Elastic Analysis

4.1.1 Aspect ratio studies

Shear locking was introduced in section 2.1.2 as a numerical issue where the Serendipity Mindlin
element is concerned. This section evaluates extent of the shear locking problem and whether the

issue is significant in the analysis of concrete slabs.

Shear locking causes an overestimation of plate stiffness for “thin” plates and it follows that plate
thickness is the most significant factor influencing locking. Plates are therefore investigated over a

range of span to thickness ratios.

The finite element analysis (FEA) mid-plate deflections of a simply supported and a clamped square
plate, subjected to uniform transverse loading, are compared to the deflections obtained from classical
methods. Navier’s approach is used to calculate the exact plate deflection for the simply supported
plate and Levy’s solution is used for the clamped case, Ugural (1999). In both cases the Kirchhoff
model of plate bending, i.e. thin plate theory, was employed. The resulting equations for a square

plate are shown below:

4

w= 0.004066—;?— (simply supported) 4.1
pr

w= 0.001264——5— (clamped) 4.2)

where p is the uniform load, / the plate length and

ERW’

Pk @

The finite element layout and boundary conditions are illustrated in figure 4-1 and the results of the
study are plotted on figure 4-2 and figure 4-3. In the aforementioned figures, wrg, denotes lateral

deflection at the centre of the plate as calculated with the finite element method for two integration

schemes and wg, the lateral deflection as calculated with equations (4.1) and (4.2). The finite
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element analysis employs Mindlin assumptions and the “exact” solutions employ Kirchhoff
assumptions.

Clearly, numerical instabilities occur as the span to thickness ratio becomes large, regardless of the
integration scheme employed. Reduced integration improves the performance of the element, but does
not eliminate locking. For the serendipity element a 3x3 point Gaussian quadrature is exact, whereas a

2x2 point quadrature is a reduced integration scheme.

Although this finding is significant in analyses dealing with thin plates, reinforced concrete slabs
rarely exhibit span to thickness ratios larger than 32. This ratio is represented by the vertical line in
figure 4-2 and figure 4-3. As can be seen from these figures the deflection is at least overestimated, if

not entirely accurate for ratios smaller than 32, even with exact integration.

Only a quarter plate shown —pp  Rotational restraint

due to symmaet
ym Y ® Transiational rostraint

Simply supported Clampeod

Figure 4-1: Element layout and boundary conditions
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4.1.2 Convergence Studies

An issue that often arises in a finite element analysis is that of mesh density. The analyst always
attempts to use the least number of elements and still obtain reliable results. This section studies
various mesh densities on plates subjected to uniform loading in an attempt to find the optimum

number of elements on a rectangular grid for slab problems.

The simply supported and clamped square plates illustrated in figure 4-1 are used with a varying
number of elements. The plate analysed is a 6m square plate, 600mm thick subjected to a 5kPa
distributed load. Both the Mindlin and Kirchhoff models for plate bending are used for analytical
comparison. The analytical results for maximum deflection using the Kirchhoff assumptions are given

in equations (4.1) through (4.3) and the results for the Mindlin model are given below, Liu (2002):

4

w= 0.00427%— (simply supported) 4.4

4

w=0.0015 —é (clamped) 4.5)

where all variables are as defined in section 4.1.1.

As can be seen from figure 4-4 and figure 4-5, very little is gained from a mesh finer than 6x6, as far
as accuracy is concerned. One should note that this result is valid for square plates subjected to

uniform pressures only.

The curves labelled Mindlin plot the ratio of Wrgs/Werac, Where we, 1s calculated using equations (4.4)
and (4.5). The curves labelled Kirchhoff uses a wy,, calculated from equations (4.1) and (4.2), wegy

refers to the results of a finite element analysis (Mindlin assumptions, and 2x2 integration) throughout.
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Figure 4-2: Aspect ratio study for a simply supported square plate
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Figure 4-3: Aspect ratio study for a clamped square plate
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Figure 4-4: Convergence study for a simply supported square plate
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It is interesting to note that the element deteriorates in the case of the clamped plate, this indicates that

the influence of shear deformation on flexural deflections of a plate is not solely dependent on the

span to depth ratio, but also on boundary conditions.

4.2 Polak Slab Specimen

A slab tested by Polak (1994) was used to corroborate the results yielded by the effective stiffness

method presented in section 2.2.2. The data from these slabs are used in this section to verify the

software developed by the author and to test the applicability of the tension stiffening method

presented in sections 2.2.1 and 3.1.

The specimen employed for comparison, labelled SM1, is illustrated in Table 4-1 and figure 4-6.

Dimensions (mm)

E. (GPa)

o

py*

d, (mm)

d,(mm)

1625 x 1625 x 316

34.278

1.25%

0.42%

281

256

Table 4-1: Specimen properties (*per layer)

Specimen SM1, simply supported on two opposite edges, was loaded with uniaxial moments on the

supported edges. The loading conditions and finite element model for the slab are shown in figure 4-6

and figure 4-7.
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Figure 4-6: Specimen Geometry and Reinforcement

|—ss Ratationai restraint
# Transiational restraint

——ipe  MoOMENt

Figure 4-7: Finite element mode! for specimen SM1
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A comparison of the results of the experimental and numerical analysis of specimen SM1 are plotted
in figure 4-10. It is evident from figure 4-10 that the author’s implementation of both the Bilinear and

Branson’s approach to tension stiffening compares favourably with the experimental data of specimen
SM1 and the results of Polak.

4.3 Jofriet & McNeice Slab

Jofriet and McNeice (1971) performed a point loading test on a corner supported slab, the properties
of which are indicated in Table 4-2. The point load was applied to the centre of the slab.

Dimensions (mm) E.(GPa) P o d. ,(mm) 1%
914x 914 x 44 28.623 0.85% 0.85% 33 0.15

Table 4-2: Specimen properties

The specimen geometry is illustrated in figure 4-8 and the finite element model in figure 5-9.

814

44 33

Figure 4-8: Specimen Geometry and Reinforcement
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The slab model consists of a 6x6 mesh with the translational degrees of freedom restrained at the
corner nodes. The slab was subjected to a central point load and deflections measured at point A as
indicated. With the element mesh as shown, this point fortuitously coincides with a mid-edge node of

a central element.

Y
A

914mm
-t P Supports
V4
L 2 L 4 ‘
Point load
N
oD -4
1 ¢ j=PointA g
° 3
3 4 J 4
& L ] ' o X

Figure 4-9: Jofriet and McNeice slab model

The results of both Polak and the author’s analysis are plotted against the experimental data of Jofriet
and McNeice in figure 4-11. It should be noted that Branson’s approach yields results far superior to
the bilinear approach. Careful investigation of the parameters influencing these two methods reveals

that the bilinear method is very sensitive to changes in reinforcement ratio.

The curve of the effective moment of inertia versus applied moment curve changes shape with lower
reinforcement ratios when using the Bilinear method, whereas the curves retain a similar shape when
using Branson’s method, see figure 4-12 for details. The figure implies that the bilinear method
becomes unreliable with lower reinforcement ratios. This finding casts significant doubt on the

usefulness of bilinear method in flat slab problems where reinforcement ratios are typically fairly low.
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Figure 4-10: Specimen SM1 analysis results
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Figure 4-11: Jofriet and McNeice slab results
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Figure 4-12: Comparison of the two tension stiffening methods
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4.4 Haddad’s Beam

The data for this beam test as well as the hand-calculation deflection results were obtained from
Neville (1970). The cross sectional properties, layout and loading of the tested beam are illustrated in
figure 4-13. It should be noted that the original test was carried out using imperial units.

17.36 kN 17.36 kN
1.83m 061m
4.267m -
180.34 mm
A 4
€ E
£ £
o 0
M3 B~
3 -
[as]
e o \

Figure 4-13: Geometry and loading of the beam tested by Haddad

Tabulated below are some material and geometric properties as established by Haddad:

Concrete cylinder strength, f;.° 26.34 MPa
Rupture modulus, f; 3.1 MPa
Young’s modulus, £ 22.76 GPa
Free shrinkage strain, &, -204x10°
Creep coefficient, ¢ 2
Percentage tension reinforcement 1.42%

Table 4-3: Material properties of Haddad’s beam
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The rupture modulus was calculated, Neville (1970), from:

f=06Jf" (4.6)

The beam, modelled as a slab of the same width, was approximated with a 1x20 element mesh, as
illustrated in figure 4-14. Three separate analyses were performed and compared with Haddad’s

experimental data as well as the results obtained by Neville with hand-calculation methods.

—»p» Rotational restraint

e Translational restraint

X  Point load CE_

Figure 4-14: Plan view of the element layout

A simple elastic analysis, neglecting cracking and tension stiffening, vields a mid-span deflection of

3.67 mm which compares well with the value of 3.71 mm as predicted by analytical methods.

The table below compares the mid-span deflections at time infinity of the finite element analysis,
Neville’s results and Haddad’s data.

FEA (mm) Neville (mm) Haddad (mm)
Elastic with cracking
5.8 5.28 5.84
{Branson)
Creep with cracking 3.14 3.81
Shrinkage 1.28 1.04
Total long term 10.22 10.13 10.9

Table 4-4: Comparison between the proposed model, Neville and Haddad’s results
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It should be noted that the method proposed in this dissertation assumes that the principle of
superposition applies to the four stated components of time dependent deflection: elastic, cracked,

shrinkage and creep.

The table indicates that the finite element analysis correlates extremely well with both the hand

calculation methods employed by Neville and the actual results obtained by Haddad.

4.5 Simplified Analysis of a Slab Panel

As a further verification, a slab panel analysed with the hand-calculation method set out in section
2.1.1 is compared with the proposed finite element method. This panel is taken from Ghali and Favre
(1986) and the detail is given below and in figure 4-15.

For the purposes of the hand calculation it is assumed that the moments and required reinforcement are
known and only the final, long-term deflection is sought. Naturally, for the finite element approach,

only slab geometry, required reinforcement and material properties are needed.

The panel is loaded with a uniformly distributed load ¢ = 8.42 kN/m? on a 7m X 7m span. The depth
of the slab, 4 = 200mm, and the average effective depth of the tension reinforcement in the x and y
directions, d, = 160mm. The modulus of elasticity at the time of loading E. = 25GPa with the creep
and aging coefficients ¢(t,7) = 2.5 and X%, 7) = 0.8, respectively. The modulus of rupture is given as f;
= 2MPa and the modulus of elasticity of the reinforcement E; = 200GPa.

M= 18.6 kNm/m

ﬁ_._,_._._. ....... __{j} {3_ ....... et — @ . .{;]_

| / ) ! _'

| i i i
Boitom reinfarfement —\ ' 1 ‘

-] o %

| i i 1

| ! | I

i ! i )

450 mm*m M= 12.4 kNm/m

Figure 4-15: Reinforcement layout and moments of the slab panel
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Top reinforcement is conspicuous in its absence in the figure above, and the assumptions made for the
finite element analysis are elaborated upon in section 4.5.2. The hand calculation method on the other

hand, oddly neglects the influence of negative reinforcement and cracking at the column supports.

4.5.1 Hand Calculation

The calculation in this sub-section is taken directly from Ghali and Favre (1986).

Equation (2.7) yields an uncracked moment of inertia, neglecting reinforcement as,

0.2°

I, = ——=—— =694x10°m"/m
f 12(1-0.2%)

Using a deflection coefficient table based on equation (2.1) Ghali and Favre (1986), D, &z and 845 are

calculated as:

ql’
D =0.00482-L— = 5.6mm
EJ,

ql*

6,5 =10.00342 =3.97mm

&g

5EF =D—5AB=1.63mm

Column strip crack curvature coefficients are calculated using equations (2.46), (2.47) and interpolated
with equation (2.48):

1

K, =-%=0.98
I,
K:2=£=7

2

The cracking moment and the crack interpolation coefficient are calculated as:

M, =—& =13.33kNm/m
y

MI‘
M

2
§=1-88 2( J =0.74 with B, =0.5 for long-term loading.
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The effective crack coefficient and cracked mid-span column strip deflection is then:

k,=(1-¢) K+ LK, =545
0,45 =545%x3.97 =21.65mm

The creep curvature coefficients are found using equation (2.64) and interpolated in a similar manner
to calculate an ultimate creep deflection of 9.55mm. The middle strip deflections can be calculated in

the exact same manner, Tables 4.5, 4.6 and 4.7 summarise the results of the comparison.

4.5.2 Finite Element Analysis

The finite element model consists of a 6x6 element mesh with the corners fixed against all
displacements and the edges fixed against rotation about an axis parallel to the edge as shown in figure
4-16.

——pp  Rotational rostraint

& Transiational restraint

Only a quarter siab duo to symmaetry

Figure 4-16: Finite element model

For the purposes of the finite element analysis, symmetric double reinforcement (top and bottom) is

assumed as shown in figure 4-17.
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X Direction reinforcement y Direction reinforcement

650 mm?*m 450 mm3m

Figure 4-17: Assumed reinforcement layout

An uncracked, elastic finite element analysis yields a total mid-panel deflection,

D = 6.97mm and a mid-column strip deflection &, = 5.27mm, compared to 5.6mm and 3.97mm as

calculated in the preceding section.

The results for long-term cracked deflection and creep deflection are set out in the tables below.

Hand calculation (mm)

(Ghali & Favre, 1986) FEA (mm)
Cracked: Branson 29.73
Cracked: Bilinear 21.65 36.28
Creep: Branson 5.56
Creep: Bilinear 9.55 6.44
Total: Branson 35.29
Total: Bilinear 31.2 42.72

Table 4-5: Column strip deflections
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Hand calculation (mm)

(Ghali & Favre, 1986) FEA (mm)
Cracked: Branson 2.08
Cracked: Bilinear 1.6 2.26
Creep: Branson 2.56
Creep: Bilinear 3.04 2.74
Total: Branson 4.64
Total: Bilinear 4.64 5
Table 4-6: Relative middie strip deflections
Hand calculation (mm)
(Ghali & Favre, 1986) FEA (mm)
| Cracked: Branson 31.81
Cracked: Bilinear 23.25 38.54
Creep: Branson 8.12
Creep: Bilinear 12.59 9.18
Total: Branson 39.93
Total: Bilinear 35.84 47.72

It is clear that use of the bilinear method consistently results in a higher deflection than is the case

Table 4-7: Total mid-panel deflections

when Branson’s method is employed. When viewed in the light of the discussion in section 4.3, it

must be said that the bilinear method is unsuited for the purposes of this dissertation.
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4.6 Cardington Slabs

A full scale seven storey concrete frame was erected and investigated at the BRE’s (Building Research
Establishment) Large-Building Test Facility in Cardington in the UK as part of the European Concrete
Building project. The floors consists of flat slabs and deflection measurements were published by
Vollum & Hossain (1998),

The publications concerning this building do not mention the exact reinforcement ratios but the project
brief, Chana et al. (1998), contains enough data, table 4-8, to infer the designed reinforcement from a

design calculation to Eurocode 2.

Parameter Value
Dead load (Load combination factor) 5 kPa (1.35)
Live Load (Load combination factor) 2.5kPa (1.5)
Panel dimensions 7.5mx 7.5m x 250mm
Column dimensions (Internal) 400mm x 400mm x 3.75m
Concrete C37

Table 4-8: Cardington slabs parameters

A design calculation utilising the equivalent frame method, yields required reinforcement in the order
of 360mm?/m for both the hogging and sagging moment regions. This reinforcement area and the
parameters shown in Table 4-9 and Table 4-10, are used to calculate the long-term deflection with the
method proposed by the author. The finite element mesh used is identical to that of figure 4-16 and

the reinforcement shown in figure 4-17 is modified to 360mm?/m.

Parameter Value
1o, 11, f2, t3 (Timne) 2 days, 12 days, 300 days, 1000 days
wo, W1, W2 (Sustained service load) 6.75 kPa, 10.7 kPa, 9kPa
Eo, E, E; (Modulus of elasticity) 27GPa, 33GPa, 33GPa
fro, 11, fr2 (Modulus of rupture) 2.7MPa, 3.6MPa, 3.6MPa
Congcrete C37, (35MPa)

Table 4-9: Cardington time dependent slab parameters




-

W UNIVERSITEIT VAN PRETORIA
69 0 UNIVERSITY OF PRETORIA
Rt

YUNIBESITHI YA PRETORIA

Time (days) ity ey
=2 0 -
ty =12 0.57 -
t, = 300 1.42 0
t;= 1000 1.72 1.03

Table 4-10: Creep coefficients

Two analyses were performed:

e FEA (2 steps) — In this analysis, creep deflection was calculated using properties from t, to t,
in the first step, and a second step calculated creep deflections from {; to t;. The first step used
the 6.75kPa load and the second step 9kPa.

¢ FEA (1 step) — Here creep deflection was calculated in a single step from t, to t; using 9kPa.

The measured deflections are plotted against the results of the finite element analysis in figure 4-18.

The finite element analysis correlates well with the experimental data up to the application of the 9kPa
load at t = 300 days. It is clear that the load history is of great importance when calculating long-term
deflections and that the proposed method does not perform extremely well when faced with varying
load histories. This problem would be exacerbated were the sustained load to decrease at any time,

since full creep recovery would erroneously be shown by the proposed method.

Despite these failings, the method predicts the 1000 day creep deflection within +12% when load
history is included and within -40% when load history is neglected.
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Figure 4-18: Finite element analysis plotted on the Cardington data
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5 DISCUSSION AND CONCLUSIONS

The basic premise of the proposed method is the extrapolation of concrete beam behaviour to slab
problems. The cracked and creep behaviour of beams is applied with slight modification to a plate or
slab. Since slabs are subjected to biaxial stress states, the assumption that biaxial behaviour is

equivalent to the superposition of two uniaxial solutions is an obvious simplification.

The error introduced by the simplification is of dubious importance when the inaccurate prediction
models for the calculation of creep and shrinkage influences are taken into account. The equivalent
frame approach will produce conservative estimates of long term deflection as slabs exhibit higher

flexural stiffness due to torsional interaction.

This assumption has been the basis of many a simplified method in the past and the proposed method

merely applies it to the finite element method.

5.1 Elastic deflections

Figures 4.2 through 4.5 demonstrate that the Mindlin element compares very well with classical
solutions for simply supported plates. As expected, some divergence occurs at smaller plate
thicknesses due to numerical issues. Since practical span to depth ratios of concrete slabs are rarely
large, the Mindlin formulation yields elastic results of acceptable accuracy for this class of problems
(span to depth ratios less than 32).

5.2 Cracked deflections

Polak’s effective slab stiffness method produces acceptable results for both uniaxial and biaxial
moment conditions as illustrated by figures 4.10 and 4.11. Although the Bilinear and Branson’s
method yield very similar results in the finite element analysis of slab SM1, the bilinear method

performs poorly with low reinforcement ratios.

Authors such as Park and Gamble (2000) have objected to the use of Branson’s method in slab

problems due to the fact that this entirely empirical equation was developed for beams. They argue
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that slab steel ratios are often orders of magnitude smaller than those of beams and it follows that the

tension stiffening effect in slabs would be far lower than predicted by Branson’s equation.

Based on the findings of this dissertation, Branson’s effective moment of inertia is preferred over the

bilinear method for use in a finite element analysis.

5.3 Creep deflection

The proposed method of incorporating creep effects into a finite element analysis compares well with
the experimental results of Haddad’s beam and Neville’s simple analysis. Branson’s method again
yields results superior to the bilinear method as far as the influence of cracking on creep deflections is

concerned.

The proposed method has much to recommend it:
o The influence of reinforcement on creep is taken into account.
s Movement of the neutral axis due to cracking is incorporated.

e Only two parameters are required to quantify the creep strains of the material.

The creep method developed in this dissertation compares favourably with the concrete frame tested at
the Cardington facility when constant loading is assumed. As mentioned in the previous section, some

work is required to accommodate varying load histories.

5.4 Shrinkage deflection

As with creep, very little data is available on the shrinkage behaviour of flat slabs and the same
procedure used for beams was implemented, based on the single free shrinkage parameter. The
proposed method compares very well with Haddad’s beam. It should be noted that the proposed
method to include shrinkage deflection in the analysis fails with clamped beams or plates since
rotation, and not only axial deformation, is prevented in these cases. Further analytical work is

required to apply a complete shrinkage analysis to models with clamped boundary conditions.
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5.5 Recommendations and Suggestions

The applicability of Polak’s method using Branson’s effective moment of inertia has been well
demonstrated, although the boundary conditions for flat slabs do raise some concerns as to its use in

the serviceability design of these structures.

Further work could include different plate formulations and more rigorous methods of estimating the
magnitudes of the reduction factors for cracking and creep. Specifically the average moment for use
in Branson’s equation and the influence of both cracking and creep on the shear characteristics of flat
slabs. Varying, and especially decreasing, load histories need to be considered in greater detail as few

practical slabs are subjected to lifetime constant loading.

A point raised by one of the research groups at Cardington, was that with slender slabs dynamic
effects also impact the magnitude of long-term deflections. Further work in this aspect would make

the method widely applicable.
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7 Appendix

7.1 Algorithms

1. Input geometry, loads,
supports and material
properties

v

> 2. Calculate [D]

v

Repeat per sampling
point

v

3. Calculate shape functions

v

4. Calculate the shape
function derivatives

v

Repeat per element

5. Calculate [B]

v

6. Assemble the element
stiffness matrix

4

7. Transform element
stiffness matrix from local to
global axes

v

8. Assemble the structure
stiffness matrix

+

9. Solve global system of
equations resulting in
deflections

v

10. Back substitute to
calculate stress resultants for
each element

@ .
A ARt

Figure 7-1: Linear finite element analysis algorithm
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1. Input geometry, loading
and material properties

v
2. Calculate I, L, L and M,

v

3. Calculate D

v

4. Solve for displacements
and stress resultants

v

5. Calculate o, and a,

v

6. Calculate D

v

7. Solve for displacements
and stress resultants

v

8. Output results

Figure 7-2: Polak’s tension stiffening algorithm

Note: The calculation of [D] follows the procedure described in section 2.2.2.
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1. Input geometry, loading
and material properties

v

2. Solve for displacements
and stress resultants

v

3. Calculate o, and a,

v

\J

No

4. Calculate [D]

!

5. Solve for displacements
and stress resultants

v

6. Recalculate , and a,

7. ana
converged ?

8. Output results

.
UN
<

Figure 7-3: Modification of Polak’s algorithm

IVERSITEIT VAN PRETORIA
IVERSITY OF PRETORIA
NIBESITHI YA PRETORIA



80

1. Input geometry, loading
and material properties

v

2. Solve for displacements
and stress resultants

v

3. Calculate «; and x;

v

4. Calculate [D]

+

5. Solve vfor creep
displacements

v

6. Add elastic and creep
displacements

v

7. Output results

poe

oy

<

Figure 7-4: Creep analysis algorithm
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1. Input geometry and
material parameters

v
2. Calculate shrinkage
curvatures

v

3. Calculate [D]

v

4. Calculate shrinkage loads

v

5. Solve for shrinkage
displacements and stress

A

v

6. Cracked ?

7. Output results

8. Output results 7. o,

converged ?

8. Modify [D] for cracking

Figure 7-5: Shrinkage analysis algorithm



unit Mindlin;

82

-+

UNIVERSITEIT VAN PRETOR
UNIVERSITY OF PRETOR
YUNIBESITHI YA PRETOR

é;%
1A
< A

7.2 Unit Mindlin code listing

interface
type
TElement = class
public
//Public member variables
Number : Integer;
Es : Double;
E ¢ Double;
Pois : Double;
h ; Double;
G : Double;
NumIntOrder : Integer;
phi : double;
NodesCoord : array[1..3,1..8] of Double;
NodesNum : array[1..8] of Integer;
E1Stiffp 1 array[1..24,1..24] of Double;
E1Stiffm : array|1..16,1..16] of Double;
EI1Stiff : array[1..40,1..40] of Double;
SRes : array[1..4,1..8] of Double;
SResM : array[1..8,1..8] of Double;
Def . array[1..5,1..8] of Double;
GaussDBp : array[1..5,1..24,1..4] of Double;
GaussDBm : arrayf1..3,1..16,1..4] of Double;
ElLoad : array{1..24] of Double;
ubt : Double;
Mxavg, Myavg : Double;
alphax, alphay : Double;
ksix, ksiy : Double;
alphaOldx, alphaOldy : Double;
61, G2, G3 : Double;
Ex, Ey : Double;
Poisx, Poisy : Double;
Astx, Asty 1 Double;
dtx, dty : Double;
rocx, rocy : Double;
rox, roy : Double;
Igx, Igy : Double;
Iex, Iey : Double;
Ie0ldx, IeOldy : Double;
Icx, Icy : Double;
Mcrx, Mcry : Double;
Crackedx, Crackedy : Boolean;
Cx, Cy, Cxy : Double;
X3, Y@ : Double;
X, ycC : Double;
kappaX, kappaY : Double;
ecs : Double;
MxShrink, MyShrink : double;

//Element index in global array
/fYoung’s modulus of reinforcement
//Young’'s modulus of concrete
//Poisson’s ratio

//Element depth

/ /Shear modulus of concrete
//0rder of numerical integration
//Creep factor

/ INodal point coordinates
//Global node numbers

//Element stiffness matrix - plate
//Element stiffness matrix - membrane
/{8uperposed Element stiffness matrix

//Stress resultants
/ /Smoothed stress resultants
/ INodal deflections

//DxB per sampling point - plate
//1DxB per sampling point — membrane

//Element load vector
//UDL on element

/ /Average moments for crack analysis
//Crack modification factors

//Bilinear crack modification factors
/IPrevious crack modification factors

/]Orthotropic shear moduli
//0Orthotropic Young’s moduli
//Orthotropic Poisson’s ratios

//Area of tension steel mm2jm

[ IEffective depth of tension steel
//8teel percentages, compression
//Steel percentages, tension

/{Gross moments of inertia

/ /Effective moments of inertia
//Previous effective moments of inertia
//Cracked moments of inertia

/ ICracking moments

//True/False crack flags

//Curvature variables
//NA depth, gross, transformed
//NA depth, cracked, transformed

//Creep modification factors
//Free shrinkage strain
/ [Shrinkage forces



//Public procedures and functions
Constructor Create(ACwner:TObject);
Destructor Destroy; override;

Procedure CalcBp;
Procedure CalcBm;

Procedure CalcDp;
Procedure CalcDm;

Procedure CalcDBp;
Procedure CalcDBm;

Procedure CalcJ( var JDet : Double;
GNum : Integer
Procedure CalcShape(u, v : Double);

Procedure CalcStiffp;
Procedure CalcStiffm;
Procedure CalcStiff;

Procedure SetupNumInt;
Procedure CalcUDLoad;
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//0bject ¢reation - override
/iObject destruction - override

//Calculates the plate strain matrix
//Calculates the membrane strain matrix

//Calculates the plate elastic matrix
//Calculates the membrane elastic matrix

//Calculates product of B x D - plate
/[Calculates product of B x D — membrane

//Calculates the jacobian matrix and its inverse

3

//Calculates shape funtions and derivatives
j/Calculates the plate element stiffness matrix
//Calculates the membrane element stiffness matrix

f/Calculates the total element stiffness matrix

//Sets up numerical integration
/ /Reduce UDL to nodal loads

Procedure CalcShrinkioad({ CurvX : Double, //Calculate shrinkage loads
curvY : Double,
CurvXY: Double,
ShearX: Double,
ShearyY: Double

Procedure CalcAvgs;

//Calculate average moments

Procedure CalcModFactors(CrackType:integer); //Calculate crack modification factors

Procedure CalcCurvatures;
Procedure CalcCreepFactors;
Procedure InitInertia;

Procedure CalcShrinkageCurvatures;

private

//Private member variables

Bp : array[1..5,1..24] of Double;
Bm : array[1..3,1..16] of Double;
Dp : array[1..5,1..5] of Double;
Dm : array[1..3,1..8] of Double;
DBp : array[1..5,1..24] of Double;
DBm : array[1..3,1..16] of Double;
J : array[1..2,1..2] of Double;
JI : array[1..2,1..2] of Double;
GP »array[t1..2,1..4] of Double;
SFunc : array[1..8] of Double;
SFDeriv: array[1..3,1..8] of Double;
CDeriv : array[1..3,1..8] of Double;
GaussPos : array{1..2] of Double;
GaussWgt : array[1..2] of Double;

calcForCreep : Boolean;

published

end;

//Calculate curvatures from deflections
/[Calculate creep modification factors
//Initialize moments of inertia vars
/i/Calculate shrinkage curvatures

//Strain matrix - plate
//Strain matrix - membrane

//Elasticity matrix - plate
//Elasticity matrix - membrane

//Product of D x B - plate
//Product of D x B — membrane

/lJacobian matrix
[ lJacobian matrix inverse
/1Sampling point coordinates

[ /Shape funtions per node;
//Shape function derivatives per node
//Cartesian shape function derivatives per node

//Sampling point position
}/Sampling point weighting factor

//True/False creep analysis flag
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implementation

uses
DTools, Math;

FHITHITEIII i i i i i i ii i i i bbb b biningi
// Object creator — simply initializes a few variables //
FHOTTHITEEEEP I LRI R T E T il riiibiitiiiriii

Constructor TElement.Create(AOwner:TObject);
begin
inherited Create;

Crackedx := False;
Crackedy := False;
calcForCreep := False;
InitInertia;

end;

FHETTELELITI IR R ET T riiii i ei i ilniiiiiei
/] Object destructor — calls default destructor [/

FHOHHETTE AT PRI R b e i iiiilin iy

Destructor TElement.Destroy;
begin

inherited Destroy;
end;

THEETEESER LT ib i bbbt rid
/! Calculates the plate strain matrix [/
THTETERRETHITIITHE TR i Ei il ild

Procedure TElement.CalcBp;
var
iC,jC,kC : Integer; //Loop counters

begin
/}1Zero all matrix entries
for iC := 1 to 5 do
for jC := 1 to 3 do
BpliC,iC] := 0;

//Calculate the B matrix

jC = 0;

for iC := 1 to 8 do

begin
kC := jC + 1;
Bp[4,kC] := CDeriv[1,iC];
Bp[5,kC] := CDeriv[2,iC];
kC := kC + 1;
jC 1= kC + 1;
Bp[1,kC] := -CDeriv([1,iC];
Bp[3,kC] := -CDeriv[2,iC];
Bp[4,kC] := -SFunc[iC];
Bp{2,jCl := -CDeriv[2,iC];
Bp[3,jC] := -CDeriv[1,iC];
Bp[&,jC]l := -SFunc[iCl;

end;

end;

<
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FHHIRTETEELIIT I it iriintiiiiieitd
/! Calculates the membrane strain matrix |/

FHITHHEEIEIIT I i i iiniiii bbb inenll

Procedure TElement.CalcBm;
var
iC,jC,kC : Integer; //Loop counters

begin

//Zero all matrix entries
for iC := 1 to 3 do
for jC := 1 to 2 do
Bm[iC,jC] := 0O;

/{Calculate the B matrix
jiC = 03
for iC := 1 to 8 do

= jC + 13
iC 1= kC + 13
CDeriv[1,iC];
H

0;
CDeriv[2,iC];
CDeriv[2,iC};
CDeriv{1,iC];

Bm{1, jC]

Bm{2,kC]

Bm{2, jC]

Bm[3,kC]

Bm{3,]iC]
end;

wonowoiouou

end;

FHOPIITEIEI I E i bttt it
/! Calculates the plate elasticity matrix [/
FIPHTTERIIIEEIE T T it it btl g

Procedure TElement.CalcDp;

var
FactorM, FactorV : Double; {/Temporary storage variables
ic, jc : Integer; [/Loop counters

begin

/{Zero all matrix entries
for iC := 1 to 5 do
for iC 1= 1 to & do
DpliC,jC] := 0O;

if not (CalcForCreep) then
begin
/Do not use the creep modification factors
if not (CrackedX or CrackedY) then
begin
/{Calculate the gross D Matrix

FactorM := E*power(h,3)/(12*(1-power(Pois,2)));
FactorV := G*h/2.4;
Dp[1,1] := Factorm;
Dp[1,2] := Pois*FactorM;
Dp[2,1] := Pois*FactorM;
Dpl2,2] := FactorM;
Dp[3,3] := G*pow(h,3)/12;
Dp[{4,4] := Factorv;
Dp[5,5] := Factorv;
end

else
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begin
/{Calculate the cracked D Matrix
Ex := E*alphax; Ey := E*alphay;
Poisx := Pois*alphax; Poisy := Pois*alphay;
G1 := G*alphax*alphay; G2 := G*alphax; G3 := G*alphay;

Dpf{1,1] := Ex*power(h,3)/(12*(1-Poisx*Poisy}};
Dp[1,2] := Poisx*Ey*power(h,3)/(12*(1-Poisx*Poisy)};
Dp[2,1] := Poisy*Ex*power(h,3)/(12*(1-Poisx*Polisy));
Dp[2,2] := Ey*power(h,3)/(12*(1-Poisx*Poisy));
Dp{3,3] := Gi*power(h,3)/12;
Dpl4,4] := G2*h;
Dp[5,5] := G3*h;
end;

end

else

begin

/1Use the creep modification factors
Ex := alphax*E/{phi*kappaX); Ey := alphay*E/(phi*kappa¥);

G1 = alphax*alphay*G/(phi*kappaX*kappaY};
G2 := alphax*G/{phi*kappaX);
G3 := alphay*G/(phi*kappaY);
Dp[1,1] := Ex*power(h,3)/(12*(1-Pois*Pois));
Dpi1,2] := Pois*Ey*power(h,3)/{(12*(1-Pois*Pois));
Dp[2,1] := Pois*Ex*power(h,3)/(12*(1-Pois*Pois));
Dp[2,2] := Ey*power(h,3)/(12*(1-Pois*Pois));
Dp(3,3] := Gi1*power(h,3)/12;
Dp[4,4] := G2*h;
Dp[5,5] := G3*h;
end;
end;

TIITEHTEHI T EL i T it i i iiiit i iinng

/! Calculates the membrane elasticity matrix 1/
1 /1
/] Note that no modifications have been made to [/
/1 account for cracking, creep and shrinkage /1!

PHLEEEETT TR E LT E i iiiiies!

Procedure TElement.CalcDm;

var
Constant : Double; /[ Temporary storgare variable
ic, jcC : Integer; //Loop counters

begin

/tZero all matrix entries
for iC := 1 to 3 do
for jC := 1 to 3 do
Dm[iC,jC) := O;

Constant := E/(1-pow(Pois,2));

Dm[1,1] := Constant;

Dm{1,2] := Pois*Constant;
Dm{2,1] := Pois*Constant;
Dm{2,2] := Constant;

Dm(3,3] := (1-Pois)/2*Constant;

end;
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HHEELEIIIEIT TR EE i bt b i iniiiiiiii il
// Calculates the product of B and D for re-use (plate} [/

PLPITIEIT I i i iiniid i iiiniiiet il

Procedure TElement.CalcDBp;
var
iC,jC,kC : Integer; //Loop counter

begin

//Calculate B x D
for iC := 1 to 5 do
begin
for jC =1 to 24 do
begin
DBpl[iC,iC] := O;
for kC := 1 to 5 do
DBp[iC,jC] := DBp[iC,jC] + Dp[iC,kC]*Bp[kC,]jCl;
end;
end;

end;

FHETHEIEIT I I T HE I i i i ii i iid i iiiiiiiiitiiiitlii
/! Calculates the product of B and D for re-use (membrane) [/

THETEEIET IR Db i i i i i iieiiizeiifg g

Procedure TElement.CalcDBm;
var

iC,jC,kC : Integer; [/Loop counters
begin

//Calculate B x D
for i€ := 1 to 3 do
begin
for jC := 1 to 16 do
begin
DBm[iC,jC] := 03
for kC := 1 to 3 do
DBm{iC,jC] := DBm[iC,jC] + Dm{iC,kC]*Bm[kC,jC];
end;
end;

end;

JHEFTHET Tt biiiiiiiiitiiiiiiiiigil
/| Calculates the the Jacobian matrix and its inverse //

FLIELTIITETEIE 1T i bbb bbb i i iiiiiiiiitifiilid

Procedure TElement.CalcJ(var JDet : Double; GNum : Integer);
var
iC,jC,kC : Integer; /[/Loop counters

begin

//Zero all matrix entries
for iC := 1 to 2 do
for jC := 1 to 2 do
begin
JI[iC,jC] := 0;
end;

//Calculate Gaussian point coordinates
for iC := 1 to 2 do
begin
GP[iC,GNum] := O;
for jC := 1 to 8 do
begin
GP[iC,GNum] := GP[iC,GNum] + NodesCoord[iC,jC]*SFunc[iC];

<
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end;
end;

//Calculate the Jacobian matrix
for iC := 1 to 2 do
begin
for jC := 1 to 2 do
begin
Jlic,jc] :=0
for kG := 1
begin
J[iC,jC] := J[iC,jC] + SFDeriv[iC,kC]*NodesCoord[jC,kC];
end;
end;
end;

5
to 8 do

//Calculate determinant and inverse of the Jacobian
JDet = J[1,11*%4[2,2]1-J[1,2]*J[2,1];

JI[1,1] := J[2,2]/JDet;
JI1{2,2] := J[1,1]/JDet;

JI[1,2] := -J[1,2]/JDet;
JI[2,1] := -J[2,1]/JDet;

//Calculate the cartesian derivatives
for iC := 1 to 2 do
begin
for jC := 1 to 8 do
begin
CDeriv[iC,jC] := 0;
for kC := 1 to 2 do
begin
CDeriv[iC,jC] := CDeriv[iC,]jC] + JI[iC,kC]*SFDeriv[kC,jC];
end;
end;
end;

end;

THITEIEETTI T EH LTI EF I L i i i b ei it il g
/i Calculates the shape functions and their cartesian derivatives //
THITTHI IR EI T T bbb b i i iiiiiitiilit i

Procedure TElement.CalcShape( u,v : Double );

begin
/ /Shape functions
SFunc[1] := -1/4 * (1-u)*{1-v)*{1+u+v);
SFunc[2] = 1/2 * {(1-u*u)*{1-v);
SFunc[3] := 1/4 * (1+u)*{1-v)*{u-v-1);
SFunc4] = 1/2 * {(1+u)*(1-v*v};
SFUNc[S] := 1/4 * (1+u)*(1+v)*{u+v-1);
SFunc[6] = 1/2 * (1-u*u)*(1+v});
SFunc[7] := 1/4 * (1-u)*{1+v)*(-u+v-1);
SFunc[8] := 1/2 * (1-u)*(1-v*v);

//Shape function derivatives

SFDeriv(1,1] : 1/4 * (v+2*u-2*u*v-v*v);
SFDeriv[1,2] ~UFurv;

SFDeriv[1,3] : 1/4 * (-v+2*u-2*U*ryiv*ryy;
SFDeriv([1,4)] 1/2 * (1-v*y);
SFDeriv][1,5] 1/4 * (v+2*u+2*u*y+vry);
SFDeriv[1,6] ~U-Uu*v;

SFDeriv[1,7] 1/4 * (-v42*u+2*u*y-v*v);
SFDeriv[1,8] 1/2 * (-1+v*y),
SFDeriv[2,1] : 1/4 * (U+2*v-u*u-2*u*v);
SFDeriv[2,2] 1/2 * (-1+u*u);
SFDeriv[2,3] 1/4 * (-u+2*y-urut2rutry);
SFDeriv[2,4] ~y-U*v;

SFDeriv{2,5] 1/4 * (u+2*v+u*u+2*u*v);
SFDeriv(2,6] 1/2 * (1-u*u);
SFDeriv([2,7] 1/4 * (-u+2*v+u*u-2*xu*ry);
SFDeriv[2,8] -VAURY;

[ N O T O I I O
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PEHTIITE i bie i

// Sets up the numerical integration constants //

THLTERITI I b ]

Procedure TElement.SetupN
begin

case NumIntOrder of
2 : begin
GaussPos[1] :
Gausswgt[1] :
GaussPos[2]
GaussWgt([2)
end;

Bouowon

3 : begin
GaussPos[1]
GaussPos[2]
Gausswgt([1]
GaussWgt[2]
GaussPos[3]
GaussPos[4]
GaussWgt[4]
Gausswgt[4] :

end;

end;

Wouw oo onHou

"

end;

JHEEEI L iriiiite ittt
/1 Calculates the plate e
FIEEREEELITE A ir il

Procedure TElement,CalcSt
var

iCount, jCount, kCount :
1Count, mCount, nCount :

uPoint, vPoint
Area, JDet

begin

//Zero all matrix entri
for iCount 1 to 24 d
for jCount 1 to 24
E1Stiffp[iCount, jCo

e

//Calculate the D matri
SetupNumInt;

CalcDp;
kCount :

‘H
//Numerical integration
for iCount 1 to 2 do
begin
uPoint
for jCount
begin
vPoint := GaussPos|
inc{kCount};

1= GaussPos[iC
1 to 2

CalcShape (uPoint,vP
CaleJd{JDet, kCount};
Area := JDet*GaussW

CalcBp;
CalcDBp;

PHEHLITHEEEL it

umInt;

1
0.5773502691898626;
1

.577350269189626;

Q3
0.555555555555556;
0.8888888£8888889;
0.774586669241483;
0;

0.5555655655586556;
0.888888888888889;

.774596669241483;

FEHHEITIHITiIniintirtnit
lement stiffness matrix [/

TEPHTEHL i iitiirig
iffp;

Integer;
Integer;
: Double;
: Double;

/fLoop counters

//Loop counters

| /Sampling point indices

/IDifferential area and Jacobian determinant

es
0

do
unt] :

i

X

ount];
do

jCountl;

oint);

gt[iCount] *GaussWgt[jCount];
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for 1Count := 1 to 24 do

begin
for mCount := 1lCount to 24 do
begin
for nCount := 1 to 5 do
begin

El1Stiffp[lCount,mCount] := E1Stiffp{lCount,mCount]
+ Bp[nCount,1Count] * DBp{nCount,mCount] * Area;
end;
end;
end;

for 1lCount := 1 to 5 do

begin
for mCount := 1 to 24 do
begin
GaussDBp[1Count ,mCount,kCount] := DBp[lCount,mCount];
end;
end;
end;

end;

for 1lCount := 1 to 24 do

begin
for mCount := 1 to 24 do
begin
E1S8tiffp[mCount,1Count] := ELlStiffp[lCount,mCount];
end;
end;
end;

FEHTITTEHEIET T it i initir i initiiiiiiliridlnl
/] Calculates the membrane element stiffness matrix /7
FHLEIITIAIIA TR i eiiidiiiieiiiiiiieirtiili

Procedure TElement.CalcStiffm;

var
iCount, jCount, kCount : Integer; //Loop counters
1Count, mCount, nCount : Integer; //Loop counters

uPoint, vPoint : Double; //Sampling point indices
Area, JDet : Double; [/Differential area and Jacobian determinant
begin

//Zero all matrix entries
for iCount := 1 to 16 do
for jCount := 1 to 16 do
El1Stiffm[iCount, jCount] := Q;

//Calculate the D matrix

SetupNumInt;
CalcDm;
kCount := 0;

//Numerical integration
for iCount := 1 to 2 do
begin
uPoint := GaussPos[iCount];
for jCount := 1 to 2 do

begin
vPoint := GaussPos[jCount];
inc(kCount);

CalcShape(uPoint,vPoint);
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Caled (JDet, kCount);
Area := JDet*GaussWgt{iCount]*GaussWgt|jCount]*h;

CalcBm;
CalcDBm;

for 1Count := 1 to 16 do
begin
for mCount = 1Count to 16 do
begin
for nCount := 1 to 3 do
begin
El18tiffm[1lCount ,mCount] := E1Stiffm[lCount,mCount]
+ Bm[nCount,1Count] * DBm[nCount,mCount} * Area;
end;
end;
end;

for 1lCount := 1 to 3 do

begin
for mCount := 1 to 16 do
begin
GaussDBm[ 1Count,mCount,kCount] := DBm{lCount,mCount];
end;
end;
end;

end;

for lCount := 1 to 16 do

begin
for mCount := 1 to 16 do
begin
E1Stiffm[mCount,1Count] := E1Stiffm{lCount,mCount];
end;
end;
end;

THITETEIHI TR EE I i ii e tiriiiistilniiiteld
// Assemble the total element stiffness matrix [/

PHITEHERITIATH DT it it it

Procedure TElement.CalcStiff;
var
i, j, ky 1, m : Integer; //Loop counters

begin
CalcStiffm;
CalcStiffp;
for i := 1 to 8 do
begin
for j :=1 to 8 do
begin
for k := 1 to 2 do
begin
for 1 := 1 to 2 do
begin
E1Stiff[5*1i- (k+2),58%j-(1+2)]
end;
end;
for k 1= 1 to 3 do
begin
for 1 := 1 to 3 do
begin
E1Stiff[5*1-(k-1),5%]-(1-1)]
end;
end;
end;
end;

i

E1Stiffm{i*k,j*1];

i

E1Stiffp[i*k,j*1];
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end;

THATHIIIEEE It ittt ifiiitierd
/! Reduce UDL to equivalent nodal loads //

JHLLIETLESE P it rbd g iiiii it it

Procedure Telement.CalcUDLoad;

var
iCount, jCount, kCount : Integer; //Loop counters
1Count, pos : Integer; //Loop counters

u, v : Double; //Gauss point coordinates
DArea, JDet : Double; [ /Differential area and Jacobian determinant
begin

/{Zero all matrix entries
for iCount := 1 to 24 do
ElLoad[iCount] := 0;

//Numerical integration
kCount := 0;
for iCount := 1 to 2 do
begin
u := GaussPos[iCount];
for jCount := 1 to 2 do
begin
v := GaussPos[jCount];
inc(kCount);

CalcShape({u,v);
Calcd(JDet,kCount);
DArea := JDet*GaussWgt[iCount]*Gausswgt[jCount];

for 1Count := 1 to 8 do
begin

pos := (lCount-1)*3+1;

ElLoad[pos] := ElLoad[pos] + SFunc[lCount]*UDL*DArea;
end;

end;
end;
end;

TILITTHERHEI TR iR ELEFEEEE R T
// Calculate shrinkage loads given curvatures //
JHITTEEPEEII AT it iirititiinriit

Procedure Telement.CalcShrinklLoad{CurvX, CurvY, CurvXY, ShearX, ShearY : double);
var

i, j, k, 1, m, posi : Integer; //Loop counters

u, v : Double; / /Gauss point coordinates
JDet : Double; //Jacobian determinant
DArea : Double; //Differential area
iStrain : array[1..5] of double; {/Initial strain matrix
BpT :array[1..24,1..5] of double; //Transponent of [B]

BpTD : array[1..24,1..5] of double; //Product [B'][D]

//Calculate transponent of [B]
Procedure CalcBpTransponent;
var

i, j : integer; /[/Loop counters

begin
for i := 1 to 5 do
begin
for j := 1 to 24 do
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begin
BpT[j,i] := Bpl[i,]);
end;
end;
end;

//Calculate the product of [B'} and [D]
Procedure CalcBpTD;
var

i, j, k : integer; [/Loop counters

begin
for i := 1 to 24 do
for j := 1 to & do
BpTD{i,3] := 0;
for i = 1 to 24 do
for j := 1 to 5 do
for k := 1 to 5§ do
BpTD[1i,j] := BpTD[i,j] + BpT{i,k]1*Dplk,il;

end;
begin
//Assign the initial strain matrix and calculate D
iStrain[1] := CurvX;
iStrain{2] := Curvy;
iStrain[3] := CurvXy;
iStrainf{4] := ShearX;
iStrain[5] := ShearY;
CalcDp;

//Zero all matrix entries
for i := 1 to 24 do
ElLoad[i] := 0;

//Numerical integration
k := 0;
for i :=1 to 2 do
begin
u := GaussPos[il];
for j := 1 to 2 do
begin
v := GaussPos[jl;
inc(k);

CalcShape(u,v);

Calcd (JDet,k);

DArea := JDet*GaussWgt[i]*GaussWgt[ijl;
CalcBp;

CalcBpTransponent;

CalcBpTD;

for 1 := 1 to 24 do
form := 1 to 5 do

ElLoad[l] := ElLoad[l]+BpTD[l,m]*iStrain[m]*DArea;

end;
end;
end;

PELELETIIII I T LTI R i n it e it
/! Calculate the average moments for a crack analysis [/

TEEPIIIETT I T i i e i i iriiig et

Procedure TElement.,CalcAvgs;
var

iCount : Integer;
begin

e

e
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MxAvg := 0;
MyAvg := 0;
for iCount := 1 to 4 do
begin
MxAvg :=
MyAvg :=
end;
MxAvg := MxAvg/4;
MyAvg := MyAvg/4;
end;

TELHLTTETEETET i i

o

&

% UNIVERSITEIT VAN PRETORIA
94 0 UNIVERSITY OF PRETORIA
\ 4

YUNIBESITHI YA PRETORIA

MxAvg + abs(SRes[iCount,4]) + abs(SRes[iCount,8]);
MyAvg + abs(SRes[iCount,5]) + abs(SRes[iCount,8]);

FHHHEETTTT i e i i

// Calculates the curvatures due to restrained shrinkage [/

THHTEELEET R i

HHTHEHET T n ittt

Procedure TElement.CalcShrinkageCurvatures;

var
XS, ys : Double;
X, ¥ . Double;
Ec : Double;
n . Double;
CurveX, CurveY : Double;
Ix, 1y : Double;
Begin
Ec := E/(1+phi);
n := Es/Ec;
X =
Ix :=
Xs = dtx - Xx;

/[Eccentricity of steel with respect to the cracked NA
//NA of the transformed section

//Effective concrete modulus

//Modular ratio

//Shrinkage curvatures

//Moments of inertia of the transformed section

{(0.5*pow(h,2) + n*Astx*dtx)/{(h+n*Astx);
pow{h,3)/12+h*pow(h/2-x,2)+n*Astx*pow(dtx-x,2);

CurveX := ecs*n*Astx*xs/Ix;

Y
1y
ys @

dty - y;

(0.5*pow(h,2) + n*Asty*dty)/(h+n*Asty);
pow{h,3)/12+h*pow(h/2-y,2)tn*Astx*pow(dty-y,2);

CurveY := ecs*n*Asty*ys/Iy;

CalcShrinkLoad(CurveX,CurveY,;0,0,0);

end;

THLDTTEDEE T r i i r it ni bbb it iie it
/i Calculates curvatures due given moment resultants [/
HHETEETETT T TR R T i il

Procedure TElement.CalcCurvatures;

var
Mx, My, Mxy : Double; [ /Moments
a, b, ¢, d : Double; //Temporary storage variables
i : Integer; //Loop counter
begin
Mx = 0;
My := 0;
Mxy := 0;
a := Dp[1,1]; b := Dp[1,2];
c := Dp[2,1]; d := Dp[2,2];
for i := 1 to 4 do
begin
Mx := Mx + SRes[i,4];
My := My + SRes[i,5];
Mxy := Mxy + SRes[i,5];

end;
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Mx 1= Mx/4;
My = Mxy/4;
Mxy := My/4;
Cxy := Mxy/Dp[3,3];
Cy = (My-c/a*Mx)/(d-c*b/a);
Cx = (Mx-b*Cy)/a;
end;

FEIIIHI It bliniiiniiiiliitnli
/! Initializes several variables [/

TIHTRIEIII T 18081001117

Procedure TElement.InitInertia;

begin
Igx := 1/12*pow(h,3);
Igy = 1/12*pow(h,3)};
Iex := Igx;
Tey := Igy;
IeOldx := Igx;
Ie0ldy := Igy;
alphax := 1;
alphay = 1;
end;

HHirthiniiintininiiiiiiiriig
/] Calculates creep factors //

PHLPHTI LA LT ]

Procedure TElement.CalcCreepFactors;
var

o

&
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Ibarx, Ibary, Ix, Iy, x, y, AeffX, AeffY, yox, yoy, delyx, delyy : double;

xga, yga, xca, yca, Icxa, Icya : double;

na, n, Ecreep : double;

Igbarx, Icbarx, Igbary, Icbary : double;

xcprime, ycprime, xcaprime, ycaprime : double;
begin

ECreep := E/{1+phi);
na := Es/Ecreep;

n := ES/E;

Xg = (t*t/2 + n*Astx*dtx + n*Ascx*(t-dex))/ (t
yg = (T*1/2 + n*Asty*dty + n*Ascy*(t-dcy))/ (t
xga = (t*t/2 + na*Astx*dtx + na*Ascx*(t-dcx))/(t
yga := (t*t/2 + na*Asty*dty + na*Ascy*(t-dcy))/(t

+
+
+
+

n*Astx
n*Asty
na*Astx
na*Asty

xcprime := dtx*( -n*{(rox+rocx) + sqrt(pow(n*{rox+rocx),2) +

ycprime :

xcaprime := dtx*( -na*{rox+rocx) + sgrt(pow(na*(rox+rocx),2)

+ 2*pa*(rox+{t-dcx)/dtx*rocx)) );

dty*( -n*{roy+rocy) + sqrt{pow(n*{roy+rocyj),2) +

+ N*Ascx);
+ N*AsCy};
+ na*Ascx);
+ na*Ascy);

2*n*{rox+(t-dox) /dtx*rocx)) };
2*n*(roy+(t-dcy)/dty*rocy)) );

ycaprime := dty*( -na*(roy+rocy} + sgrt(pow(na*(roy+rocy),2)
+ 2*na*(roy+(t-dcy)/dty*rocy)) };
XC xg*alphax; if xc<xcprime then xc:=xcprime else if xc»xg then xc:=xg;

»x
O
"
LI I

IgBary :
IcBary :

o on#

if ((not CrackedX) or (alphax>9.99)) then
begin

Aeffx := t;

Ix = pow(t,3)/12+t*pow(t/2-xga,2);

yg*alphay; if yc<ycprime then yc:=ycprime else if yc>yg then yo:=yg;
xga*alphax; if xca<xcaprime then xca:=xcaprime else if xca>xga then xca:=xga;
yga*alphay; if yca<ycaprime then yca:=ycaprime else if yca>yga then yca:=yga;

pow(t,3)/12+t*pow(t/2-xga,2)+na*Astx*pow(dtx-xga,2)+na*Ascx*pow((t-dtx)-xga,2);
1/3*pow(xca,3) + na*rocx*pow(xca- (t-dox),2)*dix + na*rox*pow(dtx-xca,2)*dtx;
pow(t,3)/12+t*pow(t/2-yga,2)+na*Asty*pow(dty-yga,2)+na*Ascy*pow( (t-dcy) -yga,2);
1/3*pow(yca,3) + na*rocy*pow(yca-(t-dcy),2)*dty + na*roy*pow(dty-yca,2)*dty;
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yex = Aeffx/2; yox = ycx-xga;
delyx := xga-xg;
IBarx := IgBarx;
end
else
begin
Aeffx 1= xc;
Ix := pow(xc,3)/12+Xc*(xca-xc/2)*(xca-xc/2);

[

yex = Aeffx/2; yox := ycx-xca;

delyx := xca-xc;
IBarx := IcBarX;
end;

if ((not CrackedY) or {(alpha¥>9.99)) then
begin

Aeffy 1= t;

Iy = pow(t,3)/12+t*pow(t/2-yga,2);

ycy = Aeffy/2; ycy := ycy-yga;

delyy := yga-yg;
IBary := IgBary;
end
else
begin
Aeffy := yc;

Iy := pow{yc,3)/12+yc*(yca-y/2)*(yca-y/2};

ycy := Aeffy/2; ycy := ycy-yca;
delyy := yca-yc;
IBary := IcBary;

end;
kappaX := (Ix + Aeffx*ycx*delyx)/IBarx;
kappaY = (Iy + Aeffy*ycy*delyy)/IBary;
CalcForCreep := True;

end;

[IHEFHEEEIEIEEri i iitiilniieid
/! Calculates crack factors [/

HHEHET et it it

Procedure TElement.CalcModFactors{CrackType:integer);

var
alpha : Double; //Modular ratio
fr : Double; //Modulus of rupture (Should be an element property)
¥X, yy : Double; [/NA positions of the gross concrete section
dtxc, dtyc : Double; [/Embedment depth of compression reinforcement (Should be an element
property)
begin
{/Initialize

Crackedx := False;
Crackedy := False;
IeDldx := Iex;
IeQldy := Iey;
alpha0ldx := alphax;
alphaOldy := alphay;
alpha := ES/E;

/1Calculate NA’s and moments of inertia
xc = dtx*({ -alpha*{rox+rocx) + sqrt(pow(alpha*(rox+rocx),2)
+ 2*alpha*{rox+(t-dcx)/dtx*rocx)) });
Icx := 1/3*pow(xc,3)/12 + alpha*rocx*pow(xc- (t-dex),2)*dtx + alpha*rox*pow(dtx-xc,2) *dtx;

yc = dty*( -alpha*(roy+rocy) + sqrt(pow(alpha*{roy+rocy),2)
+ 2*alpha*(roy+(t-dcy)/dty*rocy)) );
Icy := 1/3*pow(yc,3)/12 + alpha*rocy*pow(yc-(t-dcy),2)*dty + alpha*roy*pow(dty-yc,2)*dty;


http:alphaY>9.99
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Igx := 1/12*pow(h,3);
yx = h/2;

Igy := 1/12*pow(h,3);
yy = h/2;

//Calculate cracking moments
Merx = freIgx/yx;
Mcry := fr*Igy/yy;

Hou

//Bilinear method cracking factors
if (MxAvg >= Mcrx) then ksix := 1-pow({Mcrx/MxAvg,2) else ksix :=

0,
if (MyAvg >= Mcry) then ksiy := 1-pow({Mcry/MyAvg,2) else ksiy := 0;

if (MxAvg >= Mcrx) then

begin

if CrackType = 0 then

begin
Iex := pow(Mcrx/MxAvg,4)*Igx + (1 - pow{Mcrx/MxAvg,4))*Icx;
Iex := IeOldx-{IeQldx - Iex}/2;

end

else

begin
Iex := (Igx*Icx) / ( (1-ksix)*Icx+ksix*Igx };
Iex := TeOldx-(IeOldx - Iex}/2;

end;

if Iex > Igx then Iex := Igx
else if Iex < Icx then Iex := Icx;
alphax := Iex/Igx;
CrackedX := True;
end
else
begin
Iex = Igx;
TeOldx := Iex;
alphax := 1
CrackedX :=
end;

if (MyAvg >= Mcry) then

begin

if (CrackType = 0) then

begin
Iey := pow(Mcry/MyAvg,4)*Igy + (1 - pow(Mcry/MyAvg,4))*Icy;
Iey := IeOldy-{(IeOldy - Iey)/2;

end

else

begin
Iey := (Igy*Icy) / { (1-ksiy)*Icy+ksiy*Igy );
Iey := IeOldy-(IeOldy - ley)/2;

end;

if Iey > Igy then Iey := Igy
else if Iey < Icy then Iey := Icy;
alphay := Iey/Igy;
CrackedY := True;
end
else
begin
Tey := Igy;
alphay := 1;
CrackedY := False;
end;

if alphax>0.99 then crackedx := false;
if alphay>0.99 then crackedy := false;

end;

end.
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7.3 Elastic Analysis Procedure

procedure ElasticAnalysis;
var

iCount: Integer; //Loop counters
begin

//0btain FEA geometry, loading & material input
readInput;

/iInitialize the model and global arrays
Initialize;

//Assemble the element and global stiffness matrices
Assemble;

//Assemble the load vector
LoadVector;

//Solve the linear system
Solve;

//Update gilobal deflection array
UpdateGlobalDVec;

//Update each element’s deflection array
UpdateElementDvec;

//Calculate and smooth stress resultants
CalcResultants(true);

UpdateOuput;

end;
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7.4 Crack Analysis Procedure

procedure CrackAnalysis;

var
iCount : Integer; //Loop counter
E1l : TElement; //Element object pointer
Conv : Double; / /Convergence variable
limit : Double; / /Convergence limit

//Returns current convergence index
function testConv:double;
var

i, j : integer;

X,y : double;

begin
x = 0;
y 1= 0;
for 1 1= 1 to num*num do
begin
X := x + abs(slab[i].alphax-slab[i].alphaOldx)/slab[i].alphaoldx;
y =y + abs(slabfi].alphay-slab[i].alphaOldy)/slab[i].alphaoldy;
end;
X = X/ (num*numj;
y = y/j{(num*num);
result := max(x,y);
end;
begin

//Obtain FEA geometry, loading & material input

readInput;

//Initialize the model and global arrays
Initialize;

limit := 1e-3; //Convergence limit

/lInitialize element moments of inertia
for iCount := 1 to numElements do Slab[iCount].InitInertia;

conv := 1; [/Convergence tester
while ( abs{conv)>limit ) do
begin
//Record current deflection field
StoreQrigDvec;

//Assemble element and global stiffness matrices
Assemble;

//Assemble the load vector
LoadVector,;

//Solve the linear system
Solve;

/ /Update global deflection array
UpdateGlobalDVec;

//Update elements’ deflection array
UpdateElementDVec;

//Calculate stress resultants but do not smooth
CalcResultants(false);

//Calculate average moments and modification factors for each element
for jCount := 1 to numElements do
begin
Slab{jCount].CalcAvgs;
Slab[jCount].CalcModFactors({CrackType);
end;



UNIVERSITY OF PRETORIA
YUNIBESITHI YA PRETORIA

heat
=
100 ﬂ UNIVERSITEIT VAN PRETORIA
<

! /Update the convergence variable
conv := testConv;

if(conv < limit) then
//If solution converged, smooth stress resultants
CalcResultants(true);

else
/1If solution not converged, restore original deflection field

RegressGlobalbvec;
end;

UpdateQutput;
end;
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7.5 Creep Analysis Procedure

Procedure CreepClickAnalysis;
var

i : Integer; [/Loop counter;
begin

/{Perform a crack analysis
CrackAnalysis;

//Initialize global arrays
Initialize;

//Calculate creep factors for each element

for i := 1 to numElements do
begin

Slab[i].CalcCreepFactors;
end;

/{Assemble element and global stiffness matrices
Assemble;

/fAssemble the load vector
LoadvVector;

//8olve the linear system
Solve;

/lUpdate global deflection array
UpdateGlobalDvec;

/ tUpdate elements’ deflection array
UpdateElementDVec;

/fCalculate and smooth stress resultants
CalcResultants(true);

UpdateQutput;

end;
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7.6 Shrinkage Analysis Procedure

Procedure ShrinkAnalysis;
var
i : integer;

begin
/IObtain FEA geometry, loading & material input
readinput;

/fInitialize the model and globel arrays
Initialize;

//Assemble element and global stiffness matrices
Assemble;

/iCalculate shrinkage forces for each element
for 1 = 1 to num*num do
begin
slabli].ecs := ecs;
slab[i] .CalcShrinkageMoments;
end;

{{Assemble the load vector
LoadVector;

//Solve the linear system
Solve;

/fUpdate global deflection array
UpdateGlobalDVec;

/lUpdate elements’ deflection array
UpdateElementDVec;

! /Calculate and smooth stress resultants
CalcResultants(true);

UpdateOutput;

end;
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7.7 Stiffness Matrix Assembly Procedure

Procedure Assemble;

var

iCount, jCount, kCount : Integer;

//Loop counters

GNodeRow, GNodeCol : Integer; //Row, column indices

DOF : Integer; [//Degrees of freedom variables
begin

DOF := 5;

for iCount := 1 to numElements do

begin

//Calculate element stiffness matrices

Slab[iCount].CalcStiff;

for jCount := 1 to 8 do

begin
GNodeRow := Slab[iCount].NodesNum[jCount];
for kCount := 1 to 8 do
begin

//Place elemnt matrix in structure stiffness matrix

GNodeCol
GStiff[5*GNodeRow-4,5*GNodeCol-4]

GStiff[5*GNodeRow-4,5*GNodeCol-3])

GStiff[5*GNodeRow-3,5*GNodeCol-4]

GStiff[5*GNodeRow-3,5*GNodeCol- 3]

GStiff[3*GNodeRow-2,3*GNodeCol-2]
GStiff[3*GNodeRow-2,3*GNodeCol-1]

GStiff[3*GNodeRow-2,3*GNodeCol-0}

GStiff[3*GNodeRow-1,3*GNodeCol-2]
GStiff[3*GNodeRow-1,3*GNodeCol-1]

GStiff[3*GNodeRow-1,3*GNodeCol-0]

GStiff[3*GNodeRow-0,3*GNodeCol-2]
GStiff[3*GNodeRow-0,3*GNodeCol-1]
GStiff[3*GNodeRow-0,3*GNodeCol-0]

end;
end;

end;

end;

:= §lab[iCount].NodesNum{kCount];

GStiff[5*GNodeRow-4,5*GNodeCol-4]
+ SlabliCount],.ElStiffm[2*jCount-1,2*kCount-1};
GStiff[5*GNodeRow-4,5*GNodeCol-3]
+ S§labfiCount].E1Stiffm[2*jCount-1,2*kCount-0];

GStiff[5*GNodeRow-3,5*GNodeCol-4]
+ 8lab[iCount].E1Stiffm[2*jCount-0,2*kCount-1};
G8tiff[{5*GNodeRow-3,5*GNodeCol-3]
+ Slab[iCount].E18tiffm[2*jCount-0,2*kCount-0};

GStiff[3*GNodeRow-2,3*GNodeCol-2]
+ SlabliCount].E1Stiffp[3*jCount-2,3*kCount-2];
GStiff[3*GNodeRow-2,3*GNodeCol-1]
+ Slab[iCount].ELStiffp[3*jCount-2,3*kCount-1];
GStiff[3*GNodeRow-2,3*GNodeCol-0]}
+ Slab[iCount].E18tiffp[3*jCount-2,3*kCount-0];

GStiff[3*GNodeRow-1,3*GNodeCol-2]
+ 8lab[iCount].E1Stiffp[3*jCount-1,3*kCount-2];
GStiff[3*GNodeRow-1,3*GNodeCol-1]
+ Slab[iCount].E1Stiffp[3*jCount-1,3*kCount-1];
GStiff[3*GNodeRow-1,3*GNodeCol-0]
+ Slab[iCount].E1Stiffp[3*jCount-1,3*kCount-01};

GStiff[3*GNodeRow-0,3*GNodeCol-2]
+ 8lab[iCount].E1Stiffp[3*jCount-0Q,3*kCount-2];
GStiff[3*GNodeRow-0,3*GNodeCol-1]
+ Slab[iCount].E1Stiffp[3*jCount-0,3*kCount-1];
GStiff[3*GNodeRow-0,3*GNodeCol -0}
+ S8lab[iCount],.E1Stiffp[3*jCount-0,3*kCount-0];
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7.8 Gauss Reduction Procedure

Procedure Solve;

var
Pivot, Factor, Residual : Double;
i, j, k, 1 : Integer; //Loop counters
iRow, iCol : Integer; //Row & column indices
NBack, NBaci, Negnsi : Integer;
DOF, SR : Integer; [/Degrees of freedom and no of stress resultants
Diff : Double;
begin
DOF := 5;
SR := 8;
//Gauss Reduction
for i := 1 to numNodes*DOF do
begin
if (Svec[i]<>1) then //free DOF
begin

Pivot := GStiff[i,i];
if(abs(pivot)>1e-10) then
begin //valid pivot
if (i<numNodes*DOF) then
begin
j o= 1413
for iRow := j to numNodes*DOF do
begin
Factor := GStiff[iRow,i]/Pivot;
if (Factor<>0) then

i

begin
for iCol := i to numNodes*DOF do
begin
GStiff[iRow,iCol] := GStiff[iRow,iCol] - Factor*GStiff[i,iCol];
end;
LVec[iRow] := LVec[iRow] - Factor*LVec[i};
end;
end;
end;
end
else //invalid pivot
begin
infomsg(‘Non positive definite matrix');
exit;
end;
end
else //restrained DOF
begin
for iRow := 1 to numNodes*DOF do
begin

LVec[{iRow] := LVec[iRow] - GStiff[iRow,i]*FVec[i];
GStiff{iRow,1} := O;
end;
end;
end;

//Back substitution process
j = numNodes*DOF+1;
for 1 := 1 to numNodes*DQOF do
begin
k := j-i; //nback
Pivot := GStiff([k,k];
Residual := LVec[kl];

if (k<>numNodes*DOF) then
begin
1 := k+1;
for iCol := 1 to numNodes*DOF do
begin
Residual := Residual - GStiff[k,iCol]*DvVec[iCol];
end;
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end;

If (SVec[k]=0) then
begin
DVec[k] := Residual/Pivot;
end
else
begin
DVec[k]
RVec[k]
end;

Fvec[k];
-Residual;

Hu

end;

end;
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7.9 Stress Resultant Calculation Procedure

Procedure CalcResultants({smooth:boolean);

var
iCount, jCount, kCount, 1Count : Integer; //Loop counters
mCount, nCount, oCount, pCount : Integer; / JLoop counters
trans : array[1..4,1..4] of Double; //Extrapolation matrix
temp : array[1..8] of Double; //Holder matrix
sum : array[1..8] of Double; //Holder matrix

SR : Integer;
NodesArray : array[1..4] of integer;

begin
SR = 8;

//Calculate stress resultants at sampling points - membrane
for iCount := 1 to numElements do
begin

1Count := 0; //1 to 4
for jCount := 1 to 2 do
begin
for kCount := 1 to 2 do
begin
inc (1Count);
for mCount := 1 to 3 do
begin
nCount := 0;
Slab{iCount].SRes{1Count,mCount] := 0;

for oCount := 1 to 8 do
begin
for pCount := 1 to 2 do
begin
inc(nCount);
Slab[iCount].8Res[1Count,mCount] := Slab[iCount].SRes[1Count,mCount] +
(81abiCount].GaussDBm{mCount,nCount, 1Count] *
Slab[iCount].Def{pCount,oCount]);
end;
end;
end;
end;
end;

end;

//Calculate stress resultants at sampling points - plate
for iCount := 1 to numElements do
begin

1Count := 0; //1 to 4
for jCount := 1 to 2 do
begin
for kCount = 1 to 2 do
begin
inc{1Count);
for mCount := 4 to 8 do
begin
nCount := 0;
Slab[iCount].SRes[1lCount,mCount] := 0;

for oCount := 1 to 8 do
begin
for pCount := 3 to 5 do
begin
inc(nCount);
Slab[iCount].SRes[1Count,mCount] := Slab[iCount].SRes[lCount,mCount] +
(Slab[iCount].GaussDBp[mCount-3,nCount,lCount] *
Slab[iCount].Def[pCount,oCount]);
end;
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end;
end;
end;
end;
Slab[iCount].CalcCurvatures;
end;

if not smooth then exit;

//Smooth by bi-linear extrapolation to the corner nodes

IVERSITEIT YAN PRETO

trans[1,1]:
trans[t,2]:
trans{1,3}:
trans{1,4]:
trans[2,1]:
trans([2,2]:
trans[2,3]:
trans[2,4]:
trans{3,1]:
trans[3,2]:
trans{3,3]:
trans{3,4]:
trans[4,1]:
trans[4,2]:
trans[4,371:

=1.8686025404;
=-0.5;
=0, 133974596;
=-0.5;
=-0.5;
=1.866025404;
=-0.5;
=0, 133974596,
=0.133974596;
=-0.5;
=1.866025404;
-0.5;
-0.5;
0,133974596;
=-0.5;
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trans{4,4]:=1.866025404;
for iCount := 1 to numElements do
begin
for jCount := 1 to SR do
temp[jCount] := Slab[iCount].SRes[2,jCount];
for kCount := 1 to SR do
Slab]iCount].SRes[2,kCount]
for kCount := 1 to SR do
Slab{iCount].S8Res[3,kCount]
for kCount := 1 to SR do
Slab{iCount].SRes[4,kCount]

[}

Slab[iCount].SRes[3,kCount];

1]

Slab[iCount].SRes{4,kCount];

#

temp[kCount];
end;
for iCount := 1 to num*num do
begin
for jCount ;=
begin
Slab[iCount].SResM[1,jCount] :=
Slab[iCount].SRes[1,jCount]l*trans[1,1] +
Slab[iCount].SHes[2,jCount]*trans[1,2] +
S8lab[iCount].SRes[3,jCount]*trans[1,3] +
SlabliCount].SRes[4,jCount]*trans{1,4];
Slab[iCount].SResM([3, jCount] :=
Slab[iCount].SRes[1, jCount]*trans[2,1] +
Slab[iCount].SRes[2, jCount]*trans[2,2] +
Slab[iCount].SRes[3, jCount]*trans{2,3] +
Slab[iCount].SRes[4, jCount]*trans[2,4];
Slab[iCount].SResM[2,jCount] := (Slab[iCount].SResM[1,jCount]
+ Slab[iCount].SResM[3,jCount])/2;

1 to SR do

Slab[iCount].SResM[5, jCount] :=
Slab[iCount].SRes|1,jCount]*trans{3,1] +
Slab[iCount].SRes[2, jCount]*trans[3,2] +
Slab[iCount].S8Res[3,jCount]*trans[3,3] +
Slab[iCount].SRes(4,jCount]*trans[3,4];
Slab[iCount].SResM[4, jCount] := (Slab[iCount].SResM[3, jCount]
+ Slab[iCount].SResM[5, jCount])/2;

SlabfiCount].SResM[7,jCount] :=
SlabfiCount].SRes[1,jCount]*trans[4,1] +
Slab{iCount].SRes[2,jCount]*trans[4,2] +
Slab[iCount].SRes[3, jCount]*trans[4,3] +
Slab[iCount].SRes[4, jCount]*trans{4,4];
Slab[iCount].SResM[6, jCount] := (Slab[iCount].SResM[5, jCount]
+ Slab[iCount].SResM[7,jCount]}/2;


http:trans[4,1]:=-O.5j
http:trans[2,1]:=-O.5j
http:trans[1,4]:=-O.5j
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Slab[iCount].SResM[8, jCount] := (Slab[iCount].SResM[1, jCount]
+ 8lab[iCount].SResM[7,jCount})/2;
end;
end;

/ lAverage stresses at nodal points to obtain unique valuyes
for iCount := 1 to numNodes do
begin
kCount := 0
for jCount := 1 to SR do
SumfjCount]:=0;
for jCount := 1 to num*num do
begin
1Count := scanl(iCount,Slab]jCount].NodesNum,8);
if lCount<>0 then
begin
inc(kCount);
for mCount := 1 to SR do
Sum{mCount] := Sum{mCount] + Slab[jCount}].SResM[1Count ,mCount];
end;
end;
if kCount >0 then
begin
for jCount := 1 to SR do
SRes[iCount, jCount] := Sum[jCount]/kCount;
end;
end;

jCount := 1;

for iCount := 1 to num*num do
begin
for kCount := 1 to 8 do
begin
if pos = Slab[iCount].NodesNum[kCount] then
begin

NodesArray[jCount] := iCount;
jCount := jCount+1;
end;
end;
end;

end;



