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2 THEORETICAL BACKGROUND 

2.1 Analysis 

Analysis methods can be categorized into classical and numerical approaches. The classical approach 

involves finding stress or displacement solutions that satisfy the differential equations ofequilibrium, 

compatibility requirements as well as stress-strain relationships, subject to the given boundary 

conditions. Due to these stringent requirements, very few classical solutions are available for practical 

plate bending problems. 

This difficulty can be overcome by approximating plate behaviour with a crossing beam analogy such 

as the equivalent frame method, Corley and Jirsa (1970). The results of such an equivalent frame 

analysis, as well as the required reinforcement, are assumed known in the hand-calculation method 

presented in 3.1.1. 

Numerical approaches require discretisation of the problem, i.e. a structure with an infinite number of 

degrees of freedom is reduced to a finite number to simplify the calculation process. Two of the best 

known methods are the method of finite differences and the finite element method. The method of 

finite differences has the disadvantage of difficulty in satisfying irregular boundary conditions. The 

finite element method, which is the method of choice in this dissertation, is presented in section 2.1.2. 

2.1.1 Hand-Calculation Method 

Short and long term deflections of two way slab systems can be calculated by the simplified method 

outlined below. This method is recommended by various authors, such as Gilbert (1988), Ghali and 

Favre (1986), as well as the ACI 318 (1999). 

For flat slabs, the method involves calculating the mid-span deflections of the middle strip relative to 

the column strip deflections, x and y-direction strips being treated independently. The middle strip 

deflections are then added to the average of the column strip deflections and finally, the x and y­

direction mid-span deflections are averaged to arrive at a total mid-panel deflection. 

The deflection calculations outlined above, make use ofknown curvatures which are modified with 

factors to account for cracking, shrinkage and creep. These factors are discussed in detail in sections 

3.2 through 3.4. 
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The main drawbacks of the method are as follows: 

• 	 Only rectangular slabs are considered, 

• 	 Bending moment magnitudes are assumed to be known, although these moments can easily be 

calculated using the Direct Design (ACI 318, 1999) or Equivalent Frame Methods, 

• 	 Curvatures are assumed to be parabolically distributed over the length of the strip considered, 

• 	 Simple support or continuity is assumed. 

Deflection at the centre of a strip is given by (Ghali & Favre, 1986): 

[2 
8 =-(flFl + lOfIF2 + flF3) (2.1)

96 

where: 

= length of the strip 

curvatures at the left support, centre and right support of the strip. 

Deflection at the centre of a panel can be expressed as the sum of the middle strip deflection and the 

average of the column strip deflections. 

1 
D J =8EF+-(8AB+8oc) 	 (2.2)

2 


1

D2 = 8 HI +-(8AD +8Bc} 	 (2.3)

2 

Dfinal =~ (DJ +D 2 ) 	 (2.4) 

The various deflection components in the equations (2.2) through (2.4) are illustrated in figure 2-1. 
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Figure 2-1: Displacement components 

Curvature and bending moment can be related with the following equations (Ghali & Favre, 1986): 

If/x 
1

-(Mx+vMy)
EJg 

(2.5) 

1
If/y =-(My+vMx)

EJg 
(2.6) 

h3 

I = --:----:­
g 12(1-v2) 

(2.7) 

where: 


Ec Young's modulus of the concrete, 


Ig =Effective moment of inertia of the gross concrete area of the strip, 


Mx. My = Moments at the section under consideration, 


v = Poisson's ratio of the concrete (usually taken as 0.2), 


h = Slab thickness. 
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2.1.2 Finite Element Method 

This method involves the discretisation of continua problems into finite sub regions termed finite 

elements. The approach yields approximate results based on an assumed stress field, displacement 

field or a mixed, hybrid approach. These fields are defined by points, or nodes, in the finite element. 

The approach presented here is limited to the displacement approach, due to its widespread use for 

matrix analysis software. 

The element used in the study is an eight-noded Serendipity element. These elements differ from 

elements such as Lagrange elements in the derivation of their shape functions. Langrage elements can 

contain nodes interior to the element and the Lagrange interpolation function is used to find these 

shape functions. Serendipity elements on the other hand, usually consist of only edge nodes and the 

shape functions are found by inspection. 

Shape functions are approximations of element geometry and deflection behaviour. The same shape 

functions (second degree polynomials) are used for the definition of geometry and displacement, 

classifying this element as parabolic isoparametric. 

The assumptions for the flexural formulation, due to Mindlin (1951), are as follows: 

• 	 The lateral deflection of the plate is small compared to its plan dimensions. 

• 	 Planes normal to the plate mid-surface remain plane, but not necessarily normal to the mid­

surface, after bending. 

• 	 Stresses normal to the plate mid-surface are negligible. 

The Kirchhoff, or thin-plate, assumptions (Ugural, 1999) for plate bending differ only in the second 

point above: Planes remain plane and normal to the mid-surface after bending. This implies that the 

Kirchhoff model neglects shear effects. 

The Mindlin elements were developed mainly to overcome inter-element continuity problems that 

arose from the use of their Kirchhoff counterparts. Mindlin elements do pose some numerical 

problems such as "shear locking" which is elaborated upon at the end of this section. 

The generalised displacements of the plate are completely described using three degrees of freedom 

per node where w denotes a displacement in the z direction and Ox and Oy orthogonal rotations about 

the y and x axis, respectively. This leads to following expressions for the plate deformations 

 
 
 



---------

21 


(2.8) 


These physical quantities and the orientation of the global Cartesian coordinate system are illustrated 

in figure 2-2. 

~------------~~ ----------------------------------­)( 

w 

Figure 2-2: Plate defonnations 

The formulation makes use of a natural (dimensionless), curvilinear coordinate system in ~ and T/ with 

origin at the geometric centre ofthe element. Although the directions of the ~ and T/ axes vary within 

the element, the general positive directions are: 

• Positive ~ is taken in the same direction as indicated by the nodal sequence 1-2-3. 

• Positive T/ is taken in the same direction as indicated by the nodal sequence 3-4-5. 

The nodal numbering starts at any comer of the element and proceeds in an anti-clockwise direction as 

shown in figure 2-3. 

" i~SI;;lo'1b 

kJ til) U 'Z...'/U4 (} 
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11 = -1 

Figure 2-3: Element numbering 

The geometry of each element is defined by 

X(~.1])]_t[Ni O][Xi] (2.9)[Y (~.1]) - ;=1 0 N; y; 


where N; is the parabolic shape function, or interpolation function, associated with node i. These 


functions have a value ofunity at the associated nodes and zero at every other node. 


Similarly the displacement field over the element is defined by 


(2.10)a=[~J= t[~i ~i 
B .-1 0 0 

y 
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The shape functions are given by 

N 1(;,1])=_1 (1-;X1-1]X1+;+1])
4 

Ni;,1]) = !(1 ;2X1-1])
2 

N 3(;, 1]) = !(1 + ;X1-1]X; -1] -1)
4 

Ni;,1]) =!(1+;X1-1]2)
2 (2.11 ) 

N 5(;,1]) = !(1 + ;X1 +1]X; +1] -1)
4 

N (;,1]) = 1 (1_;2X1+1])6 2 

N 7(;,1]) = !(1-;X1 + 1]X-; +1] -1)
4 

Ng{;,1]) = 1(1- ;X1_1]2)
2 

The variational approach to the formulation of the stiffuess matrix is used, specifically the 

minimisation of potential energy principle. The potential energy functional consists of terms for 

bending, shear and external work done by the applied lateral pressure denoted by p: 

(2.12) 


where {M} and {Q} are as defined in equations (2.15) and (2.16) respectively. 

Positions of equilibrium are denoted by positions of stationary potential energy or 811 = 0, which leads 

to equation (2.30). The curvatures and shear strains are defined as 

_aox 

ax 
_a~y 

(2.13)
0' 

_(aox +~J
0' ax 
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(2.14){fl)=[~:] 

The stress resultants {M} (bending moment) and {Q} (shear force) are calculated by pre-integrating 

the relevant stresses over the depth of the plate which is denoted by h. The resultants are related to 

element strains by the following expressions, illustrated in the figure below: 

(2.15){M) =[2]=[Df]{VF} 

(2.16){Q) = [~:] = [D,]{fl} 

x 
z 


Figure 2-4: Sign convention (positive directions) 

where [Df ] and [Ds] are the elasticity matrices, 

1 v 	 o 
Eh3 

(2.17)[Df] 2 v 1 	 o 
12(1-v 	) 

o 	0 1 v 

2 
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EhK [1 0] [1 0] (2.18)[D,] = 2(I+v) 0 1 GhK 0 1 

for flexure and shear, respectively. The elasticity matrices above are usually combined as the total 

elasticity matrix: 

Ech3 Ecvh3 
0 0 0 

12(I-v2
) 12(I-v2

) 


Evh 3 
c Ech3 

0 0 0 
12(I-v2

) 12(I-v2
) 

(2.19)[D]= 
Gh3 

0 0 -- 0 0 
12 


0 0 0 GhK 0 


0 0 0 0 GhK 


where K %is a shear correction factor, applicable only to rectangular sections. This factor is used 

to transform the assumed parabolic shear stress distribution over the depth ofthe plate to an equivalent 

constant stress distribution. 

Strains are related to displacements by 

{s}=[L]{8} (2.20) 

where {s} is a generalised strain vector, 

IJIx 


lJI y 


(2.21){s} = IJIxy 

-fjJx 

-fjJy 

{8} is the generalised displacement vector and [L] is the matrix of displacement differential operators. 

With the finite element method, {8} is approximated by NO' within an element, where 
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0 N2 0 0 0 0 Ns 00 

N\ 0 0 N2 0 0 0 0 N g (2.22)[N'[N]= ~ 
0 N\ 0 0 N2 0 0 0 0 n 

and 

{8er =[8\ 8 2 • • 8; . . 8 g] (2.23) 

is the vector ofnodal displacement components and 0; is given by 

Wi 

(2.24) 

Equation (2.20) then becomes 

(2.25) 


where [B] is known as the element strain matrix, 

(2.26) 


and [B] i is calculated for each node as 

0 
aNi 

0 
ax 

0 0 a~ 

8y 

[B]i== 0 
_ aNi 

8y 
_a~ 

ax (2.27) 

aN; -Nj 0 
ax 
aN; 
8y 

0 -N; 
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Finally the element stiffness matrix can be assembled as 

(2.28) 

where ~ is the determinant of the Jacobian matrix. 

Distributed loads, denoted byp, must be represented as equivalent nodal loads in this method and the 

following equation is used for this purpose: 

{p;} = fN;pdA = fJNplJld~dll (2.29) 
Ae 

where Ae is the elemental area. 

The linear system of equations per element is then 

(2.30) 

where? denotes the nodal forces. 

The element stifihess matrices are then assembled in the global stiffness matrix with the direct 

stiffness method and the problem reduces to a system of linear algebraic equations. This system can 

be solved with any suitable numerical method such as Gauss reduction or Cholesky decomposition. 

A discussion on "shear locking", introduced at the beginning of the section, follows. Thin plates, 

modelled using Mindlin elements, often exhibit a high, incorrect shear stiffness which is termed shear 

locking. Mathematically this can be studied using the energy contributions of shear and flexure to 

equation (2.12). The flexural strain energy varies cubically with thickness whereas shear strain energy 

varies linearly, this implies that flexural strain energy decreases more rapidly with reductions in depth 

than shear strain energy. 

When one takes into account that the shear strain energy is given by: 

(2.31) 
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(2.32) 

it appears that the shear strain energy should disappear as h- O. Due to the approximate nature of the 

finite element method, zero strain energy is rarely achieved and under various conditions, the stiffuess 

matrix becomes ill-conditioned, Tesler & Hughes (1983), which leads to a gross overestimation of 

stiffuess. 

This locking problem can be avoided with the use of reduced or selective numerical integration 

(Zienkiewicz, Taylor and Too, 1971). The basis of these integration schemes resides in the 

assumption that shear locking can be avoided by not integrating the shear strain energy exactly. This 

dissertation employs a reduced 2x2 Gaussian integration scheme. 

Shear locking tendencies can be assessed using the constraint ratio, Hughes (1987), or the Kirchhoff 

mode concept, Hughes & Tezduyar (1981). 

The entire analysis process for a linear-elastic analysis is illustrated in figure 7-1. 

2.2 Cracked Sections 

Concrete members crack when the tensile stress at a section exceeds the tensile strength, usually taken 

as the modulus of rupture for members subjected to flexure. The flexural stiffuess along the member 

then varies between two extremes: 

• 	 Condition 1: Where the tensile stress is below the modulus of rupture, the concrete remains 

uncracked and the full section contributes to the stiffhess. 

• 	 Condition 2: At sections where the tensile stress exceeds the modulus of rupture, the concrete 

cracks over the full depth of the tension zone. Cracks at these sections are often referred to as 

primary cracks. The flexural stiffuess at such a cracked section can be estimated from the 

fully cracked, transformed section. 

Assuming a stiffhess based on condition 2 would overestimate the deflection of the member, since the 

regions between primary cracks remain uncracked or partially cracked. In these regions, the concrete 

in tension contributes to the flexural stiffuess and this is referred to as tension stiffening. 

 
 
 



29 


Including tension stiffening in the deflection analysis of a concrete member involves interpolating 

between conditions 1 and 2. Two empirical methods are considered here, the Bilinear Method and 

Branson's Effective Moment of Inertia. 

2.2.1 The Bilinear Method 

This method, first proposed for beam cracking problems by Favre et al (1985), is developed below: 

Assuming that plain sections remain plane in bending for uncracked and cracked sections, strains 

remain linearly distributed over the depth of a section. Although this is not strictly true at the cracked 

section, the average strain measured over a number ofprimary cracks retains proportionality to the 

distance from the neutral axis. 

Subject to the assumption that no bond slip occurs, the strain in the tension reinforcement at uncracked 

sections (condition 1), just prior to cracking, can be expressed as: 

Mpt
& :::-­ (2.33)

sl IE 
1 c 

where Mr is the cracking moment at the section under consideration, dt is the depth from the neutral 

axis of the section to the level of the tension reinforcement, II is the moment of inertia based on the 

uncracked transformed section and Ee is the secant modulus ofelasticity of the concrete. 

The cracking moment for a rectangular section can be expressed as 

(2.34) 

wheref,. is the modulus ofrupture, Ig is the moment of inertia of the gross concrete section neglecting 

reinforcement and h is the section depth. 

At fully cracked sections (condition 2), equation (2.33) changes to 
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Mdt 
=-­ (2.35)

s2 IE 
1 c 

where 11 is the moment of inertia based on the fully cracked transformed section and M z Mr. The 

steel stresses for condition I and 2 would then be 

(2.36) 


(2.37) 


assuming linear elastic reinforcement behaviour as illustrated in figure 2-5. 

Between primary cracks, the reinforcement strain increases to a value larger than 8s1 but smaller than 

8$2. The steel strain will gradually decrease from its maximum value at the crack to 8s1 as bond 

transfers tension from the reinforcement to the concrete. When the strain reaches 8sJ, another primary 

crack forms and the process repeats itself. 

E, 

Steel strain 

Figure 2-5: Reinforcement stress-strain relation 

Let 8sm represent the mean strain ofthe reinforcement in the member 
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M 
(2.38)~m=T 

where LJl is the change in member length at the level of the reinforcement and I the original length. As 

mentioned in the preceding paragraph Gsm will be smaller than GSZ with the difference dcs, thus 

(2.39) 


This difference has a maximum value of ..dGSIIUU" at the onset ofcracking. Experimental evidence has 

shown that ..dGs can be related to OSz as follows, Ghali & Favre (1986) 

(2.40) 


Note that equation (2.40) is based on the assumption that the uncracked concrete has the same effect 

on the mean reinforcement strain in flexure as is the case with axial loading. 

Equations (2.39) and (2.40) are shown graphically in figure 2-6 below. 

M(O',z) 

Mr(cr,) 

Condition I 

----~r---~-------=--------~~~----

-----+--~--~------~----------------

Steel Strain 

Figure 2-6: Variation of steel strains versus bending moment 
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From the geometry of the graph, L1eslI!<2X can be written as 

~&'s max =(&'s2 - &'SI) ~ (2.41) 

Substituting equation (2.41) and (2.40) into equation (2.39) yields 

&'sm={l S)&'Sl+S&'S2 or (2.42) 

IfIsm={l S)IfIS1+SlfIs2 (2.43) 

where (; is a dimensionless parameter that measures the extent of cracking, zero for an uncracked 

section and between zero and unity for a fully cracked section. The parameters 1/tsl and 1/ts2 represent 

the curvatures at the uncracked and cracked states, respectively. 

(2.44)S =l-(~r withM>Mr 

The CEB-FIP Model Code 1990 (1993) introduces two additional parameters to account for the 

difference in bond characteristics ofdeformed and plain bars, as well as long term effects 

(2.45) 

/31 equals 1 and 0.5 for deformed and plain bars, respectively. /32 equals 1 and 0.5 for immediate 

loading and sustained loading, respectively. 

This approach to tension stiffening can be used in combination with the hand-calculation method 

described in section 2.1.1. A curvature coefficient is calculated for condition 1 and 2: 

(2.46) 

(2.47) 

These coefficients represent the influence of the reinforcement on uncracked and cracked curvatures. 
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An effective coefficient is then found by interpolating with equation (2.44): 

(2.48) 

where: 


Ig =Moment of inertia ofthe gross concrete area, neglecting reinforcement; 


11 = Moment of inertia of the uncracked, transformed section; 


12 = Moment of inertia of the fully cracked transformed section; 


lest = Curvature coefficient for condition 1; 

lesl = Curvature coefficient for condition 2. 

2.2.2 Branson's Effective Moment of Inertia 

Similar to the bilinear method, this method proposes an effective moment of inertia, constant over the 

length of a member, for the computation ofdeflections. The effective moment of inertia, developed 

by Branson (1968), is expressed as: 

(2.49) 

where Ig is the moment of inertia of the gross concrete section neglecting reinforcement and m is a 

power usually set to 3, although Branson suggested a value of 4 for calculating Ie at a specific section. 

Although this equation was developed for beams, a study undertaken by Polak (1996), suggests that 

sufficiently accurate deflection results are achieved for slabs using the equation in conj unction with 

the finite element method. This method is set out below. 

The difficulty in applying Branson's equation to plate bending problems concerns the definition of 

flexural rigidity. In the case ofbeams the flexural rigidity is simply the product EI, whereas in the 

plate formulation, flexural rigidity is represented by the matrix [Df] as shown in equation (2.17). 

Polak circumvented this difficulty by modifying E and vinstead of1. 

The ratio of the cracked to gross second moments of inertia is used to modify [D] per element. This 

implies that the cracked section properties are averaged across all nodes belonging to an element to 

 
 
 



34 


arrive at a single partially cracked element. This is achieved by calculating average moments in the x 

and y-directions for use in equation (2.49), 

Mxavg = : 2:;=1 (lMXil + IMxYil) (2.50) 

Myavg = : 2:;=1 (IMYil + IMxYil) (2.51) 

where n is the number of Gaussian sampling points and Mxi, My! are the moments calculated at 

sampling point i. 

The elasticity matrix, modified for tension stiffening, takes the following orthotropic fonn: 

E)l3 Eyvxh3 

0 0 0 
12(1- VXvy} 12(1-vxv y} 


ExV)z3 Eyh3 


0 0 0 
12(1-vxv y} 12(1-vxv y} 

(2.52)[D]= 
G1h3 

0 0 0 0 
12 

0 0 0 G2h 0 

0 0 0 0 G3h 

where: 


Ex =afic' Ey=afic (2.53) 


Vx =axv, vy=ayv (2.54) 


G1 = Gaxay , G2 =Gax, G3 =Gay (2.55) 


lex ley
a=- , a y=- (2.56) 

x I 
g 19 

lex and ley are calculated using the average moments obtained from equations (2.50) and (2.51). 

Bensalem (1997) pointed out weaknesses in Polak's proposed method, many of which are intentional 

approximations with a simple method in mind as pointed out in Polak's closure. 
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One of these weaknesses involves the calculation ofthe average moments. Bensalem argues that the 

approach would only be valid for conditions when the signs of the moments are the same. Should 

these signs differ, over- or underestimation ofthe average moments would occur. Typical rectangular 

layouts lead to same sign moments and the approach remains valid. 

The analysis algorithm, as given by Polak:, is restated in simplified form in figure 7-2 for reference. 

2.2.3 Rigorous methods 

A number of sophisticated approaches to post-cracking behaviour and tension stiffening have been 

proposed. These models usually incorporate non-linear constitutive relations and multi-layer elements 

as the main components. 

Chan et al (1994), utilises strain hardening plasticity theory to develop the constitutive model for a 

finite element analysis and also present a bond stress distribution function to model tension stiffening. 

Principal stresses at integration points are evaluated and compared to the cracking strength of the 

concrete. Should the cracking strength be exceeded, tangential concrete moduli are calculated using 

the bond stress distribution. The constitutive matrix is modified with the tangential moduli and the 

analysis proceeds in an iterative manner with continuous model updating. 

Hu et al (1991), use a similar approach as above, except that an explicit tension stiffening function and 

a layered finite element formulation is used. Crack directions are modified during the analysis to 

ensure that cracks remain normal to the maximum principal stresses. 

Due to the non-linear nature of the methods briefly outlined above, and in fact almost all sophisticated 

methods, iteration, and all the associated numerical difficulties, is required. Large finite element 

models using these approaches become bulky in terms of storage requirements and computing time. 

2.3 Creep 

Creep is a progressive increase in strain under sustained loading and is responsible for the largest 

portion of long term deflections in concrete structures. The current state of the art with regards to 

creep is perhaps best described in a paper by Bazant (200 I) : " ...despite major successes, the 
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phenomenon of creep and shrinkage is still far from being completely understood, even though it has 

occupied some of the best minds in the field on cement and concrete research and material science ..." 

A large number ofpredictive physical models have been proposed in the past and are still being 

developed. Neville & Dilger (1970) and Bazant (2001) have provided detailed overviews of these 

models and they will not be repeated here. 

These physical models lead to mathematical models that facilitate structural analysis: 

• Effective modulus method. 

• Age-adjusted effective modulus method. 

• Rate of creep method. 

• Improved Dischinger method. 

• Rheological models. 

Analysis methods fall into two classes: 

• Single step approximations. 

• Step-by-step iterative solutions. 

Of these, the simplest choice would be the age-adjusted effective modulus method using a single time­

step approximation. These single step approximations yield acceptable upper bound deflections for 

routine design and are not plagued with the numerical problems of iterative rheological approaches, 

such as creep divergence, BaZant (1993). 

The discussion below is therefore limited to the effective modulus method and the related age-adjusted 

effective modulus method. 

In the study of creep effects, it is convenient to separate creep strain into the following components 

(figure 2-7): 

• Irrecoverable creep or flow, designated by Ilf. 

• Ilfis further divided into basic creep and drying creep. 

• Recoverable creep or delayed elastic strain, designated by lid. 

One of the main disadvantages of the effective modulus method is its inability to deal with decreasing 

stress histories. As can be seen from figure 2-7, creep involves a measure of irrecoverable strain. The 
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effective modulus method, due to its elastic nature, predicts complete recovery of creep strains, i.e. a 

return to zero strain at unloading. This will lead to a severe underestimation ofdeflection for structures 

subjected to cyclic loading. 

8r 

8f 

t 

~------------------~cru 

... 

t 

Figure 2-7: Creep components due to a load pulse 

The total creep potential of a concrete specimen is usually described by a creep coefficient, ¢rt, r:), 

which is expressed as, 

(2.57) 


where: 

Elt) Creep strain at time t. 

Ee = Instantaneous elastic strain. 

7: = Age at loading. 

This coefficient increases with time and is highly dependent on the concrete maturity at first loading. 

One of the largest uncertainties in creep problems is the magnitude of rp. A vast number ofprocedures 

are available for the calculation of rp, many of which calculate contributing portions to rp for the 

various components of the total creep strain. 
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The effective modulus method involves replacing the modulus used in the analysis with an artificial, 

effective modulus: 

E (t r) =_E_c_ (2.58)e, l+¢(t,r) 

where: 


Ee(t, r) =Effective modulus at time t for a specimen loaded at time T. 


Ec = Concrete modulus ofelasticity at time zero. 

Equation (2.58) allows the calculation of total deflection at time t, If only the creep increment in 

deflection is sought, equation (2.58) becomes: 

Ec
Ee(t,r)=-- (2.59)


¢(t,r) 


The age-adjusted method allows an improved estimation of ¢. Since the fun loading is rarely 

instantaneously applied at time T, as suggested by figure 2-7, the total load causing deflection is only 

active at some time later than T. As mentioned earlier, ¢ is very sensitive to T and should therefore be 

modified to account for this gradual increase in load. The age-adjusted method suggests the use of a 

factor, xit, T) smaller than unity, to reduce the magnitude of ¢. 

Equation (2.58) then becomes, 

Ec
Ee(t,r)=------ (2.60)


1+Z(t, r)¢(t, r) 


As for ¢, various national building codes suggest procedures for the calculation ofX(t, r). For the 

purposes of this dissertation it is assumed that ¢ and X are known and the focus falls on the 

implementation of these quantities in a creep analysis. 

The method set out below is often referred to as the "Section Curvature Method" and is taken from 

Ghali and Favre (1986). The equation variables are illustrated in figure 2-8. 
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The creep curvature increment of a plain concrete member subjected to flexure and assumed to be 

uncracked may be expressed as: 

(2.61) 

where: 


Lllf/ = Creep increment in curvature; 


¢(t, r) = Creep coefficient at time t for loading at time 1:; 


If/e = Elastic curvature at time 1:. 


Similar to equation (2.57), equation (2.61) modifies the elastic curvature for creep, based on the creep 


coefficient and the assumption that strain is linearly related to curvature. 


Reinforcement tends to restrict concrete creep and the magnitude of this influence is a function of 


section geometry and reinforcement ratio. The effect of reinforcement on concrete creep can be 


expressed by a dimensionless parameter K'c, as shown in equation (2.62): 


(2.62) 

where: 


K'c = Creep curvature coefficient, defined by equation (2.64); 


Eo = Axial strain at point 0 at time z; point 0 is a reference point chosen at the centroid 


of the age adjusted transformed section; 

Yc y-coordinate of the centroid ofAe at time 1:, measured downwards from the centroid of 

the age-adjusted transformed section. 
, 

r~ = c 

Ie Moment of inertia ofAc about an axis through the centroid ofthe age-adjusted 

transformed section. 

Ac Effective concrete area, full area for uncracked sections and the concrete compression 

zone for cracked members. 
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This dissertation neglects the effect ofmembrane action in the slab and equation (2.62) can then be 

simplified to: 

(2.63) 

The parameter ICc can be calculated from: 

(2.64) 

where: 

L1y = y-coordinate of the centroid of the age adjusted transformed section, measured 

downwards from the centroid of the transformed section at time T. 

Moment of inertia of the age adjusted transformed section about an axis through its 

centroid. 

Figure 2-8, taken from Ghali & Favre, illustrates the variables used in equations (2.62) to (2.64). 

This approach is applied to the finite element method in section 3.2. 

a) 

CentrOid of A, 
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section 

b) 
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Figure 2-8: Creep section parameters for a) uncracked section; b) cracked section 

(Reproduced from Ghali & Favre (1986» 
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2.4 Shrinkage 

Shrinkage occurs when a hygral gradient exists between a concrete member and the surrounding 

environment. Pore and adsorbed water migrates from the concrete and causes a change in volume. 

Should this change in volume be restrained by reinforcement or support conditions, tensile stresses 

develop which could in turn cause cracking. When free shrinkage, denoted by 8m is restrained by an 

unsymmetrical arrangement ofreinforcement about the neutral axis of a member, an increase in 

curvature occurs. 

The derivation below is taken from Kong & Evans (1987). 

From basic theory, the shrinkage curvature can be written as, 

(2.65) 


From the geometry of figure 2-9, 

8 =8 _h2 and (2.66)
2 cs E 

c 

(2.67) 

4~---------8~----------~ 

r I'" 82-----+1 

~----------~------~ 

Figure 2-9: Shrinkage strains in a singly reinforced member 

 
 
 



42 


From the requirements of equilibrium, 

ic! =(f~s) - (f~;)es (d -es) and (2.68) 

r = (f~s) + (f~s)es e (2.69)
jc2 A I s 

where: 


Is Steel stress due to shrinkage (EsE,); 


lei Concrete tensile stress at the tension reinforcement level due to shrinkage; 


Ie; = Concrete tensile stress at the top fibre of the section due to shrinkage; 


es = Eccentricity of the steel centroid with respect to the centroid of the transformed section; 


A Concrete cross sectional area; 


As = Area ofreinforcement; 


I =Moment of inertia of the age-adjusted transformed section. 


Equation (2.65) can then be rewritten as: 

(2.70) 

where ae is defined as 

Es a=­ (2.71) 
e E 

c 

It should be noted that ae is based on the effective concrete modulus and I is based on the age-adjusted 

transformed section. 

Equation (2.70) holds for singly reinforced uncracked members, and very little error is involved by 

applying the equation to cracked sections as well (Kong & Evans, 1987). 

This approach for singly reinforced sections is applied to the finite element method in section 3.3. 

 
 
 

http:a=�(2.71

