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4 COMPUTATIONAL EVALUATION 

4.1 Elastic Analysis 

4.1.1 Aspect ratio studies 

Shear locking was introduced in section 2.1.2 as a numerical issue where the Serendipity Mindlin 

element is concerned. This section evaluates extent of the shear locking problem and whether the 

issue is significant in the analysis ofconcrete slabs. 

Shear locking causes an overestimation ofplate stiffness for "thin" plates and it follows that plate 

thickness is the most significant factor influencing locking. Plates are therefore investigated over a 

range of span to thickness ratios. 

The finite element analysis (FEA) mid-plate deflections of a simply supported and a clamped square 

plate, subjected to uniform transverse loading, are compared to the deflections obtained from classical 

methods. Navier's approach is used to calculate the exact plate deflection for the simply supported 

plate and Levy's solution is used for the clamped case, Ugural (1999). In both cases the Kirchhoff 

model ofplate bending, i.e. thin plate theory, was employed. The resulting equations for a square 

plate are shown below: 

W= O.004066Lr 
(simply supported) (4.1)


D 


[4 

W =O.001264L (clamped) (4.2)


D 

where p is the uniform load, I the plate length and 

(4.3) 

The finite element layout and boundary conditions are illustrated in figure 4-1 and the results of the 

study are plotted on figure 4-2 and figure 4-3. In the aforementioned figures, WFEA denotes lateral 

deflection at the centre of the plate as calculated with the finite element method for two integration 

schemes and WKIR, the lateral deflection as calculated with equations (4.1) and (4.2). The finite 
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element analysis employs Mindlin assumptions and the "exact" solutions employ Kirchhoff 

assumptions. 

Clearly, numerical instabilities occur as the span to thickness ratio becomes large, regardless of the 

integration scheme employed. Reduced integration improves the performance of the element, but does 

not eliminate locking. For the serendipity element a 3x3 point Gaussian quadrature is exact, whereas a 

2x2 point quadrature is a reduced integration scheme. 

Although this finding is significant in analyses dealing with thin plates, reinforced concrete slabs 

rarely exhibit span to thickness ratios larger than 32. This ratio is represented by the vertical line in 

figure 4-2 and figure 4-3. As can be seen from these figures the deflection is at least overestimated, if 

not entirely accurate for ratios smaller than 32, even with exact integration. 

Only a quarter plate shown ___ Rotational restraint 
due to symmetry 

• Translational restraint 

Simply supported Clamped 

Figure 4-1: Element layout and boundary conditions 
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4.1.2 Convergence Studies 

An issue that often arises in a finite element analysis is that of mesh density. The analyst always 

attempts to use the least number of elements and still obtain reliable results. This section studies 

various mesh densities on plates subjected to uniform loading in an attempt to find the optimum 

number of elements on a rectangular grid for slab problems. 

The simply supported and clamped square plates illustrated in figure 4-1 are used with a varying 

number of elements. The plate analysed is a 6m square plate, 600mm thick subjected to a 5kPa 

distributed load. Both the Mindlin and Kirchhoff models for plate bending are used for analytical 

comparison. The analytical results for maximum deflection using the Kirchhoff assumptions are given 

in equations (4.1) through (4.3) and the results for the Mindlin model are given below, Liu (2002): 

r 
W =0.00427 L (simply supported) (4.4)

D 

W= o.oolsLr (clamped) (4.5)
D 

where all variables are as defined in section 4.1.1. 

As can be seen from figure 4-4 and figure 4-5, very little is gained from a mesh finer than 6x6, as far 

as accuracy is concerned. One should note that this result is valid for square plates subjected to 

uniform pressures only. 

The curves labelled Mindlin plot the ratio ofwFEAlwexact. where W exact is calculated using equations (4.4) 

and (4.5). The curves labelled Kirchhoffuses a W exaet calculated from equations (4.1) and (4.2), WFEA 

refers to the results of a fmite element analysis (Mindlin assumptions, and 2x2 integration) throughout. 
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Figure 4-2: Aspect ratio study for a simply supported square plate 
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Figure 4-3: Aspect ratio study for a clamped square plate 
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Figure 4-4: Convergence study for a simply supported square plate 
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Figure 4-5: Convergence study for a clamped square plate 
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It is interesting to note that the element deteriorates in the case of the clamped plate, this indicates that 

the influence of shear deformation on flexural deflections of a plate is not solely dependent on the 

span to depth ratio, but also on boundary conditions. 

4.2 Polak Slab Specimen 

A slab tested by Polak (1994) was used to corroborate the results yielded by the effective stiffuess 

method presented in section 2.2.2. The data from these slabs are used in this section to verifY the 

software developed by the author and to test the applicability ofthe tension stiffening method 

presented in sections 2.2.1 and 3.1. 

The specimen employed for comparison, labelled SMl, is illustrated in Table 4-1 and figure 4-6. 

Dimensions (mm) Ec(GPa) Px* py* dx(mm) dy(mm) v 

1625 x 1625 x 316 34.278 1.25% 0.42% 281 256 0.2 

Table 4-1: Specimen properties (*per layer) 

Specimen SMl, simply supported on two opposite edges, was loaded with uniaxial moments on the 

supported edges. The loading conditions and finite element model for the slab are shown in figure 4-6 

and figure 4-7. 
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Figure 4-6: Specimen Geometry and Reinforcement 

f--- Rotational restraint 

• Translational restraint 

___ Moment 

M, If---M f-----No M, 

Figure 4-7: Finite element model for specimen SMI 
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A comparison of the results of the experimental and numerical analysis of specimen SMI are plotted 

in figure 4-10. It is evident from figure 4-10 that the author's implementation ofboth the Bilinear and 

Branson's approach to tension stiffening compares favourably with the experimental data of specimen 

SMI and the results of Polak. 

4.3 Jofriet & McNeice Slab 

Jofriet and McNeice (1971) performed a point loading test on a comer supported slab, the properties 

of which are indicated in Table 4-2. The point load was applied to the centre of the slab. 

Dimensions (mm) Ec(GPa) Px fJy dx,y(mm) v 

914 x 914 x 44 28.623 0.85% 0.85% 33 0.15 

Table 4-2: Specimen properties 

The specimen geometry is illustrated in figure 4-8 and the finite element model in figure 5-9. 

914 

~A 

Figure 4-8: Specimen Geometry and Reinforcement 
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The slab model consists of a 6x6 mesh with the translational degrees of freedom restrained at the 

comer nodes. The slab was subjected to a central point load and deflections measured at point A as 

indicated. With the element mesh as shown, this point fortuitously coincides with a mid-edge node of 

a central element. 

y 

914mm- - Supports--
¥ 

I ~l 

i 
I 
I 

I
i 

Point load 
~i._._.- _._._*-_._.__._._._._.­.....--. ! 

~",pointA t 
a 

+ 

1 

! 

J 
'r1 ...- x 

Figure 4-9: Jofriet and McNeice slab model 

The results ofboth Polak and the author's analysis are plotted against the experimental data of Jofriet 

and McNeice in figure 4-11. It should be noted that Branson's approach yields results far superior to 

the bilinear approach. Careful investigation of the parameters influencing these two methods reveals 

that the bilinear method is very sensitive to changes in reinforcement ratio. 

The curve of the effective moment of inertia versus applied moment curve changes shape with lower 

reinforcement ratios when using the Bilinear method, whereas the curves retain a similar shape when 

using Branson's method, see figure 4-12 for details. The figure implies that the bilinear method 

becomes unreliable with lower reinforcement ratios. This finding casts significant doubt on the 

usefulness of bilinear method in flat slab problems where reinforcement ratios are typically fairly low. 
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Figure 4-10: Specimen SMl analysis results 

 
 
 



Z 
~ 
"CI 

C'CI 
0 

I.!:!.... 
c5 
c 

~-­

14 
./"" •,,-r • 

.... 
12 

.... " 

10 •__>'",. :':.:::..:J;~.~;.;:.:::..)~. 
#~~ :;?--~--­...8 

>~~i:>; ;;­

./;;;" ' 

6 	 VI,<.~ 
\0 

/I~ .. 
,/ ,,~ 

If I 
4·l:"i 

• ExperimentalIf 

Branson2 -+----+----+----~~-t_____ 
Bilinear 

--- Polak 
o .f------~------~----_+-----+------+-­

o 	 1 2 3 4 5 6 7 8 9 10 


Deflection at Point A (mm) 


Figure 4-11: lofriet and McNeice slab results 
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4.4 Haddad's Beam 

The data for this beam test as well as the hand-calculation deflection results were obtained from 

Neville (1970). The cross sectional properties, layout and loading ofthe tested beam are illustrated in 

figure 4-13. It should be noted that the original test was carried out using imperial units. 

17.36 kN 17.36 kN 

1.83 m 0.61m 

4.267m 

! 

I 

180.34 mm 

i'.. ..\ 
_r- ---r­

1 

EE 
EE 
10N 

10 ~ .....ci 
M10 

M 

Figure 4-13: Geometry and loading of the beam tested by Haddad 

Tabulated below are some material and geometric properties as established by Haddad: 

Concrete cylinder strength,/c' 26.34MPa 

i Rupture modulus,J,. 3.1 MPa 
i 

I Young's modulus, E 22.76 GPa 

Free shrinkage strain, Gcs -204xlO-6 

Creep coefficient, tP 2 

Percentage tension reinforcement 1.42% 

Table 4-3: Material properties ofHaddad's beam 
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The rupture modulus was calculated, Neville (1970), from: 

f,. =O.6JT' (4.6) 

The beam, modelled as a slab of the same width, was approximated with a I x20 element mesh, as 

illustrated in figure 4-14. Three separate analyses were performed and compared with Haddad's 

experimental data as well as the results obtained by Neville with hand-calculation methods. 

Rotational restraint 

• Translational restraint 

X Point load 

Figure 4-14: Plan view of the element layout 

A simple elastic analysis, neglecting cracking and tension stiffening, yields a mid-span deflection of 

3.67 mm which compares well with the value of 3.71 mm as predicted by analytical methods. 

The table below compares the mid-span deflections at time infinity of the finite element analysis, 

Neville's results and Haddad's data. 

I 

i 

FEA(mm) Neville (mm) Haddad(mm) 

IElastic with cracking 

(Branson) 
5.8 5.28 5.84 

Creep with cracking 3.14 3.81 

Shrinkage 1.28 1.04 

Total long term 10.22 10.13 10.9 

Table 4-4: Comparison between the proposed model, Neville and Haddad's results 
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It should be noted that the method proposed in this dissertation assumes that the principle of 

superposition applies to the four stated components of time dependent deflection: elastic, cracked, 

shrinkage and creep. 

The table indicates that the finite element analysis correlates extremely well with both the hand 

calculation methods employed by Neville and the actual results obtained by Haddad. 

4.5 Simplified Analysis of a Slab Panel 

As a further verification, a slab panel analysed with the hand-calculation method set out in section 

2.1.1 is compared with the proposed finite element method. This panel is taken from Ghali and Favre 

(1986) and the detail is given below and in figure 4-15. 

For the purposes of the hand calculation it is assumed that the moments and required reinforcement are 

known and only the final, long-term deflection is sought. Naturally, for the [mite element approach, 

only slab geometry, required reinforcement and material properties are needed. 

The panel is loaded with a uniformly distributed load q = 8.42 kN/m2 on a 7m x 7m span. The depth 

of the slab, h 200mm, and the average effective depth of the tension reinforcement in the x and y 

directions, dt = 160mm. The modulus of elasticity at the time of loading Ee 25GPa with the creep 

and aging coefficients ¢(t, r) = 2.5 and X(t, r) = 0.8, respectively. The modulus ofrupture is given as/, 

= 2MPa and the modulus ofelasticity of the reinforcement Es = 200GPa. 

650 mm2/m 
A M = 18.6 kNm/m r,-Q­ V' ._._ .• • '-'-'-'V 

I~ 
ment

Bottom reinfOrr ~ II 
tI 

450 mm2/m M = 12.4 kNm/m 

~,-,-,-,-- -,-,--,~ ~--,-, 

Figure 4-15: Reinforcement layout and moments of the slab panel 
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Top reinforcement is conspicuous in its absence in the figure above, and the assumptions made for the 

finite element analysis are elaborated upon in section 4.5.2. The hand calculation method on the other 

hand, oddly neglects the influence ofnegative reinforcement and cracking at the column supports. 

4.5.1 Hand Calculation 

The calculation in this sub-section is taken directly from Ghali and Favre (1986). 

Equation (2.7) yields an uncracked moment of inertia, neglecting reinforcement as, 

Using a deflection coefficient table based on equation (2.1) Ghali and Favre (1986), D, t5EF and t5AB are 

calculated as: 

q/4
D =0.00482- =5.6mm 

E/g 

qr
isAB =0.00342- =3.97mm 

E/g 

isEF =D - isAB =1.63mm 

Column strip crack curvature coefficients are calculated using equations (2.46), (2.47) and interpolated 

with equation (2.48): 

Ksl == =0.98 
11 

K52 = 12 = 7 

The cracking moment and the crack interpolation coefficient are calculated as: 

Mr = fig =13.33kNm / m 
y 

~ == 1-Pll2 (~ ) 2 == 0.74 with 132 = 0.5 for long-term loading. 
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The effective crack coefficient and cracked mid-span column strip deflection is then: 

K. =(l-S)Ksl +SKs2 =5.45 

8 AD =5.45x 3.97 =21.65mm 

The creep curvature coefficients are found using equation (2.64) and interpolated in a similar manner 

to calculate an ultimate creep deflection of9.55mm. The middle strip deflections can be calculated in 

the exact same manner, Tables 4.5,4.6 and 4.7 summarise the results of the comparison. 

4.5.2 Finite Element Analysis 

The finite element model consists of a 6x6 element mesh with the corners fixed against all 

displacements and the edges fixed against rotation about an axis parallel to the edge as shown in figure 

4-16. 

___ Rotational restraint 

• Translational restraint 

Only a quarter slab due to sJ1llmatry 

Figure 4-16: Finite element model 

For the purposes of the finite element analysis, symmetric double reinforcement (top and bottom) is 

assumed as shown in figure 4-17. 
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Hand calculation (mm) 

(GbaU & Favre, 1986) 
FEA(mm) 

Cracked: Branson 2.08 

Cracked: Bilinear 1.6 2.26 

Creep: Branson 

Creep: Bilinear 3.04 i 

2.56 

2.74 

Total: Branson 

Total: Bilinear 4.64 

i 

I 

4.64 

5 

Table 4-6: Relative middle strip deflections 

I 
 Hand calculation (mm) 

FEA(mm)

(Gbali & Favre, 1986) 

31.81Cracked: Branson 

23.25 
i 

38.54Cracked: Bilinear 

8.12Creep: Branson 

12.59Creep: Bilinear 9.18 

39.93Total: Branson 

Total: Bilinear 35.84 47.72 

Table 4-7: Total mid-panel deflections 

It is clear that use ofthe bilinear method consistently results in a higher deflection than is the case 

when Branson's method is employed. When viewed in the light of the discussion in section 4.3, it 

must be said that the bilinear method is unsuited for the purposes of this dissertation. 

i 
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Parameter Value 

. Dead load (Load combination factor) 5 kPa (1.35) ! 

i 

Live Load (Load combination factor) 2.5 kPa (1.5) i 

Panel dimensions 7.5m x 7.5m x 250mm 

Column dimensions (Internal) 400mm x 400mm x 3.75m 

Concrete C37 

4.6 Cardington Slabs 

A full scale seven storey concrete frame was erected and investigated at the BRE's (Building Research 

Establishment) Large-Building Test Facility in Cardington in the UK as part of the European Concrete 

Building project. The floors consists of flat slabs and deflection measurements were published by 

Vollum & Hossain (1998). 

The publications concerning this building do not mention the exact reinforcement ratios but the project 

brief, Chana et al. (1998), contains enough data, table 4-8, to infer the designed reinforcement from a 

design calculation to Eurocode 2. 

I 

I 

Table 4-8: Cardington slabs parameters 

A design calculation utilising the equivalent frame method, yields required reinforcement in the order 

of360mm2/m for both the hogging and sagging moment regions. This reinforcement area and the 

parameters shown in Table 4-9 and Table 4-10, are used to calculate the long-term deflection with the 

method proposed by the author. The finite element mesh used is identical to that of figure 4-16 and 

the reinforcement shown in figure 4-17 is modified to 360mm2/m. 

Parameter Value 

to, t\, h, t3 (Time) 2 days, 12 days, 300 days, 1000 days i 

i Wo, Wlo W2 (Sustained service load) 6.75 kPa, 10.7 kPa, 9kPa 
i 

Eo, E1, E2 (Modulus ofelasticity) 27GPa, 33GPa, 33GPa 

frO, frl' fr2 (Modulus ofrupture) 2.7MPa, 3.6MPa, 3.6MPa 

I Concrete C37, (35MPa) 

Table 4-9: Cardington time dependent slab parameters 
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i 

Time (days) 

to 2 

tl = 12 

t2 = 300 

;(t,to) 

0 

0.57 

1.42 

;(t,tJJ 

-
-
0 

i 

t3 = lOOO 1.72 1.03 

Table 4-10: Creep coefficients 

Two analyses were perfonned: 

• 	 FEA (2 steps) In this analysis, creep deflection was calculated using properties from to to t2 

in the first step, and a second step calculated creep deflections from t2 to t3. The first step used 

the 6.75kPa load and the second step 9kPa. 

• 	 FEA (1 step) - Here creep deflection was calculated in a single step from to to t3 using 9kPa. 

The measured deflections are plotted against the results of the finite element analysis in figure 4-18. 

The finite element analysis correlates well with the experimental data up to the application of the 9kPa 

load at t = 300 days. It is clear that the load history is of great importance when calculating long-tenn 

deflections and that the proposed method does not perfonn extremely well when faced with varying 

load histories. This problem would be exacerbated were the sustained load to decrease at any time, 

since full creep recovery would erroneously be shown by the proposed method. 

Despite these failings, the method predicts the 1000 day creep deflection within +12% when load 

history is included and within -40% when load history is neglected. 
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Figure 4-18: Finite element analysis plotted on the Cardington data 

 
 
 


