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IMPLEMENTATION OF THE PROPOSED METHOD 

3.1 	Cracked Sections 

Polak's approach to the problem of tension stiffening was applied almost without change. The author 

modified the algorithm suggested by Polak to allow for iteration after each model update, figure 7·3. 

Both the Bilinear and Branson's method were used in conjunction with Polak's approach and 

compared to experimental results in section 4.2. The bilinear method required further development 

before being utilised in a manner similar to Branson's method. 

Assuming that elastic relations still hold on average for cracked sections: 

M 
(3.1)If/l = Ell 

M 
(3.2)1f/2 = El2 

where the subscripts 1 and 2 refer to conditions 1 and 2 as described in section 2.2. 


Substituting equations (3.1) and (3.2) into equation (2.43) yields an effective moment of inertia 


(3.3) 

-. 

Ie can then be used to calculate ax and lXy as described in section 2.2.2. It should be noted that the 

procedure for instantaneous cracked deflection and long·term cracked deflection differs. For long· 

term deflections a shrinkage analysis should precede the crack analysis, as shrinkage normally causes 

additional member actions that contribute to cracking. 

A very simple convergence check was used in the crack analysis as follows: 

• 	 Step 1 : Calculate deflections using I(j), where i denotes the iteration step. For the first 

iteration I(j) corresponds to h 

• 	 Step 2: Calculate Ie(i+l) using either ofthe two tension stiffening methods. 

• 	 Step 3 : Average Ie(i+ 1) and I(j) and calculate the reduction factors ax and lXy. 

• 	 Step 4: Loop back to step 1 and repeat until Ie(i+l) "'-"I(i). 
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This approach converged very quickly when using Branson's method but the bilinear method often 

exhibited oscillating divergence. This phenomenon was model and loading dependent and the 

algorithm had to be modified on a case by case basis to achieve a convergent solution. 

3.2 Creep 

Using equation (2.64) the factors Kx and Ky can be calculated based on the reinforcement ratios in those 

two directions, similar to ~ and ay in section 2.2.2. To account for the different creep characteristics 

of cracked and uncracked sections, a creep analysis must be preceded by a crack analysis as described 

in section 3.1. 

The elasticity matrix in equation (2.19) can then be modified as follows for the calculation ofcreep 

deflection increments for a cracked element: 

Ejl3 Eyvjl3 
0 0 0 

12(1-vxv y) 12(1-vxv y) 


V)z3 Eh3
Ex y 0 0 0 
12(1-vxv y) 12(1-vxv y) 

(3.4)[D]= 
G1h3 

0 0 0 0 
12 

0 0 0 G2h 0 

0 0 0 0 G3h 

where: 

(3.5) 

(3.6) 


(3.7) 

(3.8)vx=axv, 

with ax :$;1, ay :$;1 and r/J the creep coefficient. 
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The parameters ax and fly are based on short term properties and Kx and Ky are parameters smaller than 

unity that modify the creep coefficient to account for the presence of the reinforcement. 

The variables in equations (3.4) to (3.8) apply to cracked and uncracked section parameters as needed. 

Uncracked elements and fully cracked sections pose little difficulty. Partially cracked sections, on the 

other hand, require the calculation of an effective neutral axis. 

It is proposed that the neutral axis for partially cracked sections be calculated based on the assumption 

that since the parameter ex provides a measure of the extent of cracking it can also be used directly to 

modify the depth of the neutral axis: 

(3.9) 

where: 

Ye y-coordinate of the neutral axis of the partially cracked section, measured from the top 

of the section. This value should be larger than the cracked neutral axis coordinate 

and smaller than the uncracked value. 

Yl y-coordinate of the neutral axis for the uncracked section, measured from the top of 

the section. 

The creep analysis algorithm is illustrated in figure 74. 

3.3 Shrinkage 

Equation (2.70) can be used to calculate x and y curvatures for each element, independent ofloading. 

These curvatures need to be transformed into equivalent nodal loads in order to model the effect of 

boundary conditions on shrinkage in a finite element analysis. 

Equivalent nodal loads are calculated simply from the following equation, utilising Gaussian 

numerical integration over the 4 sampling points: 

{psh }= f[BY[D]{Esh}dA (3.10) 
A 

where [B] is calculated from equation (2.26) and [D] is calculated from equation (3.4). 
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{8Sh} is the vector of shrinkage strains: 

If/ xshXx 

Xy If/ ysh 

(3.11)= 0{SSh} = Xxy 
0tPx 
0tPy 

The vector of shrinkage forces for each element node is calculated as: 

(3.12) 


All these forces are then assembled into a global force vector and the shrinkage deflections and forces 

are calculated with [D] modified for creep. 

The shrinkage analysis algorithm is illustrated in figure 7-5. 

 
 
 


