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AFHANKLIKE DEFLEKSIES VAN PLAT BLAAIE 
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Medeleier: Dr. J.M. Robberts 

Departement: Siviele Ingenieurswese, Universiteit van Pretoria 

Graad: Magister in Ingenieurswese (Struktuuringenieurswese) 

Die doel van hierdie verhandeling is om 'n vereenvoudigde eindige element model te ontwikkel vir die 

analise van tyd-afhanklike defleksies van plat blaaie. 

Nuwe materiale en ontwerpbenaderings het tot gevolg dat diensbaarheidsfalings meer algemeen 

voorkom. Hierdie tipe van faling is geneig om eers lank na die voltooiing van konstruksie voor te 

kom en kan dus duur wees om te herstel. 

Verskeie gesofistikeerde metodes, gebaseer op gelaagde elementmodelle, nie-lineere materiaalwette en 

reologiese benaderings tot krimp and kruip probleme is al deur navorsers voorgestel. Hierdie metodes 

het die nadele van kompleksiteit en uitermatige rekenaar verwerkingstyd. Gesofistikeerde modelle is 

in baie gevalle nie geoorloofnie omdat die fisiese prosesse betrokke nie altyd goed verstaan Of 

akkuraat voorspel kan word nie. 

Ontwerpers besefnie altyd die ems van sulke falings nie en ignoreer soms tyd-afhanklike defleksies 

van blaaie. 'n Eenvoudige metode, wat maklik inskakel by bestaande ontwerp-metodiek, sal dus 'n 

gaping vul in huidige praktyk. 

Die veld van studie sluit , in bree trekke, die volgende in: 

• 	 Die keuse van eindige element formulering vir die model. 'n 8-node Serendipity element, 

gebaseer op 'n Mindlin plaatanalise, vertoon stabiele resultate in 'n groot verskeidenheid van 

toepassings. 

• 	 Kraak van blaaie en die trek-verstywingseffek: Branson se effektiewe traagheidsmoment en 

die Bilineere metode is in die opsig vergelyk. 

• 	 Die gekombineerde invloed van krimp en kruip: Die bekende "Effective Modulus Method" is 

gebruik om hierdie invloed te modelleer. 
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Die voorgestelde metode is saamgevat in 'n rekenaarprogram, waarvan die bronkode saamgevat word 

in die aanhangsels, en word vergelyk met ander metodes en eksperimentele resultate. 

Die program vertoon goeie resultate in vergelyking met eksperimentele werk, veral in verband met 

kraak en trek-verstywing. Branson se benadering tot hierdie probleem lewer beter resultate as die 

bilineere metode, veral waar wapening verhoudings laag is. Kruip en krimp resultate vergelyk ook 

goed met die balk wat ondersoek is, asook die handberekening van 'n bladpaneel se langtermyn 

defleksies. 

Die program maak gebruik van parameters wat algemeen voorkom in betonontwerp en vereis dus nie 

spesialis kennis van materiaal eienskappe nie. Die metode, soos toegepas in 'n eindige element 

analise, maak voorsiening vir die plaat gedrag van blaaie en 'n meer realistiese skatting van 

langtermyn defleksies kan dus gemaak word. 
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SUMMARY 

A SIMPLIFIED FINITE ELEMENT MODEL FOR THE CALCULATION OF TIME­


DEPENDENT DEFLECTIONS OF FLAT SLABS 


By: Renier C10ete 

Supervisor: Prof. B.W.J. van Rensburg 

Co-supervisor: Dr. J.M. Robberts 

Department: Civil Engineering, University ofPretoria 

Degree: Master of Engineering (Structural Engineering) 

The aim of this dissertation is to develop a simplified finite element model for the analysis of time­

dependent deflections of flat slabs. 

New materials and design approaches have caused an increase in the incidence of serviceability 

failures. This type of failure tends to occur long after the completion of construction and can thus be 

quite expensive to repair, ifat all possible. 

Various sophisticated methods based on layered element models, non-linear constitutive laws and 

rheological creep and shrinkage models have been proposed by various authors. These methods suffer 

from a high degree of complexity and become prohibitive in terms of computer memory storage 

requirements and processing time. In many cases sophisticated models are uncalled for due to a lack 

of understanding of the physical processes involved or an inability to accurately predict the influence 

of these processes. 

Broadly, the field of study includes the following: 

• 	 The choice of a finite element formulation for the model. An 8-noded Serendipity element, 

based on a Mindlin plate analysis has proven itself as a good performer in a wide range of 

problems and is the formulation of choice for this dissertation. 

• 	 Cracking and the tension-stiffening effect: Branson's Effective Moment of Inertia method and 

the bilinear method are compared in this regard. 

• 	 The combined effect of shrinkage and creep: The Effective Modulus method is used to model 

creep and shrinkage is included using a free shrinkage parameter. 

The proposed method was implemented in a computer program, the source code of which is 

reproduced in the appendices, and compared to other methods and experimental results. 
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The program achieved good results when compared to experimental work, especially as far as 

cracking and tension stiffening are concerned. The bilinear method was found to produce results 

inferior to Branson's approach to tension stiffening, particularly when reinforcement ratios are low. 

Creep and shrinkage results compared well with the beam considered as well as the hand-calculation 

of the long-term deflections of a slab panel. 

The program utilizes parameters commonly used in routine design, such as the creep coefficient and 

free shrinkage, and therefore does not require specialist knowledge ofmaterial properties. The 

method, as applied to plates in the finite element analysis, includes the plate behaviour of slabs and 

thus allows a more realistic estimate ofdeflection than the equivalent frame method. 
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INTRODUCTION 

1.1 	Background 

The calculation of two-way slab deflections poses the dual difficulties of solving complex governing 

differential equations and taking into account the effects of material non-linearity, i.e. cracking and 

creep. 

Various simplified methods ofelastic analysis for two-way slab systems, suitable for hand calculation, 

have been proposed and adopted in national building codes. Unfortunately these methods have limited 

applicability when the slab supports are not rectangular in plan. In contrast, the finite element 

approach provides a convenient method for analysis where support layouts are irregular. The 

discretisation of the slab allows the analyst to model almost any shape of slab and the support layout is 

limited only by node positions. Although the finite element method is a numerical approximation of 

the 'exact' solution, careful modelling and choice of formulation yields results in good agreement with 

classical methods. 

Load induced cracking, which for the purposes of this dissertation occurs when the stress at the 

tension face exceeds the modulus ofrupture ofthe concrete, influences both the magnitude of 

deflection and the distribution ofbending moments and shear forces in the slab. At the cracked 

section, it is assumed that the concrete is free of tensile stress, but this does not hold true for the 

uncracked zones between fully cracked sections where tensile stresses are transferred to the concrete 

by bonded reinforcement. The ability of uncracked concrete to contribute to the overall stiffness of a 

member is referred to as tension stiffening. The simplest method ofmodelling this effect involves the 

use of an average cracked section. Numerically, this implies a modification of the second moment of 

area. 

Concrete response to load comprises instantaneous and time-dependent components. The time­

dependent component can be attributed to the related effects ofcreep and shrinkage. 

The study of the creep deflection consists oftwo aspects: 

• 	 Prediction of the creep and shrinkage behaviour of a concrete element which includes material 

and environmental factors. This prediction usually takes the form of a creep factor or function 

and a shrinkage strain. 

• 	 Incorporating the predictive parameters in the analysis of a reinforced concrete member. 
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This dissertation focuses on the latter aspect and no attempt is made to investigate the various creep 

and shrinkage models that are currently in use. Numerous methods are available for time-dependent 

analyses, ranging from complex rheological models to simple effective modulus methods. Faber's 

Effective Modulus method (Gilbert, 1988), where the elastic modulus ofthe concrete is adjusted with 

a creep factor, is probably the best known method. 

The method proposed here employs the finite element method in a semi-iterative approach to the 

deflection problem. The instantaneous deflection is calculated using Branson's Effective Moment of 

Inertia (Branson, 1968) or the bilinear method (Favre et ai, 1985). The resulting member actions are 

then used in a time analysis to establish the creep and shrinkage contribution to the final deflection. 

The method derives from a simplified approach to slab tension stiffening suggested by Polak (1996). 

Polak applied Branson's effective moment of inertia to the finite element method using reduction 

factors to account for cracking and tension stiffening. Reinforcement has the effect ofreducing the 

magnitude of creep deflections in concrete slabs. This effect is also accounted for using reduction 

factors. 

Rigorous approaches to the long term deflection of concrete slabs, as applied to the finite element 

method, abound in journals such as Advances in Engineering Software published by Elsevier and are 

even commercially available in structural simulation software such as DIANA, which is developed by 

TNO Diana, a company based in the Netherlands. This dissertation proposes a simple method for use 

and elaboration by practicing engineers. 

1.2 Objectives of the Study 

The study has the broad objective of establishing a simple method ofanalysis, based on the finite 

element method, for the calculation ofthe long-term deflections ofreinforced concrete flat slabs. 

This objective is pursued under four components of deflection: 

• 	 Elastic deflection: 

The Mindlin Serendipity plate element, as applied to slab problems, is investigated. 

Convergence characteristics and the influence ofaspect ratios are studied to verify the 

applicability of the element in the current context. 
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• Cracked deflection: 

The results ofprevious studies of tension stiffening are reproduced and the bilinear method is 

investigated as an alternative to Branson's method. The alternative is attractive due to the 

simple manner in which the influence ofcreep on the behaviour ofa cracked section is 

modelled. 

• Creep deflection: 

The objective of this section is to find a technique ofincorporating the method of section 

curvatures in the finite element formulation. 

• Shrinkage deflection: 

The resulting deformation of shrinkage is transformed into applied loading and the results are 

compared to experimental results to verify the accuracy of the procedure. 

1.3 Scope of the Study 

1.3.1 Geometry and Supports 

Although nothing in the method prohibits non-rectangular layouts, only this type oflayout was 

studied, mainly to avoid the use ofdistorted rectangular or triangular elements since distortion impacts 

negatively on the accuracy of the finite element analysis. 

1.3.2 Finite Element Formulation 

An eight-noded, Serendipity plate element based on the Mindlin formulation was chosen for the 

dissertation and no other element or plate formulation types were considered, although consideration is 

given to the numerical issues pertaining to this element. Membrane effects are not considered. 

An important aspect of the finite element formulation is the accurate modelling of supports or 

boundary conditions. However, discontinuous boundary conditions such as those encountered with 

the column supports of flat slabs pose some problems. The simplest approach is a support, fixed in 

both translation and rotation, at a node placed at the column centre. Theoretically this implies infinite 

stress resultants at the point of support, although with the finite element approximation this value is 

finite but large. 

This dissertation follows this simple approach and no consideration is given to alternative approaches 

such as elastic supports. Admittedly the simple approach will tend to overestimate the actual long 
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term deflection, due to the large numerical values of the support moments and the associated higher 

degree ofcracking. 

1.3.3 Reinforcement Layout 

Reinforcement directions are assumed to be parallel with the global x and y-axis. With the rectangular 

layout constraint introduced in paragraph 1.3.1, this will almost always be the case. 

1.3.4 Constitutive model 

Concrete and reinforcement behaviour are assumed to be linear elastic, although modifications are 

made for concrete creep and cracking. Reference is made to rigorous models, but no comparison is 

done with the results of these methods. 

1.4 Methodology 

A finite element program was developed specifically for this dissertation. The program follows the 

Object Orientated Programming (OOP) paradigm, which allows for easy extension and modular 

problem solution. The finite element is encapsulated in an object and the various effects of cracking, 

creep and shrinkage were added to this element object. 

The results of the program are compared with the following analytical, experimental and hand­

calculation results: 

• 	 Linear elastic analysis: Classical thin plate and moderately thick plate solutions for simply 

supported and clamped plates. 

• 	 Short term crack analysis: Experimental slab deflection results from two sources. 

• 	 Long term creep, crack and shrinkage analysis: Experimental results for a beam and hand 

calculation results for a flat slab paneL 

1.5 Software Development 

The source provided by Hinton and Owen (1983) was used as the basis for the implementation. The 

source was originally written in FORTRAN which was translated by the author to Object Pascal. The 
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source was compiled for the Microsoft Windows environment using Borland Delphi 6.0, Borland 

(2001). 

The user interface components used in the program were donated by Prokon Software Consultants 

which facilitated the process of input as well as the output of analysis results. 

The OOP paradigm mentioned in section lA, adds a level of abstraction to software which allows for 

modular programming and extensibility. The main program remains unaware of the implementation 

details of the element object and the element formulation can thus be changed without influencing the 

logic of the main program. 

1.6 Organisation of the Report 

The report is split into the following chapters: 

Chapter 2 provides theoretical background to the topics introduced above under the following 

headings: 

• Analysis: The finite element and a hand-calculation method are considered. 

• Cracked Sections: The bilinear method and the effective moment of inertia are compared. 

• Creep: A single approach, based on the effective modulus method is presented. 

• Shrinkage: A single approach based on basic theory is presented. 

Chapter 3 presents the proposed method under the same headings as above and discusses the 

implementation of the method in computer code. Selected parts of the program are included in the 

Appendix for reference. Section 7.2 contains the source of the entire, selfcontained, finite element 

object. Sections 7.3 to 7.6 contain the various analysis procedures. 

Chapter 4 documents the results ofvarious analysis runs compared to alternative methods and 

published experimental data. 

Conclusions regarding the accuracy and applicability of the proposed method are presented in 

Chapter 5. Chapter 61ists the references and chapter 7 contains the appendix. 
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2 THEORETICAL BACKGROUND 

2.1 Analysis 

Analysis methods can be categorized into classical and numerical approaches. The classical approach 

involves finding stress or displacement solutions that satisfy the differential equations ofequilibrium, 

compatibility requirements as well as stress-strain relationships, subject to the given boundary 

conditions. Due to these stringent requirements, very few classical solutions are available for practical 

plate bending problems. 

This difficulty can be overcome by approximating plate behaviour with a crossing beam analogy such 

as the equivalent frame method, Corley and Jirsa (1970). The results of such an equivalent frame 

analysis, as well as the required reinforcement, are assumed known in the hand-calculation method 

presented in 3.1.1. 

Numerical approaches require discretisation of the problem, i.e. a structure with an infinite number of 

degrees of freedom is reduced to a finite number to simplify the calculation process. Two of the best 

known methods are the method of finite differences and the finite element method. The method of 

finite differences has the disadvantage of difficulty in satisfying irregular boundary conditions. The 

finite element method, which is the method of choice in this dissertation, is presented in section 2.1.2. 

2.1.1 Hand-Calculation Method 

Short and long term deflections of two way slab systems can be calculated by the simplified method 

outlined below. This method is recommended by various authors, such as Gilbert (1988), Ghali and 

Favre (1986), as well as the ACI 318 (1999). 

For flat slabs, the method involves calculating the mid-span deflections of the middle strip relative to 

the column strip deflections, x and y-direction strips being treated independently. The middle strip 

deflections are then added to the average of the column strip deflections and finally, the x and y­

direction mid-span deflections are averaged to arrive at a total mid-panel deflection. 

The deflection calculations outlined above, make use ofknown curvatures which are modified with 

factors to account for cracking, shrinkage and creep. These factors are discussed in detail in sections 

3.2 through 3.4. 
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The main drawbacks of the method are as follows: 

• 	 Only rectangular slabs are considered, 

• 	 Bending moment magnitudes are assumed to be known, although these moments can easily be 

calculated using the Direct Design (ACI 318, 1999) or Equivalent Frame Methods, 

• 	 Curvatures are assumed to be parabolically distributed over the length of the strip considered, 

• 	 Simple support or continuity is assumed. 

Deflection at the centre of a strip is given by (Ghali & Favre, 1986): 

[2 
8 =-(flFl + lOfIF2 + flF3) (2.1)

96 

where: 

= length of the strip 

curvatures at the left support, centre and right support of the strip. 

Deflection at the centre of a panel can be expressed as the sum of the middle strip deflection and the 

average of the column strip deflections. 

1 
D J =8EF+-(8AB+8oc) 	 (2.2)

2 


1

D2 = 8 HI +-(8AD +8Bc} 	 (2.3)

2 

Dfinal =~ (DJ +D 2 ) 	 (2.4) 

The various deflection components in the equations (2.2) through (2.4) are illustrated in figure 2-1. 
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B 

o 

Figure 2-1: Displacement components 

Curvature and bending moment can be related with the following equations (Ghali & Favre, 1986): 

If/x 
1

-(Mx+vMy)
EJg 

(2.5) 

1
If/y =-(My+vMx)

EJg 
(2.6) 

h3 

I = --:----:­
g 12(1-v2) 

(2.7) 

where: 


Ec Young's modulus of the concrete, 


Ig =Effective moment of inertia of the gross concrete area of the strip, 


Mx. My = Moments at the section under consideration, 


v = Poisson's ratio of the concrete (usually taken as 0.2), 


h = Slab thickness. 
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2.1.2 Finite Element Method 

This method involves the discretisation of continua problems into finite sub regions termed finite 

elements. The approach yields approximate results based on an assumed stress field, displacement 

field or a mixed, hybrid approach. These fields are defined by points, or nodes, in the finite element. 

The approach presented here is limited to the displacement approach, due to its widespread use for 

matrix analysis software. 

The element used in the study is an eight-noded Serendipity element. These elements differ from 

elements such as Lagrange elements in the derivation of their shape functions. Langrage elements can 

contain nodes interior to the element and the Lagrange interpolation function is used to find these 

shape functions. Serendipity elements on the other hand, usually consist of only edge nodes and the 

shape functions are found by inspection. 

Shape functions are approximations of element geometry and deflection behaviour. The same shape 

functions (second degree polynomials) are used for the definition of geometry and displacement, 

classifying this element as parabolic isoparametric. 

The assumptions for the flexural formulation, due to Mindlin (1951), are as follows: 

• 	 The lateral deflection of the plate is small compared to its plan dimensions. 

• 	 Planes normal to the plate mid-surface remain plane, but not necessarily normal to the mid­

surface, after bending. 

• 	 Stresses normal to the plate mid-surface are negligible. 

The Kirchhoff, or thin-plate, assumptions (Ugural, 1999) for plate bending differ only in the second 

point above: Planes remain plane and normal to the mid-surface after bending. This implies that the 

Kirchhoff model neglects shear effects. 

The Mindlin elements were developed mainly to overcome inter-element continuity problems that 

arose from the use of their Kirchhoff counterparts. Mindlin elements do pose some numerical 

problems such as "shear locking" which is elaborated upon at the end of this section. 

The generalised displacements of the plate are completely described using three degrees of freedom 

per node where w denotes a displacement in the z direction and Ox and Oy orthogonal rotations about 

the y and x axis, respectively. This leads to following expressions for the plate deformations 
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(2.8) 


These physical quantities and the orientation of the global Cartesian coordinate system are illustrated 

in figure 2-2. 

~------------~~ ----------------------------------­)( 

w 

Figure 2-2: Plate defonnations 

The formulation makes use of a natural (dimensionless), curvilinear coordinate system in ~ and T/ with 

origin at the geometric centre ofthe element. Although the directions of the ~ and T/ axes vary within 

the element, the general positive directions are: 

• Positive ~ is taken in the same direction as indicated by the nodal sequence 1-2-3. 

• Positive T/ is taken in the same direction as indicated by the nodal sequence 3-4-5. 

The nodal numbering starts at any comer of the element and proceeds in an anti-clockwise direction as 

shown in figure 2-3. 

" i~SI;;lo'1b 

kJ til) U 'Z...'/U4 (} 
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5 

>: ­,,- 1 

11 = -1 

Figure 2-3: Element numbering 

The geometry of each element is defined by 

X(~.1])]_t[Ni O][Xi] (2.9)[Y (~.1]) - ;=1 0 N; y; 


where N; is the parabolic shape function, or interpolation function, associated with node i. These 


functions have a value ofunity at the associated nodes and zero at every other node. 


Similarly the displacement field over the element is defined by 


(2.10)a=[~J= t[~i ~i 
B .-1 0 0 

y 
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The shape functions are given by 

N 1(;,1])=_1 (1-;X1-1]X1+;+1])
4 

Ni;,1]) = !(1 ;2X1-1])
2 

N 3(;, 1]) = !(1 + ;X1-1]X; -1] -1)
4 

Ni;,1]) =!(1+;X1-1]2)
2 (2.11 ) 

N 5(;,1]) = !(1 + ;X1 +1]X; +1] -1)
4 

N (;,1]) = 1 (1_;2X1+1])6 2 

N 7(;,1]) = !(1-;X1 + 1]X-; +1] -1)
4 

Ng{;,1]) = 1(1- ;X1_1]2)
2 

The variational approach to the formulation of the stiffuess matrix is used, specifically the 

minimisation of potential energy principle. The potential energy functional consists of terms for 

bending, shear and external work done by the applied lateral pressure denoted by p: 

(2.12) 


where {M} and {Q} are as defined in equations (2.15) and (2.16) respectively. 

Positions of equilibrium are denoted by positions of stationary potential energy or 811 = 0, which leads 

to equation (2.30). The curvatures and shear strains are defined as 

_aox 

ax 
_a~y 

(2.13)
0' 

_(aox +~J
0' ax 
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(2.14){fl)=[~:] 

The stress resultants {M} (bending moment) and {Q} (shear force) are calculated by pre-integrating 

the relevant stresses over the depth of the plate which is denoted by h. The resultants are related to 

element strains by the following expressions, illustrated in the figure below: 

(2.15){M) =[2]=[Df]{VF} 

(2.16){Q) = [~:] = [D,]{fl} 

x 
z 


Figure 2-4: Sign convention (positive directions) 

where [Df ] and [Ds] are the elasticity matrices, 

1 v 	 o 
Eh3 

(2.17)[Df] 2 v 1 	 o 
12(1-v 	) 

o 	0 1 v 

2 
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EhK [1 0] [1 0] (2.18)[D,] = 2(I+v) 0 1 GhK 0 1 

for flexure and shear, respectively. The elasticity matrices above are usually combined as the total 

elasticity matrix: 

Ech3 Ecvh3 
0 0 0 

12(I-v2
) 12(I-v2

) 


Evh 3 
c Ech3 

0 0 0 
12(I-v2

) 12(I-v2
) 

(2.19)[D]= 
Gh3 

0 0 -- 0 0 
12 


0 0 0 GhK 0 


0 0 0 0 GhK 


where K %is a shear correction factor, applicable only to rectangular sections. This factor is used 

to transform the assumed parabolic shear stress distribution over the depth ofthe plate to an equivalent 

constant stress distribution. 

Strains are related to displacements by 

{s}=[L]{8} (2.20) 

where {s} is a generalised strain vector, 

IJIx 


lJI y 


(2.21){s} = IJIxy 

-fjJx 

-fjJy 

{8} is the generalised displacement vector and [L] is the matrix of displacement differential operators. 

With the finite element method, {8} is approximated by NO' within an element, where 
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0 N2 0 0 0 0 Ns 00 

N\ 0 0 N2 0 0 0 0 N g (2.22)[N'[N]= ~ 
0 N\ 0 0 N2 0 0 0 0 n 

and 

{8er =[8\ 8 2 • • 8; . . 8 g] (2.23) 

is the vector ofnodal displacement components and 0; is given by 

Wi 

(2.24) 

Equation (2.20) then becomes 

(2.25) 


where [B] is known as the element strain matrix, 

(2.26) 


and [B] i is calculated for each node as 

0 
aNi 

0 
ax 

0 0 a~ 

8y 

[B]i== 0 
_ aNi 

8y 
_a~ 

ax (2.27) 

aN; -Nj 0 
ax 
aN; 
8y 

0 -N; 
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Finally the element stiffness matrix can be assembled as 

(2.28) 

where ~ is the determinant of the Jacobian matrix. 

Distributed loads, denoted byp, must be represented as equivalent nodal loads in this method and the 

following equation is used for this purpose: 

{p;} = fN;pdA = fJNplJld~dll (2.29) 
Ae 

where Ae is the elemental area. 

The linear system of equations per element is then 

(2.30) 

where? denotes the nodal forces. 

The element stifihess matrices are then assembled in the global stiffness matrix with the direct 

stiffness method and the problem reduces to a system of linear algebraic equations. This system can 

be solved with any suitable numerical method such as Gauss reduction or Cholesky decomposition. 

A discussion on "shear locking", introduced at the beginning of the section, follows. Thin plates, 

modelled using Mindlin elements, often exhibit a high, incorrect shear stiffness which is termed shear 

locking. Mathematically this can be studied using the energy contributions of shear and flexure to 

equation (2.12). The flexural strain energy varies cubically with thickness whereas shear strain energy 

varies linearly, this implies that flexural strain energy decreases more rapidly with reductions in depth 

than shear strain energy. 

When one takes into account that the shear strain energy is given by: 

(2.31) 
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(2.32) 

it appears that the shear strain energy should disappear as h- O. Due to the approximate nature of the 

finite element method, zero strain energy is rarely achieved and under various conditions, the stiffuess 

matrix becomes ill-conditioned, Tesler & Hughes (1983), which leads to a gross overestimation of 

stiffuess. 

This locking problem can be avoided with the use of reduced or selective numerical integration 

(Zienkiewicz, Taylor and Too, 1971). The basis of these integration schemes resides in the 

assumption that shear locking can be avoided by not integrating the shear strain energy exactly. This 

dissertation employs a reduced 2x2 Gaussian integration scheme. 

Shear locking tendencies can be assessed using the constraint ratio, Hughes (1987), or the Kirchhoff 

mode concept, Hughes & Tezduyar (1981). 

The entire analysis process for a linear-elastic analysis is illustrated in figure 7-1. 

2.2 Cracked Sections 

Concrete members crack when the tensile stress at a section exceeds the tensile strength, usually taken 

as the modulus of rupture for members subjected to flexure. The flexural stiffuess along the member 

then varies between two extremes: 

• 	 Condition 1: Where the tensile stress is below the modulus of rupture, the concrete remains 

uncracked and the full section contributes to the stiffhess. 

• 	 Condition 2: At sections where the tensile stress exceeds the modulus of rupture, the concrete 

cracks over the full depth of the tension zone. Cracks at these sections are often referred to as 

primary cracks. The flexural stiffuess at such a cracked section can be estimated from the 

fully cracked, transformed section. 

Assuming a stiffhess based on condition 2 would overestimate the deflection of the member, since the 

regions between primary cracks remain uncracked or partially cracked. In these regions, the concrete 

in tension contributes to the flexural stiffuess and this is referred to as tension stiffening. 
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Including tension stiffening in the deflection analysis of a concrete member involves interpolating 

between conditions 1 and 2. Two empirical methods are considered here, the Bilinear Method and 

Branson's Effective Moment of Inertia. 

2.2.1 The Bilinear Method 

This method, first proposed for beam cracking problems by Favre et al (1985), is developed below: 

Assuming that plain sections remain plane in bending for uncracked and cracked sections, strains 

remain linearly distributed over the depth of a section. Although this is not strictly true at the cracked 

section, the average strain measured over a number ofprimary cracks retains proportionality to the 

distance from the neutral axis. 

Subject to the assumption that no bond slip occurs, the strain in the tension reinforcement at uncracked 

sections (condition 1), just prior to cracking, can be expressed as: 

Mpt
& :::-­ (2.33)

sl IE 
1 c 

where Mr is the cracking moment at the section under consideration, dt is the depth from the neutral 

axis of the section to the level of the tension reinforcement, II is the moment of inertia based on the 

uncracked transformed section and Ee is the secant modulus ofelasticity of the concrete. 

The cracking moment for a rectangular section can be expressed as 

(2.34) 

wheref,. is the modulus ofrupture, Ig is the moment of inertia of the gross concrete section neglecting 

reinforcement and h is the section depth. 

At fully cracked sections (condition 2), equation (2.33) changes to 

 
 
 



8 

30 


Mdt 
=-­ (2.35)

s2 IE 
1 c 

where 11 is the moment of inertia based on the fully cracked transformed section and M z Mr. The 

steel stresses for condition I and 2 would then be 

(2.36) 


(2.37) 


assuming linear elastic reinforcement behaviour as illustrated in figure 2-5. 

Between primary cracks, the reinforcement strain increases to a value larger than 8s1 but smaller than 

8$2. The steel strain will gradually decrease from its maximum value at the crack to 8s1 as bond 

transfers tension from the reinforcement to the concrete. When the strain reaches 8sJ, another primary 

crack forms and the process repeats itself. 

E, 

Steel strain 

Figure 2-5: Reinforcement stress-strain relation 

Let 8sm represent the mean strain ofthe reinforcement in the member 
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M 
(2.38)~m=T 

where LJl is the change in member length at the level of the reinforcement and I the original length. As 

mentioned in the preceding paragraph Gsm will be smaller than GSZ with the difference dcs, thus 

(2.39) 


This difference has a maximum value of ..dGSIIUU" at the onset ofcracking. Experimental evidence has 

shown that ..dGs can be related to OSz as follows, Ghali & Favre (1986) 

(2.40) 


Note that equation (2.40) is based on the assumption that the uncracked concrete has the same effect 

on the mean reinforcement strain in flexure as is the case with axial loading. 

Equations (2.39) and (2.40) are shown graphically in figure 2-6 below. 

M(O',z) 

Mr(cr,) 

Condition I 

----~r---~-------=--------~~~----

-----+--~--~------~----------------

Steel Strain 

Figure 2-6: Variation of steel strains versus bending moment 
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From the geometry of the graph, L1eslI!<2X can be written as 

~&'s max =(&'s2 - &'SI) ~ (2.41) 

Substituting equation (2.41) and (2.40) into equation (2.39) yields 

&'sm={l S)&'Sl+S&'S2 or (2.42) 

IfIsm={l S)IfIS1+SlfIs2 (2.43) 

where (; is a dimensionless parameter that measures the extent of cracking, zero for an uncracked 

section and between zero and unity for a fully cracked section. The parameters 1/tsl and 1/ts2 represent 

the curvatures at the uncracked and cracked states, respectively. 

(2.44)S =l-(~r withM>Mr 

The CEB-FIP Model Code 1990 (1993) introduces two additional parameters to account for the 

difference in bond characteristics ofdeformed and plain bars, as well as long term effects 

(2.45) 

/31 equals 1 and 0.5 for deformed and plain bars, respectively. /32 equals 1 and 0.5 for immediate 

loading and sustained loading, respectively. 

This approach to tension stiffening can be used in combination with the hand-calculation method 

described in section 2.1.1. A curvature coefficient is calculated for condition 1 and 2: 

(2.46) 

(2.47) 

These coefficients represent the influence of the reinforcement on uncracked and cracked curvatures. 
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An effective coefficient is then found by interpolating with equation (2.44): 

(2.48) 

where: 


Ig =Moment of inertia ofthe gross concrete area, neglecting reinforcement; 


11 = Moment of inertia of the uncracked, transformed section; 


12 = Moment of inertia of the fully cracked transformed section; 


lest = Curvature coefficient for condition 1; 

lesl = Curvature coefficient for condition 2. 

2.2.2 Branson's Effective Moment of Inertia 

Similar to the bilinear method, this method proposes an effective moment of inertia, constant over the 

length of a member, for the computation ofdeflections. The effective moment of inertia, developed 

by Branson (1968), is expressed as: 

(2.49) 

where Ig is the moment of inertia of the gross concrete section neglecting reinforcement and m is a 

power usually set to 3, although Branson suggested a value of 4 for calculating Ie at a specific section. 

Although this equation was developed for beams, a study undertaken by Polak (1996), suggests that 

sufficiently accurate deflection results are achieved for slabs using the equation in conj unction with 

the finite element method. This method is set out below. 

The difficulty in applying Branson's equation to plate bending problems concerns the definition of 

flexural rigidity. In the case ofbeams the flexural rigidity is simply the product EI, whereas in the 

plate formulation, flexural rigidity is represented by the matrix [Df] as shown in equation (2.17). 

Polak circumvented this difficulty by modifying E and vinstead of1. 

The ratio of the cracked to gross second moments of inertia is used to modify [D] per element. This 

implies that the cracked section properties are averaged across all nodes belonging to an element to 
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arrive at a single partially cracked element. This is achieved by calculating average moments in the x 

and y-directions for use in equation (2.49), 

Mxavg = : 2:;=1 (lMXil + IMxYil) (2.50) 

Myavg = : 2:;=1 (IMYil + IMxYil) (2.51) 

where n is the number of Gaussian sampling points and Mxi, My! are the moments calculated at 

sampling point i. 

The elasticity matrix, modified for tension stiffening, takes the following orthotropic fonn: 

E)l3 Eyvxh3 

0 0 0 
12(1- VXvy} 12(1-vxv y} 


ExV)z3 Eyh3 


0 0 0 
12(1-vxv y} 12(1-vxv y} 

(2.52)[D]= 
G1h3 

0 0 0 0 
12 

0 0 0 G2h 0 

0 0 0 0 G3h 

where: 


Ex =afic' Ey=afic (2.53) 


Vx =axv, vy=ayv (2.54) 


G1 = Gaxay , G2 =Gax, G3 =Gay (2.55) 


lex ley
a=- , a y=- (2.56) 

x I 
g 19 

lex and ley are calculated using the average moments obtained from equations (2.50) and (2.51). 

Bensalem (1997) pointed out weaknesses in Polak's proposed method, many of which are intentional 

approximations with a simple method in mind as pointed out in Polak's closure. 
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One of these weaknesses involves the calculation ofthe average moments. Bensalem argues that the 

approach would only be valid for conditions when the signs of the moments are the same. Should 

these signs differ, over- or underestimation ofthe average moments would occur. Typical rectangular 

layouts lead to same sign moments and the approach remains valid. 

The analysis algorithm, as given by Polak:, is restated in simplified form in figure 7-2 for reference. 

2.2.3 Rigorous methods 

A number of sophisticated approaches to post-cracking behaviour and tension stiffening have been 

proposed. These models usually incorporate non-linear constitutive relations and multi-layer elements 

as the main components. 

Chan et al (1994), utilises strain hardening plasticity theory to develop the constitutive model for a 

finite element analysis and also present a bond stress distribution function to model tension stiffening. 

Principal stresses at integration points are evaluated and compared to the cracking strength of the 

concrete. Should the cracking strength be exceeded, tangential concrete moduli are calculated using 

the bond stress distribution. The constitutive matrix is modified with the tangential moduli and the 

analysis proceeds in an iterative manner with continuous model updating. 

Hu et al (1991), use a similar approach as above, except that an explicit tension stiffening function and 

a layered finite element formulation is used. Crack directions are modified during the analysis to 

ensure that cracks remain normal to the maximum principal stresses. 

Due to the non-linear nature of the methods briefly outlined above, and in fact almost all sophisticated 

methods, iteration, and all the associated numerical difficulties, is required. Large finite element 

models using these approaches become bulky in terms of storage requirements and computing time. 

2.3 Creep 

Creep is a progressive increase in strain under sustained loading and is responsible for the largest 

portion of long term deflections in concrete structures. The current state of the art with regards to 

creep is perhaps best described in a paper by Bazant (200 I) : " ...despite major successes, the 
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phenomenon of creep and shrinkage is still far from being completely understood, even though it has 

occupied some of the best minds in the field on cement and concrete research and material science ..." 

A large number ofpredictive physical models have been proposed in the past and are still being 

developed. Neville & Dilger (1970) and Bazant (2001) have provided detailed overviews of these 

models and they will not be repeated here. 

These physical models lead to mathematical models that facilitate structural analysis: 

• Effective modulus method. 

• Age-adjusted effective modulus method. 

• Rate of creep method. 

• Improved Dischinger method. 

• Rheological models. 

Analysis methods fall into two classes: 

• Single step approximations. 

• Step-by-step iterative solutions. 

Of these, the simplest choice would be the age-adjusted effective modulus method using a single time­

step approximation. These single step approximations yield acceptable upper bound deflections for 

routine design and are not plagued with the numerical problems of iterative rheological approaches, 

such as creep divergence, BaZant (1993). 

The discussion below is therefore limited to the effective modulus method and the related age-adjusted 

effective modulus method. 

In the study of creep effects, it is convenient to separate creep strain into the following components 

(figure 2-7): 

• Irrecoverable creep or flow, designated by Ilf. 

• Ilfis further divided into basic creep and drying creep. 

• Recoverable creep or delayed elastic strain, designated by lid. 

One of the main disadvantages of the effective modulus method is its inability to deal with decreasing 

stress histories. As can be seen from figure 2-7, creep involves a measure of irrecoverable strain. The 

 
 
 



37 


effective modulus method, due to its elastic nature, predicts complete recovery of creep strains, i.e. a 

return to zero strain at unloading. This will lead to a severe underestimation ofdeflection for structures 

subjected to cyclic loading. 

8r 

8f 

t 

~------------------~cru 

... 

t 

Figure 2-7: Creep components due to a load pulse 

The total creep potential of a concrete specimen is usually described by a creep coefficient, ¢rt, r:), 

which is expressed as, 

(2.57) 


where: 

Elt) Creep strain at time t. 

Ee = Instantaneous elastic strain. 

7: = Age at loading. 

This coefficient increases with time and is highly dependent on the concrete maturity at first loading. 

One of the largest uncertainties in creep problems is the magnitude of rp. A vast number ofprocedures 

are available for the calculation of rp, many of which calculate contributing portions to rp for the 

various components of the total creep strain. 
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The effective modulus method involves replacing the modulus used in the analysis with an artificial, 

effective modulus: 

E (t r) =_E_c_ (2.58)e, l+¢(t,r) 

where: 


Ee(t, r) =Effective modulus at time t for a specimen loaded at time T. 


Ec = Concrete modulus ofelasticity at time zero. 

Equation (2.58) allows the calculation of total deflection at time t, If only the creep increment in 

deflection is sought, equation (2.58) becomes: 

Ec
Ee(t,r)=-- (2.59)


¢(t,r) 


The age-adjusted method allows an improved estimation of ¢. Since the fun loading is rarely 

instantaneously applied at time T, as suggested by figure 2-7, the total load causing deflection is only 

active at some time later than T. As mentioned earlier, ¢ is very sensitive to T and should therefore be 

modified to account for this gradual increase in load. The age-adjusted method suggests the use of a 

factor, xit, T) smaller than unity, to reduce the magnitude of ¢. 

Equation (2.58) then becomes, 

Ec
Ee(t,r)=------ (2.60)


1+Z(t, r)¢(t, r) 


As for ¢, various national building codes suggest procedures for the calculation ofX(t, r). For the 

purposes of this dissertation it is assumed that ¢ and X are known and the focus falls on the 

implementation of these quantities in a creep analysis. 

The method set out below is often referred to as the "Section Curvature Method" and is taken from 

Ghali and Favre (1986). The equation variables are illustrated in figure 2-8. 

 
 
 

http:Ee(t,r)=------(2.60
http:Ee(t,r)=--(2.59


39 


The creep curvature increment of a plain concrete member subjected to flexure and assumed to be 

uncracked may be expressed as: 

(2.61) 

where: 


Lllf/ = Creep increment in curvature; 


¢(t, r) = Creep coefficient at time t for loading at time 1:; 


If/e = Elastic curvature at time 1:. 


Similar to equation (2.57), equation (2.61) modifies the elastic curvature for creep, based on the creep 


coefficient and the assumption that strain is linearly related to curvature. 


Reinforcement tends to restrict concrete creep and the magnitude of this influence is a function of 


section geometry and reinforcement ratio. The effect of reinforcement on concrete creep can be 


expressed by a dimensionless parameter K'c, as shown in equation (2.62): 


(2.62) 

where: 


K'c = Creep curvature coefficient, defined by equation (2.64); 


Eo = Axial strain at point 0 at time z; point 0 is a reference point chosen at the centroid 


of the age adjusted transformed section; 

Yc y-coordinate of the centroid ofAe at time 1:, measured downwards from the centroid of 

the age-adjusted transformed section. 
, 

r~ = c 

Ie Moment of inertia ofAc about an axis through the centroid ofthe age-adjusted 

transformed section. 

Ac Effective concrete area, full area for uncracked sections and the concrete compression 

zone for cracked members. 
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This dissertation neglects the effect ofmembrane action in the slab and equation (2.62) can then be 

simplified to: 

(2.63) 

The parameter ICc can be calculated from: 

(2.64) 

where: 

L1y = y-coordinate of the centroid of the age adjusted transformed section, measured 

downwards from the centroid of the transformed section at time T. 

Moment of inertia of the age adjusted transformed section about an axis through its 

centroid. 

Figure 2-8, taken from Ghali & Favre, illustrates the variables used in equations (2.62) to (2.64). 

This approach is applied to the finite element method in section 3.2. 

a) 

CentrOid of A, 

Centroid of 
transformed 
section 

b) 

Centroid ofA, 

Centroid of 
transformed 
section 

a eA'3 a.A', 

t't.y (-) y, 

T 
-==i 

// '/L,.( 
a."A. 

't t>, 

a."A~ a~A:. 

--------*--'"~,L\y (-) 

aeAIi a"A. 

A, is equivalent to the hatched area 

Centroid of A" 

Centroid of 
age-adjusted 
transformed 
section 

Centroid ofA, 

Centroid of 
age-adj usted 
transformed 
section 

Figure 2-8: Creep section parameters for a) uncracked section; b) cracked section 

(Reproduced from Ghali & Favre (1986» 
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2.4 Shrinkage 

Shrinkage occurs when a hygral gradient exists between a concrete member and the surrounding 

environment. Pore and adsorbed water migrates from the concrete and causes a change in volume. 

Should this change in volume be restrained by reinforcement or support conditions, tensile stresses 

develop which could in turn cause cracking. When free shrinkage, denoted by 8m is restrained by an 

unsymmetrical arrangement ofreinforcement about the neutral axis of a member, an increase in 

curvature occurs. 

The derivation below is taken from Kong & Evans (1987). 

From basic theory, the shrinkage curvature can be written as, 

(2.65) 


From the geometry of figure 2-9, 

8 =8 _h2 and (2.66)
2 cs E 

c 

(2.67) 

4~---------8~----------~ 

r I'" 82-----+1 

~----------~------~ 

Figure 2-9: Shrinkage strains in a singly reinforced member 

 
 
 



42 


From the requirements of equilibrium, 

ic! =(f~s) - (f~;)es (d -es) and (2.68) 

r = (f~s) + (f~s)es e (2.69)
jc2 A I s 

where: 


Is Steel stress due to shrinkage (EsE,); 


lei Concrete tensile stress at the tension reinforcement level due to shrinkage; 


Ie; = Concrete tensile stress at the top fibre of the section due to shrinkage; 


es = Eccentricity of the steel centroid with respect to the centroid of the transformed section; 


A Concrete cross sectional area; 


As = Area ofreinforcement; 


I =Moment of inertia of the age-adjusted transformed section. 


Equation (2.65) can then be rewritten as: 

(2.70) 

where ae is defined as 

Es a=­ (2.71) 
e E 

c 

It should be noted that ae is based on the effective concrete modulus and I is based on the age-adjusted 

transformed section. 

Equation (2.70) holds for singly reinforced uncracked members, and very little error is involved by 

applying the equation to cracked sections as well (Kong & Evans, 1987). 

This approach for singly reinforced sections is applied to the finite element method in section 3.3. 
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IMPLEMENTATION OF THE PROPOSED METHOD 

3.1 	Cracked Sections 

Polak's approach to the problem of tension stiffening was applied almost without change. The author 

modified the algorithm suggested by Polak to allow for iteration after each model update, figure 7·3. 

Both the Bilinear and Branson's method were used in conjunction with Polak's approach and 

compared to experimental results in section 4.2. The bilinear method required further development 

before being utilised in a manner similar to Branson's method. 

Assuming that elastic relations still hold on average for cracked sections: 

M 
(3.1)If/l = Ell 

M 
(3.2)1f/2 = El2 

where the subscripts 1 and 2 refer to conditions 1 and 2 as described in section 2.2. 


Substituting equations (3.1) and (3.2) into equation (2.43) yields an effective moment of inertia 


(3.3) 

-. 

Ie can then be used to calculate ax and lXy as described in section 2.2.2. It should be noted that the 

procedure for instantaneous cracked deflection and long·term cracked deflection differs. For long· 

term deflections a shrinkage analysis should precede the crack analysis, as shrinkage normally causes 

additional member actions that contribute to cracking. 

A very simple convergence check was used in the crack analysis as follows: 

• 	 Step 1 : Calculate deflections using I(j), where i denotes the iteration step. For the first 

iteration I(j) corresponds to h 

• 	 Step 2: Calculate Ie(i+l) using either ofthe two tension stiffening methods. 

• 	 Step 3 : Average Ie(i+ 1) and I(j) and calculate the reduction factors ax and lXy. 

• 	 Step 4: Loop back to step 1 and repeat until Ie(i+l) "'-"I(i). 
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This approach converged very quickly when using Branson's method but the bilinear method often 

exhibited oscillating divergence. This phenomenon was model and loading dependent and the 

algorithm had to be modified on a case by case basis to achieve a convergent solution. 

3.2 Creep 

Using equation (2.64) the factors Kx and Ky can be calculated based on the reinforcement ratios in those 

two directions, similar to ~ and ay in section 2.2.2. To account for the different creep characteristics 

of cracked and uncracked sections, a creep analysis must be preceded by a crack analysis as described 

in section 3.1. 

The elasticity matrix in equation (2.19) can then be modified as follows for the calculation ofcreep 

deflection increments for a cracked element: 

Ejl3 Eyvjl3 
0 0 0 

12(1-vxv y) 12(1-vxv y) 


V)z3 Eh3
Ex y 0 0 0 
12(1-vxv y) 12(1-vxv y) 

(3.4)[D]= 
G1h3 

0 0 0 0 
12 

0 0 0 G2h 0 

0 0 0 0 G3h 

where: 

(3.5) 

(3.6) 


(3.7) 

(3.8)vx=axv, 

with ax :$;1, ay :$;1 and r/J the creep coefficient. 
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The parameters ax and fly are based on short term properties and Kx and Ky are parameters smaller than 

unity that modify the creep coefficient to account for the presence of the reinforcement. 

The variables in equations (3.4) to (3.8) apply to cracked and uncracked section parameters as needed. 

Uncracked elements and fully cracked sections pose little difficulty. Partially cracked sections, on the 

other hand, require the calculation of an effective neutral axis. 

It is proposed that the neutral axis for partially cracked sections be calculated based on the assumption 

that since the parameter ex provides a measure of the extent of cracking it can also be used directly to 

modify the depth of the neutral axis: 

(3.9) 

where: 

Ye y-coordinate of the neutral axis of the partially cracked section, measured from the top 

of the section. This value should be larger than the cracked neutral axis coordinate 

and smaller than the uncracked value. 

Yl y-coordinate of the neutral axis for the uncracked section, measured from the top of 

the section. 

The creep analysis algorithm is illustrated in figure 74. 

3.3 Shrinkage 

Equation (2.70) can be used to calculate x and y curvatures for each element, independent ofloading. 

These curvatures need to be transformed into equivalent nodal loads in order to model the effect of 

boundary conditions on shrinkage in a finite element analysis. 

Equivalent nodal loads are calculated simply from the following equation, utilising Gaussian 

numerical integration over the 4 sampling points: 

{psh }= f[BY[D]{Esh}dA (3.10) 
A 

where [B] is calculated from equation (2.26) and [D] is calculated from equation (3.4). 
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{8Sh} is the vector of shrinkage strains: 

If/ xshXx 

Xy If/ ysh 

(3.11)= 0{SSh} = Xxy 
0tPx 
0tPy 

The vector of shrinkage forces for each element node is calculated as: 

(3.12) 


All these forces are then assembled into a global force vector and the shrinkage deflections and forces 

are calculated with [D] modified for creep. 

The shrinkage analysis algorithm is illustrated in figure 7-5. 
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4 COMPUTATIONAL EVALUATION 

4.1 Elastic Analysis 

4.1.1 Aspect ratio studies 

Shear locking was introduced in section 2.1.2 as a numerical issue where the Serendipity Mindlin 

element is concerned. This section evaluates extent of the shear locking problem and whether the 

issue is significant in the analysis ofconcrete slabs. 

Shear locking causes an overestimation ofplate stiffness for "thin" plates and it follows that plate 

thickness is the most significant factor influencing locking. Plates are therefore investigated over a 

range of span to thickness ratios. 

The finite element analysis (FEA) mid-plate deflections of a simply supported and a clamped square 

plate, subjected to uniform transverse loading, are compared to the deflections obtained from classical 

methods. Navier's approach is used to calculate the exact plate deflection for the simply supported 

plate and Levy's solution is used for the clamped case, Ugural (1999). In both cases the Kirchhoff 

model ofplate bending, i.e. thin plate theory, was employed. The resulting equations for a square 

plate are shown below: 

W= O.004066Lr 
(simply supported) (4.1)


D 


[4 

W =O.001264L (clamped) (4.2)


D 

where p is the uniform load, I the plate length and 

(4.3) 

The finite element layout and boundary conditions are illustrated in figure 4-1 and the results of the 

study are plotted on figure 4-2 and figure 4-3. In the aforementioned figures, WFEA denotes lateral 

deflection at the centre of the plate as calculated with the finite element method for two integration 

schemes and WKIR, the lateral deflection as calculated with equations (4.1) and (4.2). The finite 
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element analysis employs Mindlin assumptions and the "exact" solutions employ Kirchhoff 

assumptions. 

Clearly, numerical instabilities occur as the span to thickness ratio becomes large, regardless of the 

integration scheme employed. Reduced integration improves the performance of the element, but does 

not eliminate locking. For the serendipity element a 3x3 point Gaussian quadrature is exact, whereas a 

2x2 point quadrature is a reduced integration scheme. 

Although this finding is significant in analyses dealing with thin plates, reinforced concrete slabs 

rarely exhibit span to thickness ratios larger than 32. This ratio is represented by the vertical line in 

figure 4-2 and figure 4-3. As can be seen from these figures the deflection is at least overestimated, if 

not entirely accurate for ratios smaller than 32, even with exact integration. 

Only a quarter plate shown ___ Rotational restraint 
due to symmetry 

• Translational restraint 

Simply supported Clamped 

Figure 4-1: Element layout and boundary conditions 
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4.1.2 Convergence Studies 

An issue that often arises in a finite element analysis is that of mesh density. The analyst always 

attempts to use the least number of elements and still obtain reliable results. This section studies 

various mesh densities on plates subjected to uniform loading in an attempt to find the optimum 

number of elements on a rectangular grid for slab problems. 

The simply supported and clamped square plates illustrated in figure 4-1 are used with a varying 

number of elements. The plate analysed is a 6m square plate, 600mm thick subjected to a 5kPa 

distributed load. Both the Mindlin and Kirchhoff models for plate bending are used for analytical 

comparison. The analytical results for maximum deflection using the Kirchhoff assumptions are given 

in equations (4.1) through (4.3) and the results for the Mindlin model are given below, Liu (2002): 

r 
W =0.00427 L (simply supported) (4.4)

D 

W= o.oolsLr (clamped) (4.5)
D 

where all variables are as defined in section 4.1.1. 

As can be seen from figure 4-4 and figure 4-5, very little is gained from a mesh finer than 6x6, as far 

as accuracy is concerned. One should note that this result is valid for square plates subjected to 

uniform pressures only. 

The curves labelled Mindlin plot the ratio ofwFEAlwexact. where W exact is calculated using equations (4.4) 

and (4.5). The curves labelled Kirchhoffuses a W exaet calculated from equations (4.1) and (4.2), WFEA 

refers to the results of a fmite element analysis (Mindlin assumptions, and 2x2 integration) throughout. 
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Figure 4-3: Aspect ratio study for a clamped square plate 
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It is interesting to note that the element deteriorates in the case of the clamped plate, this indicates that 

the influence of shear deformation on flexural deflections of a plate is not solely dependent on the 

span to depth ratio, but also on boundary conditions. 

4.2 Polak Slab Specimen 

A slab tested by Polak (1994) was used to corroborate the results yielded by the effective stiffuess 

method presented in section 2.2.2. The data from these slabs are used in this section to verifY the 

software developed by the author and to test the applicability ofthe tension stiffening method 

presented in sections 2.2.1 and 3.1. 

The specimen employed for comparison, labelled SMl, is illustrated in Table 4-1 and figure 4-6. 

Dimensions (mm) Ec(GPa) Px* py* dx(mm) dy(mm) v 

1625 x 1625 x 316 34.278 1.25% 0.42% 281 256 0.2 

Table 4-1: Specimen properties (*per layer) 

Specimen SMl, simply supported on two opposite edges, was loaded with uniaxial moments on the 

supported edges. The loading conditions and finite element model for the slab are shown in figure 4-6 

and figure 4-7. 
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1625 


~A 


~ 

1625 ·1r 
-*-35 

t31 11: :~ 
f 60 

Figure 4-6: Specimen Geometry and Reinforcement 

f--- Rotational restraint 

• Translational restraint 

___ Moment 

M, If---M f-----No M, 

Figure 4-7: Finite element model for specimen SMI 
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A comparison of the results of the experimental and numerical analysis of specimen SMI are plotted 

in figure 4-10. It is evident from figure 4-10 that the author's implementation ofboth the Bilinear and 

Branson's approach to tension stiffening compares favourably with the experimental data of specimen 

SMI and the results of Polak. 

4.3 Jofriet & McNeice Slab 

Jofriet and McNeice (1971) performed a point loading test on a comer supported slab, the properties 

of which are indicated in Table 4-2. The point load was applied to the centre of the slab. 

Dimensions (mm) Ec(GPa) Px fJy dx,y(mm) v 

914 x 914 x 44 28.623 0.85% 0.85% 33 0.15 

Table 4-2: Specimen properties 

The specimen geometry is illustrated in figure 4-8 and the finite element model in figure 5-9. 

914 

~A 

Figure 4-8: Specimen Geometry and Reinforcement 
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The slab model consists of a 6x6 mesh with the translational degrees of freedom restrained at the 

comer nodes. The slab was subjected to a central point load and deflections measured at point A as 

indicated. With the element mesh as shown, this point fortuitously coincides with a mid-edge node of 

a central element. 

y 

914mm- - Supports--
¥ 

I ~l 

i 
I 
I 

I
i 

Point load 
~i._._.- _._._*-_._.__._._._._.­.....--. ! 

~",pointA t 
a 

+ 

1 

! 

J 
'r1 ...- x 

Figure 4-9: Jofriet and McNeice slab model 

The results ofboth Polak and the author's analysis are plotted against the experimental data of Jofriet 

and McNeice in figure 4-11. It should be noted that Branson's approach yields results far superior to 

the bilinear approach. Careful investigation of the parameters influencing these two methods reveals 

that the bilinear method is very sensitive to changes in reinforcement ratio. 

The curve of the effective moment of inertia versus applied moment curve changes shape with lower 

reinforcement ratios when using the Bilinear method, whereas the curves retain a similar shape when 

using Branson's method, see figure 4-12 for details. The figure implies that the bilinear method 

becomes unreliable with lower reinforcement ratios. This finding casts significant doubt on the 

usefulness of bilinear method in flat slab problems where reinforcement ratios are typically fairly low. 
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4.4 Haddad's Beam 

The data for this beam test as well as the hand-calculation deflection results were obtained from 

Neville (1970). The cross sectional properties, layout and loading ofthe tested beam are illustrated in 

figure 4-13. It should be noted that the original test was carried out using imperial units. 

17.36 kN 17.36 kN 

1.83 m 0.61m 

4.267m 

! 

I 

180.34 mm 

i'.. ..\ 
_r- ---r­

1 

EE 
EE 
10N 

10 ~ .....ci 
M10 

M 

Figure 4-13: Geometry and loading of the beam tested by Haddad 

Tabulated below are some material and geometric properties as established by Haddad: 

Concrete cylinder strength,/c' 26.34MPa 

i Rupture modulus,J,. 3.1 MPa 
i 

I Young's modulus, E 22.76 GPa 

Free shrinkage strain, Gcs -204xlO-6 

Creep coefficient, tP 2 

Percentage tension reinforcement 1.42% 

Table 4-3: Material properties ofHaddad's beam 
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The rupture modulus was calculated, Neville (1970), from: 

f,. =O.6JT' (4.6) 

The beam, modelled as a slab of the same width, was approximated with a I x20 element mesh, as 

illustrated in figure 4-14. Three separate analyses were performed and compared with Haddad's 

experimental data as well as the results obtained by Neville with hand-calculation methods. 

Rotational restraint 

• Translational restraint 

X Point load 

Figure 4-14: Plan view of the element layout 

A simple elastic analysis, neglecting cracking and tension stiffening, yields a mid-span deflection of 

3.67 mm which compares well with the value of 3.71 mm as predicted by analytical methods. 

The table below compares the mid-span deflections at time infinity of the finite element analysis, 

Neville's results and Haddad's data. 

I 

i 

FEA(mm) Neville (mm) Haddad(mm) 

IElastic with cracking 

(Branson) 
5.8 5.28 5.84 

Creep with cracking 3.14 3.81 

Shrinkage 1.28 1.04 

Total long term 10.22 10.13 10.9 

Table 4-4: Comparison between the proposed model, Neville and Haddad's results 

 
 
 



63 


It should be noted that the method proposed in this dissertation assumes that the principle of 

superposition applies to the four stated components of time dependent deflection: elastic, cracked, 

shrinkage and creep. 

The table indicates that the finite element analysis correlates extremely well with both the hand 

calculation methods employed by Neville and the actual results obtained by Haddad. 

4.5 Simplified Analysis of a Slab Panel 

As a further verification, a slab panel analysed with the hand-calculation method set out in section 

2.1.1 is compared with the proposed finite element method. This panel is taken from Ghali and Favre 

(1986) and the detail is given below and in figure 4-15. 

For the purposes of the hand calculation it is assumed that the moments and required reinforcement are 

known and only the final, long-term deflection is sought. Naturally, for the [mite element approach, 

only slab geometry, required reinforcement and material properties are needed. 

The panel is loaded with a uniformly distributed load q = 8.42 kN/m2 on a 7m x 7m span. The depth 

of the slab, h 200mm, and the average effective depth of the tension reinforcement in the x and y 

directions, dt = 160mm. The modulus of elasticity at the time of loading Ee 25GPa with the creep 

and aging coefficients ¢(t, r) = 2.5 and X(t, r) = 0.8, respectively. The modulus ofrupture is given as/, 

= 2MPa and the modulus ofelasticity of the reinforcement Es = 200GPa. 

650 mm2/m 
A M = 18.6 kNm/m r,-Q­ V' ._._ .• • '-'-'-'V 

I~ 
ment

Bottom reinfOrr ~ II 
tI 

450 mm2/m M = 12.4 kNm/m 

~,-,-,-,-- -,-,--,~ ~--,-, 

Figure 4-15: Reinforcement layout and moments of the slab panel 
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Top reinforcement is conspicuous in its absence in the figure above, and the assumptions made for the 

finite element analysis are elaborated upon in section 4.5.2. The hand calculation method on the other 

hand, oddly neglects the influence ofnegative reinforcement and cracking at the column supports. 

4.5.1 Hand Calculation 

The calculation in this sub-section is taken directly from Ghali and Favre (1986). 

Equation (2.7) yields an uncracked moment of inertia, neglecting reinforcement as, 

Using a deflection coefficient table based on equation (2.1) Ghali and Favre (1986), D, t5EF and t5AB are 

calculated as: 

q/4
D =0.00482- =5.6mm 

E/g 

qr
isAB =0.00342- =3.97mm 

E/g 

isEF =D - isAB =1.63mm 

Column strip crack curvature coefficients are calculated using equations (2.46), (2.47) and interpolated 

with equation (2.48): 

Ksl == =0.98 
11 

K52 = 12 = 7 

The cracking moment and the crack interpolation coefficient are calculated as: 

Mr = fig =13.33kNm / m 
y 

~ == 1-Pll2 (~ ) 2 == 0.74 with 132 = 0.5 for long-term loading. 
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The effective crack coefficient and cracked mid-span column strip deflection is then: 

K. =(l-S)Ksl +SKs2 =5.45 

8 AD =5.45x 3.97 =21.65mm 

The creep curvature coefficients are found using equation (2.64) and interpolated in a similar manner 

to calculate an ultimate creep deflection of9.55mm. The middle strip deflections can be calculated in 

the exact same manner, Tables 4.5,4.6 and 4.7 summarise the results of the comparison. 

4.5.2 Finite Element Analysis 

The finite element model consists of a 6x6 element mesh with the corners fixed against all 

displacements and the edges fixed against rotation about an axis parallel to the edge as shown in figure 

4-16. 

___ Rotational restraint 

• Translational restraint 

Only a quarter slab due to sJ1llmatry 

Figure 4-16: Finite element model 

For the purposes of the finite element analysis, symmetric double reinforcement (top and bottom) is 

assumed as shown in figure 4-17. 
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Hand calculation (mm) 

(GbaU & Favre, 1986) 
FEA(mm) 

Cracked: Branson 2.08 

Cracked: Bilinear 1.6 2.26 

Creep: Branson 

Creep: Bilinear 3.04 i 

2.56 

2.74 

Total: Branson 

Total: Bilinear 4.64 

i 

I 

4.64 

5 

Table 4-6: Relative middle strip deflections 

I 
 Hand calculation (mm) 

FEA(mm)

(Gbali & Favre, 1986) 

31.81Cracked: Branson 

23.25 
i 

38.54Cracked: Bilinear 

8.12Creep: Branson 

12.59Creep: Bilinear 9.18 

39.93Total: Branson 

Total: Bilinear 35.84 47.72 

Table 4-7: Total mid-panel deflections 

It is clear that use ofthe bilinear method consistently results in a higher deflection than is the case 

when Branson's method is employed. When viewed in the light of the discussion in section 4.3, it 

must be said that the bilinear method is unsuited for the purposes of this dissertation. 

i 
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Parameter Value 

. Dead load (Load combination factor) 5 kPa (1.35) ! 

i 

Live Load (Load combination factor) 2.5 kPa (1.5) i 

Panel dimensions 7.5m x 7.5m x 250mm 

Column dimensions (Internal) 400mm x 400mm x 3.75m 

Concrete C37 

4.6 Cardington Slabs 

A full scale seven storey concrete frame was erected and investigated at the BRE's (Building Research 

Establishment) Large-Building Test Facility in Cardington in the UK as part of the European Concrete 

Building project. The floors consists of flat slabs and deflection measurements were published by 

Vollum & Hossain (1998). 

The publications concerning this building do not mention the exact reinforcement ratios but the project 

brief, Chana et al. (1998), contains enough data, table 4-8, to infer the designed reinforcement from a 

design calculation to Eurocode 2. 

I 

I 

Table 4-8: Cardington slabs parameters 

A design calculation utilising the equivalent frame method, yields required reinforcement in the order 

of360mm2/m for both the hogging and sagging moment regions. This reinforcement area and the 

parameters shown in Table 4-9 and Table 4-10, are used to calculate the long-term deflection with the 

method proposed by the author. The finite element mesh used is identical to that of figure 4-16 and 

the reinforcement shown in figure 4-17 is modified to 360mm2/m. 

Parameter Value 

to, t\, h, t3 (Time) 2 days, 12 days, 300 days, 1000 days i 

i Wo, Wlo W2 (Sustained service load) 6.75 kPa, 10.7 kPa, 9kPa 
i 

Eo, E1, E2 (Modulus ofelasticity) 27GPa, 33GPa, 33GPa 

frO, frl' fr2 (Modulus ofrupture) 2.7MPa, 3.6MPa, 3.6MPa 

I Concrete C37, (35MPa) 

Table 4-9: Cardington time dependent slab parameters 
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i 

Time (days) 

to 2 

tl = 12 

t2 = 300 

;(t,to) 

0 

0.57 

1.42 

;(t,tJJ 

-
-
0 

i 

t3 = lOOO 1.72 1.03 

Table 4-10: Creep coefficients 

Two analyses were perfonned: 

• 	 FEA (2 steps) In this analysis, creep deflection was calculated using properties from to to t2 

in the first step, and a second step calculated creep deflections from t2 to t3. The first step used 

the 6.75kPa load and the second step 9kPa. 

• 	 FEA (1 step) - Here creep deflection was calculated in a single step from to to t3 using 9kPa. 

The measured deflections are plotted against the results of the finite element analysis in figure 4-18. 

The finite element analysis correlates well with the experimental data up to the application of the 9kPa 

load at t = 300 days. It is clear that the load history is of great importance when calculating long-tenn 

deflections and that the proposed method does not perfonn extremely well when faced with varying 

load histories. This problem would be exacerbated were the sustained load to decrease at any time, 

since full creep recovery would erroneously be shown by the proposed method. 

Despite these failings, the method predicts the 1000 day creep deflection within +12% when load 

history is included and within -40% when load history is neglected. 
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Figure 4-18: Finite element analysis plotted on the Cardington data 
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DISCUSSION AND CONCLUSIONS 

The basic premise of the proposed method is the extrapolation of concrete beam behaviour to slab 

problems. The cracked and creep behaviour of beams is applied with slight modification to a plate or 

slab. Since slabs are subjected to biaxial stress states, the assumption that biaxial behaviour is 

equivalent to the superposition of two uniaxial solutions is an obvious simplification. 

The error introduced by the simplification is of dubious importance when the inaccurate prediction 

models for the calculation of creep and shrinkage influences are taken into account. The equivalent 

frame approach will produce conservative estimates of long term deflection as slabs exhibit higher 

flexural stiffness due to torsional interaction. 

This assumption has been the basis of many a simplified method in the past and the proposed method 

merely applies it to the finite element method. 

5.1 Elastic deflections 

Figures 4.2 through 4.5 demonstrate that the Mindlin element compares very well with classical 

solutions for simply supported plates. As expected, some divergence occurs at smaller plate 

thicknesses due to numerical issues. Since practical span to depth ratios of concrete slabs are rarely 

large, the Mindlin formulation yields elastic results ofacceptable accuracy for this class ofproblems 

(span to depth ratios less than 32). 

5.2 Cracked deflections 

Polak's effective slab stiffness method produces acceptable results for both uniaxial and biaxial 

moment conditions as illustrated by figures 4.10 and 4.11. Although the Bilinear and Branson's 

method yield very similar results in the finite element analysis of slab SM I, the bilinear method 

performs poorly with low reinforcement ratios. 

Authors such as Park and Gamble (2000) have objected to the use ofBranson's method in slab 

problems due to the fact that this entirely empirical equation was developed for beams. They argue 
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that slab steel ratios are often orders ofmagnitude smaller than those ofbeams and it follows that the 

tension stiffening effect in slabs would be far lower than predicted by Branson's equation. 

Based on the findings of this dissertation, Branson's effective moment of inertia is preferred over the 

bilinear method for use in a finite element analysis. 

5.3 Creep deflection 

The proposed method of incorporating creep effects into a finite element analysis compares well with 

the experimental results ofHaddad's beam and Neville's simple analysis. Branson's method again 

yields results superior to the bilinear method as far as the influence ofcracking on creep deflections is 

concerned. 

The proposed method has much to recommend it: 

• The influence of reinforcement on creep is taken into account. 

• Movement of the neutral axis due to cracking is incorporated. 

• Only two parameters are required to quantify the creep strains of the material. 

The creep method developed in this dissertation compares favourably with the concrete frame tested at 

the Cardington facility when constant loading is assumed. As mentioned in the previous section, some 

work is required to accommodate varying load histories. 

5.4 Shrinkage deflection 

As with creep, very little data is available on the shrinkage behaviour of flat slabs and the same 

procedure used for beams was implemented, based on the single free shrinkage parameter. The 

proposed method compares very well with Haddad's beam. It should be noted that the proposed 

method to include shrinkage deflection in the analysis fails with clamped beams or plates since 

rotation, and not only axial deformation, is prevented in these cases. Further analytical work is 

required to apply a complete shrinkage analysis to models with clamped boundary conditions. 
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5.5 Recommendations and Suggestions 

The applicability of Polak's method using Branson's effective moment of inertia has been well 

demonstrated, although the boundary conditions for flat slabs do raise some concerns as to its use in 

the serviceability design of these structures. 

Further work could include different plate formulations and more rigorous methods of estimating the 

magnitudes of the reduction factors for cracking and creep. Specifically the average moment for use 

in Branson's equation and the influence ofboth cracking and creep on the shear characteristics of flat 

slabs. Varying, and especially decreasing, load histories need to be considered in greater detail as few 

practical slabs are subjected to lifetime constant loading. 

A point raised by one of the research groups at Cardington, was that with slender slabs dynamic 

effects also impact the magnitude oflong-term deflections. Further work in this aspect would make 

the method widely applicable. 
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7 Appendix 

7.1 Algorithms 

1. Input geometry, loads, 
supports and material 

properties.. 

2. Calculate [D] 

.. 
3. Calculate shape functions 

• 
Repeat per sampling 

4. Calculate the shape 

point 
function derivatives 

t 
5. Calculate [B] 

J 
6. Assemble the element 

stiffness matrix 

~ 
7. Transform element 

Repeat per element stiffness matrix from local to 
global axes 

t 

8. Assemble the structure 

stiffness matrix 

.. 

9. Solve global system of 

equations resulting in 
deflections 

.. 

10. Back substitute to 

I calculate stress resultants for 
each element 

I 

Figure 7-1: Linear finite element analysis algorithm 
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1. Input geometry, loading 
and material properties 

•

2. Calculate Ig, len L, and Mr 

~ 
3. Calculate D 

~ 
4. Solve for displacements 

and stress resultants 

•
5. Calculate <Xx and <Xy 

•6. Calculate D 

~ 
7. Solve for displacements 

and stress resultants 

•8. Output results 

Figure 7-2: Polak's tension stiffening algorithm 

Note: The calculation of [D] follows the procedure described in section 2.2.2. 
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1. Input geometry, loading 
and material properties 

2. Solve for displacements 
and stress resultants 

3. Calculate U x and u y 

4. Calculate [D] 

5. Solve for displacements 
and stress resultants 

No 

6. Recalculate ax and ay 

8. Output results 

Figure 7-3: Modification ofPolak's algorithm 
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1. Input geometry, loading 
and material properties 

+ 

2. Solve for displacements 

and stress resultants 

• 
I3. Calculate Kx and Ky

•

4. Calculate [D] 

l 
5. Solve for creep 

displacements 

+ 

6. Add elastic and creep 

displacements 

j 
7. Output results 

Figure 7-4: Creep analysis algorithm 
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1. Input geometry and 
material parameters 

2. Calculate shrinkage 
curvatures 

3. Calculate [D] 

4. Calculate shrinkage loads 

5. Solve for shrinkage 
displacements and stress 

7. Output results 

Yes 

8. Output results 

No 

8. Modify [D] for cracking 

Figure 7-5: Shrinkage analysis algorithm 
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7.2 Unit Mindlin code listing 

unit Mindlin; 

interface 

type 

TElement = class 

public 


//Public member variables 
Number Integer; //Element index in global array 
Es Double; //Young's modulus of reinforcement 
E Double; //Young's modulus of concrete 
Pois Double; /IPoisson's ratio 
h Double; IIElement depth 
G Double; IIShear modulus of concrete 
NumlntOrder Integer; //Order of numerical integration 
phi double; IICreep factor 

NodesCoord array[1 .. 3,1 .. 8] of Double; IINodal point coordinates 

NodesNum array[1 .. 8] of Integer; //Global node numbers 


ElStiffp array[1 .. 24,1 .. 24] of Double; //Element stiffness matrix plate 
ElStiffm array[1 .. 16,1 .. 16] of Double; /IElement stiffness matrix - membrane 
ElStiff array[1 .. 40,1 . .40] of Double; IISuperposed Element stiffness matrix 

SRes array[1 .. 4,1 .. 8] of Double; //Stress resultants 
SResM array[1 .. 8,1 .. 8] of Double; I/Smoothed stress resultants 
Def array[1 .. 5,1 .. 8] of Double; / /Nodal deflections 

GaussDBp array[1 .. 5,1 .. 24,1 .. 4] of Double; //DxB per sampling point - plate 
GaussDBm array[1 .. 3,1 .. 16,1 .. 4] of Double; I/DxB per sampling point - membrane 

ElLoad array[1 .. 24] of Double; //Element load vector 

UDL Double; /IUDL on element 


Mxavg, Myavg Double; //Average moments for crack analysis 
alphax, alphay Double; IICrack modification factors 
ksix, ksiy Double; IIBilinear crack modification factors 
alphaOldx, alphaOldy Double; IIPrevious crack modification factors 

G1, G2, G3 Double; //Orthotropic shear moduli 
Ex, Ey Double; IIOrthotropic Young's moduli 
Poisx, Poisy Double; IIOrthotropic Poisson's ratios 

Astx, Asty Double; //Area of tension steel mm2 1m 
dtx, dty Double; I/Effective depth of tension steel 
rocx, rocy Double; /ISteel percentages, compression 
rox, roy Double; /ISteel percentages, tension 

Igx, Igy Double; I/Gross moments of inertia 
lex, ley Double; //Effective moments of inertia 
IeOldx, IeOldy Double; I/Previous effective moments of inertia 
ICx, Icy Double; IICracked moments of inertia 
Mcrx, Mcry Double; //Cracking moments 
Crackedx, Crackedy Boolean; //True/False crack flags 

Cx, Cy, Cxy Double; //Curvature variables 
xg, yg Double; //NA depth, gross, transformed 
xc, yc Double; //NA depth, cracked, transformed 

kappaX, kappaY Double; //Creep modification factors 
ecs Double; //Free shrinkage strain 
MxShrink, MyShrink : double; I/Shrinkage forces 
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//Pub1ic procedures and functions 

Constructor Create(AOWner:TObject)i //Object creation - override 

Destructor Destroy; override; //Object destruction - override 


Procedure CalcBPi //Ca1cu1ates the plate strain matrix 

Procedure CalcBm; //Ca1cu1ates the membrane strain matrix 


Procedure CalcDPi //Ca1cu1ates the plate elastic matrix 

Procedure CalcDm; //Ca1cu1ates the membrane elastic matrix 


Procedure CalcDBp; //Ca1cu1ates product of B x D - plate 

Procedure CalcDBm; //Ca1cu1ates product of B x D membrane 


Procedure CalcJ( var JDet : Doublej //Ca1cu1ates the jacobian matrix and its inverse 
GNum : Integer ); 

Procedure CalcShape(u, v : Double); //Ca1cu1ates shape funtions and derivatives 

Procedure CalcStiffp; I/Ca1cu1ates the plate element stiffness matrix 
Procedure CalcStiffm; //Ca1cu1ates the membrane element stiffness matrix 
Procedure CalcStiffj //Ca1cu1ates the total element stiffness matrix 

Procedure SetupNumInti //Sets up numerical integration 

Procedure CalcUDLoad; //Reduce UDL to nodal loads 

Procedure CalcShrinkLOad( CurvX : Double, //Ca1cu1ate shrinkage loads 


CurvY : Double, 
CurvXY: Double, 
ShearX: Double, 
ShearY: Double 

Procedure CalcAvgsi //Ca1cu1ate average moments 
Procedure CalcModFactors(CrackType:integer); //Ca1cu1ate crack modification factors 
Procedure CalcCurvatures; //Ca1cu1ate curvatures from deflections 
Procedure CalcCreepFactors; //Ca1cu1ate creep modification factors 
Procedure Initlnertia: //Initia1ize moments of inertia vars 
Procedure CalcShrinkageCurvatures; //Ca1cu1ate shrinkage curvatures 

private 
//Private member variables 

Bp array[1 .. 5,1 .. 24] of Double: //Strain matrix - plate 

Bm array[1 .. 3,1 .. 16] of Double; //Strain matrix - membrane 


Dp array[1 .. 5,1 .. 5] of Double; / /E1asticity matrix - plate 

Om array[1 .. 3,1 .. 3] of Double; //E1asticity matrix - membrane 


DBp array!1 .. 5,1 .. 24] of Double; //Product of D x B plate 

DBm array! 1.. 3,1 .. 16] of Double; //Product of D x B - membrane 


J array!1 .. 2,1 .. 2] of Double; //Jacobian matrix 

JI array[1 .. 2,1 .. 2] of Double; //Jacobian matrix inverse 

GP array! 1.. 2, 1 .. 41 of Double; //Samp1ing point coordinates 


SFunc array! 1.. 8] of Double; //Shape funtions per node; 
SFDeriv: array! 1.. 3,1 .. 8] of Double: //Shape function derivatives per node 
CDeriv : array!1 .. 3,1 .. 8] of Double; //Cartesian shape function derivatives per node 

GaussPos : array!1 .. 2] of Double; //Samp1ing point position 

GaussWgt : array! 1_.21 of Double; //Samp1ing point weighting factor 


calcForCreep : Boolean; //True/Fa1se creep analysis flag 

published 


end; 
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implementation 

uses 
DTools, Math; 

111111111111111111111111111111/1111//11111111111111111III
II Object creator - simply initializes a few variables II 
111111111111111111111111111111111111111111111111111111III 

constructor TElement.Create(AOwner:TObject); 
begin 

inherited Create; 

Crackedx := False; 

Crackedy := False; 

calcForCreep .- False; 

InitInertia; 


end; 

/11111111111111111111111111111111111/1111111111111
II Object destructor - calls default destructor II 
1111111111111//11111111111//1//1111111111/11111111 

Destructor TElement.Destroy; 
begin 

inherited Destroy; 
end; 

1111111111111111111111111111111111111111 
II Calculates the plate strain matrix II 
11/111111111111111/111111111111111111111 

Procedure TElement.CalcBp; 
var 

iC,jC,kC : Integer; IILoop counters 

begin 

/IZero all matrix entries 
for iC := 1 to 5 do 


for jC := 1 to 3 do 

Bp[iC, jC] := 0; 


IICalculate the B matrix 
jC := 0; 

for iC := 1 to 8 do 

begin 


kC := jC + 1; 

Bp[4,kC] := CDeriv[1,iC]j 

Bp[5,kC] := COeriv[2,iC]; 

kC := kC + 1; 

jC := kC + 1; 

Bp[1,kC] := ·CDeriv[1,iC]; 

Bp[3,kC] := -CDeriv[2,iC]; 

Bp[4,kC] -SFunc[iC]; 

Bp[2,jC] := ·CDeriv[2,iC]; 

Bp[3,jC] .- -COeriv[1,iC]; 

Bp [5, j C] := -SFunc [iC] ; 


end; 

end; 
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1111111111111111111111111111111111111111111 
II Calculates the membrane strain matrix II 
1111111111111111111111111111111111111111111 

Procedure TElement.CalcBm: 
var 

iC,jC,kC : Integer; IILoop counters 

begin 

IIZero all matrix entries 
for iC := 1 to 3 do 


for jC := 1 to 2 do 

Bm [iC , j C) := 0: 


IICalculate the B matrix 
jC := 0; 

for iC := 1 to 8 do 

begin 


kC : = jC + 1; 

jC := kC + 1; 

Bm[1,kC] CDeriv[1,iC); 

Bm[1, jC) := 0; 

Bm [2 , kC] : = 0: 

Bm[2,jC] := CDeriv[2,iC): 

Bm[ 3, kC) := CDeriv [2, iC) ; 

Bm[3,jC) := CDeriv[1,iC]; 


end: 

end: 

/1/1/111111/1111111111/111111111111111111/11 
/1 Calculates the plate elasticity matrix /1 
1/11111111/11/11/111//1//1//111111/1/111/111 

Procedure TElement.CalcDp: 
var 

FactorM, FactorV Doublej IITemporary storage variables 
iC, jC : Integer; I/Loop counters 

begin 

//Zero all matrix entries 
for iC := 1 to 5 do 


for jC := 1 to 5 do 

OptiC, jC) := 0; 


if not (CalcForCreep) then 

begin 


1100 not use the creep modification factors 
if not (CrackedX or CrackedY) then 
begin 

IICalculate the gross 0 Matrix 
FactorM .- E*power(h,3)/(12*(1·power(Pois,2))); 
FactorV .- G*h/2.4j 

Dp[1, i) : = FactorM; 

Dp[1,2] .- POis*FactorMj 

Op[2,1) ,- Pois*FactorM; 

Op[2,2] ,- FactorM: 

Dp[3,3) := G*pow(h,3) 112: 

Op[4,4] .- FactorV; 

Dp[5,5] := FactorV; 


end 

else 
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begin 
IICalculate the cracked D Matrix 
Ex := E*alphaxj Ey := E*alphaYj 
Poisx := POis*alphaxj Poisy := POis*alphaYj 
G1 := G*alphax*alphay; G2 := G*alphax; G3 := G*alphay; 

Dp [ 1 ,1] .- Ex*power{h,3)/(12*(1-Poisx*Poisy»; 

Dp[1,2] .- POisX*Ey*power(h,3)/(12*(1-Poisx*Poisy»; 

Dp [2,1] := POisy*Ex*power{h,3)/(12*(1-Poisx*Poisy»; 

Dp[2,2] Ey*power(h,3)/{12*(1-Poisx*PoisY»j 

Dp[3,3) .- G1*power(h,3)/12; 

Dp[4,4] .- G2*hj 

Dp[5,5] .- G3*hj 


end; 

end 

else 

begin 


IIUse the creep mOdification factors 
Ex := alphax*E/(phi*kappaX)j Ey := alphay*E/{phi*kappaY)j 

G1 . ­ alphax*alphay*G/(phi*kappaX*kappaY); 

G2 alphax*G/(phi*kappaX)j 

G3 := alphay*G/(phi*kappaY); 


Dp[1,1] := Ex*power(h,3)/(12*(1-Pois*Pois»; 

Dp[1,2] .- POis*Ey*power(h,3)/(12*{1-Pois*Pois»j 

Dp[2,1) := POis*Ex*power{h,3)/(12*(1-Pois*Pois»; 

Dp[2,2] .- Ey*power(h,3)/(12*(1-Pois*Pois»; 

Dp[3,3] := G1*power(h,3)/12; 

Dp[4,4] := G2*hj 

Dp[5,5] .- G3*h; 


end; 

endj 

111111111111111111111111111111//11//111//11//11//1
1/ Calculates the membrane elasticity matrix 1/ 
1/ /1 
1/ Note that no modifications have been made to II 
// account for cracking, creep and shrinkage II 
//111111111111111111111111111111111111111111111111 

Procedure TElement.CalcDm; 
var 

Constant Double; IITemporary storgare variable 
iC, jC Integer; IILOOP counters 

begin 

IIZero all matrix entries 
for iC := 1 to 3 do 


for jC := 1 to 3 do 

Dm [ iC , j C ] : = 0; 


Constant := E/(1-pow(Pois,2»; 

Dm[1,1] := Constant; 

Dm[1,2] := Pois*Constantj 

Dm[2,1] := Pois*Constant; 

Dm[2,2] := Constant; 

Dm[3,3] .- (1-Pois)/2*Constant; 


end; 
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1111111111111111111111111111111111111111111111111111111111 
II Calculates the product of Band D for re-use (plate) II 
111111111111111111111111111111111111111111111////11111/11 

Procedure TElement.CalcDBp; 
var 

iC,jC,kC : Integer; IILoop counter 

begin 

IICa1cu1ate B x D 
for iC := 1 to 5 do 
begin 


for jC := 1 to 24 do 

begin 


DBp [ iC , j C ] : = 0; 

for kC := 1 to 5 do 


OBp[iC,jC] := OBp[iC,jC] + Op[iC,kC]*BP[kC,jC]; 

end; 


end; 


end; 

111/111111111111111111111111111111111111111111111111111111111
II Calculates the product of Band D for re-use (membrane) II 
111111111111111111111111111111111111111111111111111111111111 

Procedure TElement.CalcOBm; 
var 

iC,jC,kC : Integer; IILoop counters 
begin 

IICa1cu1ate B x D 
for iC := 1 to 3 do 
begin 


for jC := 1 to 16 do 

begin 


OBm [ iC , j C ] := 0; 

for kC := 1 to 3 do 


OBm [ iC, j C I := OBm [ iC, j C] + Om [iC , kC] "Bm [kC, j C] ; 

end; 


end; 


end; 

111111111111111111111111111111111111111111111111111111II 
II Calculates the the Jacobian matrix and its inverse II 
111111111111111111111111111111111111111111111111111111II 

Procedure TElement.CalcJ(var JOet : Double; GNum : Integer); 
var 

iC,jC,kC : Integer; IILoop counters 

begin 

IIZero all matrix entries 
for iC := 1 to 2 do 


for jC := 1 to 2 do 

begin 


J I [iC, j C] : = 0; 

end; 


IICa1cu1ate Gaussian point coordinates 
for iC := 1 to 2 do 
begin 


GP[iC,GNum] := 0; 

for jC := 1 to 8 do 

begin 


GP[iC,GNum] := GP[iC,GNum] + NodesCoord[iC,jC]"SFunc[jC]; 
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end; 

end; 


//Calculate the Jacobian matrix 
for iC := 1 to 2 do 
begin 


for jC := 1 to 2 do 

begin 


J [ iC, j C ] :=0 ; 

for kC := 1 to 8 do 

begin 


J[iC,jC] := J[iC,jC] + SFDeriv[iC,kC]"NodeSCoord[jC,kC]; 

end; 


end; 

end; 


IICalculate determinant and inverse of the Jacobian 

JDet := J [ 1 ,1] "J [2,2] -J [1 ,2] "J [2,1] ; 

J I [ 1 ,1] : = J [2, 2]/JDet ; 

JI[2,2] := J[1,1]/JDet; 

JI[1,2] := -J[1,2]/JDet; 

JI[2,1] := -J[2,1]/JDet; 


/ICalculate the cartesian derivatives 
for iC: 1 to 2 do 
begin 


for jC := 1 to 8 do 

begin 


CDeriv[iC,jC] := OJ 

for kC := 1 to 2 do 

begin 


CDeriv [iC, jC] . - CDeriv [iC, jC] + J I [iC, kC] "SFDeriv [kC, jC] ; 
end; 

end; 
end; 

end; 

///11///////1111/11111/111111111111//11111///1//11//1//111//11/1/1// 
// Calculates the shape functions and their cartesian derivatives /1 
/11111111////111111/11111//11/11111/////1/////////1111//11////11/// 

Procedure TElement.CalcShape( u,v : Double ) j 
begin 

I/Shape functions 

SFunc[1] := -1/4 " (1-u)"(1-v)"(1+u+v); 

SFunc[2] .- 1/2 * (1-u*u)*(1-v); 

SFunc[3] := 1/4 * (1+u)*(1-v)*(u-v 1); 

SFunc[4] .- 1/2 * ( 1 +u) * ( 1 -v "v) ; 

SFunc[5] := 1/4 * (1+u)*(1+v)*(u+v-1)j 

SFunc[6] .- 1/2 * (1-u*u)*(1+v); 

SFunc[7] .- 1/4 " (1-u)*(1+v)*(-u+v-1); 

SFunc[8] := 1/2 " (1-u)*(1-v*v); 


//Shape function derivatives 
SFDeriv[1,1] := 1/4 * (v+2*u-2"u*v-v*v)j 

SFDeriv[1,2] .- -u+u*v; 

SFDeriv[1,3] := 1/4 * (-V+2*u-2*U*v+v*v); 

SFDeriv[1,4] .- 1/2 * (1-v*v); 

SFDeriv[1,5] := 1/4 * (v+2*u+2*U*v+v"v); 

SFDeriv[1,6] .- -u-u*Vj 

SFDeriv[1,7] .- 1/4 * (-v+2*u+2*u*v-v*v); 

SFDeriv[1,8] 1/2 " (-1+v*v); 

SFDeriv[2,1] .- 1/4 * (u+2*v-u"u-2*u*v)j 

SFDeriv[2,2] .- 1/2 * (-1+u*u) j 

SFDeriv[2,3] .- 1/4 * (-u+2*v-u*u+2*u*v); 

SFDeriv[2,4] := -V-U"Vj 

SFDeriv[2,5] := 1/4 * (U+2*v+u*U+2*u*V)j 

SFDeriv[2,6] .- 1/2 " (1-u*u)j 

SFDeriv[2,7] .- 1/4 * (-u+2*v+u*u-2*u*v)j 

SFDeriv[2,8] .- -v+u*Vj 
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end; 

1111111111111111111111111111111111111111111111111 
II Sets up the numerical integration constants II 
1111111111111I11111111111111111111111111111111111 

Procedure TElement.SetupNumIntj 
begin 

case NumIntOrder of 
2 	 : begin 


GaussPos[1) . ­ -0.577350269189626; 

GaussWgt [ 1) . ­ 1 ; 

GaussPos[2) := 0.577350269189626; 

GaussWgt [2) . - 1 ; 


end; 

3 begin 

GaussPos[1] := -0.774596669241483; 

GaussPos[2] := 0; 

GaussWgt[1) .- 0.555555555555556; 

GaussWgt[2) := 0.888888888888889; 

GaussPos[3] := 0.774596669241483; 

GaussPos[4] := 0; 

GaussWgt[4] := 0.555555555555556; 

GaussWgt[4) ;= 0.888888888888889; 


end; 

end; 


end; 

111111111111111/111111/1111111111111111111111111111
1/ Calculates the plate element stiffness matrix II 
11111111111111I111111111111111111111111111111111111 

Procedure TElement.CalcStiffp; 
var 

iCount, jCount, kCount Integer; IILOOp counters 
lCount, mCount, nCount Integer; IILoop counters 
uPoint, vPoint Double; IISampling point indices 
Area, JDet Double; IIDifferential area and Jacobian determinant 

begin 

IIZero all matrix entries 
for iCount := 1 to 24 do 


for jCount ;= 1 to 24 do 

ElStiffp[iCount,jCount] ;= 0; 


IICalculate the D matrix 
SetupNumInt; 

CalcDp; 

kCount := 0; 


IINumerical integration 
for iCount := 1 to 2 do 
begin 


uPoint := GaussPos[iCount]j 

for jCount := 1 to 2 do 

begin 


vPoint := GaussPos[jCount); 

inc(kCount); 


CalcShape(uPoint,vPoint); 

CalcJ(JDet,kCount); 

Area: JDet*GaussWgt[iCount]*Gausswgt[jCount]j 


CalcBp; 

CalcDBp; 
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for lCount := 1 to 24 do 
begin 


for mCount := lCount to 24 do 

begin 


for nCount := 1 to 5 do 

begin 


ElStiffp[lCount,mCountj .- ElStiffp[lCount,mCountj 

+ Bp[nCount,lCount] * DBp[nCount,mCountj * Area; 

end; 
end; 


end; 


for lCount to 5 do 
begin 


for mCount 1 to 24 do 

begin 


GaussDBp[lCount,mCount,kCountj :; DBp[lCount,mCountji 

end; 


end; 


end; 

end; 


for lCount :; 1 to 24 do 
begin 


for mCount := 1 to 24 do 

begin 


ElStiffp[mCount,lCountj := ElStiffp[lCount,mCountji 

end; 


end; 


end; 

111111111111111111111111111111111111111111111111111111 
II Caloulates the membrane element stiffness matrix II 
111111111111111111111111111111111111111111111111111111 

Procedure TElement.CalcStiffm; 
var 

iCount, jCount, kCount Integer; IILoop oounters 
lCount, mCount, nCount Integer; IILoop oounters 
uPoint, vPoint Double; IISampling point indioes 
Area, JDet Double; IIDifferential area and Jaoobian determinant 

begin 

IIZero all matrix entries 
for iCount := 1 to 16 do 


for jCount := 1 to 16 do 

ElStiffm[iCount,jCountj .- 0; 


IICaloulate the D matrix 
SetupNumInt; 

CalcDm; 

kCount := 0; 


IINumerioal integration 
for iCount := 1 to 2 do 
begin 


uPoint := GaussPos[iCount]; 

for jCount := 1 to 2 do 

begin 


vPoint := GaussPos[jCountj; 

inC(kCount); 


CalcShape(uPoint,vPoint); 
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Ca1cJ(JDet,kCount); 

Area := JDet*GaussWgt[iCount]*GaussWgt[jCount]*h; 


Ca1cBm; 

Ca1cDBm; 


for 1Count := 1 to 16 do 
begin 


for mCount := 1Count to 16 do 

begin 


for nCount := 1 to 3 do 

begin 


E1Stiffm[lCount,mCount] .- E1Stiffm[lCount,mCount] 

+ Bm[nCount,lCount] * DBm[nCount,mCount) * Area; 

end; 
end; 


end; 


for 1Count := 1 to 3 do 
begin 


for mCount := 1 to 16 do 

begin 


GaussDBm[lCount,mCount,kCount) := DBm[lCount,mCount); 

end; 


end; 


end; 

end; 


for 1Count := 1 to 16 do 
begin 


for mCount := 1 to 16 do 

begin 


E1Stiffm[mCount,lCount) := E1Stiffm[lCount,mCount); 

end; 


end; 


end; 

11111111I111I111111111111111111111111111111111111 
II Assemble the total element stiffness matrix II 
1111111111111111111111111111111111111111111111111 

Procedure TE1ement.Ca1cStiff; 
var 

i, j, k, 1, m : Integer; IILoop counters 

begin 
Ca1cStiffm; 
Ca1cStiffp; 
for i := 1 to 8 do 
begin 

for j := 1 to 8 do 
begin 


for k.- to 2 do 

begin 


for 1 := 1 to 2 do 

begin 


E1Stiff[5*i-(k+2),5*j-(1+2)) .- E1Stiffm[i*k,j*1)i 

end; 


end; 

for k:= to 3 do 

begin 


for 1: 1 to 3 do 

begin 


E1Stiff[5*i-(k-1),5*j-(1-1)) E1Stiffp[i*k,j*1); 

end; 


end; 

end; 


end; 
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end; 

111111111111111111111111111111111111111111 
II Reduce UDL to equivalent nodal loads II 
111111111111111111111111111111111111111111 

Procedure Telement.CalcUDLoad; 
var 

iCount, jCount, kCount Integer; IILoop counters 
lCount, 
u, v 

pos Integer; 
Double; 

IILoop counters 
IIGauss point coordinates 

DArea, JDet Double; IIDifferentia1 area and Jacobian determinant 

begin 
IIZero all matrix entries 
for iCount := 1 to 24 do 

ElLoad[iCount] := OJ 

IINumerica1 integration 
kCount := 0; 
for iCount := 1 to 2 do 
begin 

u := GaussPos[iCount]i 
for jCount := 1 to 2 do 
begin 

v := GaussPos[jCount]i 
inc(kCount)j 

CalcShape (u , v) ; 
CalcJ(JDet,kCount}; 
DArea := JDet*GaussWgt[iCount]*GaussWgt[jCount]i 

for lCount := 1 to 8 do 
begin 

pos := (lCount-1)*3+1j 
ElLoad[pos] .- ElLoad[pos] + SFunc [lCount] *UDL*DArea; 

end; 

end; 
end; 

end; 

111111111111111111111111111111111111111111111111 
II Calculate shrinkage loads given curvatures II 
111111111111111111111111111111111111111111111111 

Procedure Telement.CalcShrinkLoad(CurvX, CurvY, CurvxY, ShearX, ShearY : double); 
var 

i, j, k, 1, m, posi Integer; !!Loop counters 
u, v Double; IIGauss point coordinates 
JDet Double; IIJacobian determinant 
DArea Double; IIDifferentia1 area 
iStrain array[1 .. 5] of double; IIInitia1 strain matrix 
BpT array[1 .. 24,1 .. 5] of doublej IITransponent of fB]
BpTD array[1 .. 24,1 .. 5] of double; IIProduct (BT]fD] 

IICa1cu1ate transponent of [B] 
Procedure CalcBpTransponentj 
var 

i, j : integerj IILOOp counters 

begin 
for i := 1 to 5 do 
begin 

for j := 1 to 24 do 
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begin 

BpT[j,i] Bp[i, j I j 


end; 

end; 


end; 


IICalculate the product of [BTl and [DJ 

Procedure CalcBpTDj 

var 


i, j, k : integer; IILoop counters 

begin 

for i := 1 to 24 do 


for j := 1 to 5 do 

BpTD[i, j] := OJ 


for i := 1 to 24 do 

for j := 1 to 5 do 


for k := 1 to 5 do 

BpTD[i,j) := BpTD[i,j] + BpT[i,k]*Dp[k,j)j 


end; 


begin 
IIAssign the initial strain matrix and calculate D 
iStrain[1] CurvXj 

iStrain[2] := CurvYj 

iStrain[3j := CurvXYj 

iStrain[4] := ShearX; 

iStrain[5] := ShearYj 

CalcDp; 


IIZero all matrix entries 
for i := 1 to 24 do 


ElLoad[i] := OJ 


IINumerical integration 
k := OJ 

for i := 1 to 2 do 

begin 


u := GaussPos[i]j 

for j := 1 to 2 do 

begin 


v := GaussPos[j]j 

inc(k); 


CalcShape (u , v) ; 

CalcJ (JDet, k) ; 

DArea := JDet*GaussWgt[i]*Gausswgt[j]; 

CalcBp; 

CalcBpTransponentj 

CalcBpTD; 


for 1 := 1 to 24 do 
for rn := 1 to 5 do 

EILoad[l] := EILoad[l]+BpTD[l,rn]*iStrain[rn)*DAreaj 

endj 
end; 

end; 

111111111111111111111111111111111111111111111111111111II 
II Calculate the average moments for a crack analysis II 
111111111111111111111111111111111111111111111111111111II 

Procedure TElement.CalcAvgs; 
var 

iCount : Integer; 
begin 
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MxAvg := 0; 

MyAvg := 0; 


for iCount .- 1 to 4 do 
begin 


MxAvg .- MxAvg + abs(SReS[iCount,4]) + abs(SReS[iCount,6); 

MyAvg := MyAvg + abs(SReS[iCount,5) + abs(SReS[iCount,6); 


end; 

MxAvg := MxAvg/4j 

MyAvg := MyAvg/4; 


end; 

11111111111111111111111111111111111111111111111111111111111 
II Calculates the curvatures due to restrained shrinkage II 
11111111111111111111111111111111111111111111111111111111111 

Procedure TElement.CalcShrinkageCurvatures; 
var 

xs, ys Double; IIEccentricity of steel with respect to the cracked NA 
x, Y Doublej IINA of the transformed section 
Ec Double; IIEffective concrete modulus 
n Double; IIModular ratio 
CurveX, CurveY Double; IIShrinkage curvatures 
Ix, Iy Double; IIMoments of inertia of the transformed section 

Begin 

Ec : = EI (1 +phi) ; 

n := Es/Ecj 


x .- (0.5*pow(h,2) + n*Astx*dtx)/(h+n*Astx); 

Ix := pow{h,3)/12+h*pow(h/2-x,2)+n*Astx*pow(dtx-x,2); 

xs .- dtx - x; 

CurveX := ecs*n*Astx*xs/lx; 


y := (0.5*pow{h,2) + n*Asty*dty)/(h+n*Asty); 

Iy := pow{h,3)/12+h*pow(h/2-y,2)+n*Astx*pow(dty-y,2); 

ys := dty - y; 

CurveY := ecs*n*Asty*ys/ly; 


CalcShrinkLOad{Curvex,CurveY,O,O,O)i 

end; 

111111111111I11111111111111111111111111111111111111111I 
II Calculates curvatures due given moment resultants II 
111111111111111111111111111111111111111111111111111111I 

Procedure TElement.CalcCurvatures; 
var 

Mx, My, Mxy Double; IIMoments 
a, b, c, d Double; IITemporary storage variables 
i Integer; IILoop counter 

begin 

Mx := 0; 

My := 0; 

Mxy := 0; 


a Dp[1,1]; b := Dp[1,2); 

c := Dp[2,1); d .- Dp[2,2]i 


for i := 1 to 4 do 
begin 


Mx .- Mx + SAes[i,4]; 

My := My + SRes[i,5) i 

Mxy .- Mxy + SRes[i,5]; 


end; 
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Mx ,- Mx/4; 

My := Mxy/4; 

Mxy ,- My/4; 


Cxy ,- Mxy/Dp[3,3]; 

Cy ,- (My-c/a*Mx)/(d-c*b/a); 

Cx ,- (MX-b*Cy)/aj 


end; 
11111111111111111111111111111111111 
II Initializes several variables II 
11111II1111111111111111111111111111 

Procedure TElement,Initlnertia; 
begin 

19x ,- 1/12*POw(h,3); 
19y , ­ 1/12*pow(h,3); 
lex , ­ 19x; 
ley := 19y; 
leOldx ,- Igx; 
IeOldy := IgYi
alphax 1 ; 
alphay ,- 1 ; 

end; 

I11111111111111111111111111111 
II Calculates creep factors II 
111111111111111111111111111111 

Procedure TElement,CalcCreepFactorsj 
var 

Ibarx, lbary, Ix, Iy, x, y, AeffX, AeffY, ycx, ycy, delyx, delyy double; 
xga, yga, xca, yca, Icxa, Icya double; 
na, n, Ecreep : doublej 
19barx, lcbarx, 19bary, Icbary double; 
xcprime, ycprime, xcaprime, ycaprime : double; 

begin 

ECreep := E/(1+phi); 

na := Es/Ecreep; 

n := Es/E; 

xg ,- (t*t/2 + n*Astx*dtx + n*Ascx*(t-dcx»1 (t + n*Astx + n*Ascx); 

yg ,- (t*t/2 + n*Asty*dty + n*Ascy*(t-dcY»1 (t + n*Asty + n*Ascy); 

xga ,- (t*t/2 + na*Astx*dtx + na*Ascx*(t-dcx»/(t + na*Astx + na*Ascx); 

yga := (t*t/2 + na*Asty*dty + na*Ascy*(t-dcy»/(t + na*Asty + na*Ascy); 


xcprime dtx*( -n*(rox+rocx) + sqrt(pow(n*(rox+rocx),2) + 2*n*(rox+(t-dcx)/dtx*rocx» ); 
ycprime ,- dty*( -n*(roy+rocy) + sqrt(pow(n*(roy+rocy),2) + 2*n*(roy+(t-dcy)/dty*rocy» ); 

xcaprime := dtx*( -na*(rox+rocx) + sqrt(pow(na*(rox+rocx),2) 
+ 2*na*(rox+(t-dcx)/dtx*rocx» )j 


ycaprime ,- dty*( -na*(roy+rocy) + sqrt(pow(na*(roy+rocy),2) 

+ 2*na*(roy+(t-dcy)/dty*rocy» ); 

xc ,- xg*alphax; if xc<xcprime then xc;=xcprime else if xc>xg then xc:=xgj 

yc ,- yg*alphaYj if yc<ycprime then yo:=ycprime else if yo>yg then yc:=yg; 

xca := xga*alphaxj if xoa<xcaprime then xca:=xcaprime else if xoa>xga then xoa:=xga; 

yca := yga*alphay; if yca<ycaprime then yca:=ycaprime else if yoa>yga then yoa:=yga; 


IgBarx := pOw(t,3)/12+t*POW(t/2-xga,2)+na*Astx*pow(dtx-xga,2)+na*ASox*pow«t-dtx)-xga,2)j 
loBarx , - 1/3*pow(xca,3) + na*roox*pow(xoa-(t-dcx),2)*dtx + na*rox*pow(dtx-xca,2)*dtx; 
IgBary := pow(t,3)/12+t*pow(t/2-yga,2)+na*Asty*pow(dty-yga,2)+na*Ascy*pow«t-doy)-yga,2); 
loBary := 1/3*pow(yoa,3) + na*rooy*pow(yoa-(t-doy),2)*dty + na*roy*pow(dty-yoa,2)*dtYi 

if «not CraokedX) or (alphax>9,99» then 
begin 


Aeffx :'" tj 

Ix := pow(t,3)/12+t*pow(t/2-xga,2)j 
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ycx := Aeffx/2: ycx ,- ycx-xga: 

delyx ,- xga-xg; 

IBarx := IgBarx; 


end 

else 

begin 


Aeffx := xc; 

Ix := Pow(xc,3)/12+xc*(xca-xc/2)*(xCa-xc/2); 


ycx := Aeffx/2; ycx .- ycx-xca; 

delyx ,- xca-xc; 

IBarx .- IcBarX; 


end; 

if «not CrackedY) or (alphaY>9.99» then 
begin 


Aeffy := t; 

Iy := pow(t,3)/12+t*pow(t/2-yga,2); 


ycy := Aeffy/2; ycy .- ycy-yga; 

delyy := yga-yg; 

IBary ,- IgBarYi 


end 

else 

begin 


Aeffy := yc; 

Iy := pow(yc,3)/12+yc*(yca-y/2)*(yca-y/2); 


ycy := Aeffy/2; ycy := ycy-yca; 

delyy ,- yca-yc; 

IBary := IcBary; 


end; 

kappaX := (Ix + Aeffx*ycx*delyx)/IBarx; 

kappaY := (Iy + Aeffy*ycy*delyy)/IBary; 


CalcForCreep := True; 
end; 

/1111111111///111111///1111/11
/1 Calculates crack factors II 
111111111111111111111111111111 

Procedure TElement.CalcModFactors(CrackType:integer); 
var 

alpha Double; IIModular ratio 
fr Double; IIModulus of rupture (Should be an element property) 
yx, yy Double; IINA positions of the gross concrete section 
dtxc, dtyc Double; IIEmbedment depth of compression reinforcement (Should be an element 

property) 

begin 

IIInitialize 
Crackedx: False; 

Crackedy := False; 

IeOldx := lex; 

IeOldy := ley; 

alphaOldx := alphax; 

alphaOldy := alphaYj 

alpha: Es/E; 


IICalculate NA's and moments of inertia 

xc := dtx*( -alpha*(rox+rocx) + sqrt(pow(alpha*(rox+roCx),2) 


+ 2*alpha*(rox+(t-dcx)/dtx*rocx» )j 
Icx := 1/3*pow(xc,3)/12 + alpha*rocx*pow(xc-(t-dcx),2)*dtx + alpha*rox*pow(dtx-xc,2)*dtxj 

yc := dty*( alpha*(roy+rocy) + sqrt(pow(alpha*(roy+rocy),2) 
+ 2*alpha*(roy+(t-dcy)/dty*rocy» ); 

Icy := 1/3*pow(yc,3)/12 + alpha*rocy*pow(yc-(t-dcy),2)*dty + alpha*roy*pow(dty-yc,2)*dty; 
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Igx := 1/12*pow(h,3)j 

yx := h/2j 


Igy := 1/12*pow(h,3)j 

yy: h/2j 


//Calculate cracking moments 
Mcrx := fr*Igx/yx; 

Mcry := fr*Igy/yYj 


//Bilinear method cracking factors 
if(MxAvg >= Mcrx) then ksix .- 1 pow(Mcrx/MxAvg,2) else ksix := OJ 
if(MyAvg >= Mery) then ksiy := 1 pow(Mery/MyAvg,2) else ksiy := 0; 

if(MxAvg >= Mcrx) then 
begin 


if CraekType = 0 then 

begin 


lex .- pow(Merx/MxAvg,4)*Igx + (1 - pow(Mcrx/MxAvg,4»*ICxj 
lex .- IeOldx-(IeOldx - Iex)/2; 


end 

else 

begin 


lex .- (Igx*lcx) / ( (1-ksix)*lex+ksix*lgx )j 
lex := leOldx-(leOldx - lex)/2j 


end; 

if lex> Igx then lex := 19x 

else if lex < lex then lex := lex; 

alphax := lex/lgxj 

CraekedX := Truej 


end 

else 

begin 


lex := 19x; 

leOldx := lex; 

alphax := 1; 

CraekedX := False; 


end; 

if(MyAvg >= Mery) then 
begin 


if (CraekType = 0) then 

begin 


ley := pow(Mcry/MyAvg,4)*Igy + (1 - pow(Mery/MyAvg,4»*leYj 
ley .- leOldy-(leOldy ley)/2j 


end 

else 

begin 


ley .- (lgy*ley) / ( (1-ksiy)*lcy+ksiy*lgy )j 
ley .- leOldy-(IeOldy - ley)/2j 


endj 

if ley> 19y then ley := 19y 

else if ley < Icy then ley := Icy; 

alphay := ley/lgy; 

CrackedY := True; 


end 

else 

begin 


ley := 19y; 

alphay := 1; 

CrackedY := False; 


end; 

if alphax>O.99 then craekedx := false; 

if alphay>O.99 then craekedy := false; 


end; 

end. 

 
 
 

http:alphay>O.99
http:alphax>O.99


98 

7.3 Elastic Analysis Procedure 

procedure ElasticAnalysisj 
var 

iCount: Integer; //Loop counters 

begin 

//Obtain FEA geometry, loading & material input 

readInput; 


//Initialize the model and global arrays 
Initializej 

//Assemble the element and global stiffness matrices 
Assemblej 

//Assemble the load vector 
LoadVectorj 

//Solve the linear system 
Solvej 

//Update global deflection array 
UpdateGlobalDVecj 

//Update each element's deflection array 
UpdateElementDVecj 

//Calculate and smooth stress resultants 
CalcResultants(true)j 

UpdateOuput; 

end; 
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7.4 Crack Analysis Procedure 

procedure CrackAnalysisj 
var 

iCount Integer; IILoop counter 
El TElement; IIElement object pointer 
Conv Double; IIConvergence variable 
limit Double; IIConvergence limit 

IIReturns current convergence index 
function testConv:double; 
var 


i, j : integer; 

x,y : double; 


begin 

x := 0; 

y := 0; 

for i:= to num*num do 

begin 


x := x + abs(slab[i].alphax-slab[i].alphaOldx)/slab[i].alphaoldx; 
y: y + abs(slab[i].alphay-slab[i].alphaOldy)/slab[i].alphaoldYi 

end; 
x: x/(num*num); 

y := y/(num*num)j 

result .- max(x,y)j 


endj 

begin 

//Obtain FEA geometry, loading &material input 

readInputj 


I/Initialize the model and global arrays 
Initialize; 

limit := 1e-3; IIConvergence limit 

//Initialize element moments of inertia 

for iCount := 1 to numElements do Slab[iCount].InitInertia; 


con v := 1; IIConvergence tester 

while ( abs(conv»limit ) do 

begin 


//Record current deflection field 
StoreOrigDvec; 

//Assemble element and global stiffness matrices 

Assemble; 


IIAssemble the load vector 
LoadVectorj 

//Solve the linear system 

Solve; 


//Update global deflection array 
UpdateGlobalDVec; 

I/Update elements' deflection array 
UpdateElementDVecj 

I/Calculate stress resultants but do not smooth 

CalcResultants(false)j 


//Calculate average moments and modification factors for each element 
for jCount := 1 to numElements do 
begin 


Slab[jCount].CalcAvgsj 

Slab[jCountj.CalcModFactors(CrackType)j 


endj 
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Ilupdate the convergence variable 
conv := testConvj 

if(conv < limit) then 
I/If solution converged, smooth stress resultants 
CalcResultants(true)j 


else 

//If solution not converged, restore original deflection field 
RegressGlobalDVecj 

end; 

UpdateOutputj 
end; 
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7.5 Creep Analysis Procedure 

Procedure CreepClickAnalysisj 
var 

Integerj IILoop counter; 

begin 

IIPerform a crack analysis 

CrackAnalysisj 


!IInitialize global arrays 
Initialize j 

IICalculate creep factors for each element 
for i :; 1 to numElements do 

begin 


Slab[ij.CalcCreepFactorsj 

end; 


IIAssemble element and global stiffness matrices 

Assemble; 


!!Assemble the load vector 
LoadVectorj 

!!Solve the linear system 

Solvej 


!!Update global deflection array 
UpdateGlobalDVecj 

JIUpdate elements' deflection array 
UpdateElementDVec; 

IICalculate and smooth stress resultants 

CalcResultants(true)j 


UpdateOutputj 

end; 
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7.6 Shrinkage Analysis Procedure 

Procedure ShrinkAnalysis; 
var 

i : integer; 

begin 
IIObtain FEA geometry, loading & material input 
readInput; 

IIInitialize the model and global arrays 
Initialize; 

IIAssemble element and global stiffness matrices 

Assemble; 


IICalculate shrinkage forces for each element 
for i := 1 to num*num do 
begin 


slab[ij.ecs := ecs; 

slab[ij.CalcShrinkageMoments; 


end; 

IIAssemble the load vector 
LoadVector; 

IISolve the linear system 
Solve; 

IIUpdate global deflection array 
UpdateGlobalDVec; 

IIUpdate elements' deflection array 
UpdateElementDVec; 

IICalculate and smooth stress resultants 
CalcResultants(true); 

UpdateOutput; 

end; 
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7.7 Stiffness Matrix Assembly Procedure 

Procedure Assemble; 
var 

iCount, jCount, kCount 
GNodeRow, GNodeCol 
DOF 

begin 

OOF := 5; 

Integer; II Loop counters 
Integer; IIRow, column indices 
Integer; IIDegrees of freedom variables 

for iCount .- 1 to numElements do 
begin 

IICalculate element stiffness matrices 
Slab[iCount).CalcStiff; 

for jCount := 1 to 8 do 

begin 


GNodeRow := Slab[iCount).NodesNum[jCount); 

for kCount := 1 to 8 do 

begin 


IIPlace elemnt matrix in structure stiffness matrix 
GNodeCol := Slab[iCount].NodesNum[kCount]; 
GStiff[5*GNodeRow-4,5*GNodeCol-4] 

GStiff[5*GNodeRow-4,5*GNodeCol-3] 

GStiff[5*GNodeRow-3,5*GNodeCol-4] 

GStiff[5*GNodeRow-3,5*GNodeCol-3] 

GStiff [3*GNodeRow-2, 3*GNodeCol-2] 

GStiff[3*GNodeRow-2,3*GNodeCol-1] 

GStiff[3*GNodeRow-2,3*GNodeCol-O] 

GStiff[3*GNodeRow-1,3*GNodeCol-2] 

GStiff[3*GNodeRow-1,3*GNodeCol-1] 

GStiff[3*GNodeRow-1,3*GNodeCol-Oj 

GStiff[3*GNodeRow-O,3*GNodeCol-2] 

GStiff[3*GNodeRow-O,3*GNodeCol-1] 

GStiff [3*GNodeRow-O, 3*GNodeCol-O] 

end; 
end; 

end; 

end; 

:= GStiff[5*GNodeRow-4,5*GNodeCol-4] 
+ Slab[iCount).E1Stiffm[2*jCount-1,2*kCount-1]; 

:= GStiff[5*GNodeRow-4,5*GNodeCol-3] 
+ Slab[iCount].ElStiffm[2*jCount 1,2*kCount-O]; 

:= GStiff[5*GNodeRow-3,5*GNodeCol-4] 
+ Slab[iCountj.E1Stiffm[2*jCount-O,2*kCount-1]; 

:= GStiff[5*GNodeRow-3,5*GNodeCol-3] 
+ Slab[iCount].ElStiffm[2*jCount-O,2*kCount-o]; 

:= GStiff[3*GNodeRow-2,3*GNodeCol-2] 
+ Slab[iCount].ElStiffp[3*jCount-2,3*kCount-2]; 

:= GStiff[3*GNodeRow-2,3*GNodeCol-1] 
+ Slab[iCount].ElStiffp[3*jCount-2,3*kCount 1]; 

:= GStiff[3*GNodeRow-2,3*GNodeCol-O] 
+ Slab[iCount].ElStiffp[3*jCount-2,3*kCount-O]; 

:= GStiff[3*GNodeRow-1,3*GNodeCol-2] 
+ Slab[iCount].ElStiffp[3*jCount-1,3*kCount-2]; 

:= GStiff[3*GNodeRow-1,3*GNodeCol-1] 
+ Slab[iCount].E1Stiffp[3*jCount-1,3*kCount-1j; 

:= GStiff[3*GNodeRow-1,3*GNodeCol-O] 
+ Slab[iCountj.E1Stiffp[3*jCount-1,3*kCount-O); 

:= GStiff[3*GNodeRow-O,3*GNodeCol-2] 
+ Slab[iCount).E1Stiffp[3*jCount-O,3*kCount-2]; 

:= GStiff[3*GNodeRow-O,3*GNodeCol-1) 
+ Slab[iCount].ElStiffP[3*jCount-O,3*kCount-1]i 

:= GStiff[3*GNodeRow-o,3*GNodeCol-O] 
+ Slab[iCount].ElStiffP[3*jCount-O,3*kCount-O]; 
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7.8 Gauss Reduction Procedure 

Procedure Solvej 
var 

Pivot, Factor, Residual Double; 
i, j, k, 1 Integerj IILoop counters 
iRow, iCol Integer; IIRow &column indices 
NBack, NBac1, Neqns1 Integerj 
DOF, SR Integer; IIDegrees of freedom and no of stress resultants 
Diff : Double; 

begin 
DOF :; 5j 
SR := 8; 

I!Gauss Reduction 
for i := 1 to numNodes*DOF do 
begin 


if (SVec[i]<>1) then I!free DOF 

begin 


Pivot := GStiff[i,i]j 

if(abs(pivot»1e-10) then 

begin !!valid pivot 


if (i<numNodes*DOF) then 
begin 


j :=i+1j 

for iRow := j to numNodes*DOF do 

begin 


Factor := GStiff[iROw,i]/Pivotj 

if (Factor<>O) then 

begin 


for iCol := i to numNodes*DOF do 

begin 


GStiff[iRow,iCol] := GStiff[iRow,iCol) - Factor*GStiff[i,iCol]; 
end; 
LVec[iROW] ,- LVec[iRow] Factor*LVec[i]j 

endj 

end; 


end; 

end 

else /!invalid pivot 

begin 


infomsg('Non positive definite matrix')j 

exit; 


end; 

end 

else !/restrained DOF 

begin 


for iRow := i to numNodes*DOF do 
begin 


LVec[iRow] := LVec[iRow] - GStiff[iRow,i)*FVec[i]; 

GStiff[iRow,i) := 0; 


endj 

end; 


end; 


!IBack substitution process 
j := numNodes*DOF+1; 

for i := 1 to numNodes*DOF do 

begin 


k := j-ij !!nback 

Pivot := GStiff[k,k]j 

Residual := LVec[k]; 


if (k<>numNodes*DOF) then 
begin 


1 := k+1; 

for iCol := 1 to numNodes*DOF do 

begin 


Residual Residual GStiff [k. iCol] *DVec [iCo~.] j 

end; 
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end; 

If (SVec[k]=O) then 

begin 


OVec[k] :: Residual/Pivot; 
end 
else 
begin 

OVec[k] := FVec[k]; 
RVec[k] .- -Residual; 

end; 

end; 

end; 
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7.9 Stress Resultant Calculation Procedure 

Procedure CalcResultants(smooth:boolean); 
var 

iCount, jCount, kCount, lCount Integer; IILoop counters 
mCount, nCount, oCount, pCount Integer; IILoop counters 
trans array[1 .. 4,1 .. 4) of Double; IIExtrapolation matrix 
temp array[1 .. 8) of Double; IIHolder matrix 
Sum array[1 .. 8) of Double; IIHolder matrix 
SR : Integer; 
NodesArray : array[1 .. 4) of integer; 

begin 
SR := 8; 

IICalculate stress resultants at sampling pOints membrane 

for iCount := 1 to numElements do 

begin 


lCount := 0; 111 to 4 

for jCount := 1 to 2 do 

begin 


for kCount:= to 2 do 
begin 


inc (lCount) ; 

for mCount:= to 3 do 

begin 


nCount := 0; 

Slab[iCount).SRes[lCount,mCount) .- 0; 


for oCount := 1 to 8 do 
begin 


for pCount:= to 2 do 

begin 


inc(nCount); 
Slab[iCount).SRes(lCount,mCount] := Slab[iCount).SReS[lCount,mCount] + 

(Slab[iCount).GaussDBm[mCount,nCount,lCount) * 
Slab[iCountj.Def[pCount,oCount); 

end; 
end; 

end; 
end; 

end; 

end; 

IICalculate stress resultants at sampling pOints - plate 

for iCount .- 1 to numElements do 

begin 


lCount := 0; //1 to 4 

for jCount := 1 to 2 do 

begin 


for kCount := 1 to 2 do 
begin 


inc(lCount); 

for mCount: 4 to 8 do 

begin 


nCount := 0; 

Slab[iCountj.SRes[lCount,mCountj .- 0; 


for oCount := 1 to 8 do 
begin 


for pCount := 3 to 5 do 

begin 


inc (nCount) ; 
Slab[iCount).SRes[lCount,mCount) := Slab[iCountj.SReS[lCount,mCountj + 

(Slab[iCountj.GaussDBp[mCount-3,nCount,lCountj * 
Slab[iCountj.Def[pCount,oCountj); 

end; 
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endj 

end; 


end; 

end; 

Slab[iCount].CalcCurvaturesj 


end; 

if not smooth then exitj 

IISmooth by bi-linear extrapolation to the corner nodes 
trans[1,1]:=1.866025404j 
trans[1,2]:=-O.5; 
trans[1,3]:=O.133974596; 
trans[1,4]:=-O.5j 
trans[2,1]:=-O.5j 
trans[2,2]:=1.866025404; 
trans[2,3]:=-O.5; 
trans[2,4]:=O.133974596j 
trans[3,1]:=O.133974596; 
trans[3,2]:=-O.5; 
trans[3,3]:=1.866025404; 
trans{3,4]:=-O.5; 
trans[4,1]:=-O.5j 
trans[4,2]:=O.133974596; 
trans[4,3]:=-O.5; 
trans{4,4]:=1.866025404; 

for iCount := 1 to numElements do 
begin 

for jCount := 1 to SR do 
temp[jCount] := Slab[iCount).SRes[2,jCount]j 

for kCount := 1 to SR do 
Slab[iCount].SRes[2,kCount) := Slab[iCount].SRes[3,kCount); 

for kCount := 1 to SR do 
Slab[iCount].SRes[3,kCount) := Slab[iCount].SRes[4,kCount]j 

for kCount := 1 to SR do 
Slab[iCount].SRes[4,kCount] := temp[kCount]; 

end; 

for iCount to num*num do 
begin 

for jCount .- 1 to SR do 
begin 

Slab[iCount] .SResM[1,jCount] . ­
Slab[iCount].SReS[1,jCount]*trans[1,1] + 

Slab[iCount].SRes[2,jCount]*tranS[1,2) + 
Slab[iCount].SRes[3,jCount)*tranS[1,3) + 

Slab[iCount).SReS[4,jCount)*trans[1,4]; 
Slab[iCount).SReSM[3,jCount] := 

Slab[iCount].SRes[1,jCount]*tranS[2,1] + 
Slab[iCount].SReS[2,jCount]*tranS[2,2] + 

Slab[iCount).SReS[3,jCount]*tranS[2,3] + 
Slab[iCount].SRes[4,jCount]*tranS[2,4]; 

Slab[iCount].SResM[2,jCount] .- (Slab[iCount].SReSM[1,jCount] 
+ Slab[iCount].SResM[3,jCount])/2j 

Slab[iCount].SReSM[5,jCount] := 
Slab[iCount).SRes[1,jCount]*trans[3,1] + 

Slab[iCount).SRes[2,jCount]*trans[3,2] + 
Slab[iCount].SReS[3,jCount]*trans[3,3] + 

Slab[iCount].SRes[4,jCount]*trans[3,4); 
Slab[iCount).SResM[4,jCount] .- (Slab[iCount].SReSM[3,jCount] 

+ Slab[iCount].SResM[5,jCount)/2j 

Slab[iCount].SResM[7,jCount] := 
Slab[iCount].SRes[1,jCount]*tranS[4,1] + 

Slab[iCount].SRes[2,jCount]*tranS[4,2] + 
Slab[iCount).SReS[3,jCount]*trans[4,3] + 

Slab[iCount].SRes[4,jCount]*tranS[4,4); 
Slab[iCount].SReSM[6,jCount] := (Slab[iCount].SReSM{5,jCount] 

+ Slab[iCount].SResM[7,jCount])/2j 

 
 
 

http:trans[4,1]:=-O.5j
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Slab[iCountj .SAeSM[8,jCountj := (Slab[iCountj.SAesM[1,jCount] 
+ Slab[iCountj.SAeSM[7,jCount])/2; 

end; 

end; 


{{Average stresses at nodal points to obtain unique values 

for iCount := 1 to numNodes do 

begin 


kCount := 0; 

for jCount := 1 to SA do 


Sum[ jCount 1: =0; 

for jCount := 1 to num*num do 

begin 


lCount := scanl(iCount,Slab[jCountj.NodesNum,8); 

if lCount<>O then 

begin 


inc(kCount); 
for mCount := 1 to SA do 

Sum[mCount] := Sum[mCountl + Slab[jCountj.SAesM[lCount,mCountj; 
end; 


end; 

if kCount >0 then 

begin 


for jCount := 1 to SA do 

SAes[iCount,jCountj := Sum[jCountj/kCount; 


end; 

end; 


jCount := 1; 

for iCount:= to num*num do 

begin 


for kCount 1 to 8 do 
begin 


if pos Slab[iCountj.NodesNum[kCountj then 

begin 


NodesArray[jCountj := iCount; 

jCount .- jCount+1; 


end; 

end; 


end; 


end; 

 
 
 


