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Abstract 

The new and upcoming field of wireless sensor networking is unfortunately still lacking in terms of 

both digital forensics and security. All communications between different nodes (also known as 

motes) are sent out in a broadcast fashion. These broadcasts make it quite difficult to capture data 

packets forensically and, at the same time, retain their integrity and authenticity. The study presents 

several attacks that can be executed successfully on a wireless sensor network, after which the 

dissertation delves more deeply into the flooding attack as it is one of the most difficult attacks to 

address in wireless sensor networks. Furthermore, a set of factors is presented to take into account 

while attempting to achieve digital forensic readiness in wireless sensor networks. The set of factors 

is subsequently discussed critically and a model is proposed for implementing digital forensic 

readiness in a wireless sensor network. The proposed model is next transformed into a working 

prototype that is able to provide digital forensic readiness to a wireless sensor network. The main 

contribution of this research is the digital forensic readiness prototype that can be used to add a 

digital forensics layer to any existing wireless sensor network. The prototype ensures the integrity 

and authenticity of each of the data packets captured from the existing wireless sensor network by 

using the number of motes in the network that have seen a data packet to determine its integrity and 

authenticity in the network. The prototype also works on different types of wireless sensor networks 

that are in the frequency range of the network on which the prototype is implemented, and does not 

require any modifications to be made to the existing wireless sensor network. Flooding attacks pose 

a major problem in wireless sensor networks due to the broadcasting of communication between 

motes in wireless sensor networks. The prototype is able to address this problem by using a solution 
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proposed in this dissertation to determine a sudden influx of data packets within a wireless sensor 

network. The prototype is able to detect flooding attacks while they are occurring and can therefore 

address the flooding attack immediately. Finally, this dissertation critically discusses the advantages 

of having such a digital forensic readiness system in place in a wireless sensor network 

environment. 
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Chapter 1 Introduction 

1.1 Introduction 

Technology has become an integral part of our daily lives. We use technologies that work for us in 

the most extravagant ways – most of which are seemingly integrated with each other through some 

kind of network and/or the Internet. For example, mobile phones are migrating to the latest 

generation of mobile phones – the so-called enhanced third generation (3G) – which enables one 

not only to make voice or video calls, but also to run various kinds of other applications on the 

device, such as browsing the Web, managing appointments, navigating along streets and through 

buildings using general positioning system (GPS) software, and much more. Next-generation 

networks (NGNs), in turn, provide exciting and state-of-the-art possibilities for wireless and ad hoc 

networking (Orecchia, Panconesi, Petrioli & Vitaletti, 2004; Santi, 2005; Tseng, Ni & Shih, 2003). 

One particularly exciting NGN includes wireless sensor networks (WSNs), which are discussed in 

more detail in the dissertation. 

Although such innovative technologies are designed to improve our lives, they are 

unfortunately often the target of malicious intent. Computer viruses and worms probably constitute 

the most well-known example of such malintent. Although the Internet is traditionally fraught with 

these menaces, the creators of viruses and worms have also escalated their malintentions to all 

modern technologies. Viruses and worms, however, can be seen as an explicit and well-known form 

of malintent that can often be detected very successfully and stopped in its tracks by traditional 

applications such as antivirus intrusion detection system (IDS) and firewall applications. Due to the 

nature of these traditional applications, a proactive approach could be adopted of detecting and 

dealing with malintent such as viruses and worms (Bace, 2000). A proactive approach means that if 

there is an attempt at malintent, the attempt will be stopped immediately, provided that the 

application was able to detect it. In a reactive approach, the application will only alert the user of 

the attempt at malintent and wait for the user to decide if it should be stopped or not. 

Besides viruses and worms, however, there are other forms of malintent that cannot easily be 

dealt with in a proactive manner. For example, enormous amounts of fraudulent credit card 

transactions are committed over the Internet. Often communications regarding fraudulent 

transactions are encrypted and therefore cannot be dealt with in a proactive manner. In the late ’90s 

techniques were introduced that would allow law enforcement authorities in possession of a search 

warrant to retrieve a decryption key from a third party to decrypt communications if such 

communications were suspected to have malintent – a concept known as key escrowing (Denning & 
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Smid, 1994). A major flaw of key escrowing, however, is that one’s right to privacy is seen to be 

invaded, which has resulted in key escrowing never really being successfully employed. 

As new technologies emerge, such as wireless sensor networks (WSNs), a paradigm shift 

often takes place with regard to the way in which wireless nodes communicate. To begin with, 

nodes in WSNs do not function on the same protocol stack as the TCP/IP protocol stack utilised by 

some of the wireless networking standards such as IEEE 802.11 (Crow, Widjaja, Kim & Sakai, 

1997). The main difference is that such nodes do not have fixed media access control (MAC) 

addresses. This poses a problem in WSNs in that it is very difficult or even impossible to employ 

proactive detection measures (such as antivirus, IDS and firewall applications) in WSNs. Even 

though these proactive detection measures exist, they too have difficulty in detecting malintent. For 

example, due to the fact that WSN nodes do not have fixed MAC addresses (Ye, Heidemann & 

Estrin, 2002), traditional proactive applications may not be able to detect denial-of-service (DoS) 

attacks in WSNs. In addition, WSN topology is not fixed and nodes are prone to be mobile, 

complicating matters considerably for traditional proactive detection measures. 

The remainder of Chapter 1 provides the motivation for this research, gives the reader a brief 

overview of WSNs and discusses the foreseeable problems with WSNs. In the next section the 

reader is introduced to the problem on which the researcher has focused and is given a brief 

overview of how the problem will be addressed. Chapter 1 concludes with a layout section that 

provides an overview of the chapters to follow. 

1.2 Motivation 

WSNs involve a fairly new technology and as far as the author is aware, no research has been done 

on WSNs in terms of digital forensic readiness. For the purpose of this study, digital forensic 

readiness is defined as the notion to perform a digital forensic investigation in the shortest amount 

of time with the least amount of cost and without having to disrupt the original network that has to 

perform mission critical tasks. In order to explore the notions of digital forensic readiness further in 

terms of WSNs, the reader is briefly informed of the unique qualities of WSNs. 

WSNs are ad hoc networks and, as is the nature of ad hoc networks, their topology can 

dynamically change throughout the lifetime of the network (Akyildiz, Sankarasubramaniam & 

Cayirci, 2002). Ad hoc networks are networks in which the devices can communicate with one 

another without a fixed infrastructure or topology (Wu & Stojmenovic, 2004). The nodes in a 

wireless sensor network are known as sensors or, as in this dissertation and elsewhere in the 

literature, referred to as motes. The only way that these motes can communicate with each other is 

by broadcasting their data in the hope that there is at least one other mote within range to receive 
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the data packet. The receiving motes broadcast the received data packet until the packet eventually 

reaches the gateway (also referred to as the base station), from where the data packets in turn are 

sent to a management server (Orecchia et al., 2004; Slijepcevic, Potkonjak, Tsiatsis, Zimbeck & 

Srivastava, 2002). This type of broadcast communication complicates the ability to perform digital 

forensic analysis on the network. 

WSNs have many different applications such as in the military, environmental and health 

environments. It is of course essential that some kind of forensic readiness system be in place in 

these environments in case the equipment generates erroneous communication or an attacker 

attempts to cause malintent within the wireless sensor network. The applications in which WSNs 

can be used can contain sensitive data and thus it is important to explore the field of digital forensic 

readiness on WSNs. 

Now that the reader has been informed of our motivation for the research and all foreseeable 

problems with WSNs have been mentioned, the next section explores the problem statement that 

this study focused on. 

1.3 Problem Statement 

As the use of wireless sensor network equipment becomes more widespread and used in crucial and 

sensitive environments (e.g. habit and environment monitoring), there is currently little if any way 

of applying digital forensics in these environments. In addition, there is a need to implement a 

digital forensic system alongside existing wireless sensor networks. This poses a further problem. 

Since WSNs are set up to function in very particular environments, how is digital forensics applied 

in a WSN without infringing on the setup, functionality and performance of the WSN? In order to 

solve this problem, this dissertation proposes a digital forensic readiness system that is deployed on 

a separate set of WSN equipment – literally a second WSN deployed alongside the existing WSN 

that is to be monitored. For the purpose of this study, the WSN being monitored is referred to as the 

original wireless sensor network (oWSN) and the WSN executing the monitoring is referred to as 

the forensic wireless sensor network (fWSN). The fWSN should therefore have the capability to 

forensically monitor an existing WSN without infringing on it or having any previous knowledge of 

it. Flooding is another major problem that cannot easily be detected in an existing WSN. This study 

consequently examined the problem of flooding in WSNs and will provide a possible solution to be 

incorporated in the forensic system. 

The problem as stated can be summarised by addressing the following subproblems: 
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• There is currently no means of implementing a digital forensic readiness system on wireless 

sensor networks. 

• A digital forensic readiness system should be implemented independent of the oWSN as 

there is no easy solution for reprogramming and redeploying the oWSN. 

• Lastly, the difficult problem of flooding attacks on WSNs also needs to be addressed, as this 

can severely hamper the performance a digital forensic readiness solution. 

The following section provides more detail on the goals that have been set to solve the problems 

mentioned above and the objectives that this research aims to fulfil. 

1.4 Goals and Objectives 

The goal of this study is to propose a way to forensically capture the data that is transmitted 

throughout an existing WSN. The forensic capturing of data implies that it must be captured 

according to a forensically sound or proven method. An fWSN is introduced for this purpose, and 

great care is taken to ensure the integrity and authenticity of the data packets captured. However, 

this dissertation does not focus on the digital investigation process, but rather on the notion of 

collecting digital forensic evidence by means of a digital forensic readiness system in WSNs. To 

propose a way to forensically capture the data that is transmitted throughout an existing WSN, we 

first need to determine the specific requirements of a WSN. For this reason, a model is proposed 

that sets out the specific requirements to be taken into consideration while trying to achieve digital 

forensic readiness in a WSN environment. 

The system proposed in this study has more uses than just aiding us to conduct a digital 

forensic investigation. The suggested fWSN has the ability to address other problems in WSNs. In 

terms of security in WSNs it is currently very difficult to defend a network against flooding attacks. 

This research shows how the secondary network is able to detect and pinpoint flooding to a specific 

area of the network. 

The following section discusses the layout of the dissertation and provides a brief preview of 

each of the chapters that follow. 

1.5 Layout 

Part I is the introduction section and includes this first chapter in which the motivation for the 

research, the problem statement and goals and objectives of this study are provided.  

Part II consists of three background chapters to introduce the reader to all the technologies 

and concepts that are used in this dissertation. Chapter 2 provides the reader with background on 

 
 
 



Chapter 1 Layout 

 

 

Page 6  

wireless sensor networks and a brief overview of the communication protocol that is used in WSNs. 

The background information is intended to familiarise the reader with the broadcasting fashion in 

which WSNs communicate within the network itself. Chapter 3 focuses briefly on general attacks in 

WSNs so as to inform the reader of the different type of attacks that can be launched against a 

WSN, as well as the effects that these attacks can have on WSNs. Next, the reader is introduced to 

the notion of flooding and shown what a severe impact flooding attacks can have on wireless sensor 

networks. Chapter 4 provides an overview of digital forensics as it is important to first understand 

the notion of digital forensics before delving into the field of digital forensic readiness. The focus 

subsequently shifts to digital forensic readiness, as the main goal of this study is to achieve digital 

forensic readiness in wireless sensor networks. The reader is also introduced to the benefits that a 

digital forensic readiness system would have for a WSN. 

Part III consists of two chapters. Chapter 5 proposes a model for implementing digital 

forensic readiness in a WSN environment and discusses the special requirements in a WSN 

environment as well as how they differ from the requirements of an ordinary IEEE 802.11 wireless 

connection. The chapter also proposes the model that should be used to implement digital forensic 

readiness in a WSN environment, since having such a model makes it easier for future 

implementations of digital forensic readiness systems on WSNs. Chapter 6 critically reviews the 

model and shows the advantages of having a model in place for digital forensic readiness. 

Part IV contains three chapters in which the prototype is proposed and implemented. Chapter 

7 introduces the reader to the physical wireless sensor network devices and the equipment on which 

the prototype is implemented. Chapter 8 discusses the implementation of the prototype on the 

wireless sensor network devices. In this chapter the hardware and software used to implement the 

prototype are discussed, while reference is also made to the limitations that were experienced. In 

Chapter 9 the researcher makes a critically analysis of the prototype by demonstrating certain 

scenarios and how the prototype performs in these scenarios. 

Part V contains the two concluding chapters. Chapter 10 discusses the effectiveness of the 

prototype and model, and critically discusses all the research that has been completed in preparation 

for this dissertation. The chapter also discusses the feasibility of using a secondary network to 

achieve forensic readiness in a WSN environment. Finally, Chapter 11 contains a brief summary of 

the extent to which the research problems have been solved and addressed in this dissertation. The 

chapter is concluded by proposing areas of further research. 

Chapter 1 is now concluded with a graphic representation (Figure 1.1) of the layout of the 

dissertation. 
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Figure 1.1. A graphic representation of dissertation layout 

The next part (Part II) of the dissertation covers the background sections that deal with wireless 

sensor networks, flooding attacks, digital forensics and digital forensic readiness.  
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Chapter 2 Wireless Sensor Networks 

2.1 Introduction 

Wireless Sensor Networks (WSNs) still constitute a relatively new area of research in computer 

science and the first papers on WSNs were published around the start of the 21st century only 

(Chong & Kumar, 2003; Mouton & Venter, 2009; Akyildiz et al., 2002; Zhu, Setia & Jajodia, 2006; 

Chen, Jiang & Liu, 2005). Much of the research on WSNs dealt with new areas of application 

aimed at supporting our modern lifestyle. There has been very little focus on WSN security – 

especially digital forensics – as this is still a developing technology. 

The initial development of WSN devices focused extremely strongly on processing 

efficiency, while still being able to communicate in an ad hoc fashion (Ye, Heidemann & Estrin, 

2002; Wander, Gura, Eberle, Gupta & Shantz, 2005). Research on securing communication 

between the devices received little attention as most of the focus had been devoted to saving power 

seeing that WSN motes run on battery power. It is a well-known fact that any type of encryption 

algorithm would require more processing and thus effectively cause more power drain on the device 

itself (Akyildiz et al., 2002; Wander et al., 2005). 

Since in this day and age security on electronic devices has become an extremely important 

factor to consider, one would now need to implement some form of security on these devices as 

they have been developed mostly without taking security aspects into account. Quite a number of 

researchers have started exploring different techniques on how to implement secure communication 

protocols on these devices. Researchers such as Perrig and Mouton focused some of their research 

on implementing security on WSN devices (Perrig, Stankovic & Wagner, 2004; Perrig, Szewczyk, 

Wen, Culler & Tygar, 2001; Mouton & Venter, 2009). Most of these proposed security solutions 

considered a type of communication protocol that incorporates one or more security elements. 

If the security on these WSN devices had been disregarded to such an extent, one may almost 

assume that digital forensics and digital forensic readiness on these devices also had to take a 

backseat. It is for this very reason that this study focuses mainly on digital forensic readiness, as 

well as on comments on digital forensics and security on these WSN devices. It would be much 

better to examine these factors while WSN technology was still in its developing stages, as it would 

become an even more expensive exercise to add these features later. 

This chapter now continues with a brief overview of ad hoc sensor networks, after which the 

focus is shifted to WSNs specifically. The WSNs section focuses on how the devices operate and 
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which real-world applications can benefit from using WSNs. The chapter is concluded by a brief 

overview of WSNs and the main pitfalls involved. 

2.2 Ad hoc Sensor Networks 

Sensor networks are used quite widely in order to improve our everyday lives. A simple example of 

such a network in action is in most modernised parking bays (Chinrungrueng, Sunantachaikul & 

Triamlumlerd, 2007). Each parking bay is equipped with a pressure sensor, which is in turn 

connected to a light in the roof of the parking bay. This light would in normal operation indicate 

green if the parking bay is unoccupied, but if a vehicle is parked inside the bay, the light would turn 

red. The red light is visible from a distance and shows that the bay is occupied. 

The following subsections introduce the reader to the protocol of ad hoc sensor networks, 

after which the pitfalls and attacks of the protocols are discussed. 

2.2.1 Protocol 

The way that ad hoc sensor networks communicate is quite different to the way an ordinary IEEE 

802.3 Ethernet network (LAN) communicates. In an IEEE 802.3 Ethernet, the TCP/IP stack is 

mostly utilised for communication to occur (Spurgeon, 2000; Walrand, 1998). Also, the IEEE 802.3 

Ethernet protocol relies on the usage of media access control (MAC) addresses to uniquely identify 

the devices on the network. In a case where two devices have the same MAC address, it will cause 

these two devices to behave irregularly on the network (Khoussainov & Patel, 2000). The same 

applies to an IEEE 802.11 wireless network – when two devices have the same MAC addresses, 

these devices would behave irregularly (Guo & Chiueh, 2006). 

Ad hoc sensor networks rely on broadcasting for communication to occur (Ni, Tseng & Sheu, 

2001). This allows the devices to dynamically determine their network layout and network topology 

(Akyildiz et al., 2002). Then, by means of the routing protocol used, the devices determine how to 

pass on communication towards a management server (Akyildiz et al., 2002). Depending on the 

routing protocol used within the sensor network, the devices will know or not know the path to the 

base station. In the case where the path to the base station is known, only the devices that are 

known to be closer to the base station would retransmit the data packet in a broadcast fashion. In 

the case where the path is not known, all the devices would retransmit the data packet in a broadcast 

fashion only once. However, this makes these devices prone to flooding attacks, due to the fact that 

they are designed to propagate messages throughout the network in order for the communication to 

reach the management server. 
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Broadcasting is an elementary operation that is used by mobile ad hoc networks (Tseng, Ni & 

Shih, 2003). It occurs when the motes are transmitting data wirelessly. The individual devices have 

no previous knowledge of the relationship with their neighbouring devices. Once the information 

has been broadcast, all the devices in the vicinity will receive this transmission. Upon receipt, the 

neighbouring devices will analyse the data packet. After the data packet has been analysed, the 

device will decide (based on the routing protocol used and the destination of the packet) whether to 

retransmit or drop the data packet. 

Any of the devices can emit a broadcast at any given moment. It is not guaranteed that the 

information sent will reach any of the devices in its designated perimeter. Broadcasting is also 

unreliable because if another device sent out a broadcast at the exact same moment, messages 

would clash and both communications would be dropped. The very same message consequently has 

to be sent multiple times. According to Tseng (2003), the MAC specification does not allow for the 

acknowledgement of broadcasted information, as it would lead to severe flooding of the network if 

an acknowledgement packet were to be sent for every data packet received. 

Having shown that the communication within an ad hoc sensor network is transmitted in a 

broadcast fashion, it is important to examine the pitfalls of broadcasting messages, as well as the 

attacks that this type of protocol is prone to. 

2.2.2 Pitfalls and Attacks 

According to Tseng, Ni and Shih (2003) and Orecchia et al. (2004), broadcasting has many flaws as 

it could cause flooding, redundancy or collisions on the network. Research was therefore conducted 

on secure routing (Karlof & Wagner, 2003) and on using ad hoc subnetworks (Sohrabi, Gao, 

Ailawadhi & Pottie, 2000) to overcome the broadcasting problem. Still, some of these solutions can 

hamper the battery life of the sensor devices. This would be due to the increased overhead 

processing, as secure routing requires extra processing that in turn leads to increased battery drain.  

Another pitfall of broadcasting is that all information sent can be intercepted by rogue devices 

in the network. It would be quite easy for an attacker to intercept broadcasted information and use it 

against the existing sensor network to perform a whole range of attacks. These attacks range from 

flooding attacks, data interception attacks or even sinkhole attacks (Zhu, Setia & Jajodia, 2006). 

Flooding attacks occur when a rogue mote intercepts a legitimate data packet and attempts to resend 

this packet continuously and repeatedly into a sensor network, or when a rogue mote injects 

randomised data packets continuously and repeatedly into a sensor network. A sinkhole attack 

occurs when a rogue device masquerades itself as a base station or a device that is closest to the 

base station. This rogue device would then cause the sensor network to transmit data packets to the 
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rogue device itself as the sensor network would be under the false impression that the rogue device 

is part of the ad hoc network (Zhu, Setia & Jajodia, 2006). This rogue device could subsequently 

drop all the data packets in order to perform a denial-of-service attack on the sensor network. 

This section provided the reader with a brief introduction to ad hoc sensor networks – 

wireless or wired. The next section focuses specifically on wireless sensor networks. 

2.3 Wireless Sensor Networks (WSNs) 

WSNs belong to the general family of ad hoc sensor networks that use multiple distributed sensors 

to retrieve data from various environments of interest. Chong and Kumar (2003) provide a history 

on previous accomplishments of WSNs and show how they have evolved in terms of sensing, 

communication and computing. WSNs consist of wireless nodes with embedded processors and are 

a form of ad hoc network (Estrin, Girod, Pottie & Srivastava, 2001) with the distinct property that it 

involves wireless communication (Ye, Heidemann & Estrin, 2002). Mouton and Venter (2009) 

define a WSN as an ad hoc network that consists of tiny wireless and resilient computing nodes, 

also known as motes or sensors. These motes are extremely efficient with regard to power 

consumption and can communicate effectively with other motes within their vicinity (Mouton & 

Venter, 2009). 

In the following subsection, a graphic representation is provided so that the reader has a good 

overview of WSNs, after which more focus is shed on the detail of how a wireless sensor network 

operates. The environments in which WSNs can be used are briefly discussed in a second 

subsection, followed (in the third subsection) by the factors that need to be taken into consideration 

while designing WSNs. A fourth subsection discusses the WSN communication protocol which is a 

very important factor in WSNs and for the remainder of this dissertation. 

2.3.1 Graphic representation of a wireless sensor network 

It is important to give the reader an overview of what a typical wireless sensor network looks like in 

order to form a good idea of how the devices would operate. A graphical representation of a 

wireless sensor network is therefore provided in Figure 2.1 (Mouton & Venter, 2009; Heinzelman, 

Kulik & Balakrishnan, 1999; Sohrabi et al., 2000). 
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Figure 2.1. A graphical representation of a wireless sensor network (Mouton & Venter, 2009)  

Each component in Figure 2.1 plays an integral role in establishing a complete wireless sensor 

network. The following subsections are devoted to explaining each of the components depicted in 

Figure 2.1 in detail. 

2.3.1.1 User 

The user can interact with the WSN through the management server in two possible ways: 1) 

directly, i.e. physically sitting in front of the management workstation, or 2) remotely using 

wireless sensor network specific software. This allows the user to provide input or receive 

information from the WSN through the management server. It also enables the user to dynamically 

monitor the measurements taken by the motes. 

The role of the user is normally taken by a system administrator who has ownership of the 

WSN. It is the system administrator’s task to ensure that any problems arising within the WSN are 

addressed promptly and resolved. Such problems could range from battery drainage on devices to 

physical destruction of devices, or even unauthorised removal of devices. 
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2.3.1.2 Management Server 

The management server serves as an interface to the WSN. It is the task of this server to capture and 

log the information that is received from the base stations. The management server could possibly 

be connected to multiple base stations if the need arises. This would occur if there are different 

independent sensor networks in the area and the management server were connected to base stations 

from both WSNs. One such scenario where a management server can be connected to two different 

base stations is where the one sensor network is used for forest fire detection and the other for 

tracking movement inside the forest. One would then have one sensor network aimed solely at 

detecting forest fires, whereas the other sensor network would detect vibrations in order to track 

movement. 

In our graphic demonstration the management server is connected to a single base station 

only. However, this single base station is connected to the other base stations in the WSN by means 

of long-range high-speed link. This link between the base stations can be a physical wire or wireless 

devices that are configured in a point-to-point fashion. The point-to-point wireless communication 

does not interfere with the sensor network, as the communication occurs on a different frequency 

and is directed communication. Directed communication occurs when two wireless antennas are 

pointed towards one another and in essence form a beam for communication to occur. 

2.3.1.3 Sensor Field 

The sensor field denotes the physical boundaries of the WSN. Each device within the WSN has its 

own sensor field as well, indicating the physical range of how far the broadcasted message could 

possibly travel. This range would depend on the signal strength of the data packet transmission. 

2.3.1.4 Wireless Sensor Node (mote) 

The wireless sensor nodes in the graphic representation are the devices that affect the actual 

monitoring. In most WSN research they are referred to as motes. Each of these motes are equipped 

with a set of sensors that are able to monitor various ambient conditions, physical displacement or 

event-related conditions surrounding them, and report this information back to the base station. 

Each mote may be equipped with a different set of sensors and thus each mote could potentially 

monitor different attributes. The sensors are placed onto a sensor board connected to the WSN 

device; thus a specific WSN device could use different sensor boards based on the requirement of 

the WSN. 

A mote can also receive information from its surrounding motes, which it would pass on to 

the base station. This would occur when an individual mote is outside the receiving range of the 
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base station for communication to occur directly and needs another mote within communication 

range to convey the data packet to the base station. In this scenario, the mote that is closer to the 

base station would act as a repeater. A mote would know if it is closer to the base station if the 

communication protocol that it is using caters for it (Dunkels, Osterlind & Zhitao, 2007). 

Otherwise, a mote would just rebroadcast the received communication in the hope that it reaches 

the base station (Dunkels, Osterlind & Zhitao, 2007). 

A mote is powered by a battery pack and thus has limited processing power. The 

communication range of a mote is fairly small, as a stronger radio signal would require more 

battery power and subsequently decrease the time the mote can stay active without replacing the 

battery pack. 

2.3.1.5 Base Station 

A base station serves as a gateway node through which the information of the motes has to travel to 

reach the management server. The base station has much more processing power than the wireless 

motes as they are required to receive data packets from all their surrounding motes. Base stations 

typically use an external power source, as they potentially constitute a single point of failure for a 

WSN. All communication should eventually travel through the base station towards the 

management server, and should the base station fail (due to depleted batteries, if the base station 

runs on battery power), all communications of the motes surrounding that base station will be lost. 

A base station may be connected to other base stations by a long-range high-speed link if 

there is more than one base station within the WSN, since they are sometimes situated far from each 

other. If there is only one base station in the WSN, it will communicate directly with the 

management server. Communication between base stations can occur on either a wired or wireless 

link, based on the distance between the base stations. 

2.3.1.6 Short-range Wireless Communication 

Short-range wireless communication links are established between neighbouring motes and the 

neighbouring base stations. This type of wireless communication occurs between a single mote and 

all its neighbouring motes and base stations within the transmission range of the transmitting mote. 

Base stations would always be connected with long-range high-speed links as they would be 

too far apart to be connected with short-range wireless communication. This is because each 

segment of the WSN normally has its own base station and the motes communicating to the one 

base station would not be in range of another base station. 
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2.3.1.7 Long-range High-speed Communication 

Long-range high-speed communication links are established between the separate base stations and 

the management server for the WSN. These links commonly occur over a physical wire. In cases 

where this is not possible, the base station has wireless links for reaching the other base stations. 

There will be no interference with the sensor field motes as the long-range high-speed 

communication from the base stations can be established using point-to-point directed antennas that 

operate on a different frequency. Power consumption should not be an issue with the long-range 

high-speed communication since the base stations normally have access to an external power source 

and should not rely on battery power. 

This concludes the discussion of the components of a wireless sensor network. As we have 

now discussed how a typical WSN is deployed and how it operates, it is important to consider the 

uses of WSNs. The next section suggests scenarios in which it would be applicable to use WSN 

devices to perform certain tasks so as to provide the reader with some real-world scenarios. 

2.3.2 Wireless Sensor Network Applications 

WSNs can be used in many environments. Their motes may consist of many different types of 

sensors, such as thermal, visual, infrared, radar or acoustic, to name just a few. These motes can 

monitor a wide variety of ambient conditions, such as humidity, pressure, sound, noise levels, 

temperature, lighting conditions and objects moving through a designated area (Elson & Estrin, 

2001; Kahn, Katz & Pister, 1999). 

Some applications of WSNs include military applications such as the tracking of moving 

objects and battlefield surveillance (Zhao, Shin & Reich, 2002). In tracking applications, the 

sensors rely on vibrations caused by movement. The WSN sensors are able to sense the slightest of 

vibrations. These sensory bits of information are then passed on to the base station which in turn 

passes them on to the management server. By examining the origin of the vibrations, the 

management server is able to pinpoint, by means of triangulation, the exact position of the object 

that is moving and its actual movement. Triangulation can be calculated if the distance is known 

between two devices that are communicating with a third device (Hartley & Sturm, 1997; Xiang-

Yang, Calinescu, Peng-Jun & Yu, 2003; Chun-Hsien, Kuo-Chuan & Yeh-Ching, 2007). One would 

then determine the angle of communication from each of the two devices towards the third device. 

Using both the distance between the devices and the angles from both devices towards the third 

device, one could use trigonometry to calculate the position of the third device. Thus, once the 

exact locations of all three devices are known, one can determine the position of the object and the 

direction of its movement by examining the measurements taken by the devices. 
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Environmental applications include habitat monitoring, forest fire detection and flood 

detection (Mainwaring, Culler, Polastre, Szewczyk & Anderson, 2002). Consider for instance the 

detection of forest fires. To perform forest fire detection, the motes are scattered in the forest so that 

they are within range, forming the sensor field. Within this sensor field, the temperature sensor 

would be closely monitored. This would allow one to immediately detect the outbreak of a forest 

fire, to determine by means of triangulation where the forest fire originated and, thus, to determine 

the fire’s location. Afterwards, one would obviously be required to replace the motes that have been 

destroyed in the forest fire. 

WSN applications in health care include the tracking and monitoring of doctors and patients 

in hospitals, as well as drug administration in hospitals (Lu, Blum, Abdelzaher, Stankovic & He, 

2002). For instance, if the WSN devices are embedded into the clothing of patients, one would be 

able to track the movement, location, heart rate and temperature of the individuals who are wearing 

the clothes with these devices. Tracking could be implemented in the form of a wrist band if the 

clothes of doctors/patients need to be changed on a continuous basis. 

WSNs can also very easily be used for home and building automation applications (Wheeler, 

2007; Callaway, Gorday, Hester, Gutierrez, Naeve, Heile & Bahl, 2002). As the signals to operate 

circuitry are very elementary requests, these requests could easily be transferred over WSN devices. 

The small size of WSN devices also helps to keep these devices discreet in home and building 

automation applications. 

Several other applications for WSN devices are also possible. Only the most prominent ones 

have been discussed above. It is important to note that each of these applications has certain 

constraints and for each, the significance of some of the design factors within WSNs would differ. 

For example, the type of sensors and battery packs would differ for different WSN applications. 

Also, depending on the WSN application, the motes would be either densely scattered or only a few 

would be placed in specific locations. The next section introduces the reader to these factors, after 

which each is individually considered. 

2.3.3 Design Factors Specific to a WSN implementation 

While designing a WSN, one has to take into account many definitive factors as these devices have 

several constraints. The factors are important because they serve as a guideline to design an 

application or a protocol for wireless sensor networks. 

The factors to be taken into account are fault tolerance, scalability, production costs, hardware 

constraints, sensor network topology, environment, transmission media and, most importantly, 
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power consumption (Savarese, Rabaey & Beutel, 2001; Akyildiz et al., 2002). The following 

subsections discuss each of these factors in detail. 

2.3.3.1 Fault Tolerance 

Some of the motes may fail or be blocked when they are scattered in the area for which they are 

designated. They could even be physically damaged or subject to environmental interference. It 

may even happen that someone physically destroys or removes a mote from the WSN. When a 

mote fails due to power constraints, there should be other motes that can take over the failed mote’s 

task. 

The failure of some of the motes should nevertheless not affect the overall purpose of the 

sensor network. 

2.3.3.2 Scalability 

The sensor network should not be affected, depending on the number of motes in the area. In some 

applications like object tracking only a few motes would be required as one would only need to 

cover a specific track. This is in contrast to forest fire detection where the area to cover is much 

larger and would require more motes to cover the entire region of the forest. The same efficiency of 

the communication protocol should be seen in all the different applications of the network, whether 

it is a small WSN or a large WSN. 

2.3.3.3 Costs 

The cost of the entire WSN should not exceed the cost of any other type of solution. For example, it 

should be cheaper to implement a WSN to detect forest fires than to physically hire people to stand 

guard and watch for forest fires over a set period of time. In summary, the cost of the WSN should 

be feasible. 

2.3.3.4 Hardware Constraints 

The size of the actual mote versus its battery lifetime is an issue to consider while designing WSNs. 

The mote must be small enough to work in the specific environment, but it must also have sufficient 

battery life to work throughout the duration of the network’s existence. 

It is important to note that the biggest physical part of a WSN mote is the battery pack, thus 

decreasing the size of the entire device would also mean a smaller battery pack, which would 

provide less power. 
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2.3.3.5 Sensor Network Topology 

It should be considered how the motes would link up to each other right after they have been 

deployed. A wireless sensor network works on an ad hoc principle (Lewis, 2005). The ad hoc 

principle allows the motes to dynamically link up and form their own topology when powered on in 

the wireless sensor network (Maroti, Kusy, Simon & Ledeczi, 2004). An ad hoc network also has 

the functionality of a self-healing mesh (Maroti et al., 2004). This allows the topology of the 

network to change dynamically when some of the motes fail, run out of power or if new motes are 

introduced to the network. 

Different sensor network topologies would need to be used in different environments. If the 

motes are placed in strategic places where they would remain stationary throughout the lifetime of 

the network, the network topology would only need to be configured once. However, in the case 

where the motes continuously move around, the network topology will be reconfigured on a 

continuous basis due to the ad hoc nature of wireless sensor networks. 

2.3.3.6 Environment 

It should be considered what environmental conditions will have an effect on the sensor network. 

The motes can be in a stationary position, for example when they are scattered in a forest to detect 

forest fires. In this case the devices will use less battery power due to the network topology staying 

constant and the motes not moving around. Motes can also be attached to moving vehicles or be 

placed in a river stream. When the motes are placed in a stream, they will float downriver past 

several base stations. Hence, the network topology will have to change dynamically as the motes 

will have to transmit to several different base stations throughout their lifespan. This would make 

the environment change dynamically. 

2.3.3.7 Transmission Media 

It should be determined on what radio frequency the motes would communicate with each other. 

Transmission should be tested beforehand to ensure that there is no interference from another radio 

frequency in the designated area. 

2.3.3.8 Power Consumption 

The mote can only be equipped with a limited power source (Akyildiz et al., 2002). This requires 

that the power consumption of the communication between the motes and data processing on the 

mote itself be kept to a minimum (Ye, Heidemann & Estrin, 2002). 
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One particular issue with WSNs is that all the communication between the nodes is broadcast. 

As we have seen earlier, this allows other rogue motes in the vicinity to retrieve such 

communication and use it for malicious intent. Due to this problem, the entire section that follows 

has been devoted to providing background information on the WSN communication protocol. 

2.3.4 WSN Device Communication protocol 

The communication protocol in a WSN is very unique. It relies fully on broadcasting to transmit 

data from one mote to another. Although several research papers have been published on improving 

the communication protocol of WSNs (Zhu, Setia & Jajodia, 2006; Orecchia et al., 2004; Tseng, Ni 

& Shih, 2003), securing the transmissions only received attention in later research (Mouton & 

Venter, 2009; Perrig et al., 2001). All of the earlier research papers on WSNs (before the security 

aspects were considered) are mainly concerned with routing paths from a single mote to the base 

station and back. 

The different routing protocols are still susceptible to interception and, thus, information can 

be falsified and propagated throughout the WSN. This is done when a legitimate packet is 

intercepted and continuously retransmitted inside the WSN by a rogue mote or device. In fact, the 

only advancements made in the field of WSNs involve ways to propagate data packets in the 

quickest, most efficient way towards the base station with minimal disruption to the network, in the 

case that a mote fails and the route has to be altered.  

It is important to note that on most routing protocols the communication between the devices 

is unencrypted (Akyildiz et al., 2002). Encryption is quite a processing-intensive task and will thus 

severely hamper the lifespan of the mote, due to the increased processing requirements that will 

drain more battery power (Perrig et al., 2001; Wander et al., 2005). Also, the encryption of data 

packets on the fly will take too long and be a tedious task due to the limited processing power of the 

motes (Wander et al., 2005). Most of the routing protocols consequently use unencrypted 

transmissions between motes. However, even with the use of secure routing protocols, as proposed 

by Tseng, Ni and Shih (2003) and Mouton and Venter (2009), the communication between devices 

can still be intercepted. Using secure routing protocols only makes it more difficult to interpret the 

packets. Because WSNs communicate in a broadcast fashion, it is impossible to transmit data 

packets without exposing them to potential interception. Thus, this study assumes that the routing 

protocols have no real impact on the way that data can be intercepted, as it is believed that all 

transmission could be intercepted due to the broadcasting nature of WSNs. 
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Following the general overview of the communication protocols within WSNs, it would be of 

use to briefly examine the protocol stack for WSNs as proposed by Akyildiz et al. (2002). The 

sensor networks protocol stack is depicted in Figure 2.2. 

 

Figure 2.2. The sensor networks protocol stack (Akyildiz et al., 2002) 

Figure 2.2 shows that the protocol stack of a sensor network exists of five layers, namely the 

application layer, transport layer, network layer, data link layer and physical layer. Each of these 

layers also exists on three planes, namely the power management plane, the mobility management 

plane and the task management plane. 

The application layer is where the application software for the specific sensing task is 

developed and used. The application layer is basically the interface of the wireless sensor device. 

The transport layer is used to control the flow of data whenever the application layer requests it. 

The network layer is used to control the routing protocol when it receives data from the transport 

layer. The data link layer is responsible for the reliability of the communication and thus handles all 

access control and error control of the communication. The physical layer is host to the actual 

transmission devices that are used to transmit the data. 

In addition to all of these layers, the power, mobility and task management planes are used to 

monitor the power, movement and task distribution among motes. The ultimate goal of these planes 

is to assist with the sensing tasks of the motes and to ensure that the overall power consumption is 

kept to a minimum. 

An in-depth discussion of each layer and plane has been excluded from this background 

section as the current study does not delve into a level where the protocol stack needs to be altered. 

For the purposes of this study we used the application layer that is already loaded on the devices to 

transmit data packets. 

The data packets as used in our research are illustrated in Figure 2.3. 
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Figure 2.3. Imote2 Wireless Sensor Network Data Packet 

The Imote2 WSN data packet that is illustrated in Figure 2.3 is used as an example, as Imote2 WSN 

devices will be used in the rest of the study. These devices are discussed in more depth in Chapter 

7, where the reader is introduced to the devices that were used for the purpose of this dissertation. 

The first 5 bytes can be seen as the header of the packet, and the remaining 59 bytes can be used to 

carry data. Furthermore, the TosMsg header can be broken down into four different fields, namely 

the address block, the active message type block, the group ID block and the length block. The 

address block contains the destination address for which the data packet is intended. Both the active 

message block and the group ID block contain unique identifiers for the data packet, which are 

generated by the TOSRadio protocol (the communication protocol that the Imote2 WSN devices 

use to communicate). The length block, which indicates the number of bits in the entire data packet, 

is also generated by the TOSRadio protocol.  

The data field, for purposes of this research, is divided into two blocks. The first block 

contains data about the sensor board that is transmitting the data packet, and the other 55 byte block 

is completely devoted to data bits. The sensor board header block is subdivided into a board ID 

block, a packet ID block and a node ID block. The board ID and the packet ID blocks contain only 

information about the packet being transmitted or sometimes they are combined to be used as a 2-
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byte sequence number, whereas the node ID block contains information about the unique identifier 

of the mote transmitting the data. 

The next section concludes this chapter by highlighting certain aspects referred to further on 

in this dissertation. 

2.4 Conclusion 

Chapter 2 introduced the reader to a graphical representation of WSNs and  gave an in-depth 

explanation of the functionality of each of the components within a WSN. The different real-life 

applications of WSNs were also discussed and have shown the benefit that these devices can have 

for our everyday lifestyle. 

Some design constraints were also examined and consideration was given as to why they are 

important in designing a WSN implementation. Lastly, focus was shifted to communication 

between WSN devices as this plays a pivotal role in this study. 

Some specific problems with WSNs still need to be addressed, one of which involves 

flooding attacks on WSNs. Flooding attacks are one of the hardest attacks to thwart on WSNs. This 

is mainly due to the broadcasting nature of WSNs. The next chapter is therefore designed to 

introduce the reader to flooding attacks, show how they can severely hamper WSNs and suggest a 

means of minimising the effect of flooding attacks on WSNs. 
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Chapter 3 Attacks on WSNs 

3.1 Introduction 

WSNs are a fairly new technology with many real-life applications. Even so, it is prone to a number 

of known attacks that can render the entire network ineffectual (Perrig et al., 2001). Flooding 

attacks, for instance, can severely hamper WSNs and can influence the way one would approach the 

task of implementing digital forensic readiness. 

This chapter introduces the reader to three typical types of attacks on WSNs, after which 

more light is shed on a fourth much more important type of attack, i.e. a flooding attack. A flooding 

attack is one of the most difficult attacks to counter and subsequently constitutes the main attack 

that this study focuses on.  

3.1.1 Types of Attacks 

Many different types of attacks can be launched at wireless sensor networks. Our focus will be on 

three of these attacks, namely data interception, sinkhole attacks and attacks that require physical 

access to the motes. 

3.1.1.1 Data Interception 

Each mote broadcasts the data it has gathered from its neighbouring motes in an attempt to get the 

data to reach the other motes. Currently, as far as the researcher is aware, there is no encryption on 

the data packets which are broadcast throughout the WSN (Akyildiz et al., 2002). This allows a 

hostile entity to plant its own WSN or other hostile interception equipment in the sensor field. The 

hostile WSN can then eavesdrop on any communication and will pass on any intercepted data to the 

hostile management server (Slijepcevic & Potkonjak, 2001). This could disclose valuable 

information belonging to the legitimate WSN. 

3.1.1.2 Sinkhole Attacks 

This is one of the most difficult attacks to deal with within wireless sensor networks (Zhu, Setia & 

Jajodia, 2006). In a sinkhole attack, an adverse mote will try to attract information from its 

neighbours. It would then either pass this information on to a hostile entity or simply drop the 

packets. This would lead to a DoS (denial-of-service) attack on the legitimate WSN. Wood and 

Stankovic (2002) define a DoS attack as any event that diminishes or eliminates a network’s 

capacity to perform its expected function. 

Sinkhole attacks are only effective if the WSN uses a name-based communication protocol in 

which the motes are aware of the fastest path to the closest base station (Dunkels, Osterlind & 
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Zhitao, 2007). This attack is accomplished by broadcasting false information about the position of 

the next closest base station to the neighbouring motes. All the motes in that vicinity will simply 

assume that this information is correct and would not attempt to send data directly to the legitimate 

base station. This would allow the hostile mote to intercept all the network packets. 

3.1.1.3 Attacks that Require Physical Access to the Motes 

Most research papers that we have dealt with have very little emphasis on these types of attacks. It 

is very important to note that an intruder could physically connect his workstation to a mote and 

transfer all the code that is on the mote directly to his workstation. When physically connecting to a 

mote in order to access the code on the mote, no authentication mechanisms are in place. 

The attacker could even take the code it received, modify it and deploy it back onto the mote. 

This is a very powerful attack as it may look as if a legitimate mote is sending legitimate 

communication, whereas the communication is in fact falsified. The attacker could go as far as 

using a covert channel to send the real sensory data to one of his motes so as to steal this correct 

information and possibly use it for malicious intent. Such an attack could be very harmful to one’s 

network and is very difficult to identify. 

So far, some general types of attacks on WSNs have been discussed. The goal of the 

remainder of this chapter is however to introduce the reader to the more important type of attack – a 

flooding attack – and then to focus specifically on the impact of flooding attacks on WSNs. Section 

3.2 focuses on general flooding attacks, while Section 3.3 focuses on WSN-specific flooding 

attacks. An overview of flooding attacks will afterwards conclude the chapter. 

3.2 General Flooding Attacks 

Consider the following scenario that has had many an organisation in disarray in the past. Suddenly 

the web server, which is one of the mission critical applications in the corporate environment, is not 

available anymore. For every minute that it is down, the organisation may start losing huge amounts 

of money. 

In layman’s terms, this just means that the organisation has become one of the victims of a 

DoS (denial-of-service) attack (Wood & Stankovic, 2002; Mirkovic et al., 2004). A flooding attack 

is just one form of a DoS attack (Cheswick, Bellovin & Rubin, 2003; Pfleeger & Pfleeger, 2006; 

Perrig, Stankovic & Wagner, 2004). The typical flooding attack is quite an elementary DoS attack, 

as it simply bombards the network with excessive data packets, which confuses the target network 

and often causes the network to crash (Moore, Shannon, Brown, Voelker & Savage, 2006; Karig & 

Lee, 2001). The more sophisticated flooding attacks make use of the Internet Control Message 
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Protocol (ICMP), which is normally used for system diagnostics (Pfleeger & Pfleeger, 2006). All of 

these ICMP protocols have an important use as far as network management is concerned, but they 

can also be used for malicious intent when a DoS attack is planned. The ICMP protocols include the 

following (Pfleeger & Pfleeger, 2006): 

• Ping, which requests a reply response from another device on a network to determine 

if the other device is alive on the network; 

• Destination unreachable, which would indicate that a ping request failed and thus a 

destination unreachable response is returned; 

• Echo, which is very similar to a ping request. The Echo request sends data to another 

machine on the network, to which the latter should reply with the same data payload. 

This allows one to establish if the other machine is alive and how reliable the network 

connection between the two machines is; 

• Source quench, which would mean that the machine to which data is being sent, is 

receiving too much data and that the source machine should wait a while before 

sending any data packets again. 

The subsections that follow are dedicated to examining how these ICMP protocols can be used to 

perform a DoS attack. 

3.2.1 Ping of Death 

The default ping program, as mentioned earlier, is used to determine if a machine on the other end 

of the network is able to respond, in a bid to confirm successful network connectivity. The ping-of-

death attack can thus utilise the echo protocol to send data packets along with the ping request. 

With the combined use of both ICMP and ping, one is able to determine the network distance to the 

host in milliseconds (Harris & Hunt, 1999). This shows that this type of ping request could be used 

for legitimate reasons. 

IP datagrams cannot exceed a maximum size of 65 535 bytes (Harris & Hunt, 1999). The 

term ‘ping of death’ is used for any ping packet with a packet data of size that is large enough for 

the receiving machine to cause it to halt or go into a long reset cycle (Templeton & Levitt, 2000). 

The attack causes such systems to halt when the sent data packets are larger than what the network 

connection of the target machine can handle, i.e. when the size of the data packets is larger than 

65 535 bytes. Whenever a network interface is flooded with such data packets, it would cause the 

network interface either to be reset or to halt. 
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The only limitation on a ping-of-death attack is the network speed of the attacker’s network 

interface. If, for example, an attacker is only on a 1 megabyte (MB) connection and this attacker is 

trying to flood a victim that is on a 10 MB connection or more, it would be technically impossible 

to flood the victim. The attacker would require a higher connection speed than that of the victim. In 

the reverse scenario where the attacker is on a 10 MB connection and the victim on a 1 MB 

connection, the ping-of-death attack would be very successful (Templeton & Levitt, 2000; Karig & 

Lee, 2001). 

This simply shows how easy it is to launch a ping-of-death attack, because so very limited 

networking knowledge is required (Pfleeger & Pfleeger, 2006; Wang & Stolfo, 2004). Certain 

intrusion detection systems and firewalls are indeed able to detect these types of attacks (Venter, 

2003; McHugh, Christie & Allen, 2000; Debar, Dacier & Wespi, 2000; Deal, 2004). However, in a 

WSN environment it would be too resource intensive to deploy an intrusion detection system or a 

firewall solution on the motes, considering the very limited resources that these motes currently 

possess. The next attack to be discussed, the smurf attack, is a slight variation of a ping-of-death 

attack. 

3.2.2 Smurf 

The smurf attack only differs in the way the source of the attack is masked and in the number of 

victims on a single attack (Lau, Rubin, Smith & Trajovic, 2000; Gouda & Liu, 2005). It is a specific 

type of a spoofing attack (Mirkovic & Reiher, 2004). The smurf attack firstly alters the source 

address of the ping packet so that it would seem to the other machines on the network that the 

attack originated from the victim’s own machine (Lau et al., 2000). This is done by spoofing the 

source address of the ping packet to be the address of the victim’s machine. 

Secondly, all the bits of the last byte of the destination address are set to all ones (Lau et al., 

2000). This would change any destination address which is in the form of 192.168.0.XXX to 

become 192.168.0.255. The first three bytes of the destination address are used to determine the 

network subnet and the last byte, in this example, is used to determine the exact machine. This is 

only the case if the network’s subnet mask is 255.255.255.0, as the broadcast address would be 

different for different subnet masks (Mogul & Postel, 1985). Whenever all the bits of the last byte 

of the destination address have been changed to all ones (if the subnet mask is 255.255.255.0), the 

ping request is sent in broadcast mode. This would cause the ping request to be received by all the 

hosts on the network. Since all the machines that have received the ping request are required to 

respond to it, they will in essence flood the victim’s network interface card. 
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The echo-chargen attack also makes use of manipulating the source and destination headers. 

This type of attack is briefly discussed in the next subsection. 

3.2.3 Echo-Chargen 

The echo-chargen attack is preformed between two hosts. The chargen protocol is used to generate 

a stream of packets between two machines in order to test the network’s bandwidth capacity 

(Garber, 2000; Mukkamala & Sung, 2004). 

The following example demonstrates how the legitimate chargen protocol would be used. 

Host A would set up a chargen process that would generate a stream of echo packets and send them 

towards host B. Host B would then receive them and echo all of the packets back to Host A. This 

would then cause host A to respond back to host B with the same data packets again. The process 

will continue and seemingly put the network infrastructure of both host A and host B into an 

endless loop where they are constantly replying to each other’s messages. The endless loop will 

continue until the user stops the process. The communication between the two devices will 

afterwards be examined in order to determine if all the packets were continuously received on both 

ends. This legitimate test will continue until the maximum bandwidth capacity between the two 

machines has been determined. 

In a malicious attempt, the attacker would be host A. The attacker would set both the 

destination and source address of the echo packets in the chargen process to that of the same host, 

i.e. host B. This will cause host B to hang in a loop as it would constantly create echo messages 

“sent” to itself and respond to such messages as well. 

All three of the attacks discussed above were very straightforward flooding attacks, which 

only made use of the ICMP protocol. The next subsection discusses one of the more popular denial-

of-service attacks, the SYN flood attack. 

3.2.4 SYN Flood 

The SYN flood attack uses the TCP protocol suite, which makes this attack a session-orientated 

type of an attack (Harris & Hunt, 1999). One can see it as a connection-orientated attack, because 

the SYN request is used to establish a connection between two devices. In order for networks to 

communicate using a TCP connection, a network connection (also referred to as a network session) 

has to be established (Harris & Hunt, 1999). An example of when a network session is established, 

is when telnet or SSH (secure shell) is used. In the case where the UDP (user datagram protocol) 

protocol is used, it is not necessary to establish a connection first for communication to take place 

(Gehlen, Aijaz & Walke, 2006).  
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A session is established by means of a three-way connection handshake (Ford, Srisuresh & 

Kegel, 2005). This three-way connection handshake is depicted in Figure 3.1 (Pfleeger & Pfleeger, 

2006). 

 

Figure 3.1. Three-Way Connection Handshake 

A TCP packet consists of a number of flag bits. Two of these flag bits are denoted the SYN and 

ACK bits. The process of establishing a session takes place as follows: Firstly the host machine 

sends a TCP packet with the SYN bit set to ‘on’. The destination machine responds with a TCP 

packet in which both the SYN bit and the ACK bit are set to ‘on’. On receipt of this TCP packet 

from the destination machine by the host machine, the host machine will respond with a TCP 

packet in which only the ACK bit is ‘on’. This process is also illustrated in Figure 3.1. 

In an ordinary IEEE 802.11 wireless connection, transmission errors are quite likely to occur 

as wireless connections are prone to possible interference from other wireless signals. Any machine 

using the TCP protocol will also have a queue called the SYN_RECV queue. This is to make 

provision for when packets are lost in the network – thus allowing the machine to have a list of 

items for which the SYN-ACK messages have been sent, but the corresponding ACK has not yet 

been received. The SYN_RECV queue is normally flushed within a fairly short time, as the three-

way connection handshake is a very quick process (Kim, Choi, Kim & Hong, 2008). The 

SYN_RECV queue has a limited capacity and under normal circumstances a SYN ACK request 

would be completed within seconds (Lemon, 2002). If an item is in the SYN_RECV list for some 

time it will eventually expire and also be flushed from the SYN_RECV queue. 

A SYN flood attack occurs when an attacker exploits this three-way connection handshake. It 

takes place when the attacker sends multiple SYN requests, but never responds with ACK requests. 

This will cause the victim’s SYN_RECV queue to be completely filled up at some stage and thus 

this machine would not be able to respond to any other SYN requests. As it may take several 

minutes for items in the SYN_RECV queue to time out and be flushed, it would be very easy for an 

attacker to maintain the DoS attack over a period of time as a SYN packet would only needed to be 

sent every few seconds (Pfleeger & Pfleeger, 2006). 
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One can now see that several flooding attacks can be used to cause a DoS attack on machines. 

This clearly demonstrates that flooding attacks are common and are a great threat to any network 

environment. 

The next section focuses more on how flooding attacks occur in a wireless sensor network 

environment.  

3.3 Wireless Sensor Network-Specific Flooding Attacks 

As wireless sensor networks always communicate in a broadcast fashion, flooding attacks are much 

easier to launch as a DoS attack against these devices. Wireless sensor network motes are by default 

set to accept any incoming traffic. The WSN takes this information and then processes it in order to 

determine what should be done with it. The receiving and processing of the data obviously takes up 

valuable battery power from the mote. 

If a hostile entity injects a hostile mote into the sensor field of the legitimate WSN, a flooding 

attack can be launched on the legitimate WSN (i.e. an attack that constantly sends out data to all the 

motes in its vicinity). This data would normally be a message that polls the motes to see if they are 

active. The attack would drain the motes in the legitimate WSN of their battery power. This would 

render the motes useless and they, or perhaps just their power source, would have to be replaced. 

To launch a flooding attack in a WSN environment would be even easier than in a normal 

TCP/IP network. This is because the destination address of each message would already be set to 

“broadcast to all motes”, due to the fact that broadcasting is the nature in which WSNs operate. All 

of the earlier attacks could be launched at WSNs. Only slight modifications to the way in which the 

attacks operate within a TCP/IP network would be necessary, as one would not need to alter the 

destination address to send messages to all the motes in the vicinity. 

Flooding attacks are not attacks that can simply be ignored by users of a wireless sensor 

network. A continuous check would have to be made on whether the motes in a WSN are being 

flooded by a hostile network, as such an attack could nullify the purpose of the WSN. Implementing 

a counter on each mote and specifying a threshold for the number of polls it is allowed to receive 

per time interval is a possible solution that has been proposed in an attempt to counter flooding 

(Tseng, Ni & Shih, 2003). 

Although the counter system is able to help counter flooding attacks, it is not efficient as 

ultimately it requires processing on the motes, which in turn drains the battery. Hence it has been 

decided that it would be a better approach to simply attempt to detect where in the network the 

flooding mote is, rather than to try and thwart the flooding attack. The reason for this is that the 
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researcher believes that the only way to really counter a flooding attack in a WSN environment is to 

physically find and eliminate the rogue mote that is flooding the network. 

One possible way to determine if flooding is occurring in the network is by determining if 

there are sudden influxes of data packets at the base stations in the WSN. The flooding mote will 

cause more data to be sent from the motes that reside in the area that is being flooded. This influx of 

data packets can then be dynamically picked up by the base station, if it is able to determine a 

threshold for how many packets it is supposed to receive per time interval. This method of flooding 

detection is discussed in detail in Section 9.3. Once it has been determined that a flooding attack is 

in progress, one can physically examine the area where the flooding is assumed to originate from 

and eliminate the flooding mote. 

3.4 Conclusion 

It is evident that flooding attacks in WSNs are a major concern. The basic communication methods 

in WSNs can almost be seen as flooding, due to the nature of the broadcasted communication. Also, 

due to the limited battery life of WSNs, a flooding attack would cause much more harm to a WSN 

than to an ordinary network not powered by batteries. 

Because flooding attacks are such a huge concern, the researcher was motivated to solve this 

problem while trying to also solve the main problem of digital forensic readiness. Since the latter 

needs to be considered in more detail, the next chapter provides an overview of digital forensics and 

subsequently digital forensic readiness. 
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Chapter 4 Digital Forensics and Digital Forensic Readiness 

4.1 Introduction 

Digital forensics is a relatively new science. According to Palmer (2002), the term ‘digital 

forensics’ is also used interchangeably with the terms ‘computer forensics’ or ‘cyber forensics’. For 

the purpose of this dissertation, however, digital forensics is often used as an umbrella term, and 

therefore computer forensics is a subset involving only computers, while cyber forensics 

specifically involves web-based forensics. Digital forensics stems from the traditional science of 

forensics, which is not a new discipline at all, but has developed together with the physical and 

biological sciences over the past number of decades (Palmer, 2002). 

The next section defines digital forensics in the way it is referred to in this dissertation, after 

which the digital forensic process is examined to demonstrate where digital forensic readiness is 

required to solve the problem stated in this dissertation. Once the topic of digital forensics has been 

covered, the chapter continues by introducing the reader to digital forensic readiness. 

4.2 Defining Digital Forensics 

There are several definitions of digital forensics in the available literature. It is essentially a means 

for gathering electronic evidence during an investigation; however, the following definition by 

Palmer (2002) summarises this science: Digital forensics entails “the use of scientifically derived 

and proven methods toward the preservation, collection, validation, identification, analysis, 

interpretation, documentation, and presentation of digital evidence derived from digital sources for 

the purpose of facilitation or furthering the reconstruction of events found to be criminal, or helping 

to anticipate unauthorized actions shown to be disruptive to planned operations”. 

People from several different areas of expertise, e.g. legal advisors, technical experts and 

traditional forensic experts, may be involved during a digital forensic investigation. This 

immediately poses a problem because, according to the legal advisers, digital evidence has to be 

presented in the same way that traditional forensic evidence is presented (Reith, Carr & Gunsch, 

2002; Palmer, 2002). Due to the nature and scope of digital evidence, however, it is very difficult to 

present this evidence in a court of law. Much research currently focuses on this problem (Rogers & 

Seigfried, 2004; Baryamureeba & Tushabe, 2004; Beebe & Clark, 2004; Oppliger & Rytz, 2003; 

Yasinsac, Erbacher, Marks, Politt & Sommer, 2003; Mocas, 2004; Leigland & Krings, 2004; 

Meyers & Rogers, 2004). It was established in the above research efforts that the following 

requirements as devised by Daubert and Frye (Gianelli & Imwinkelried, 1999) have to hold, before 

any court of law will accept the digital evidence (Bernstein, 2000; Jonakait, 1993; Carrier, 2002): 
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• The digital forensic theory or technique must have been reliably tested. 

• The digital forensic theory or technique must have been subject to peer review and 

publication. 

• The known or potential error rate of the digital forensic method used should be known. 

• The digital forensic theory or method must have been generally accepted by the scientific 

community. 

• An acceptable digital forensic process needs to be followed in acquiring and presenting the 

digital evidence. 

Many research efforts in digital forensics still have to conform to the above requirements due to the 

fact that the discipline is so young. Nevertheless, this research area is growing fast with many new 

and interesting applications, as will be presented in the section on digital forensic readiness. As 

indicated above, the digital forensic process to be followed during a digital forensic investigation is 

paramount to the credibility of such an investigation. The next section is aimed at familiarising the 

reader with the digital forensic process and the steps in a digital forensic investigation. 

4.3 Digital Forensic Process 

Digital forensics should be seen as a precise science. One could make this observation as every 

small step in the entire process should follow a list of pre-setup rules, laws and procedures. Even 

the smallest of errors in the process could lead to the evidence becoming worthless in a court of 

law. Thus it is important to ensure that every step of the digital forensics process is well 

documented and understood. For this reason, a digital forensic process model was developed. The 

basic digital forensic process model, as found in most of the literature, is defined in Baryamureeba 

and Tushabe (2004) and is briefly summarised below: 

• Collection of digital evidence, which involves the search, recognition, collection, and 

documentation of the digital evidence. It is also paramount to prove in a court of law that the 

digital evidence has not been tampered with or changed, either accidentally or intentionally. 

• Examination of the digital evidence, which involves revealing of hidden and obscured 

information while ensuring that the digital evidence can still be visibly presented and that 

one is able to still explain the origin and significance of the digital evidence. 

• Analysis of digital evidence, which involves looking at the result of the examination in 

order to determine its significance and investigative value to the case. 
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• Reporting of digital evidence, which entails writing a report in order to outline the 

examination process and relevant data recovered from the overall digital forensic 

investigation. 

This basic digital forensic process model is expanded and refined in much more detail in 

Baryamureeba and Tushabe (2004), Pollitt (2007), Reith, Carr and Gunsch (2002), Baryamureeba 

and Tushabe (2004). However, this study does not focus on the digital forensic investigation 

process as such, because digital forensic readiness (the focus of this dissertation) only forms part of 

the collection process within digital forensics (Carrier & Spafford, 2003).  

As has now been pointed out, digital forensics is a very precise process and quite a costly 

exercise to perform. One should take into consideration every little step of the digital forensic 

process, and all of these steps should be very well document. A single mistake would cause the 

evidence to be inadmissible in court. Digital forensics could be a very timely and costly process, 

and in order to minimise possible mistakes, the reader is now introduced to digital forensic 

readiness. 

4.4 Digital Forensic Readiness 

Digital forensic readiness is a subsection of digital forensics. Digital forensic readiness more 

specifically forms part of the first subprocess of the digital forensics process, namely collection. 

As the goal of this study is to achieve digital forensic readiness in a wireless sensor network 

environment, the following subsections define digital forensic readiness and show how digital 

forensic readiness can be achieved. 

4.4.1 Defining Digital Forensic Readiness 

Before trying to achieve digital forensic readiness in any type of environment, it is essential to 

establish an acceptable definition for it. However, since digital forensic readiness is still a fairly 

new concept, many people have different opinions about it. 

Tan (2001) identifies two objectives as part of a definition for digital forensic readiness that 

have to be carefully balanced: maximising the ability to collect credible digital evidence, as against 

minimising the cost of performing a digital forensic investigation. Tan also argues that several steps 

need to be taken to ensure that an environment is ready as far as digital forensics is concerned. 

Rowlingson (2004), on the other hand, suggests ten steps that describe the key activities in 

implementing a digital forensic readiness program. Because Rowlingson’s steps have actually been 

designed to create a business process model for digital forensic readiness, this dissertation gives 
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preference to Tan’s two objectives for meeting the requirements of digital forensic readiness in a 

WSN environment. 

Even though Tan’s objectives provide a very good definition of digital forensic readiness, it is 

still important to refine them to be more specific to a WSN environment. For the purpose of this 

dissertation, digital forensic readiness is defined as the notion to perform a digital forensic 

investigation in the shortest amount of time with the least amount of cost and without having to 

disrupt the original network that has to perform mission critical tasks. This definition is set as the 

main goal for achieving digital forensic readiness on WSNs. 

The following section analyses and discusses the definition of digital forensic readiness as it 

has been proposed in this dissertation. 

4.4.2 Achieving Digital Forensic Readiness 

The definition provided in the previous section focused on three elements: the time period required 

to perform a digital forensic investigation; the cost involved to perform a digital forensic 

investigation, and the ability to collect the evidence without disrupting the environment. 

Each of these three elements is discussed in the following subsections as they are pivotal in 

achieving digital forensic readiness. 

4.4.2.1 Time Period Required to Perform a Digital Forensic Investigation 

Digital forensic readiness is put in place to decrease the time period necessary to perform a digital 

forensic investigation. Digital forensic readiness focuses on the collection part of the digital 

forensic process. 

In an environment where digital forensic readiness is implemented, the time it takes from 

when the incident occurs up to the time it takes to where the incident-related information can be 

analysed, should be kept to a minimum. This is because the digital forensic readiness systems 

ensure that the information is captured into a separate environment on which the work-related 

systems are not dependent. 

The nature of the digital forensic readiness environment being separate from the work-related 

environment brings us to the next important factor, namely the cost involved to perform a digital 

forensic investigation. 

4.4.2.2 Cost Involved to Perform a Digital Forensic Investigation 

Approaching any organisation with the idea of implementing a digital forensic readiness 

environment brings up the ever-looming question of the cost related to it. Although this is really a 
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costly endeavour, one should look ahead at the costs involved in doing a digital forensic 

investigation without any precautions having been taken. Implementing a digital forensic readiness 

environment is costly because the needs of each organisation are different and the digital forensic 

readiness solution might need to be custom fitted to the organisation (Rowlingson, 2004). In 

operation, this solution would also need to be independent of the daily tasks of the organisation, as 

the digital forensic readiness solution should be able to form part of a digital forensic investigation 

if the need arises (Rowlingson, 2004). 

In the event that a digital forensic investigation should be launched in an environment that is 

not complaint to a digital forensic readiness solution, this would cost an organisation a lot of 

money. One should realise that if an incident occurred on the important servers of an organisation, 

it may sometimes be required to power down those important servers in order to acquire a forensic 

image of the system. When an organisation is unable to continue with its daily tasks, it could lose a 

lot of money (Zhang, Zhang & Wang, 2010). Also, in most cases one would not be allowed to take 

mission critical systems, i.e. the bank’s mainframe server, offline if they are going to lose so much 

– then you have no option but to perform live forensics.  

Considering the cost of implementing digital forensic readiness versus the cost involved in 

conducting a digital forensic investigation without having implemented digital forensic readiness, it 

would be fair to say that one would rather be safe than sorry. One would rather incur the costs of 

digital forensic readiness and be ready for an incident, than having to fork out more money in the 

case that an incident does occur (Tan, 2001; Grobler, Louwrens & von Solms, 2010). 

This subsection briefly touched on the cost involved to perform a digital forensic 

investigation in an environment where digital forensic readiness has not been implemented. The 

next subsection looks at how the collection of evidence occurs in a digital forensic readiness 

environment. 

4.4.2.3 Collecting Evidence without Disrupting the Environment 

The collection of evidence in a digital forensic readiness environment would be much easier than in 

an environment without digital forensic readiness. This is due to the nature of the digital forensic 

readiness environment, which is separated from the mission critical environment. 

One would be able to take down an entire digital forensic readiness system if it has been 

configured to run as a system separate from the main environment. This allows one to perform a 

thorough collection of digital evidence without being pressed for time. In turn, it also allows one to 
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be more precise in the digital forensic process, as there would not be pressure from the organisation 

itself to perform the collection in a rushed manner. 

Considering the time, cost and the disruption to the environment, this study has shown that a 

digital forensic readiness environment would be highly beneficial to any organisation. The next 

section concludes the chapter and provides final remarks on this part of the dissertation. 

4.5 Conclusion 

This chapter first introduced the reader to the umbrella term of digital forensics. Digital forensics 

was shown to be an extremely precise process and quite a costly exercise to perform. Every step of 

the digital forensic process should be very well documented, as a single mistake would cause the 

evidence to be inadmissible in court. Chapter 4 provided an overview of digital forensic readiness 

in an attempt to warn against the cost, time and disruption involved in a possible digital forensic 

investigation. Digital forensic readiness was for the purpose of this dissertation defined as the 

notion to perform a digital forensic investigation in the shortest amount of time, with the least 

amount of cost, and without having to disrupt a system under investigation that has to perform 

mission critical tasks. 

Now the reader has been familiarised with all of the necessary background topics that will be 

focused on in this dissertation. The next part proposes a model that contains all the requirements to 

be met in order to achieve digital forensic readiness in a WSN environment. 
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Chapter 5 Model requirements 

5.1 Introduction 

Part II of this dissertation provided the required background knowledge needed to proceed with the 

research. This background information puts one in the position to understand the problem that this 

study focuses on: there is no ready solution to apply digital forensics in a WSN without infringing 

on the setup, functionality and performance of the WSN. On the basis of how WSNs operate and 

communicate in the field, one can immediately imagine that security on these devices is an 

important factor. Unfortunately, due to the broadcast fashion of communication within WSNs, 

security is a fairly difficult feature to implement for WSNs. In broadcasted communication, data 

packets can be easily intercepted by an attacker, as the data packets are by default transmitted to all 

the motes in the nearby vicinity. 

In previous research, the researcher suggested a security layer for WSNs (Mouton & Venter, 

2009). To his knowledge, the only real way to add a security layer to WSNs would be to modify the 

devices that have already been deployed in the field (Mouton & Venter, 2009). The security 

protocol, as proposed by Mouton and Venter (2009), relies on secure data channels between the 

motes and each mote is allocated a pre-assigned security key before initial deployment into the 

field. These security keys are then used to encrypt data packets between the motes. However, the 

security keys are changed on an incremental basis after each transmission in order to make it more 

difficult for an attacker to crack the security codes. Other authors have made the same findings as 

the author of this dissertation, as all their approaches state that security should be implemented and 

devices should be configured before initial deployment of the devices (Karlof & Wagner, 2003; 

Perrig et al., 2001; Zhu, Setia & Jajodia, 2006). However, in this dissertation the assumption is 

made that the devices have already been deployed into the field and cannot be retracted to be 

reconfigured and redeployed, as this will be a costly and time-consuming process. 

Due to the above assumptions and reasoning, the researcher decided that it would be more 

cost-effective and time-effective to propose a concept in which security is implemented on an 

independent secondary WSN (where this secondary WSN is introduced to the same sensor field as 

the original WSN). For this very reason it was decided to move towards the field of digital forensics 

in an attempt to add a digital forensic readiness layer to an existing WSN environment by means of 

adding an independent secondary forensic WSN. Adding a digital forensic readiness layer to the 

WSN environment has a number of advantages. A digital forensic readiness layer could be used for 

the obvious purpose of digital forensics, but it can also be used to monitor network patterns within a 

WSN environment or even to gather statistics about the existing WSN that it is forensically 
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monitoring. From here onwards, the researcher will address all the considerations that were taken 

into account in designing a digital forensic readiness layer for a WSN environment. 

Firstly, before proposing a model, one should focus on what unique requirements WSNs have 

in terms of digital forensic readiness. WSNs have special needs in terms of digital forensic 

readiness when compared to ordinary WLANs and, hence, have more specialised requirements than 

would be found in ordinary wireless networks (also known as wireless local area networks or 

WLANs). These will be examined in depth in the section to follow. WLAN environments function 

on the TCP/IP protocol stack, which provides an easier means of validating the authenticity and 

integrity of data packets that have been captured. WLANs also do not have the power supply 

constraints that WSNs have, just to mention one of the many other differences between a WSN and 

a WLAN.  

The remainder of this chapter is devoted to examining all of the differences between WSNs 

and WLANs in terms of digital forensic readiness. The researcher firstly addresses how WSNs 

differ from WLANs and then discusses the special requirements of WSNs. Section 5.3 summarises 

section 5.2 into a table, which contains a list of factors to adhere to when considering to implement 

digital forensic readiness in a WSN environment. Section 5.4 concludes the chapter. 

5.2 Special WSN requirements 

WSNs have more specialised needs when compared to IEEE 802.11x WLANs and, hence, have 

more specialised requirements than would apply to WLANs. There are many important factors that 

make a WSN unique and distinguish it from a WLAN. The factors that are addressed in this 

dissertation are the following: 

• Communication protocol 

• Proof of authenticity and integrity 

• Time stamping 

• Modification of the network after deployment 

• Protocol data packets 

• Radio frequencies 

• Power supply 

• Network overhead 

• Data interference 
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The factors listed above are the main ones that differentiate WSN environments from WLAN 

environments. The reasoning behind the choice of these factors will become apparent in the 

subsections to follow, where each factor is addressed individually. It is, however, important to 

remember that the core of the argument about the importance of these factors concerns the manner 

in which they influence the design decision of how to implement a digital forensic readiness 

application for WSNs. 

While examining each of these factors, it is important to note that the researcher assumes that 

no modification to the original WSN (hence forward referred to as oWSN) is allowed and thus a 

secondary independent forensic WSN (hence forward referred to as fWSN) would be used for the 

digital forensic readiness implementation of the oWSN. Figure 5.1 has been included here to show 

an example of an oWSN with an overlaying fWSN. 

 

Figure 5.1. A graphical representation of an oWSN with an overlaying forensic WSN 

 

In Figure 5.1, the darker-shaded equipment depicts the fWSN and the lighter-shaded equipment 

depicts the oWSN. This figure is used again later on in this dissertation. However, it has been 

inserted here to provide the reader with a better understanding of an oWSN with an overlaying 
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fWSN. The discussions in each subsection below briefly focus on how these factors differ between 

a WLAN and WSN, and subsequently the focus shifts to addressing them in WSNs. 

5.2.1 Communication Protocol 

All communication within a WSN occurs in a broadcast fashion (Akyildiz et al., 2002; Tseng, Ni & 

Shih, 2003). The default functioning of a mote in the sensor field is to receive all packets. Upon 

receipt of a packet, the mote then has to analyse if the packet was meant for it or not. This analysis 

requires some processing that drains the battery of the mote, which is an important consideration in 

WSN communication. 

The broadcasting technique used in WSNs is very different from the communication 

techniques used in an IEEE 802.11x wireless network. In the WLAN environment, one can 

determine if a packet has arrived at its destination by monitoring the network, since 

acknowledgement packets are sent to confirm the receipt of packets (Xylomenos & Polyzos, 1999; 

Xylomenos, Polyzos, Mahonen & Saaranen, 2001). This is not the case in a WSN environment. 

Due to the broadcasting fashion in which WSNs communicate, the mote that broadcasts 

packets will never be completely sure whether the packet was received by the mote for which the 

packet was intended. This uncertainty could be overcome by introducing a communication protocol 

that allows the receiving mote to reply with a receipt acknowledgement packet. However, because 

this would require extra transmissions that can lead to faster battery drain, this procedure cannot 

simply be implemented in all WSNs. Using a communication protocol that has receipt 

acknowledgement packets also has several other disadvantages. If a flooding attack is launched 

against the oWSN, it would compel the oWSN to reply to each flooding attempt with receipt 

acknowledgement messages, which would then flood the entire oWSN. 

Considering that a protocol founded on receipt acknowledgement packets can have such a 

severe impact on a WSN environment, it seems quite impractical to use such a protocol in this 

environment. Hence the researcher agreed to accept that most WSN motes will be uncertain as to 

whether or not packets have actually arrived at their destination. This causes severe problems in 

terms of digital forensic monitoring with a secondary network. The packets received by the oWSN 

base station might differ from those received by the fWSN base station if some of the packets are 

lost or transmission errors occurred in either of the two WSNs. Transmission errors can range from 

two motes sending messages at the same time and the messages colliding, or weather conditions 

influencing the wireless range of the motes. In the case of the fWSN, however, this problem could 

be avoided by implementing a protocol that uses receipt acknowledgement packets, because it is a 

requirement of a forensic network to always assure the authenticity and integrity of the information 
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received at either point of the communication line. In order to achieve sound digital forensic 

readiness, it is crucial to provide such authenticity and integrity. 

The next subsection focuses on defining what the researcher perceives as such authenticity 

and integrity. The differences between maintaining the authenticity and integrity from a WLAN and 

a WSN perspective are also discussed, as well as possible ways of maintaining authenticity and 

integrity within a WSN environment. 

5.2.2 Proof of Authenticity and Integrity 

Authenticity and integrity first need to be defined as there could be different opinions on precisely 

what each of them means. Authenticity is derived from the word authentic, which is defined as “of 

undisputed origin and not a copy” (Oxford English Dictionary, 1989). In the context of this 

dissertation, authenticity is defined as the certainty that the origin and destination of the data 

packet are kept intact throughout its whole lifetime. The lifetime of a data packet runs from the time 

that it is sent from the first mote up to the time when it is received and processed by the base 

station. Next, integrity is defined as “internal consistency or lack of corruption in electronic data” 

(Oxford English Dictionary, 1989). In the context of this dissertation, integrity is defined as the 

certainty that the correctness of the data within the data packet is kept intact throughout the lifetime 

of the data packet. 

Numerous techniques for proving the authenticity and integrity of packets in WLANs have 

already been published (Chen, Jiang & Liu, 2005; Komori & Saito, 2004; Guizani & Raju, 2005). 

Firewalls, Intrusion Detection Systems, Wireless Routers and Wireless Network Interface Cards are 

all examples of equipment you would find in WLANs and most of these devices have the ability to 

generate a log or some other way of showing which data packets have passed through the network. 

Most of these abilities are fairly simple techniques that are performed by the device itself. In most 

cases where a log file is generated, it is safe to assume that the information reflected in the log file 

is actually the true pattern of traffic that has passed through the device. However, this is only the 

case when it is certain that the device is not defective or that the log file has not been tampered 

with. One can confirm the authenticity and integrity of this single log file by comparing it to the 

other log files of the devices through which this single packet has travelled, as most devices in a 

WLAN environment should have some form of logging. In a WSN environment, however, very 

little or no logging is performed on the motes in the sensor field, due to various reasons. These 

reasons can include the limited power source and the limited storage space that the devices in a 

WSN have. WSN equipment, by default, only does logging at the base station and if logging were 

to be required at every mote, one would have to implement this oneself.  
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Implementing logging software by oneself obviously raises another issue, namely as to the 

trustworthiness of the code with which one does the logging. Tried-and-tested techniques for 

logging are generally more trustworthy than one’s own attempts at implementing logging. It is 

easier to defend the authenticity and integrity of a well-known logging technique than that of a self-

developed logging technique. In the case where a self-developed technique is used, it must be based 

on some solid theory as to why it can provide authenticity and integrity. Because WSNs differ so 

significantly from WLANs, the researcher has decided to propose a form of logging that is based on 

the Casey Certainty Scale (Casey, 2002). 

According to Casey (2002), the integrity and authenticity of information is more certain if this 

information was recorded by different independent sources. Each mote can, in essence, be seen as 

an independent source. Thus, the authenticity and integrity of each packet can be determined based 

on the number of motes in the network that have received the same broadcasted packet. This study 

therefore assumes that, in accordance with the Casey Certainty Scale (Casey, 2002), a packet that 

has been seen by a larger number of motes has far greater authenticity and integrity than a packet 

that has only been seen by a few motes in the fWSN. 

Fortunately, in a WSN environment, multiple motes each tend to be able to capture the same 

data packet simply because they are all in range of a particular broadcasted packet. This is a feature 

of WSNs, which is not the case in WLANs. Most devices in WLANs will ignore packets that are 

not meant for them and do not even attempt to log these packets. The opposite is true for WSNs, 

where motes attempt to capture every data packet within range. This feature of WSNs can be 

successfully exploited in an attempt to prove the authenticity and integrity of packets in the WSN. 

All the packets captured by each independent fWSN mote could be forwarded to the base station as 

a central point of analysis, in an effort to prove the authenticity and integrity of the data packet 

according to the Casey Certainty Scale (Casey, 2002). 

The above technique constitutes only one of several ways to determine the authenticity and 

integrity of the packets in a WSN. Time stamping and the sequence of packets can also be used for 

this purpose. However, time stamping in a WSN is a tedious task. The next subsection is 

nevertheless devoted to it. 

5.2.3 Time stamping 

Time stamping in a WLAN environment is a fairly easy task, since all the devices in a WLAN 

would under normal conditions either have access to a time server or be set with the correct time. 

Thus, time stamping in the logs for a WLAN would under most conditions be correct, provided that 

the device has not been tampered with or is not faulty. In the case of a WSN, however, only the 
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management server (which is connected to the base station) has a sense of time. The motes in a 

WSN environment have no sense of physical world time and the only measurement they can use is 

their own sense of time, which is the time that has elapsed since they were switched on 

(Sundararaman, Buy & Kshemkalyani, 2005; Su & Akyildiz, 2005; Sun, Ning & Wang, 2006). 

Such elapsed time can be measured on WSN devices in terms of ticks, where each tick represents 

100 nanoseconds (Sundararaman, Buy & Kshemkalyani, 2005). This uptime, although fairly 

accurate, is a poor indication of time, because each mote in the entire network has to be switched on 

simultaneously and the time should also be synchronised by transmitting their uptime along with 

their data packets. It is impractical to switch on motes simultaneously and synchronisation is not 

feasible due to resource restrictions. 

When tests were conducted concerning the time stamping of WSNs, the researcher noted that 

it takes at most one second to capture any data packet and transmit it to the fWSN base station. This 

nevertheless introduced a time delay between capturing a packet and receiving it at the base station. 

The time delay also differed according to the distance of the fWSN mote from the base station in 

terms of hops and physical distance. Thus the time stamps at the base station are not an accurate 

reflection of when the packet was initially captured, as the base station is the only device that can 

assign an accurate time stamp if it is connected to the management server. (The reason for this is 

that only the management server has access to a time server (Sundararaman, Buy & Kshemkalyani, 

2005; Su & Akyildiz, 2005).) It is also important to note that each fWSN mote captures packets 

sequentially, in the order that the oWSN motes transmit their data packets. This proves to be a vital 

piece of information, because one would then be able to claim that even if the time stamps are 

altered, the sequence would still be intact. The order in which they arrive at the fWSN will also stay 

intact even if the time stamps are slightly delayed. This allows one to assume that the time delay 

between capturing the packet and sending it to the fWSN base station would not really affect the 

authenticity and integrity of the packets, as the sequence of packets can be used to determine their 

authenticity and integrity. 

The trustworthiness of log time stamps is an issue that many digital forensics researchers have 

queried and investigated (Schatz, Mohay & Clark, 2006; Schneier & Kelsey, 1999). The dilemma 

faced by the fWSN is merely intensified. It becomes a more severe issue to trust the time stamps, as 

the limitation of having no access to a centralised time server for WSNs might prevent them from 

reflecting the correct time. However, since the sequence of the data packets is not altered, this 

(rather than the time stamps) could be used to verify the authenticity and integrity of the data 

packets. The researcher therefore assumes that the fixed sequence of the data packets is more 

important than the precise time at which they were transmitted. In fact, more information can be 
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gathered by looking at the sequence of the data packets than by looking at their time of 

transmission. 

It is then sufficient to capture the data packets and merely provide a time stamp for them as 

soon as they arrive at the fWSN base station. In the event that this is done, one would admittedly 

create a time stamp error. The time stamp error would nonetheless be a constant error for each 

oWSN mote, as it would reflect the time the data packet was first transmitted together with the 

added time it took for this data packet to reach the fWSN base station. The fWSN base station, 

which is connected to a time server, assigns a time stamp to each data packet upon its arrival there. 

This allows the order of the packets to be kept intact and records a one-second error on the time 

stamp of each packet due to the fact that the time stamps is assigned by the base station and not by 

the forensic mote that captured the packet initially. Due to the fact that the time stamp error stays 

constant for all the packets received from a specific mote in the sensor field, it is still possible to 

guarantee the authenticity and integrity of a packet by analysing the sequence in which the packets 

were received. This constant error could be measured, if needed, by comparing the time stamps at 

the oWSN base station and the fWSN base station. The time stamp, combined with the sequence of 

the data packets, would then be sufficient to be used in a forensic investigation. 

Another issue that the researcher considered while examining the differences between 

WLANs and WSNs is the feasibility of modifying the network after it has been deployed. This 

matter is discussed in the following subsection. 

5.2.4 Modification of the network after deployment  

Being able to modify the network after deployment is the only factor that was found to be fairly 

similar between WLANs and WSNs, as it is always possible to modify code on a device by 

retracting it from the sensor field, redeveloping it and then redeploying it back into the sensor field. 

However, the practicality of altering oWSN devices after deployment must be taken into 

consideration. It is important to remember that oWSN motes are usually scattered in an area and to 

alter them, one would have to physically collect the entire oWSN and redeploy it. Hence, it seems 

essential that the oWSN should not be modified to accommodate an fWSN solution. This is the 

very reason why the researcher opted to add an overlaying fWSN to the oWSN in order to do all the 

forensic monitoring. The overlaying fWSN would consist of a separate set of WSN motes that does 

not affect the oWSN and also requires no modification of the oWSN as shown in Figure 5.1. 

The difficulty and impracticality of modifying the oWSN has led the researcher to believe 

that this should also be seen as a specific requirement when attempting to provide forensic 

readiness to a WSN environment. Considering that we cannot easily alter the oWSN, we must 
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ensure that the fWSN should be able to handle any type of protocol headers and footers that could 

originate from the oWSN. Against this background, the next subsection focuses on the protocol data 

packets that are used by WSN devices and the reasons why it is important to take this into 

consideration when implementing an overlaying fWSN. 

5.2.5 Protocol Data Packets 

The oWSN can have many different types of communication protocols in its normal operation. For 

example, the data packets can include packets to determine the routing protocol, sensory packets, 

encrypted packets or even malformed packets. In order to ensure that all of the possible protocols 

used in WSNs are encapsulated in this approach, it has been assumed that the oWSN uses an 

address-free protocol. This protocol generates the largest amount of network overhead in WSNs, as 

it would cause data to be sent from a source mote in the network to every other mote in the network 

on each data transmission (Dunkels, Osterlind & Zhitao, 2007). The most commonly used address-

free protocols are data dissemination protocols, where neither the sender mote nor any of the other 

motes in the network knows the address of the receiving mote (Dunkels, Osterlind & Zhitao, 2007). 

If the fWSN is able to successfully log this communication from an address-free protocol in a way 

that ensures authenticity and integrity, one could assume that the name-based WSN protocols would 

effortlessly be accounted for, as they have much less network overhead (Dunkels, Osterlind & 

Zhitao, 2007). 

As is also the case in WLANs, the motes in the fWSN should listen in promiscuous mode and 

be able to handle any type of packet that is transmitted or received by the oWSN. The researcher 

defines promiscuous mode to be a configuration of the WSN mote in which all traffic within the 

WSN mote's frequency range and wireless range will be received by the WSN mote. Thus, if an 

attacker uses a foreign mote to inject data into the oWSN, the fWSN should also be able to listen in 

on this data. This requirement should be fairly simple to adhere to, because if the fWSN is 

implemented on the same type of equipment, it should be possible to intercept all communication. 

Lastly, the fWSN should be using a name-based WSN protocol for communication between 

other fWSN motes, as it is more optimal in terms of network overhead than address-free protocols. 

In name-based protocols the source mote knows the address of the receiving mote and the motes 

between the sender and receiver know the path to the receiving mote (Dunkels, Osterlind & Zhitao, 

2007). 

Considering that we cannot alter the oWSN, we should be able to ensure that the frequency 

that is used to communicate is the same range as one which the fWSN can forensically monitor. 
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Thus, the next subsection will focus on the radio frequencies that are used by WSN devices and 

why it is important to take this into consideration when implementing an overlaying fWSN. 

5.2.6 Radio Frequencies 

Both WLAN and WSN devices communicate on specific frequencies. The WLAN devices 

communicate on either the 2.4 GHz ISM (Industrial, Scientific and Medical) Band or on the 5 GHz 

ISM Band (Crossbow Technology Inc, 2007). Any devices adhering to either the IEEE 802.11a 

standard or the IEEE 802.11n standard are capable of utilising the 5 GHz ISM Band. Devices 

adhering to either the IEEE 802.11b standard, IEEE 802.11g standard or the IEEE 802.11n standard 

are capable of communicating on the 2.4 GHz ISM Band (Doufexi, Armour, Butler, Nix, Bull, 

McGeehan & Karlsson, 2002). WSNs adhere to the IEEE 802.15.4 standard, which condones 

communication on the 2.4 GHz up to 2.4835 GHz band. 

There are also other frequencies that can be utilised by WSN devices and different WSN 

devices can use different stepping on the 2.4 GHz frequency. Stepping refers to the WSN devices 

being able to communicate in different spectrums of the 2.4GHz frequency with a very small 

frequency difference between the two spectrums. It is therefore an important requirement that the 

fWSN is implemented on either the same type of WSN equipment used for the oWSN or equipment 

that is capable of tuning into the same frequencies utilised by the oWSN. 

This is almost a given requirement as most organisations will tend to use the same type of 

equipment for both WSNs. It would simply be the most practical thing to do and cause the least 

difficulties in tuning to the correct frequencies and utilising the same kind of processing. As 

transmitting packets throughout the network is one of the main factors that drain power and thus 

decrease the lifetime of the WSN, we will focus on power consumption in the next subsection. 

5.2.7 Power Supply 

As mentioned earlier, WSN equipment uses an external power supply that consists of some type of 

battery pack. This is a huge difference between WSN equipment and WLAN equipment. Most 

WLAN equipment is either powered by the motherboard it is plugged into or it is plugged into a 

wall socket that provides a constant power supply. The WSN equipment has to rely on battery 

packs for power, because they are mostly scattered in open fields where no power sources are 

nearby. A lot of research is currently being done on how to decrease power consumption in WSN 

devices or how to use something like solar energy (Ye, Heidemann & Estrin, 2002; Slijepcevic & 

Potkonjak, 2001; Wander et al., 2005; Polastre, Hill & Culler, 2004). 
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Until the power consumption issue has been resolved, it is important to take this requirement 

into consideration. Any protocol or model suggested for a WSN should use minimal amounts of 

processing power and have as little as possible radio transmissions between the motes. These are 

the two main elements that drain the battery packs (Shnayder, Hempstead, Chen, Allen & Welsh, 

2004). 

While considering the power consumption factor, one should also ensure that no fWSN adds 

any overhead to the oWSN. This is because any overhead to the oWSN would increase the power 

consumption of the oWSN and thus decrease its lifetime. The following subsection focuses on the 

requirement that the fWSN should not increase the network overhead of the oWSN. 

5.2.8 Network overhead 

Network overhead is quite an important factor when dealing with WSN devices. An increase in 

network overhead would cause a decrease in battery lifetime for the entire WSN. As discussed 

earlier, WSN devices send messages in a broadcast fashion. This has the disadvantage that all the 

motes in the oWSN need to listen to any incoming packets. Thus, if the fWSN were to send out any 

data packets, the oWSN motes nearby would be able to receive them. The oWSN would then need 

to analyse each packet to determine if it was addressed to them and if not, they will have to drop the 

packet. 

The process of receiving and analysing packets mentioned above already introduces a severe 

overhead into the oWSN. Thus it would require the fWSN to communicate on a different radio 

frequency as the one on which it listens for data packets from the oWSN. Data packets sent on a 

different frequency cannot be seen by motes in the oWSN and will therefore not cause any 

overhead in the network. 

If the communication from the fWSN is on a different frequency, we also have the added 

benefit that the fWSN will not have any effect on the data received by the oWSN. We can also see 

it as a requirement that the fWSN should not be able to alter any data received by the oWSN. This 

is briefly discussed in the following subsection. 

5.2.9 Data Interference 

The fWSN should not be able to influence any sensory data, for example temperature or humidity 

readings, which have been received or are sent by the oWSN. Thus, as referred to in the previous 

subsection, the fWSN is only able to transmit data on a frequency that is not in range of any device 

in the oWSN. This is done deliberately to ensure that there is no conflict between the 

communication on the oWSN and fWSN. The data packets sent on this different frequency will 
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never be able to reach any oWSN device, thus one need not be concerned about the issue of traffic 

from the fWSN influencing any data from the oWSN. 

The data transmitted from the oWSN can come in many different forms. The type of data 

packets within an oWSN are all dependent on the type of communication protocol used. Some of 

these communication protocols may even use a type of encryption to keep the channels of 

communication more secure. For these reasons it must be ensured that the fWSN is not able to 

influence any of the data packets that are transmitted within the oWSN, as this can cause errors 

between the transmissions of the oWSN motes. 

All the major differences between WSNs and WLANs have now been discussed. The 

following section is devoted to arranging all these factors into a single list of requirements that need 

to be adhered to when implementing digital forensic readiness in a WSN environment. 

5.3 Forensic Readiness Requirements for WSNs 

The previous sections identified the factors that differentiate between WLANs and WSNs in terms 

of digital forensic readiness. These factors were simply broad overviews of issues to be considered 

in the WSN environment (most of which do not exist in a WLAN environment).  

The researcher subsequently proposes a broad, yet detailed set of the important requirements 

to be adhered to in order to successfully implement digital forensic readiness in a WSN 

environment. This list of requirements (see Table 5.1) could serve as a good starting point for 

anyone working on digital forensic readiness and makes it easier for an individual to implement 

digital forensic readiness within a WSN environment. Most other researchers focus mainly on one 

or two of these requirements by going into more detail on them in their research papers, but many 

other requirements are usually not mentioned, regardless of their importance.  

Table 5.1 gives a brief but comprehensive overview and summary of all the important 

requirements that need to be taken into account in order to achieve digital forensic readiness in an 

IEEE 802.15.4 WSN environment (as discussed in detail in the previous section). 
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Table 5.1. Factors to take into consideration when implementing digital forensic readiness on an 

IEEE 802.15.4 wireless sensor network 

Factors Detailed requirement list 

Communication 

Protocol 

1. The fWSN should use a receipt acknowledgement packet protocol to ensure that all 
data packets captured by the motes in the field do indeed reach the base station. 

2. The broadcasted communication from the oWSN should be intercepted in a manner 
that ensures that the data packets are not altered in any fashion. 

3. The fWSN should be able to capture all possible types of communication that can 
be sent from the oWSN. 

 
 
Proof of Authenticity 
and Integrity 
 

4. The authenticity and integrity of all the data packets should remain intact while 
being captured on the fWSN. 

5. The data packets that are captured in the fWSN should be stored in such a way that 
their authenticity and integrity are not compromised. 

6. It should be possible to verify the authenticity and integrity of all the data packets 
in case a digital investigation takes place. 

Time Stamping 

7. The data packets should have a time stamp assigned to them that does not violate 
their authenticity and integrity. 

8. The sequence of the packets captured should reflect the true sequence in which 
they were transmitted from the original network. 

Modification of the 
network after 
deployment 

9. It should be possible to implement the fWSN without any modification of the 
oWSN. 

Protocol Data Packets 10. The fWSN should be designed in such a manner that the network topology or the 
routing protocol used by the oWSN does not influence the fWSN’s operation. 

Radio Frequencies 

11. The fWSN should be able to communicate on the same radio frequencies that are 
available to the oWSN. 

12. All communication within the fWSN should occur on a frequency not utilised in 
the oWSN. 

13. If an intruder WSN is in the area and communicates on a frequency that 
influences the oWSN, then the fWSN should be able to forensically capture these 
data packets. 

Power Supply 
14. The fWSN should not increase power consumption in the oWSN and the fWSN 

should have at least the same or a longer network lifetime than the oWSN in terms 
of battery power. 

Network Overhead 15. While intercepting communication, there should be no extra network overhead on 
the oWSN. 

Data Interference 16. The fWSN should by no means be able to influence the oWSN or influence any 
sensory data transmitted within the oWSN.  

 

This list provides a sound basis to start from when attempting to achieve digital forensic readiness 

in a WSN environment.  
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The following section concludes this chapter by providing a brief overview of the information 

contained in it. 

5.4 Conclusion 

This chapter was used to identify some crucial differences between WSN environments and WLAN 

environments. The researcher used a scenario where two networks must co-exist in the same 

environment to determine the differences. The differences can be seen in the following list: 

• Communication protocol 

• Proof of authenticity and integrity 

• Time stamping 

• Modification of the network after deployment 

• Protocol data packets 

• Radio frequencies 

• Power supply 

• Network overhead 

• Data interference 

This list of differences allowed the researcher to compile a more specific set of factors to take into 

account when designing a digital forensic readiness model for WSN environments. These factors 

were designed almost as a set of rules that can be used as a checklist to determine if the proposed 

model will indeed work. Such a list could provide anyone who would further want to attempt 

anything along the line of digital forensic readiness within WSN environments with a good starting 

point. 

Now that we have a starting point, the next chapter will propose a model to implement digital 

forensic readiness in a WSN environment. 
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Chapter 6 Proposed Model 

6.1 Introduction 

The previous chapter proposed a set of factors that need to be taken into account while proposing a 

digital forensic readiness model for WSN environments. These requirements are very specific to 

IEEE 802.15.4 WSNs. 

The following section (6.2) is used to propose a model on how to achieve digital forensic 

readiness in a WSN environment. Firstly, it will graphically represent the deployment of such a 

model in any sensor field and also discuss the details on how the model would be used. It is 

important to note that this chapter only provides a broad overview of the inner working of the 

implementation. A detailed discussion follows in a later chapter. 

The model having been proposed, Section 6.3 shows how and why the model adheres to all 

the factors that were specified in the previous chapter. It is shown how the model adheres to each of 

the proposed factors. 

6.2 Model 

In the previous chapter, the researcher already mentioned that the model would include the existing 

WSN with an overlaying fWSN to provide the digital forensic readiness layer. Figure 6.1 

graphically depicts an oWSN with an overlaying fWSN. 
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Figure 6.1. A graphical representation of an oWSN with an overlaying forensic WSN 

In Figure 6.1, the darker-shaded equipment depicts the fWSN and the lighter-shaded equipment 

depicts the oWSN. The oWSN still communicates in the same fashion as it did previously, because 

the base stations and management server for the oWSN receive communication from the oWSN 

motes only. The darker-shaded fWSN was deployed with its own set of motes, own base stations 

and even its own management server. This allows us to deploy an overlaying fWSN without having 

to alter anything on the oWSN. 

After the deployment of the fWSN motes, the fWSN will attempt a frequency-hopping 

technique to determine which frequency the oWSN motes are communicating on. As soon as the 

oWSN frequency has been determined, the fWSN will only listen for communication on that 

frequency and never attempt to send any data packets on the oWSN frequency. This must occur 

because inter-mote communication will occur on a radio frequency different from the one that is 

used by the oWSN. The fWSN will then attempt to sniff data packets that are broadcast from the 

oWSN. Once a packet has been received, the fWSN will transmit the packet in a broadcast fashion 

on a pre-specified radio frequency that is different from the one the oWSN uses, in an attempt to 

reach the fWSN base station. Different types of routing protocols can be used on the fWSN to 

determine the fastest path to the base station. The researcher would recommend using the security 
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protocol that was proposed in Mouton and Venter (2009) to transmit the packets to the base station. 

This security protocol was not specifically named, but it made use of the eXtended Tiny Encryption 

Algorithm (XTEA) which is highly efficient on WSN devices and also had the added advantage 

that the data packets sent between the motes are encrypted (Mouton & Venter, 2009; Hong, Hong, 

Ko, Chang, Lee & Lee, 2004). The security protocol proposed by Mouton and Venter (2009) also 

has a way of checking if the data packets can reach the base station and hence one can always be 

sure that every data packet received from the oWSN will in fact reach the fWSN base station and be 

logged. This security protocol will obviously have a negative effect on the battery life of the fWSN 

as the security protocol requires more processing than a protocol without these features. The 

negative effect can be overcome if the fWSN running this security protocol is fitted with an 

extended battery pack. 

The form of checking referred to above is achieved by using an encryption protocol for the 

transmission of the data packets. Upon each data packet transmission from a mote in the WSN, the 

mote will first attempt to determine if it can reach the base station. The mote will transmit a 

HELLO packet to the base station, to which the base station must respond. The mote in the field 

that sent the HELLO packet will wait for the response from the base station. Only after a response 

has been received, will the mote send the original data packet towards the base station. By using 

this technique one will always be assured that the data packet is able to reach the base station. 

The next section discusses the actual digital forensic readiness requirements. 

6.3 Adhering to the digital forensic readiness requirements 

This section shows how the proposed model adheres to the digital forensic readiness requirements 

that were set out in the previous chapter. 

6.3.1 The broadcasted communication from the oWSN should be intercepted in a 

forensically sound manner. 

To capture data packets in a forensically sound manner, the model is designed to cover the entire 

oWSN. We need to be certain that every mote in the oWSN is at least covered by a single fWSN 

mote. Also, the data packets captured may not be altered by the motes in the fWSN. 

6.3.2 While intercepting communication, there should be no extra network overhead on the 

oWSN. 

The model was designed in such a way that the fWSN motes will always use a different radio 

frequency on which to communicate. The fWSN motes are only allowed to listen in on the radio 

frequency used by the oWSN. 
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6.3.3 The fWSN should by no means be able to influence the oWSN or influence any sensory 

data transmitted within the oWSN. 

The model is designed in such a way that all data packets captured from the oWSN are briefly 

saved on the fWSN mote. These packets are captured in full before they are sent onwards to the 

fWSN base station. 

6.3.4 The fWSN should not increase the power consumption in the oWSN and the fWSN 

should have at least the same network lifetime or longer than the oWSN in terms of 

battery power. 

The model as proposed earlier consists of an fWSN that is deployed either at the same time as the 

oWSN or afterwards to provide the added benefit of having an fWSN. In both these scenarios the 

fWSN would mostly be deployed on the same type of WSN equipment and thus the battery life 

should be relatively equal. In the proposed model, each mote in the fWSN will only communicate 

as often as it receives packets from the oWSN. The battery drain should consequently be equal on 

both the oWSN and the fWSN, and in all scenarios the fWSN will have the same lifetime or longer 

than the oWSN. 

6.3.5 The fWSN should be able to capture all possible types of communication that can be 

sent from the oWSN. 

The model is designed in such a way that it only relies on the ability of the equipment to capture all 

different types of communication. The model therefore inherently adheres to this requirement. We 

can also assume this to be no issue as the equipment for the oWSN and the fWSN would most 

likely be the same. 

6.3.6 The fWSN should be able to communicate on the same radio frequencies as the ones 

that the oWSN is capable of using. 

This is also a feature that relies on the type of equipment that is used. Thus this requirement is 

inherently adhered to in the model. 

6.3.7 All communication within the fWSN should occur on a frequency that is not utilised in 

the oWSN. 

The model proposes injecting an entire secondary WSN into the oWSN and thus this secondary 

network, referred to as the fWSN, should not influence the oWSN. To meet this requirement, the 

fWSN equipment must be set up to use a different radio frequency for communication than the one 

used by the oWSN. 
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6.3.8 The fWSN should be designed in such a manner that the network topology or the 

routing protocol used by the oWSN does not influence the fWSN’s operation. 

The model is proposed in such a way that it relies on the equipment to capture the data packets. 

Hence the equipment should be programmed in such a way that all types of communication would 

be captured, without taking into consideration what the communication holds. The communication 

that is received is never executed and thus even if malicious injections enter the fWSN, they would 

only be logged and not have any effect on the fWSN. 

6.3.9 If an intruder WSN is in the area and communicates on a frequency that influences the 

oWSN, then the fWSN should be able to forensically capture these data packets. 

In the model, the fWSN motes are scattered around the oWSN motes. Thus all communication that 

can be received by the oWSN motes would also be in range of the fWSN motes and if an attack 

were to occur, the fWSN would be able to log this attack. The attack can then later be verified by 

looking at the log files on the fWSN management server. 

6.3.10 It should be possible to implement the fWSN without any modification of the oWSN. 

This is the main requirement to consider while designing the model. The model is designed in such 

a way that the fWSN can be implemented without having to alter the oWSN. This is achieved by 

adding a secondary network, referred to as the fWSN, into the field. 

6.3.11 The authenticity and integrity of all the data packets should remain intact while they 

are being captured on the fWSN. 

The proposed model inherently adheres to this requirement, as it focuses more closely on how the 

fWSN motes are set up. The fWSN motes are set up to capture oWSN data packets, in full, up to 

and including the last bit of each data packet. Only after each successful data packet capture does 

the fWSN attempt to retransmit this packet onwards towards the fWSN base station. 

6.3.12 The data packets that are captured in the fWSN should be stored in such a way that 

their authenticity and integrity are not compromised. 

The storing of the data packets is performed by the fWSN management server. A physical link 

connects this server to the final base station. It receives all the data from the final base station and 

stores the full data packets, along with a hash of the data packets, in log files on the management 

server. 
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6.3.13 It should be possible to verify the authenticity and integrity of all the data packets in 

case a digital investigation takes place. 

The full data packets are stored on the management server. Thus there are several ways to verify the 

authenticity and integrity of these packets. One of the ways is to match the data packets with the 

logs from the oWSN management server. Another one is to replay the information all through a test 

network and see if the same results are obtained as were obtained by the oWSN. The model 

proposes to verify the authenticity and integrity of packets by examining how many fWSN motes 

were able to capture (according to a forensically sound or proven method) a single data packet in 

the oWSN. If a single data packet is forensically captured by more than one fWSN, it will have 

more authenticity and integrity than a data packet that was transmitted only within range of one 

fWSN mote.  

6.3.14 The data packets should have a time stamp assigned to them that does not violate their 

authenticity and integrity. 

It is the task of the management server to assign the time stamps for each data packet that arrives. In 

the model this rule is adhered to as the management server is physically connected to the final base 

station and will thus receive all the data packets. Upon receipt of the data packets at the final base 

station, the management server would then save each data packet along with the time stamp 

generated at the time of receipt by the final base station. This procedure is adhered to because the 

management server is the only device in the model that has a true sense of time. 

6.3.15 The sequence of the packets captured should reflect the true sequence in which they 

were transmitted from the original network. 

The model prescribes that, after each receipt of a data packet by the fWSN, the fWSN mote has to 

retransmit this packet onwards towards the fWSN base station. Hence, the sequence of the packets 

will not be influenced by the fWSN because, whenever a data packet arrives, it will immediately be 

transmitted towards the fWSN base station. 

Having taken all the aforementioned requirements into consideration, we can see that the 

model was designed in terms of the special set of requirements that an IEEE 802.15.4 WSN has in 

respect of digital forensic readiness. This leads us to assume that the model is indeed good enough 

to be used in an IEEE 802.15.4 WSN. 

Now we have a model that adheres to all the requirements for a WSN to achieve digital 

forensic readiness, and the next section will therefore conclude this chapter. 
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6.4 Conclusion 

Chapter 6 proposed a model that can be used to achieve digital forensic readiness in a WSN 

environment. This model is based on the idea that if an overlaying fWSN is used to achieve digital 

forensic readiness, then most of the pitfalls in WSNs can be avoided. 

This chapter also used the list of factors proposed in the previous chapter to explain and show 

that the model will indeed work. Each factor was considered as a separate entity and then used to 

discuss how the model adheres to it. Having shown that all the factors can be adhered to by using a 

model to achieve digital forensic readiness, this dissertation will now continue to discuss in more 

detail how a prototype of the model was designed and implemented.  

Part IV will focus exclusively on the implementation of the prototype and how it performed in 

demonstration scenarios.  
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Chapter 7 Prototype Equipment 

7.1 Introduction 

This chapter introduces the reader to the equipment that was used to implement the prototype. It 

starts off with a brief discussion of the actual equipment, followed by a discussion of the 

programming language and environment. Imote2 Sensor Motes and TelosB Sensor motes were used 

to illustrate all the scenarios for demonstration later on (Crossbow Technology Inc, 2007; Crossbow 

Technology Inc, 2005). 

Section 7.2 is dedicated to introducing the reader to the Imote2 Sensor motes, which were the 

main types of WSN equipment used. Both the oWSN and the fWSN were implemented on these 

devices. Once the reader has been familiarised with the Imote2 Sensor motes, the dissertation 

proceeds to discuss the TelosB mote. The TelosB mote, which employs older technology, was 

simply used to show that the prototype could work with other types of WSN equipment as well. 

Chapter 7 then continues with a brief discussion of the programming language that can be 

used on the equipment and focuses on the issues that were encountered during its use. Afterwards, 

the management server, which is used only as a central server for the WSN, is introduced to the 

reader. 

This chapter is then concluded with a brief overview of the prototype equipment discussed in 

the different sections. 

7.2 Imote2 Sensor Motes   

The Crossbow Imote2 is an advanced sensor network node platform designed for demanding 

wireless sensor network applications that require high Central Processing Unit (CPU)/Digital Signal 

Processing (DSP) wireless link performance and reliability (Crossbow Technology Inc, 2007). The 

platform is built around Intel’s XScale processor, PXA271 (Crossbow Technology Inc, 2007). It 

integrates an 802.15.4 radio (TI CC2420) with an on-board antenna. Each sensor node in the 

prototype consists of an Imote2 board as shown in Figure 7.1, an ITS400 sensor board as shown in 

Figure 7.2 and a battery board as shown in Figure 7.3. Figure 7.4 and Figure 7.5 depict a complete 

IMote2 with the sensor board, battery pack and Imote2 board connected to one another. Both these 

figures are included to give some perspective of the height and width of the motes. All 

measurements in the images are in centimetres and millimetres. The base station consists of an 

Imote2 board only, as it is powered by a USB port of a workstation and does not perform any 

sensory activities. 
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Figure 7.1. Imote2 board 

 

Figure 7.2. ITS400 sensor board 
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Figure 7.3. Imote2 battery board 

 

Figure 7.4. Imote2 – complete mote with all three boards plugged into one another 
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Figure 7.5. Imote2 – complete mote with perspective of height 

The Imote2 mote, with its default factory settings, supports .net Micro Framework 2.0 (Crossbow 

Technology Inc, 2007). As these were the devices on which the prototype was implemented, all 

coding was done in .net Micro Framework 2.0. 

The following two subsections focus on the two different boards in an Imote2 device: the 

Imote2 board, which does all the processing and radio transmission, and the ITS400 Sensor Board, 

which is only used for sensing, i.e. to measure the light, temperature and humidity around the 

Imote2 board. 

7.2.1 Imote2 Board 

The Imote2 board is a relatively advanced processing board that displays the following features 

(Crossbow Technology Inc, 2007): 

• PXA271 XScale Processor running in a range of 13-416 MHz 

• Wireless MMX coprocessor 

• 256kB Static RAM, 32MB FLASH, 32MB SDRAM 

• Integrated 802.15.4 radio, support for external radios through Secure Digital Input Output 

(SDIO) and Universal Asynchronous Receiver/Transmitter (UART) 
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• Integrated 2.4GHz antenna 

• Multicolour status indicator LED 

• Basic and advanced expansion connectors supporting 3x UART, Inter-Integrated Circuit 

(I2C), 2x Serial Peripheral Interface Bus (SPI), SDIO, Integrated Interchip Sound (I2S), 

AC97, USB host Camera I/F, General Purpose Input/Output (GPIO) 

• Mini-USB port for direct PC connection 

• Size: 48 mm x 36 mm. PCB Thickness 1.75 mm 

Each of these motes can be assigned a MoteID for operation within the sensor field and to 

differentiate between different motes. The next subsection discusses the sensor board that can be 

attached to the Imote2 board to provide an interface for sensing data that can be measured by the 

sensors on the sensor board. 

7.2.2 ITS400 Sensor Board 

The ITS400 sensor board is shipped together with the Imote2 board in the Imote2.builder kit. The 

ITS400 sensor board is a multi-sensor board that combines a popular set of sensors for wireless 

sensor network applications, including Crossbow Technology Inc (2007) and Doolin and Sitar 

(2005):  

• ST Micro LIS3L02DQ 3d 12 bit ±2g accelerometer 

• High Accuracy, ±0.3°C Sensirion SHT15 temperature/humidity sensor  

• TAOS TSL2651 Light Sensor 

• Maxim MAX1363 4 Channel General Purpose analog-to-digital converter for quick 

prototyping 

• TI Tmp175 Digital Temperature Sensor with two-wire interface 

Now that we have introduced the reader to the Imote2 sensor motes, we will devote the next section 

to the TelosB Sensor Mote. 

7.3 TelosB Mote 

The Crossbow TelosB Mote (TPR2420) is a much more primitive device than the Imote2 Sensor 

Mote. It was one of the first series of motes released by the Crossbow Company. The specifications 

for this mote are as follows (Moteiv Corporation, 2004): 

• IEEE 802.15.4/ZigBee compliant radio frequency transceiver 
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• 2.4 to 2.4835 GHz, a globally compatible ISM band 

• 250 kbps data rate 

• Integrated on-board antenna 

• 8 MHz TI MSP430 microcontroller with 10kB RAM 

• Low current consumption 

• 1MB external flash for data logging 

• Programming and data collection via USB 

• Optional sensor suite including integrated light, temperature and humidity sensor 

(TPR2420) 

• Runs TinyOS 1.1.10 or higher 

From these specifications it is clear that the TelosB Mote is inferior to the Imote2 sensor mote. The 

TelosB mote also does not support .net Micro Framework 2.0. The TelosB mote supports TinyOS 

(Moteiv Corporation, 2004; Crossbow Technology Inc, 2005), which is an operating system 

designed specifically for small devices that need to have limited processing and power sources. 

The TelosB mote does not have extra sensor boards that may be attached. The TPR2420 

model has an imbedded sensor board on the device, which can measure temperature, light and 

humidity. The temperature, light and humidity sensors are very similar to the ones on the Imote2 

Sensor Board. Figure 7.6 shows what a TPR2420 TelosB mote looks like. 
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Figure 7.6. TPR2420 TelosB mote 

For the purpose of this dissertation and prototype, no further information on the workings of 

TinyOS and the mote itself is required. Only a single TelosB mote was used throughout all the 

demonstration sessions. The researcher was not allowed to make any modification to the mote in 

terms of the software deployed on it prior to conducting this research. The researcher was also not 

briefed on the software on which the TelosB mote was currently running. The purpose of the 

TelosB mote in the demonstrations was simply to show that the prototype is able to capture data 

packets from oWSN devices that communicate within the same frequency range that the fWSN can 

listen in on. 

Considering the fact that we never needed to implement anything on the TelosB mote, the 

following section will cover only the .net Micro Framework 2.0 as operating system and not the 

TinyOS as well. 

7.4 .net Micro Framework 2.0 

The .net Micro Framework 2.0 was already fairly dated framework at the time of writing this 

dissertation, and was released in September 2007 (Thompson & Miles, 2007). The .net Micro 

Framework 3.5 has also been released for quite some time now, but the Imote2 Sensor motes still 

only support up to .net Micro Framework 2.0 (Crossbow Technology Inc, 2007). There has been 
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talk about the Crossbow company releasing firmware to upgrade the motes to .net Micro 

Framework 3.0 and later, but up to the time of implementation of the prototype, this has not yet 

happened (Vibration Engineering Research Section, 2009). 

The .net Micro Framework 2.0 is a standard development kit (SDK) to develop applications 

for WSN devices. The .net Micro Framework is aimed at devices that have very little processing 

power and storage on the devices themselves. This framework includes a very limited subset of the 

functionality compared to the standard .net Framework (Thai & Lam, 2003). Even though the 

Imote2 Sensor motes are supposed to natively support the .net Micro Framework 2.0, there are still 

various bugs and issues when actually deploying the code onto the devices. While the researcher 

was coding the prototype, he ran into several issues in this regard. 

By using the fWSN, the researcher attempted to gather information about where other devices 

in the network were located. For this he used the received signal strength indication (RSSI) value, 

which is a measurement of the power level of a wireless signal received by the antenna. The RSSI 

value could in turn be used to determine the positioning of motes in the field by means of 

triangulation (Hartley & Sturm, 1997). Triangulation can be calculated if the signal strength, having 

been translated into the physical distance between two devices that are communicating to a third 

device, is known (Hartley & Sturm, 1997; Xiang-Yang et al., 2003; Chun-Hsien, Kuo-Chuan & 

Yeh-Ching, 2007). Merely figuring out how to access the RSSI value proved to be tricky, as the 

functionality was not part of the .net Micro Framework 2.0 specification. The RSSI values that were 

returned initially were in two’s-complement notation and had to be converted to decimal values. 

After converting them, the researcher discovered that the RSSI values were not really true 

representations of the distance between the devices, as he obtained almost random values while 

examining them. The researcher later discovered, through the use of the Imote2 online discussion 

board (Vibration Engineering Research Section, 2009), that the RSSI values were not accessible 

using the .net Micro Framework 2.0 firmware that is currently on the motes. The Imote2 discussion 

board was provided by Crossbow and acted as the main forum to discuss development woes and 

accomplishments on the Imote2 devices. This could also be seen in the fact that the demonstration 

software that accompanied the device used random values when supposedly “determining” the 

RSSI values. 

As the equipment is fairly expensive, the researcher opted to not attempt to change the 

firmware on the devices and went ahead without using the RSSI values. This luckily did not hamper 

the proof of concept for the proposed model in any way. It did, however, cause the researcher to 

restrict some of the features of the prototype, as triangulation could not be performed accurately on 
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the devices. This caused the exclusion of geographically pinpointing single motes from within the 

oWSN. If it was implemented on other hardware, the prototype would theoretically be able to 

determine the positioning of the oWSN motes. This limitation, however, does not hamper the 

prototype, as the purpose of the prototype was solely to demonstrate that a digital forensic readiness 

layer and a means of flooding detection can be added to an existing WSN. 

The next section discusses the management server, which acts simply as a central point in the 

WSN. 

7.5 Management Server 

The management server to be used with WSN devices can be any computer fitted with Universal 

Serial Bus (USB) ports. The researcher employed his laptop computer to act as the management 

server. 

The laptop is an HP Pavilion DV9500 series computer and has an Intel Core2Duo 1.8 GHz 

CPU with 2GB of RAM. The specifications of the management server are not really that important 

as the software written for the prototype is capable of running on most of the entry level computers 

one would be able to purchase today. The only important factor about the management server is that 

it should at all times be connected to a device that will be able to give the computer access to a 

forensically trusted time server. A forensically trusted time server can be defined as a server that is 

independently able to provide the management server with a time stamp originating from the 

independent time server itself. For the purpose of demonstrations, the time-a.nist.gov time server 

was used, as it is a widely used and accepted public time server (Mills, 1991) provided by the 

National Institute of Standards and Technology. 

Throughout all the demonstrations the management server was connected via a USB cable to 

an Imote2 base station. The Imote2 base station was merely an Imote2 board with specialised 

software, which was also developed as part of the prototype deployed on it. Software developed as 

a component of the prototype was deployed on the management server to forensically capture and 

log all the data received by the fWSN base station. 

The next section concludes this chapter with a brief overview of the equipment used. 

7.6 Conclusion 

This chapter was devoted to introducing the reader to the equipment that was used to implement the 

prototype. The use of iMote2 motes was a good decision as a platform for implementation as the 

coding could be done in .net Micro Framework. This allowed the researcher to easily do all the 

development as he was fairly familiar with Microsoft Visual Studio 2005, which did not require a 
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steep learning curve for the .net Micro Framework. The TelosB mote was also a good addition to 

the demonstrations as it could be used to show that the prototype was able to monitor data packets 

from different types of WSN equipment, i.e. different from the iMote2 hardware. This indicated 

that the prototype was also versatile and scalable as far as oWSN hardware is concerned. 

In the next chapter the prototype will be discussed and demonstrated with pre-setup 

demonstration scenarios. 
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Chapter 8 Prototype Overview 

8.1 Introduction 

This entire chapter is devoted to introducing the reader to the prototype and demonstration 

scenarios are used to illustrate its inner workings. It starts off by providing the reader information 

regarding the various devices that were used for various purposes during the demonstrations. The 

chapter then discusses the environment in which all the tests were performed and shows that the 

scenarios were sufficient to demonstrate the workings of the protocol. 

Section 8.2 explains the demonstration environment, the decision making within this 

environment and the placement of motes. Section 8.3 then discusses in three separate components 

how the prototype was developed and Section 8.4 provides a brief summary of the chapter. 

8.2 Demonstration Environment 

The demonstrations were all completed inside a research computer laboratory. This laboratory 

allowed the simulation of several different scenarios that are similar to real-life environments. 

Due to limited funding and the costs involved in acquiring WSN devices, only two Imote2 

starter kits were purchased at a cost of US$1000 each. Each contained three battery packs, three 

Imote2 boards and two Imote2 sensor boards. This allowed the researcher to have two separate 

WSNs, each with two field motes and one base station respectively, yet severely limited the 

demonstration examples to fairly simple ones. However, these limitations are acceptable for the 

purposes of this dissertation as the proof of concept for the model could be reached. 

Two different network setups were used during the demonstration examples. The first 

network layout is depicted in Figure 8.1. 
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Figure 8.1. Wireless Sensor Network Layout 1 

In Figure 8.1, there are two oWSN field motes and one oWSN base station, as well as two fWSN 

field motes and one fWSN base station. This is to simulate the oWSN co-mingled with the fWSN. 

The oWSN field motes are labelled oMoteID-101 and oMoteID-102 respectively, while the fWSN 

field motes are labelled fMoteID-201 and fMoteID-202 respectively. Figure 8.1 is set up so that 

broadcast transmissions from oMoteID-102 can reach only fMoteID-201, fMoteID-202 and the 

oWSN Base Station. Similarly, oMoteID-101’s broadcast transmissions can reach only fMoteID-

201 and the oWSN Base Station. The network layout is set up in this way for the demonstrations to 

show how the authenticity and integrity measurements are conducted and what happens when 

oWSN motes are on the outskirts of the fWSN.  

A second network layout was used to demonstrate the normal operation of WSNs and depict a 

typical WSN. This layout can be seen in Figure 8.2. 
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Figure 8.2. Wireless Sensor Network Layout 2 

This second network layout is very similar to the first. Only a slight adjustment was made to it by 

placing oMoteID-101 within the range of fMoteID-202 and oMoteID-102, instead of having 

oMoteID-101 on the outskirts of the network. This now causes oMoteID-101’s broadcasts to be 

seen by oMoteID-102, fMoteID-201, fMoteID-202 and the oWSN Base Station. 

These two network layouts were the only ones that could be achieved with the limited number 

of WSN motes the researcher had to his disposal. The researcher also found that the two network 

layouts used were sufficient for the demonstration purposes of this research, as it satisfied the proof 

of concept. Throughout the demonstrations, reference will each time be made to the network layout 

applicable to the particular demonstration. For some demonstrations the network layout is slightly 

altered when one of the oWSN motes are removed. The removed oWSN mote is then 

reprogrammed with other software to simulate flooding. 

It was important to have these different network layouts to show that the prototype is robust 

and could operate efficiently in several WSN environments. Using these different network layouts 

enabled the researcher to simulate different scenarios. 
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It was also important to consider the physical environment and distances that these motes 

were placed from each other in order to get a perspective of how a WSN operates in the two 

different network layouts. Figure 8.3 and Figure 8.4 are included for these purposes. 

 

Figure 8.3. Network Layout 1 represented graphically 

In Figure 8.3 we can see how the network layout in Figure 8.1 is deployed inside the research 

laboratory. The motes were placed far enough apart so that oMoteID-101’s broadcast 

communication could not reach fMoteID-202. Figure 8.3 also shows how the fWSN base station is 

connected to the fWSN management server. 

 
 
 



Chapter 8 Prototype development 

 

 

Page 75  

 

Figure 8.4. A closer look at how fMoteID-201 and oMoteID-101 are spaced apart 

In Figure 8.4 we can see fMoteID-201 in front and oMoteID-101 in the rear of the image. In order 

to achieve the network layout depicted in Figure 8.2, one would simply swap the positions of 

fMoteID-201 and oMoteID-201. This would allow oMoteID-101 to be close enough to fMoteID-

202 (shown in Figure 8.3), in order that fMoteID-202 can forensically capture (with authenticity 

and integrity as discussed earlier) the information that was broadcast from oMoteID-201. It is 

extremely difficult to show in the images the range of the separate motes, and a method of trial and 

error is therefore used in order for the researcher to place them at the correct positions, i.e. so that 

the motes are either in radio range of each other or not. 

Now that the placement and network layout of the demonstration has been discussed, focus is 

shifted to how the prototype was developed. 

8.3 Prototype development 

The prototype was developed as three separate components. For the purpose of this study, the 

researcher needed to implement a prototype for each of the three components of the fWSN. The 

first to be developed was the software for the forensic motes in the field. The second part involved 

the software that was deployed onto the base station in order to retrieve the data from the forensic 

motes in the field. The final part was the software that was deployed on the management server, 

which had to log the forensic data that the base stations received from the forensic field motes. 
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The implementation of each of these components is separately discussed in the following 

subsections. 

8.3.1 fWSN Field Motes 

fWSN field motes required an implementation that would allow them to observe communication 

and capture any type of data packets. The full implementation on these motes was a fairly simple 

task, which required listening for packets, altering the radio frequency to ensure that it does not 

interfere with the oWSN motes and transmitting the packets onwards towards the fWSN base 

station. 

Firstly, the fWSN field motes are to be deployed in such a manner that the coverage area of 

the fWSN field motes will always encompass the coverage area of the oWSN. Upon power up of 

the fWSN field motes, they would immediately switch to promiscuous listening mode. These motes 

would then sit in an almost idle state with the radios in listening mode. The motes were set to 

promiscuous listening mode to forensically capture any data packets, even if the packets were not 

meant for them. If promiscuous mode was not used, we could end up ignoring data packets. Thus, 

promiscuous listening mode was found to be the best way to capture all data packets in range. 

It is not required for the fWSN field motes to negotiate a communication protocol, as the 

fWSN field motes rely on broadcasted messages in order to communicate with one another. The 

broadcasting of messages allows the fWSN field motes to avoid the possible problem which a 

connection-based protocol might have. In a connection-based protocol it is required for devices to 

continuously broadcast additional messages in order to maintain the connection. Broadcasting the 

messages between the fWSN field motes allows maintenance of a connectionless communication 

protocol which then, in turn, minimises the additional network traffic that the fWSN field motes 

could possibly generate. 

Upon receipt of a data packet, the fWSN field mote would attempt to interpret the header of 

the received message. All the Crossbow WSN motes also have a software interface for the 

TOSRadio, which allows one direct access to the radio device on the mote board (Crossbow 

Technology Inc, 2005). The TOSRadio interface is the default interface used by the .net Micro 

Framework to interface the hardware on the Crossbow motes. Thus, data packets originating from a 

Crossbow WSN mote could potentially have a TOS header and a sensor board header added to it. 

For this reason, we analysed the packet header as it contained information about where the packet 

originated, the destination of the packet, the length of the packet and a 2-byte counter to display the 

sequence number of the packet. Data packets sent in the oWSN did not necessarily need to contain 

the TOS headers for the fWSN being able to capture such packets and, thus, there are 
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demonstrations of packets that contained either TOS headers or randomised headers. (Examples of 

the TOS header packets are shown later when the prototype is demonstrated.) 

After an attempt was made to interpret the header of the data packet, the fWSN field mote 

would alter its radio frequency to a pre-specified one that is known not to clash with the radio 

frequency of the oWSN. This radio frequency would be any frequency that the fWSN mote was 

able to communicate on, while care would be taken to ensure that this frequency was not the same 

as the frequency used by the oWSN. The header of the data packet would next be combined with 

the original received data packet and added at the end of the fWSN data packet. The fWSN field 

mote would then use the fWSN sensor board header to set the ‘Node ID’ field into its own MoteID. 

This is done to analyse where the data packet originated in the oWSN. Figure 8.5 depicts the fWSN 

data packet, once it has been combined with the oWSN data packet. 

fWSN Data Packet

fWSN TosMsg 
Header oWSN Data PacketfWSN Sensor 

Board Header

TosMsg 
Header Data

oWSN Data Packet

 

Figure 8.5. fWSN Field Mote Data Packet 

The data packet would next be transmitted onwards, in a broadcast fashion, towards the fWSN base 

station. After this transmission, the data packet is firstly removed from the fWSN field mote and 

then only does the fWSN field mote return to listening for data packets in a promiscuous mode. 

This deletion of the data packet after the transmission allows one to avoid exceeding the maximum 

data buffer of an fWSN field mote. 

The next subsection is devoted to exploring how the fWSN base station was implemented. 

8.3.2 fWSN Base Station 

The fWSN base station was designed in such a way that it would not be allowed to transmit any 

data packets, since its purpose was to simply collect the forwarded packets from the fWSN motes. 

The fWSN base station is always set to listening mode on the specific fWSN radio frequency. 
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The fWSN base station operates in a simple fashion in the sense that it only listens for data 

packets on a specific predefined radio frequency. This approach causes no interference with the 

oWSN. The fWSN base station would also be unable to receive any communication from the 

oWSN as it is not set to listen in promiscuous mode; neither is it set to listen on the oWSN radio 

frequency (as mentioned before). 

The fWSN base station will, upon receipt of a data packet, immediately transmit it to the 

management server through the physical USB connection. The physical USB connection should 

ensure that the transmission is always successful. In the case where the management server is down, 

because of a power outage or something similar, the fWSN base station will build up a buffer of 

data packets that have been received. In a scenario where the ram buffer is full, the ram buffer will 

be dumped to the flash memory of the mote and have to be retrieved manually at a later stage. As 

the buffer is 32 megabytes in size, it will only become full in extreme circumstances where the 

management server is off for several days. At the time that the management server goes online 

again, it will receive in one transmission all the data packets that have been captured while it was 

offline. 

The next subsection explains the workings of the software on the management server. 

8.3.3 fWSN Management Server 

The management server had to have a specific set of software designed for it. This software had to 

be able to communicate in real-time with the base station and have a graphic display of what was 

happening on the network. In order to prove that the data packets were captured in a forensic 

fashion, the management server software was split into two separate pieces of software. The 

software of the management server was implemented in C# as it was the most efficient language to 

interface with the .net Micro Framework. 

The two components of the management server software include the packet logging software 

and the packet analysis software. The main task of the packet logging software was simply to log all 

the communication from the fWSN in a forensically sound manner. The term forensically sound is 

used as defined in Chapter 6.3.1. The purpose of the packet analysis software was to provide a GUI 

for an fWSN management server administrator to easily interpret the data. 

In the following two subsections, the packet logging software and the packet analysis 

software are explained in more detail. 
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8.3.3.1 Packet Logging Software 

The software is programmed to open a unidirectional connection to the fWSN base station. This 

means that the base station is able to transmit data on this connection towards the management 

server, but the management server cannot communicate towards the fWSN base station. 

Implementation was done in this way so that if malicious software were to compromise the 

management server, it would not be able to spread to the fWSN base station and potentially cause 

further harm to the fWSN. 

Upon receipt of a data packet from the fWSN base station, the management server software 

generated a time stamp by using the system time at that point. It is important to note that the 

management server’s system time had to be synchronised upon initiation of the software with the 

forensically approved time server as explained in Chapter 5.2.3. The data packet was then stored 

along with the full time stamp. 

These data packets are only a matter of bytes and are stored directly onto the hard disk of the 

management server, which is an average server with ample storage. The amount of storage on the 

management server thus nullifies a potential problem where the logging machine may have 

insufficient storage. As mentioned earlier, WSN devices are devices with low processing abilities 

and thus the amount of data that they possibly can transmit is extremely small. A sample of the log 

file can be seen in Figure 8.6. 
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Figure 8.6. Sample log file on 12/07/2009 at 12:38:00 until 12:38:06 

From Figure 8.6 it is clear that all data packets received were saved along with their full time 

stamps. (Later in the dissertation we will discuss how to interpret this log file.) Also, from the 

above, we can see that each day has its own log file as the date of capture was saved as the log file 

name in order to decrease the complexity of a potential digital forensic investigation. 

The sole purpose of the packet logging software is to log all the data packets received by the 

fWSN base stations to a log file. In order to ensure authenticity and integrity, only the packet 

logging software has the ability to create this log file. In the next subsection, our focus is on the 

packet analysis software. 

8.3.3.2 Packet Analysis Software 

In order to retain the authenticity and integrity of the log files, the packet analysis software is 

implemented as a separate part that cannot alter these log files. This software is only allowed to 

open the log files in a read-only fashion and thus cannot alter them. 

The software only serves as a graphical user interface (GUI) to the log files. It is used as a 

way to easily interpret the data that has been captured forensically by the packet logging software. 

This piece of software also provides us (in terms of digital forensic readiness) with a quicker way to 
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interpret the data than to manually examine the log files, which could be a tedious task. If the 

packet analysis software is used in a real-time fashion, one has the ability to view the data packets 

as they are being captured and thus see the full flow of data packets in the WSN. Apart from 

showing how the data packets are captured in real time, the packet analysis software also has 

several other features. It has built-in algorithms to detect flooding inside the oWSN. The software 

also filters out data packets that have been seen by more than one fWSN field mote, in order to 

make the information seen in the packet analysis software more easily readable. In the case where 

this data is filtered out, the forensic MoteIDs are displayed in sequential order to show which 

forensic motes were able to capture the data packet first. The closer an fWSN mote is to an oWSN 

mote, the faster the data packet will be captured by the fWSN mote and thus one can determine 

which fWSN mote was closer to the oWSN mote that transmitted the data packet. A sample of the 

GUI can be seen in Figure 8.7. 

 

Figure 8.7. Sample GUI for a log file generated on 12/07/2009 at 13:02:07 until 13:06:38 

In the GUI of the packet analysis software, the “Line” field is used to indicate the sequence in 

which the packets were received. In Figure 8.7 the numbers are not sequential, as the data was 

sorted by Byte 3 (see explanation below). The “Date” field is read from the log file and displayed 

alongside each data packet. The “Seen By” field is used to show which fWSN field motes were able 

to forensically capture the data packet. It is assumed that the data packet was forensically captured 

because of the fact that while the packet was travelling from the fWSN field mote to the fWSN base 

station onto the management server, it was always treated in a forensically sound manner. Thus the 

authenticity and integrity of the captured data packet is maintained throughout the entire process. In 

the example above, one can see two fWSN field motes with Forensic MoteIDs 201 and 202 
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respectively. The “Forensic MoteID” field displays which fWSN field mote was the closest to the 

oWSN mote that transmitted the data. The calculation is made on the basis of which fWSN field 

mote received the transmitted data packet first. The fWSN field mote closest to the transmitting 

oWSN mote would be able to receive the packet a few milliseconds before an fWSN field mote 

further away. This allows us to easily determine the vicinity from where the data packet was 

transmitted.  

The “Byte 1” to “Byte 10” fields are the actual content of the bytes of the data packets that 

have been received. “Byte 1” to “Byte 5” contains the TOS header of the data packet. Due to the 

limited space of the page, not all of the Byte fields are displayed. The Byte fields go up to “Byte 

64”, which was the maximum packet size one was able to transmit through the oWSN as it was the 

limitation on the oWSN motes. 

Not all demonstrations will include the Byte fields, as the fields were given appropriate names 

in order to increase the readability of this dissertation. However, in a digital forensic investigation 

the fields would stay numbered from “Byte 1” to “Byte 64” as in investigator will need to examine 

each field. Numbering the fields will not hamper the digital forensic investigation, as it is only used 

to easily identify which byte segment the data packet is being shown. 

As mentioned earlier, the packet analysis software is also able to detect flooding inside the 

oWSN. This will be explained in more detail while demonstrating that scenario in the next chapter, 

as flooding is a very important issue that this dissertation addresses. 

The next section concludes the chapter by providing a brief overview of the prototype. 

8.4 Conclusion 

Chapter 8 was devoted to introducing the reader to the prototype setup. It discussed the different 

demonstration environments and network layouts that the prototype would be tested on. The 

development and setup of the prototype were also discussed in detail. The prototype was separated 

into three distinguishable components namely the fWSN field motes, the fWSN base station and the 

fWSN management server. The fWSN field motes are the motes deployed among the oWSN field 

motes, i.e. in the same sensor field. The fWSN base station is the mote to which all the fWSN field 

motes communicate and it is connected to the fWSN management server. The fWSN management 

server is used to forensically log the oWSN data packets and can also be used to analyse the oWSN 

data packets. 

Chapter 9 gives an overview of the demonstrations.  
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Chapter 9 Prototype Setup 

9.1 Introduction 

The prototype proposed in this dissertation has a number of benefits for wireless sensor networks. 

The subsections that follow discuss four demonstrations that have been completed in order to focus 

on various features of the prototype. These demonstrations show: 

• how the fWSN operates under general conditions; 

• how the fWSN deals with flooding attacks on the oWSN; 

• how the fWSN can be used to verify sensory data captured by the oWSN; and 

• that the fWSN can be used to capture data packets from other types of WSN equipment. 

To summarise, the first demonstration shows how the prototype performs under general conditions 

that resemble those under which most current WSNs operate. In the second demonstration this 

dissertation focuses on flooding in WSNs and how the prototype can be used to detect flooding in 

WSNs. The third demonstration is used to show that the authenticity and integrity of the data 

packets are retained whilst the prototype is being used. The fourth and final demonstration shows 

that the prototype can capture data packets from any type of WSN device as long as this device 

communicates within a frequency range that the prototype can listen in on. 

9.2 Demonstration I: General Conditions 

This demonstration shows how the prototype fares in an environment that resembles as closely as 

possible an environment found in most current WSN applications. For this demonstration the 

environment was set up as can be seen in Figure 9.1. 
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Figure 9.1. Demonstration I: Wireless Sensor Network Layout for General Conditions 

WSN Layout I in Figure 9.1 is repeated here for convenience sake and in order to improve the 

readability of this dissertation. The oWSN consisted of two motes labelled oMoteID-101 and 

oMoteID-102 respectively. There was also an oWSN base station that was used to capture the data 

packets from the two oWSN motes. These oWSN motes were all switched on before the fWSN was 

deployed in order to simulate an already existing WSN. The fWSN also consisted of an fWSN base 

station and two motes labelled fMoteID-201 and fMoteID-202 respectively. The fWSN was 

deployed in a specific way in order to demonstrate two different scenarios that could occur in this 

setup.  

The first scenario was where an fWSN mote, fMoteID-201, was in range of more than one 

oWSN mote. In the second scenario an fWSN mote, fMoteID-202, was in range of only a single 

oWSN mote. In order to achieve this, fMoteID-201 was deployed to be in range of both oMoteID-

101 and oMoteID-102, whereas fMoteID-202 was deployed to be only in range of oMoteID-102. 

Furthermore, fMoteID-202 was deployed far enough from oMoteID-101 so as not to be in 

oMoteID-101’s wireless range, and close enough to oMoteID-102 to be within oMoteID-102’s 

wireless range. The fWSN base station was subsequently deployed to be in range of both fWSN 
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motes and connected directly to the fWSN management server. The environment as set up 

graphically can be seen in Figure 9.2. 

 

Figure 9.2. Demonstration I: Wireless Sensor Network Layout for General Conditions (Graphic 

Representation) 

After the fWSN was fully deployed into the sensor field, the fWSN was switched on. Both the 

packet analysis software and packet logging software were started on the management server. A 

screenshot of the packet analysis software is shown in Figure 9.3. 
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Figure 9.3. Demonstration I: Packet analysis software screenshot to demonstrate how the prototype 

performs under general WSN conditions 

In Figure 9.3 we can see how the fWSN logged the data packets that originated in the oWSN. The 

“Line” column shows in what sequence the packets were received by the fWSN base station, while 

the “Date” column shows the exact time that the packet was captured by the fWSN. The “Seen By” 

column shows which fWSN motes in the field were in range and able to capture and rebroadcast the 

data packet so that the packets are eventually “forwarded” to the base station. In this demonstration 

201 represents the ID of the mote labelled fMoteID-201 and 202 represents the ID of the mote 

labelled fMoteID-202 as shown in Figure 9.3. 

The “Forensic MoteID” column shows which fWSN mote was the quickest to capture a 

specific data packet and to send it onwards towards the fWSN base station. It would appear that the 

“Forensic MoteID” was random at the start (see Figure 9.3), but it is important to note that two 

oWSN motes were being monitored. On the third line, fMoteID-201 captured the packet first and 

from the fifth line onwards (for oMoteID-102), fMoteID-202 captured the packet first. This was due 

to the fact that while running the prototype there was human movement between the motes, which 

caused the paths between the motes to be obstructed and thus the delay between receiving the 

packets to be different. This scenario was demonstrated particularly because such obstruction could 

very well occur in a real-life situation. It also shows an advantage of the prototype, namely that it is 

indeed able to detect when obstructions occurred within the communication ranges. 
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The “Originating MoteID” column shows from which oWSN mote the data packet was 

received. In this demonstration 101 represents oMoteID-101 and 102 represents oMoteID-102 as 

shown in Figure 9.3.The “Byte 6” column shows the sequence number of the data packet generated 

by the particular oWSN, as the title “Sequence Number of Data Packet” was too long to fit in the 

figure. It is important to note that the sequence numbers that were captured by the fWSN and 

displayed in Figure 9.3 do not start at 1, because the fWSN was only switched on after the oWSN 

had been switched on. This means that the fWSN was never able to capture the very first few 

packets broadcast by the particular oWSN. It was performed in this way to demonstrate that the 

fWSN can be deployed while the oWSN is already in operation. The “Light Value” column shows 

the sensor reading of the light sensor on the oWSN motes. It is important to note that there are 

various other fields that also form part of packet analysis software (i.e. the temperature sensor 

reading, humidity sensor reading, etc.). In order to retain readability of the image, however, these 

fields were removed from the screenshot. In a forensic analysis, however, one should consider all 

the byte fields (the entire table). 

Figure 9.4 is provided to help explain the first demonstration. 

 

Figure 9.4. Demonstration I: Packet analysis software screenshot with data sorted by the 

“Originating MoteID” column 
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In Figure 9.4 the captured data is sorted according to the “Originating MoteID” field. This 

demonstration shows that the prototype was able to successfully capture data packets from the 

oWSN. 

The motivation for sorting the data in Figure 9.4 according to the “Originating MoteID” field 

is that the present research will first examine the traffic generated by oMoteID-101. Firstly, by 

examining the “date” column, one can see that oMoteID-101 sent out a data packet roughly every 

ten seconds. These data packets were only in range of fMoteID-201, which demonstrates a scenario 

where an oWSN mote is on the outskirts of the fWSN. Due to the fact that only one fWSN mote 

was able to capture data packets from the oWSN mote, it is difficult to verify the integrity and 

authenticity of the data packet (it is not possible to examine how many other fWSN motes also 

captured the same packet as there was only one in this case). This would require one to use another 

measurement to verify the authenticity and integrity of this data packet. 

The authenticity and integrity of the data packet for this prototype can be determined by 

examining if all the data packets received from this single oWSN mote exhibit the same typical 

qualities and patterns as a single data packet. The qualities and patterns of the data packet from the 

oWSN will be unique to each layout of the oWSN, as each layout would have its own qualities and 

patterns. In the implementation of the oWSN considered in this dissertation, there was a sequence 

number field from the oWSN and a light sensor reading on the oWSN (see Figure 9.4). Thus one 

can say that the data packets captured retained their authenticity and integrity based on three 

factors.  

• Firstly, the different data packets were received about ten seconds apart and this time 

interval was constant throughout the entire log. This means that this oWSN mote broadcasts 

sensory data every 10 seconds. The time intervals at which WSNs communicate would in 

most scenarios stay constant as variables are measured at set time intervals. It would not 

make sense to measure the temperature or light at random, as this would hamper the ability 

to draw statistics from the measured data. In the unlikely case that the time intervals are not 

periodic, one would rely on other sets of patterns, for example sequences of data packets or 

sensor measurements, in order to verify authenticity and integrity. 

• Secondly, the sequence numbers of the data packets, which can be seen in the “Byte 6” 

column, followed a chronological order. The sequence numbers allowed the investigator to 

determine that the data was sent from the same oWSN mote each time, as each oWSN keeps 

its own sequence counter. One could assume that most oWSN implementations use 
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sequence numbers as this would allow the oWSN itself to keep track of the sequence of data 

packets. 

• Thirdly, the light sensor measurement remained constant at either 21 or 22 as can be seen in 

Figure 9.3 and Figure 9.4. However, this measurement must also be compared to the logs of 

the oWSN management server so as to determine if the light sensor measurements did 

indeed stay constant. This examining of the logs of the oWSN management server would 

not encroach on the oWSN as it would only be done in the case of a digital forensic 

investigation, i.e., after it was determined that an investigation needs to be launched due to a 

suspected security breach in the oWSN. 

It is important to note that the three factors above are only taken into account to verify the 

authenticity and integrity of the data packets during a digital forensic investigation and one would 

not normally, during the operation of the fWSN, need to verify this. It is only in the aftermath of a 

security breach that one would need to prove that the data has been forensically captured and thus 

would need to have access to the oWSN data. 

Based on the factors above we can safely say that these data packets truly originated from an 

oWSN mote with a MoteID 101. In a different oWSN environment one could use other qualities or 

patterns of the oWSN to determine the integrity and authenticity of the data packets that have been 

captured. The factors used in this demonstration were factors that are applicable to this 

demonstration environment only. Some of these factors might repeat in other environments while 

additional ones could even be found in other environments. Some of these additional factors could 

include determining whether the humidity measurements stayed constant and equal to the ones that 

were measured in the oWSN, or even whether the length of the data packets stayed constant 

throughout the entire fWSN capture. Taking all these factors into account, one could make the 

claim that the data packets were captured in a forensically sound manner because the data within 

reflects the true data transmitted and, while capturing these data packets, the oWSN was not 

influenced in any manner. 

We will now examine the data packets that originated from oMoteID-102 as shown in Figure 

9.3. This oWSN mote was in range of both fMoteID-201 and fMoteID-202. For demonstration 

purposes the “Line” column was shaded grey when more than one fWSN mote forensically 

captured the data packet. The scenario demonstrated will be the same for all the cases where two or 

more fWSN motes forensically captured a data packet. One can see from Figure 9.4 that both 

fMoteID-201 and fMoteID-202 were able to capture the data packets that originated from oMoteID-

102. Line 3 contains an example where fMoteID-201 was the fastest at sending the data packet 
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onwards to the fWSN base station. In all the other lines, fMoteID-202 was faster at capturing the 

data packet and sending it towards the fWSN base station. This phenomenon was briefly discussed 

while the reader was introduced to the demonstration figures in Chapter 9. This phenomenon occurs 

because the distance between motes affects the time it requires for the wireless signal to travel. 

Thus, a mote that is further away from the sender will take longer to receive the message than a 

mote that is closer to the sender. Due to this phenomenon, one can conclude that fMoteID-202 was 

indeed closer to oMoteID-102. This can be confirmed by examining Figure 9.2. The distance that 

fMoteID-202 and fMoteID-201 were from oMoteID-102 was, however, almost identical and that is 

why, when human movement between the motes occurred, there was one case where fMoteID-201 

was indeed faster at transmitting the data packet to the fWSN base station. The “Byte 6” column, 

which contains the sequence number from the oWSN, follows chronologically and thus confirms 

that all the data packets transmitted were captured. As mentioned earlier while examining oMoteID-

101’s traffic, it will depend on the oWSN implementation’s qualities and patterns to determine the 

authenticity and integrity of the data packets captured, as oMoteID-101 was on the outskirt of the 

network. In the case of oMoteID-102, though, we had the advantage that it was in range of more 

than one fWSN mote and thus one would be able to determine the authenticity and integrity by 

using Casey’s Certainty Scale. 

At this stage it can be concluded that the prototype was successful in the demonstration 

because of the following factors: 

• The fWSN was able to forensically capture the data packets from the oWSN, without 

manipulating the data packets of the oWSN.  

• The fWSN captured the data packets in such a manner that the authenticity and integrity of 

the data packets were not hampered. 

• The fWSN was deployed after the oWSN was already in operation and hence the digital 

forensic readiness layer can be added to an existing WSN at any time. 

• The fWSN had no previous knowledge of the communication protocols used by the oWSN. 

• The fWSN was able to capture data packets from oWSN motes in the central area of the 

sensor field as well as oWSN motes on the outskirts of the sensor field. 

• The packets were captured in such a manner that the fWSN did not interfere with the 

oWSN. 
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• The fWSN could be monitored on the fWSN management server in a real-time fashion and 

the logs were forensically saved in case they needed to be examined at a later stage. 

It is concluded at this stage that the prototype successfully added a digital forensic readiness layer 

to an existing WSN, as the forensic data is available at any given moment should a forensic 

investigation need to be launched. It would only oblige the investigator to acquire the logs of the 

fWSN immediately upon the start of the investigation, and then to examine them. 

Section 9.3 discusses demonstration II, which was used to show how flooding is dealt with by 

the prototype. 

9.3 Demonstration II: Flooding Attacks on WSNs 

This demonstration shows how the prototype fares in an environment where a flooding attack is 

launched against the oWSN. For this purpose, the environment is set up as can be seen in Figure 

9.5. 

 

Figure 9.5. Demonstration II: Wireless Sensor Network Layout for Flooding Attack 

The oWSN consists of one mote, oMoteID-102, and an oWSN base station. The fWSN consists of 

two fWSN motes – fMoteID-201 and fMoteID-202 – and an fWSN base station. The fWSN base 

station is directly connected to a management server. In Figure 9.5, oMoteID-101 is later replaced 
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with a mote designed to cause a flooding attack on a WSN. This flooding mote is in range of all 

three motes, namely oMoteID-101, fMoteID-201 and fMoteID-202. 

Three screenshots from the packet analysis tool illustrate this demonstration. The first screen 

capture (Figure 9.6) illustrates the start of the flooding attack. The second screen capture (Figure 

9.8) illustrates the effect the flooding has on the oWSN and fWSN. The third screen capture (Figure 

9.10) illustrates what happens in the case that this was not a flooding attack and how the fWSN 

would have reacted. 

 

Figure 9.6. Demonstration II: The start of the flooding attack. 

Figure 9.6 shows that the flooding attack started from line 15 onwards. The flooding attack was 

only detected from line 16, as one would never be able to determine from a single packet that it is a 

flooding attack. The “date” column is shaded in grey for those areas where the flooding attack has 

been detected. 

In the demonstration, we have both oMoteID-102 and oMoteID-101 present in the oWSN for 

the first minute. After this minute, oMoteID-101 was removed from the oWSN and replaced with a 

flooding mote. This was done because the researcher was limited to having only 4 motes in total 

and thus had to replace oMoteID-101’s software with flooding software and redeploy it as a 

flooding mote. The flooding mote had been assigned a MoteID of 50 in order to improve the 

readability of the figures and to easily distinguish them from oMoteID-101. This flooding mote was 

set to transmit random data packets as fast as possible. The flooding mote was able to send about 
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six to seven data packets per second. This caused the sensor field to become saturated with data 

packets and could lead to the loss of data packets and rapid draining of mote batteries. In Figure 9.6 

it can be seen that the packet analysis tool was able to detect almost instantly that there is flooding 

in the sensor field. Line 16 and onwards are shaded in grey to show that flooding was detected. 

The packet analysis tool uses a simple algorithm to detect this flooding. Flooding is detected 

by means of the flooding coefficient that is defined and proposed by the researcher in the equation 

below. The flooding coefficient is calculated as shown in Equation 9.1. 

Equation 9.1. Calculation of the flooding coefficient 

𝑓𝑘 =
𝑓𝑘−1 +  𝑦𝑘

2
 

𝑤ℎ𝑒𝑟𝑒 𝑦𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑑𝑎𝑡𝑎 𝑝𝑎𝑐𝑘𝑒𝑡𝑠 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑝𝑒𝑟 𝑡𝑖𝑚𝑒 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙, 

𝑓0 = 0 𝑎𝑛𝑑  𝑘 ∈ ℝ (𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟𝑠) 𝑎𝑛𝑑 𝑘 ≠ 0 

This equation allows the prototype to detect if there is flooding in the network by checking for 

flooding at every time interval. The time interval can be defined in terms of seconds and merely 

determines how often the network is tested for flooding. For purposes of the prototype 

implementation, a time interval of ten seconds was used as this had been found to be an efficient 

interval without overloading the management server. It is important to note that the flooding 

coefficient is determined with the previous flooding coefficient being taken into account. This 

allows us to calculate on average how many more packets there are in the oWSN. After the flooding 

coefficient has been determined, the prototype determines how many more packets on average were 

received during this time interval. This number, defined by the researcher as 𝑇𝑘 is the number of 

extra data packets received per time interval and is calculated using Equation 9.2. 

Equation 9.2. Calculation of the number of extra data packets per time interval 

𝑇𝑘 =  𝑓𝑘 −  𝑓𝑘−1 𝑤ℎ𝑒𝑟𝑒 𝑓0 = 0 𝑎𝑛𝑑 𝑘 ∈ ℝ 𝑎𝑛𝑑 𝑘 ≠ 0  

For the sake of this demonstration it was assumed that if 𝑇𝑘 is larger than a set threshold that is 

slightly more than the number of data packets that could be expected if there are several 

retransmissions in the oWSN due to network errors in the oWSN, then the traffic will be flagged as 

flooding. The threshold used in this demonstration was ten packets per time interval, but it is 

important to note that this value should be determined by taking various factors of the oWSN into 

account. Ten packets were used in this research, because when one uses only two oWSN motes, it 

would be unlikely for them to have enough transmission errors to generate ten or more data packets 

per time interval. 
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The algorithm enables us to immediately detect flooding. Other advantages of the algorithm 

will be shown later in this demonstration. When flooding is detected by the fWSN management 

server, the following message is displayed. 

 

Figure 9.7. Demonstration II: First flooding alert message 

Figure 9.7 shows the alert message that appears on the management server when flooding is 

detected. This can be altered in many ways, for example one could let the management server send 

an e-mail to the WSN administrator. In this demonstration a time frame of one minute per flooding 

check was used. The message shows that in the previous time frame an average of 29 packets were 

received. In the current time frame 136 packets were received and thus flooding may have possibly 

occurred. This is flagged as flooding, because 𝑇𝑘 would be equal to 107, which is more than our 

threshold of ten. The calculation of 𝑇𝑘 is shown in Equation 9.3. 

Equation 9.3. Calculation of the flooding in Figure 9.7 

𝑇𝑘 =  𝑓𝑘 −  𝑓𝑘−1  

𝑇𝑘 =  136 −  29 

𝑇𝑘 =  107 

Flooding detection on its own has little to almost no use for the oWSN if the oWSN administrator 

does not act on the flooding warning. The oWSN administrator is required to physically investigate 

the flooding attack in the field. This task is made easier by the proposed prototype, because it can 

be used to make a rough estimate of where the flooding mote is located. Only fWSN motes that are 

within range of the flooding mote will be affected by the flooding mote and thus it is possible to 

determine the location of the flooding mote. Ideally the fWSN motes would be hand deployed and 

have their locations mapped. Having deployed the motes by hand allows one to determine the 

location of the flooding mote to within a few meters, depending on the radio strength of the fWSN 

motes. Otherwise one should be able to gather the position of the mote from the oWSN. This can be 

achieved if the oWSN was issued with a global positioning system (if suitable for the particular 

environment) in order to have the location of the motes mapped. 
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As far as the researcher is aware, there is currently no viable solution to detect flooding in 

WSNs. Hence it can be assumed that flooding detection in itself is already a big step forward in 

solving the flooding issue within WSNs. Figure 9.8 has been included to show the devastating 

effects that a flooding attack has on a WSN. 

 

Figure 9.8. Demonstration II: Impact of flooding on WSNs 

In Figure 9.8 we can see that several data packets were lost during the flooding attack. This occurs 

when the flooding mote and any other mote attempt to transmit a data packet at exactly the same 

time and these motes collide. Line 244, line 408, line 517, line 683 and line 734 are just some 

examples of where data packets were lost due to the flooding attack, as the packets were captured 

by only one of the fWSN motes. This shows that the flooding attack caused a DoS attack that 

affected both the oWSN and the fWSN, but due to the nature of the fWSN (which has built-in 

redundancy) the data packets were still captured. The built-in redundancy is due to the fact that the 

fWSN has several motes within range of the flooding attack; thus, if one if the fWSN motes misses 

a flooding data packet, the other motes will still detect the flooding attack. In the “Byte 6” column 

(the sequence number field for the oWSN) we can see that the sequence numbers do not necessarily 

follow chronologically. This is also due to the flooding attack. 

The prototype is in itself not resilient against the flooding attack, as it also suffers some 

noticeable packet loss. The researcher does not foresee this to be an issue, as the flooding mote 

should be eliminated as quickly as possible by the oWSN administrator to ensure that very little 
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harm is caused by the flooding attack. This would also cause the flooding attack to be eliminated 

from the fWSN, once it has been eliminated from the oWSN. As far as the researcher is aware, 

there is also currently no communication protocol for WSNs that are resilient against flooding 

attacks. In the case where a resilient communication protocol becomes available, it can easily be 

added to the prototype implementation as we have used the most basic communication protocol for 

the prototype currently available. 

There is, however, the instance where the flooding coefficient can cause the threshold to be 

exceeded under normal operation of the oWSN. One such possible scenario would be if additional 

oWSN motes were added while the fWSN motes were in operation. In order to simulate this 

scenario, the flooding mote was left in the oWSN. In Equation 9.1 the previous flooding coefficient 

is used together with the new 𝑦𝑘 value that is determined after each elapsed time frame. This would 

cause the 𝑇𝑘 value to gradually decrease, as the difference between the number of data packets 

received in each time frame would gradually decrease. This phenomenon can be noted by 

examining Figure 9.9. 

 

Figure 9.9. Demonstration II: Continuous flooding alerts 

In Figure 9.9 one can see that the value of 𝑇𝑘, which is the difference between the number of data 

packets received in the current time frame and the number of data packets received in the previous 

time frame, will continuously decrease until it drops below the predefined threshold value. For the 

first box in Figure 9.9 one can determine (by using Equation 9.2) that the value of 𝑇𝑘 would be 55 

while in the second box the value of 𝑇𝑘 would be 28. This causes the fWSN management server to 

go into a state where the 𝑇𝑘 value will be below the threshold, as it will have learnt over time that it 

is supposed to see more packets per time frame. This event is illustrated in Figure 9.10. 
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Figure 9.10. Demonstration II: End of the flooding due to 𝑻𝒌 being below the threshold 

Figure 9.10 shows that all traffic after the 12:40 minute mark was not flagged as flooding anymore. 

Hence the fWSN management server was able to learn over time that the fWSN administrator 

deemed the extra traffic as normal and would not flag it as flooding anymore. It should not be 

argued that this should still be flagged as flooding, as one would have had ample prior warning of 

the flooding. However, if one chooses to ignore the flooding warnings until this event occurs, it will 

be the fault of the oWSN administrator and not a fault of the software. 

In this section the demonstration has shown that the proposed prototype was successfully able 

to detect flooding in a WSN environment. The prototype provided the oWSN administrator with 

information on when the flooding occurred and roughly in which area of the oWSN sensor field the 

flooding occurred, by showing which fWSN motes were able to detect the flooding mote. It was 

then up to the oWSN administrator to physically go and eliminate the flooding mote. 

The prototype also proved to be resilient against detecting false cases of flooding. The 

prototype can learn over time that an increase in the number of data packets captured is normal in 

the case that there is not really a flooding attack but simply an influx of data packets, which could 

be due to more oWSN nodes introduced in the field. The prototype will therefore not cause false-

positives after it has learnt such information. If the traffic returns to normal again after a flooding 

mote was eliminated, the number of data packets per time frame would decrease accordingly and 

the prototype would again adjust the flooding detection accordingly. 
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The following section is devoted to showing how the prototype can be used to verify sensory 

data received by the oWSN. The demonstration also shows how the integrity and authenticity of the 

data packets captured can be determined by matching the sensory data with the sensory data from 

the oWSN. 

9.4 Demonstration III: Sensory Data Verification 

This demonstration was done to show that the data packets captured by the prototype retain their 

authenticity and integrity. The environment was set up as shown in Figure 9.11. 

 

Figure 9.11. Demonstration III: Wireless Sensor Network Layout for Sensory Data Verification 

The oWSN consisted of a single mote, namely oMoteID-101, and an oWSN base station. The 

fWSN consisted of two motes, fMoteID-201 and fMoteID-202, as well as an fWSN base station 

and an fWSN management server that was connected directly to the fWSN base station. At all times 

throughout the demonstration oMoteID-101 was within range of both fMoteID-201 and fMoteID-

202. At specific intervals throughout the demonstration the physical location of oMoteID-101 was 

altered to achieve specific light and temperature conditions. The location of oMoteID-101 was 

altered to show that the fWSN revealed the difference in sensory data that can be seen from the data 

packets having originated from the oWSN. 
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Figure 9.12 provides a screen capture of the packet analysis tool. The screen capture shows a 

five-minute time frame of all the data packets in the oWSN. 

 

Figure 9.12. Demonstration III: Packet analysis tool screen capture to show the change in light and 

temperature throughout the oWSN 

The screen capture in Figure 9.12 shows a five-minute time frame of the demonstration. At 12:51 

when the oWSN was switched on, oMoteID-101 was positioned in an environment with average 

lighting and at room temperature (about 23°C). At this time the fWSN was also switched on and 

started capturing data packets from oMoteID-101. At time stamp 12:52, the oMoteID-101 was 

moved into an environment that had direct sunlight. This environment can be seen in Figure 9.13. 
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Figure 9.13. Demonstration III: oMoteID-101 in a direct sunlight environment 

oMoteID-101 was left in direct sunlight for two minutes, after which it was placed into a 

refrigerator shortly after 12:55, where there was less light and lower temperatures occurred. This 

environment can be seen in Figure 9.14. 

 

Figure 9.14. Demonstration III: oMoteID-101 placed in a refrigerator 
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oMoteID-101 was left in the refrigerated environment until 12:58, at which time the demonstration 

was terminated. The screen capture in Figure 9.12 only depicts the time frame 12:52 until 12:58 and 

thus the further discussion focuses only on this time frame. 

In Figure 9.12 the “Light Value” column depicts the lighting conditions that the sensor 

measured. These values range from 0 up to 24. A lower value depicts little to no direct light, 

whereas a higher value depicts a high concentration of direct light. The “Temperature Value” 

column depicts the temperature reading of the temperature sensor that is present on the iMote2 

sensor board. Throughout Figure 9.12 one can see that the temperature and light values in the log 

show different trends during different time frames. These different trends will be discussed next, 

while keeping in mind the timeline when the location of oMoteID-101 was altered. 

At 11:51 oMoteID-101 and the fWSN were switched on. The readings for these times are not 

visible in Figure 9.12 and thus the discussion will proceed from time stamp 11:52. At 11:52 the 

oMoteID-101 was moved into direct sunlight, which caused the temperature reading to increase as 

the oMoteID-101 was heating up. As can be seen in the screen capture in Figure 9.12, the 

temperature gradually increased on every data packet transmission from oMoteID-101. The light 

value stayed at a constant 24 as the mote was exposed to direct sunlight throughout the entire time. 

At 12:55:05 oMoteID-101 was moved into a refrigerated environment and the refrigerator door was 

closed. The ambient temperature of the refrigerator was about 14°C and while the refrigerator door 

was closed, little or no light could enter the refrigerator. This caused the reading on the sensors on 

oMoteID-101 to decrease. The light sensor measured an immediate change in lighting conditions 

and altered to either a 0 or 1 from line 22 onwards. The temperature sensor started to gradually cool 

down while oMoteID-101 was kept in the refrigerator. This caused the temperature reading to 

gradually decrease. As previously mentioned, the demonstration was terminated at 12:58, as it 

merely intended to show that the fWSN was able to record data packets from the oWSN while 

retaining integrity and authenticity (and not to demonstrate the ability of WSNs to measure light 

and temperature). 

Throughout this demonstration one could see that the data packets captured by the fWSN 

reflected data that was true to the environment in which the oWSN resided. A further validation of 

the data packets can be done by comparing the data logged by the fWSN to the data logged on the 

oWSN base station. This is not illustrated in this dissertation as it would be a simple one-to-one 

mapping of the data. A decision was made to rather illustrate this in a more practical way. The 

researcher decided to make use of the temperature sensor and show that when the oWSN mote was 

put in a place where the temperature would be altered, then this change would be evident from the 
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fWSN data. The usage of temperature sensor data, as shown in Figure 9.12, allows one to verify the 

fWSN data by examining the fact that the fWSN also shows the exact same fluctuation in 

temperature as was seen in the oWSN. 

The notion that the fWSN is able to capture all of the data packets travelling through the 

oWSN has many advantages. Since it has now been proved by means of demonstration that data 

packets arriving at the fWSN management server reflect the true data packets that were transmitted 

in the oWSN, we can use this information to verify data received by the oWSN base station. Also, 

if any harm or data loss occurs at the oWSN base station, the fWSN log can be used to fill in the 

missing data of the oWSN. Again, this is not invasive of the oWSN and simply offers a feature that 

could be utilised by the oWSN administrator if data has gone missing on the oWSN management 

server itself. The fWSN data log can also be used to perform a simulation of the events that 

occurred in the oWSN by attempting to replay the data packets through a simulated WSN to 

determine the network topology or network events that occurred to cause a certain incident. It 

should however be noted that this might be a very expensive exercise. The notion of reusing the 

fWSN data log is discussed in more detail later in this dissertation. 

A discussion of the fourth and final demonstration follows next. It shows how the prototype is 

able to detect any form of communication that occurs within its frequency range. 

9.5 Demonstration IV: Capturing of TelosB data packets 

Demonstration IV shows how the prototype is able to listen for data packets in a promiscuous 

mode. For this demonstration, the environment is set up as illustrated in Figure 9.15. 
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Figure 9.15. Demonstration IV: Capturing TelosB Data Packets 

In the demonstration the oWSN consists of a single mote, namely oMoteID-102, and an oWSN 

base station. Yet again the demonstration will be using the full fWSN consisting of two motes, an 

fWSN base station and the fWSN management server. The TelosB mote, which was introduced in 

Section 7.3, will also be used as part of this demonstration. As mentioned earlier, the TelosB mote 

(see Figure 9.16) had predefined software deployed onto it and the researcher had no knowledge as 

to what the use of this software was.  
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Figure 9.16. Demonstration IV: Crossbow TelosB mote with predefined software 

After switching on the TelosB mote, it was determined that if you press the user button on the mote 

it will transmit a data packet. This data packet was transmitted on an unknown frequency. All that 

the researcher knew about the TelosB mote was that it is only capable of communicating within the 

capable frequency ranges that the iMote2s can handle (i.e. 2.4GHz to 2.4835GHz) (Crossbow 

Technology Inc, 2007; Crossbow Technology Inc, 2005). It was for this very reason that the 

researcher decided to execute this demonstration with a TelosB mote of which he had no previous 

knowledge in terms of the software deployed on it and what the purpose of the mote was. He knew 

that there was some kind of operational software on the mote, but was also unaware of what the 

data transmitted by the TelosB mote resembles. For this reason, the columns in Figure 9.17 were 

kept with their original labels, namely from “Byte 1” to “Byte 64”. 
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Figure 9.17. Demonstration IV: TelosB communication captured by the fWSN 

In Figure 9.17 it is important to note that the bottom half of the figure (from where the “Byte 3” 

column is equal to 102) represents data from oMoteID-102. This is because the oMoteID-102 was 

also present in the field during experimentation with the TelosB mote. The “Byte 3” column may 

thus be assumed to represent the “Originating MoteID” in Figure 9.17. 

The top half of the figure shows the data captured from the TelosB mote. The following lines 

represent the data packets from the TelosB mote: Line 3, 5, 7, 11, 13, 16, 18, 22 and 23. The fWSN 

was able to forensically capture data packets from the TelosB mote without having any knowledge 

of the communication protocol used by the TelosB mote. The fWSN simply relied on the notion 

that the TelosB can only communicate in the same frequency range on which the fWSN is able to 

communicate. This proves that the proposed prototype is able to capture data packets from various 

types of WSN equipment, as long as the frequency range of these devices is similar to the WSN 

equipment on which the prototype is implemented. 

This demonstration also indicates that different types of WSN equipment can be used in the 

oWSN and the prototype will still be able to forensically capture data packets from the oWSN. This 

confirms that if the prototype is deployed on WSN equipment already existing in your network, that 

the prototype will be able to function in your implementation of the network. 

It is not possible for the researcher to fully explain the data packets captured from the TelosB 

mote. This is because he had no previous knowledge of the use of the TelosB mote. In order to fully 

understand the data captured, one would have to know the function of the TelosB mote. This will be 

the case in any environment where the fWSN is deployed. It can, however, be safely assumed that if 
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one deploys the fWSN into an oWSN you would already be familiar with the basic function of the 

oWSN. The data packets captured on the fWSN can also be replayed through a simulated WSN in 

order to simulate what the use of the oWSN was. 

The following section concludes this chapter and provides a brief overview of the prototype. 

9.6 Conclusion 

This chapter fully demonstrated the prototype and serves as proof that the prototype is viable in 

various real-life WSN implementations. This is clear from examining all the various demonstrated 

examples. The first demonstration showed evidence of how the prototype was able to function in 

most real-life WSN implementations. The second demonstration provides evidence that the 

prototype was able to successfully detect flooding attacks in a WSN environment. The third 

demonstration showed how the data packets captured from the fWSN retained their authenticity and 

integrity and how these data packets can be used for further analysis of the oWSN. The final 

demonstration showed that the fWSN was able to forensically capture data packets from various 

types of WSN devices as long as these devices communicated within the same frequency range as 

the fWSN. 

Part V concludes the dissertation by examining how this prototype can be used to improve 

current WSN implementations.  
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Chapter 10 Discussions on Digital Forensic Readiness and Flooding Detection 

10.1 Introduction 

This chapter highlights the three main contributions that this study has made. It also discusses why 

these items should be considered contributions to the field of WSNs. For this reason, this chapter is 

divided into three components that focus on the three contributions, namely the WSN digital 

forensic readiness requirements, the WSN digital forensic readiness model and the WSN digital 

forensic readiness prototype. 

10.2 WSN digital forensic readiness requirements 

This dissertation provided a list of WSN digital forensic readiness requirements in Chapter 5. It was 

important to start off by proposing this list, as the only publication to define a list of requirements in 

the literature on WSNs is the one by Mouton and Venter (2011). Their publication contains the 

exact same list as is proposed in this dissertation. 

Digital forensic readiness in itself is still a relatively new field and has only been around since 

the start of the 21st century. It is most likely because of this and the fact that WSNs is also a fairly 

new concept that these two fields have yet to be linked together. The researcher consequently 

decided that it would be appropriate to define a list of WSN digital forensic readiness requirements. 

The list was created by taking into account various digital forensic readiness requirements 

from other domains. This dissertation simply made these digital forensic readiness requirements 

more specific to WSNs. It has shown WSNs to be a fairly unique field that has some very specific 

requirements, which is not the case with ordinary IEEE 802.11 wireless networks. 

Having now formally proposed this list in Chapter 5, it will be easier for other researchers to 

attempt to implement digital forensic readiness on WSN devices. All of the currently known special 

requirements that should be taken into account while working with WSN devices have also been 

included in this list. This list can therefore be used as a checklist of requirements to adhere to when 

attempting to propose any specific digital forensic readiness model into a WSN domain. 

By providing a WSN digital forensic readiness requirements list, this study has undoubtedly 

made an important contribution to the WSN domain. The requirements list was also put to the test 

as the model proposed in this dissertation was based on it. 

The following section examines the WSN digital forensic readiness model proposed in this 

dissertation. 
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10.3 WSN Digital forensic readiness model 

The WSN digital forensic readiness model that was proposed in Chapter 6 adheres to all the WSN 

digital forensic readiness requirements proposed in Chapter 5. 

The model was designed in such a way that it can be implemented on an existing WSN 

without any modification to this WSN. This decision was made so that it would be easier for people 

to adopt this model as it would have no negative influence on their existing WSN. People often tend 

to prefer an “out-of-the-box” solution to something they would have to go and additionally 

implement on the equipment along with their other software. 

This study has shown that the WSN digital forensic readiness requirements can be used as a 

way to define a WSN digital forensic readiness model. After the model was defined, we used the 

WSN digital forensic readiness requirements in order to evaluate the WSN digital forensic 

readiness model. By evaluating the WSN digital forensic readiness model in this way, the 

researcher showed that the WSN digital forensic readiness requirements were of great use in the 

design of a WSN digital forensic readiness model. It also provided an easy way to determine if it 

was at all viable to implement the WSN digital forensic readiness model in a WSN domain. 

The model was also from the start intended to be both a digital forensic readiness solution and 

a means of detecting flooding in a WSN. These notions are discussed in the following section 

which deals with the WSN digital forensic readiness prototype. 

10.4 WSN digital forensic readiness prototype 

The WSN digital forensic readiness prototype, which was implemented on the iMote2 devices 

according to the specifications set out by the WSN digital forensic readiness model, had two main 

benefits to WSN devices. These two benefits are the ability to provide digital forensic readiness to 

WSN devices and the ability to detect flooding in a WSN. These two benefits are discussed 

separately in the two subsections below. 

10.4.1 Digital forensic readiness 

Providing digital forensic readiness to WSN devices was the main goal of this study, and this 

dissertation claims that the prototype was successfully able to do this. Throughout the 

demonstrations several factors were considered to test the feasibility of the prototype in real-life 

WSN applications. 

The first demonstration focused on testing the prototype in an environment that is most likely 

to be found in an existing WSN environment. The prototype considered what would happen if there 
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were oWSN motes in the centre and also on the outskirts of the sensor field. The demonstration 

showed that the authenticity and integrity of the data packets were retained throughout the entire 

capturing of data packets by the fWSN. The fWSN could also be deployed after the oWSN had 

been switched on. This was demonstrated by only switching the fWSN on after the oWSN had been 

in operation for a while. The oWSN was furthermore tested to ensure that the fWSN did not cause 

any extra network overhead to the oWSN. This was accomplished by allowing the fWSN to 

communicate only on frequencies that were not used by the oWSN. Throughout this demonstration 

the prototype was able to successfully and forensically capture data packets from the oWSN. In 

order to prove to the reader that the data being captured was indeed forensically sound, the third 

demonstration was conducted. (The second demonstration will only be discussed in the next 

section, as it deals with flooding specifically and the entire section 10.4.2 is dedicated to flooding.) 

The third demonstration involved a graphic illustration of where the oWSN mote was moved 

to a location where it received direct sunlight and then to a location where it received little or no 

direct light. This caused the oWSN mote to have different sensor readings, depending on its specific 

location. The demonstration showed that the fWSN was successfully able to capture the data 

packets reflecting these changes. This study also claims that the data packets which we now know 

were captured in a forensically sound fashion can be used to simulate the oWSN in a later 

investigation. The only other feature of the prototype in terms of digital forensic readiness was its 

ability to capture data packets from other WSN devices. This was demonstrated next. 

The fourth demonstration introduced a TelosB mote into the sensor field and showed that the 

fWSN was able to capture data packets from the TelosB while also capturing data packets from the 

oWSN. This finding confirms the researcher’s claim that any communication on the same 

frequency range as that on which the fWSN devices can communicate, will be forensically captured 

by the fWSN. 

After considering all these demonstrations and the attributes of the fWSN illustrated, it is 

asserted that the prototype successfully illustrated the feasibility of the WSN forensic readiness 

model. In turn, it also illustrated the feasibility of the WSN forensic readiness requirements as set 

out in the dissertation. 

The next section focuses on the other aspect of the prototype, namely its requirement to do 

flooding detection in a WSN domain. 
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10.4.2 Flooding detection 

Flooding remains one of the important issues to consider within WSNs. At the time of writing this 

dissertation, no solution has yet been found to eliminate flooding attacks in a WSN domain. Since 

flooding attacks constitute such an important challenge, this study also focused on how the 

prototype can be used to detect flooding in the WSN domain. It is important to remember that the 

main goal of the prototype is to add a digital forensic readiness layer to an existing WSN and not at 

all to solve the flooding issue in WSNs. The latter was an opportune spin-off from the main goal of 

the study and the researcher considered it important enough to be included in the findings. 

The second demonstration in Section 9.3 was aimed at illustrating how flooding attacks can 

be detected in WSNs. A flooding mote was introduced into the existing sensor field where the 

oWSN and fWSN were already residing. The fWSN management server was successfully able to 

detect the flooding attack. This server detected the flooding attack based on the value of the 

flooding coefficient proposed earlier. In our demonstration, the flooding attack was detected within 

the first minute that it occurred. It was nonetheless still up to the oWSN administrator to react on 

the flooding attack. 

The other side of the case was also considered, namely that the increased number of data 

packets in the sensor field was a normal phenomenon. If the increased number of data packets was 

legitimate, the fWSN management server would still flag it as flooding for the first few timeframes. 

However, once a few of these timeframes have elapsed, the fWSN management server would have 

learnt that the increased number of data packets in the WSN is considered normal by the oWSN 

administrator and thus it will stop flagging the data packets as flooding packets. 

In a case where flooding is incorrectly classified, this does not hamper the digital forensic 

readiness viability of the prototype, as only a message is provided to the oWSN administrator. The 

oWSN then has the choice to react to it or to ignore it. Regardless of the choice by the oWSN 

administrator, the fWSN will continue to capture data packets from both the flooding mote and the 

oWSN. This allows the functionality of flooding detection to be a feature of the prototype and not 

something the prototype specifically relies on. As a result, the flooding detection feature could 

simply be removed if it was not required in the WSN domain. 

Section 10.5 concludes this chapter by showing how the three contributions are helpful to the 

WSN domain. 
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10.5 Conclusion 

This chapter was devoted to discussing the three contributions made in this research. The 

contributions built on and thus reinforced one another, as each of them showed that they could be 

viable contributions to the WSN domain. 

The WSN digital forensic readiness requirements were required to verify the WSN digital 

forensic readiness model. These requirements were also created because, at the time of writing this 

dissertation, no list of WSN digital forensic readiness requirements existed yet. A WSN digital 

forensic readiness model was developed to show that these WSN digital forensic readiness 

requirements were helpful. 

The WSN digital forensic readiness model took all the WSN digital forensic readiness 

requirements into account. After the model had been proposed, it was yet again measured against 

the WSN digital forensic readiness requirements. This was done in order to show both the viability 

of the model and the requirements that were proposed. 

In an attempt to fully illustrate the viability of the model, it was developed into a WSN digital 

forensic readiness prototype. The prototype was put up in four demonstration environments to show 

its viability in different environments. In each demonstration the prototype indeed proved to be 

successful in capturing the oWSN data packets in a forensically sound manner. 

In the final chapter all three of these contributions are combined and their influence on each 

other is discussed. 
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Chapter 11 Conclusion 

This study focused on how to add a digital forensic readiness layer to an existing WSN 

environment. In order to accomplish this, several factors had to be taken into account.  

Since no set of WSN digital forensic readiness requirements had previously been defined in 

WSN literature, the researcher started to define a list of relevant requirements. The requirements 

were formulated by examining digital forensic readiness requirements from other domains and 

combining them with WSN-specific issues. The WSN-specific issues included items that were 

found in WSN devices only. These issues mostly concerned the way WSN devices communicate 

with each other, and the power and processing constraints of WSN device. 

Once the WSN digital forensic readiness requirements had been identified, the dissertation 

proposed a WSN digital forensic readiness model. This model was implemented on a separate WSN 

that would afterwards be deployed into a pre-existing WSN. This feature in itself provided many 

beneficial attributes of the model. The model was subsequently measured against the WSN digital 

forensic readiness requirements in order to confirm its feasibility. The model adhered to all the 

WSN digital forensic readiness requirements and was subsequently developed into a WSN digital 

forensic readiness prototype. 

All of the research above was conducted to answer the main research question: Is it possible 

to implement a digital forensic readiness system for an existing wireless sensor network without 

relying on the existing wireless sensor network or any type of specific configuration that the 

existing wireless sensor has? This question was answered by providing a prototype that was able to 

provide digital forensic readiness to an existing WSN. An unexpected spinoff of the research was 

the fact that the prototype also proved to have the ability to perform flooding detection – this was 

later found to be a very challenging part of WSNs, even though this had not actually been 

mentioned in the original problem statement. 

Thus, the value of the prototype was twofold – it could provide a digital forensic readiness 

layer over an existing WSN and perform flooding detection in an existing WSN. The goal of digital 

forensic readiness was merely to facilitate the digital forensic investigation process and it did not 

form part of the actual investigation process. Firstly, the viability of a digital forensic readiness 

solution was tested. It was found that the prototype was able to capture data packets from an oWSN 

in a forensically sound manner without compromising the authenticity and integrity of the data 

packets. The data packets were then all stored on the fWSN management server and could be used 

afterwards to facilitate the digital forensic investigation process. The data captured could even be 
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used in a simulation environment to illustrate how the oWSN operated. Secondly, the feasibility of 

flooding detection by the prototype was tested. This was done by deploying a flooding mote into 

the sensor field while the fWSN was in operation. The fWSN management server was at all times 

successfully able to classify the attacks as flooding attacks. Nevertheless, the prototype still relied 

on the oWSN administrator to eliminate the flooding. Because the prototype was able to provide the 

oWSN administrator with the general location of the flooding, it was expected to be not too difficult 

to physically eliminate the flooding mote. 

Having found that the prototype provides viable results in terms of adding a digital forensic 

readiness layer to an existing WSN, we could draw a number of conclusions:  

• The WSN digital forensic readiness requirements should be taken into account when 

attempting to examine digital forensic readiness in a WSN environment. This is because 

both the model and prototype were designed by taking into account the WSN digital 

forensic readiness requirements. 

• The proposed WSN digital forensic readiness model is a viable WSN digital forensic 

readiness model, because it adheres to the WSN digital forensic requirements. The 

feasibility of the model was shown by its successful conversion into a WSN digital forensic 

readiness prototype. 

• Finally, the WSN digital forensic readiness prototype that was implemented, provided 

feasible results. From the demonstrations we could conclude that the WSN digital forensic 

readiness model implemented in the prototype was successful in providing a digital forensic 

readiness layer to an existing WSN. 

When all these factors are taken into consideration, it is clear that a feasible way is hereby proposed 

not only to provide digital forensic readiness to WSNs, but also to detect flooding attacks in WSNs. 

Although this in itself is already of benefit to the WSN domain, there is still room for improvement. 

Future research can be conducted by proposing a better communication protocol for WSNs. If 

a better communication protocol is found, it can be combined with the WSN digital forensic 

readiness model. Ideally, this improved communication protocol should in itself be resilient and 

resistant against flooding attacks. This would allow the WSN digital forensic readiness model to be 

viable in an environment prone to constant flooding attacks. Currently, if flooding attacks occur at a 

constant rate, it would be difficult for the oWSN to go out into the field every time to eliminate the 

flooding mote. 
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One could also look into improving the flooding detection algorithm. This algorithm could 

most likely be enriched by implementing an artificial intelligence technique that is currently still 

unknown. 

From this research, several papers have been published for presentation at conferences. The 

papers which were published include Mouton and Venter (2009, 2011a, 2011b). These papers are 

included in Appendix B. Also included in Appendix B is Bezuidenhout, Mouton and Venter (2010), 

a paper based on social engineering and also published during this research.  It is, however, not 

directly related to this research. 
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Appendix A: Source Code 

A.1 fWSN Field Mote 

using System; 
using Microsoft.SPOT; 
using Crossbow.platform.imote2; 
using Crossbow.lib.utils; 
using Crossbow.lib.utils.tos; 
using Crossbow.radio.cc2420; 
 
namespace Crossbow.app 
{ 
    public class ForensicMote 
    { 
        public static void Main() 
        { 
            int BLACK = 0; 
            int RED = 1; 
            int BLUE = 2; 
            int PURPLE = 3; 
            int GREEN = 4; 
            int YELLOW = 5; 
            int TEAL = 6; 
            int WHITE = 7; 
            Leds _leds = new Leds(); 
 
            const ushort TOS_UART_ADDR = 0x7E; 
            const ushort _rfChannel = (ushort)RadioChannel.Ch11; // channel 26 
            const ushort _rfPower = (ushort)RadioPower.M10DBM;  // -10dbm 
            const int _default_nodeid = 0x01; 
            const int _amType = 50; 
 
            int _nodeid = UniqueID.SerialID; 
             
            _nodeid = 0xCAFF;  // set to default if there is not UID in the flash 
             
            SerialDump.print(_nodeid + " Node ID"); 
            byte moteID = 202; 
 
            SerialDump.print("ForensicMote App started"); //Print out the application identifier 
 
             
            TOSRadio _radio = new TOSRadio(); 
            _radio.SetRadioOption(RadioOption.Frequency, _rfChannel); 
            _radio.SetRadioOption(RadioOption.RFPower, _rfPower); 
            _radio.SetRadioOption(RadioOption.PANAddress, (ushort)_nodeid); 
            _radio.SetRadioOption(RadioOption.LocalAddress, (ushort)_nodeid); 
 
            byte[] convertedBuf; 
            TosMsg recvMsg; 
 
            _leds.setRGB(YELLOW); 
 
            while (true) 
            { 
                if (null != (recvMsg = _radio.PromiscuousListening(20))) 
                { 
                    _leds.setRGB(YELLOW); 
 
                    // PC side only recognizes mica2 TOS message format 
 
                    recvMsg.addr = TOS_UART_ADDR;        // put in the UART address 
                    convertedBuf = recvMsg.ConvertToMica2Msg(); 
                    // SerialDump.print(convertedBuf);  
                    if (convertedBuf[5] != 100 && convertedBuf[6] != 100 && convertedBuf[7] != 100) 
                    { 
                        byte[] packet = new byte[64]; 
 
                        packet[0] = 100; 
                        packet[1] = 100; 
                        packet[2] = 100; 
                        packet[3] = moteID; 
                        for (int i = 4; i < 64 && i < convertedBuf.Length; i++) 
                        { 
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                            packet[i] = convertedBuf[i - 4]; 
                        } 
                        SerialDump.print(packet);      //send it to the PC 
 
 
                        SerialDump.print("Packet being sent to Forensic Base"); 
                        SerialDump.print(BufferToString(packet)); 
                        SerialDump.print(BufferToString(convertedBuf)); 
                        int randomNumber = Microsoft.SPOT.Math.Random(275) + 250; 
                        System.Threading.Thread.Sleep(randomNumber); 
                        if (_radio != null) 
                        { 
 
                            // send it to the radio 
                             
                            _radio.SetRadioOption(RadioOption.LocalAddress, (ushort)_nodeid); 
                            _radio.SetRadioOption(RadioOption.Frequency, (ushort)RadioChannel.Ch12); 
                            _radio.amType = _amType; 
 
                            _radio.Send((ushort)0xFFFF, (ushort)0xFFFF, packet); 
                            _radio.SetRadioOption(RadioOption.Frequency, (ushort)RadioChannel.Ch11); 
 
                            SerialDump.print("Transmitted Packet to Forensice Base"); 
                        } 
                        _radio.SetRadioOption(RadioOption.Frequency, (ushort)RadioChannel.Ch11); 
                        _leds.setRGB(YELLOW); 
                    } 
                    else 
                    { 
                        SerialDump.print("Message from nearby Forensic Motes"); 
                    } 
                } 
            } 
        } 
 
        public static byte[] StrToByteArray(string str) 
        { 
            return System.Text.UTF8Encoding.UTF8.GetBytes(str); 
 
        } 
 
        public static string ByteArrayToStr(byte[] dBytes) 
        { 
            char[] temp = System.Text.UTF8Encoding.UTF8.GetChars(dBytes); 
            return new string(temp); 
        } 
 
        private static string ByteToHex(byte b) 
        { 
            const string hex = "0123456789ABCDEF"; 
            int lowNibble = b & 0x0F; 
            int highNibble = (b & 0xF0) >> 4; 
            string s = new string(new char[] { hex[highNibble], hex[lowNibble] }); 
            return s; 
        } 
 
        private static string BufferToString(byte[] buffer) 
        { 
            if (buffer == null) 
                throw new ArgumentNullException("buffer"); 
            string s = string.Empty; 
            for (int i = 0; i < buffer.Length; i++) 
            { 
                s += ByteToHex(buffer[i]) + " "; 
                if (i > 0 && i % 16 == 0) 
                    s += "\n"; 
            } 
            return s; 
        } 
    } 
} 

 

  

 
 
 



 

 

 

Page 127  

A.2 fWSN Base Station 

using System; 
using Microsoft.SPOT; 
using Crossbow.platform.imote2; 
using Crossbow.lib.utils; 
using Crossbow.lib.utils.tos; 
using Crossbow.radio.cc2420; 
 
namespace Crossbow.app 
{ 
    public class ForensicBase 
    { 
        public static void Main() 
        { 
            const ushort TOS_UART_ADDR = 0x7E; 
            const ushort _rfChannel = (ushort)RadioChannel.Ch11; // channel 11 
            const ushort _rfPower = (ushort)RadioPower.M1DBM;  // -10dbm 
 
            SerialDump.print("ForensicBase App started"); //Print out the application identifier 
 
            Leds _leds = new Leds(); 
 
            TOSRadio _radio = new TOSRadio(_rfChannel, _rfPower, 0xFF01, 0xFF01); 
            TosMsg recvMsg; 
            byte[] convertedBuf; 
  
            _leds.setRGB(0x00FFFF); 
             
            while (true) 
            { 
                if (null != (recvMsg = _radio.PromiscuousListening(10))) 
                { 
                     
                    // PC side only recognizes mica2 TOS message format 
 
                    recvMsg.addr = TOS_UART_ADDR;        // put in the UART address 
                    convertedBuf = recvMsg.ConvertToMica2Msg(); 
                    if (convertedBuf[5] == 100 && convertedBuf[6] == 100 && convertedBuf[7] == 100) 
                    { 
 
                        _leds.setRGB(0xFFFF00); 
 
                        SerialDump.print(convertedBuf);      //send it to the PC 
 
                        _leds.setRGB(0x00FFFF); 
                    } 
                } 
            } 
        } 
 
        public static byte[] StrToByteArray(string str) 
        { 
            return System.Text.UTF8Encoding.UTF8.GetBytes(str); 
 
        } 
 
        public static string ByteArrayToStr(byte[] dBytes) 
        { 
            char[] temp = System.Text.UTF8Encoding.UTF8.GetChars(dBytes); 
            return new string(temp); 
        } 
 
        private static string ByteToHex(byte b) 
        { 
            const string hex = "0123456789ABCDEF"; 
            int lowNibble = b & 0x0F; 
            int highNibble = (b & 0xF0) >> 4; 
            string s = new string(new char[] { hex[highNibble], hex[lowNibble] }); 
            return s; 
        } 
 
        private static string BufferToString(byte[] buffer) 
        { 
            if (buffer == null) 
                throw new ArgumentNullException("buffer"); 
            string s = string.Empty; 
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            for (int i = 0; i < buffer.Length; i++) 
            { 
                s += ByteToHex(buffer[i]) + " "; 
                if (i > 0 && i % 16 == 0) 
                    s += "\n"; 
            } 
            return s; 
        } 
    } 
} 
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A.3 Forensic Packet Logging Software 

using System; 
using System.IO; 
using System.Text; 
using System.Collections; 
using System.Reflection; 
using System.Threading; 
using System.Diagnostics; 
 
using _DBG = Microsoft.SPOT.Debugger; 
using _WP = Microsoft.SPOT.Debugger.WireProtocol; 
 
namespace Microsoft.SPOT.Tools 
{ 
    class SerialDump 
    { 
        _DBG.Engine m_eng; 
         
        bool m_fTimestamp = true; 
        bool m_fUsb = true; 
        bool m_fNewLine = true; 
        FileStream m_output; 
        int counter; 
        DateTime started; 
 
        //--// 
 
        SerialDump(string[] args) 
        { 
            _DBG.PortDefinition pd = null; 
            string port = null; 
            uint baudrate = 0; 
            counter = 1; 
 
            started = DateTime.Now; 
            m_fUsb = true; 
 
            if (m_fUsb) 
            { 
                _DBG.PortDefinition[] ports = _DBG.AsyncUsbStream.EnumeratePorts(); 
 
                if (port == null) 
                { 
                    if (ports.Length == 0) 
                    { 
                        System.Console.WriteLine("No Usb SPOT device is present"); 
 
                        throw new ApplicationException(); 
                    } 
                    else if (ports.Length == 1) 
                    { 
                        pd = ports[0]; 
                    } 
                    else 
                    { 
                        System.Console.WriteLine("More than one USB SPOT device is present"); 
                        System.Console.WriteLine("To dump data from a specific device, choose your 
   device from the list below and execute:"); 
                        System.Console.WriteLine("  serialdump -usb <device> "); 
                        System.Console.WriteLine(""); 
 
                        // 
                        // More than one usb device attached; dump list so user can choose 
                        // 
                        for (int i = 0; i < ports.Length; ++i) 
                        { 
                            System.Console.WriteLine("Device " + i + ": " + ports[i].DisplayName); 
                        } 
 
                        throw new ApplicationException(); 
                    } 
                } 
                else 
                { 
                    foreach (_DBG.PortDefinition pd2 in ports) 
                    { 
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                        if (port.Equals(pd2.DisplayName)) 
                        { 
                            pd = pd2; 
                            break; 
                        } 
                    } 
                } 
            } 
 
            if (pd == null) 
            { 
                if (port == null) port = "COM1"; 
                if (baudrate == 0) baudrate = 115200; 
 
                pd = _DBG.PortDefinition.CreateInstanceForSerial(port, port, baudrate); 
            } 
 
            m_eng = new _DBG.Engine(pd); 
        } 
 
        void Run() 
        { 
 
            m_eng.Silent = true; 
 
            m_eng.Start(); 
 
 
 
            m_eng.OnNoise += new _DBG.NoiseEventHandler(OnNoise); 
            m_eng.OnMessage += new _DBG.MessageEventHandler(OnMessage); 
 
            Console.WriteLine("####### PRESS RETURN TO EXIT #######"); 
            Console.ReadLine(); 
 
            m_eng.Stop(); 
            m_eng = null; 
        } 
 
        void OnNoise(byte[] buf, int offset, int count) 
        { 
            HandleOutput(buf, offset, count); 
        } 
 
        void OnMessage(_WP.IncomingMessage msg, string text) 
        { 
            byte[] buf = Encoding.ASCII.GetBytes(text); 
 
            HandleOutput(buf, 0, buf.Length); 
        } 
 
        void HandleOutput(byte[] buf, int offset, int count) 
        { 
             
             
            while (count-- > 0) 
            { 
                if (m_fTimestamp) 
                { 
                    if (m_fNewLine) 
                    { 
                         
                        DateTime now = DateTime.Now; 
                        if (now.Minute != started.Minute) 
                        { 
                            counter++; 
                             
                            m_output.Flush(); 
                            m_output.Close(); 
                            started = DateTime.Now; 
                             
                        } 
                        now = DateTime.Now; 
                        if (!File.Exists("C:\\wsnlog\\" + String.Format("[{0:dd-MM-yyyy}]",  
   DateTime.Now) + "_log_" + counter + ".txt")) 
                        {                           
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                            m_output = new FileStream("C:\\wsnlog\\" + String.Format("[{0:dd-MM- 
    yyyy}]", DateTime.Now) + "_log_" + counter + ".txt",  
    FileMode.Create); 
                        } 
 
                        HandleOutput(String.Format("[{0:dd/MM/yyyy HH:mm:ss:fff zzz}]  ", 
    DateTime.Now)); 
                    } 
                } 
 
                char c = (char)buf[offset++]; 
 
                HandleOutput(new String(c, 1)); 
 
                m_fNewLine = (c == '\n'); 
            } 
        } 
 
        void HandleOutput(string text) 
        { 
            Console.Write(text); 
 
            byte[] buf = Encoding.ASCII.GetBytes(text); 
 
            if (m_output != null) m_output.Write(buf, 0, buf.Length); 
        } 
 
        //--// 
 
        static void Main(string[] args) 
        { 
            try 
            { 
                SerialDump o = new SerialDump(args); 
 
                o.Run(); 
            } 
            catch (ApplicationException) 
            { 
            } 
            catch (Exception e) 
            { 
                Console.WriteLine("{0}", e.ToString()); 
            } 
        } 
    } 
} 
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A.4 Forensic Packet Analysis Software 

using System; 
using System.Collections.Generic; 
using System.ComponentModel; 
using System.Data; 
using System.Drawing; 
using System.Windows.Forms; 
 
namespace WindowsApplication1 
{ 
    public partial class Form1 : Form 
    { 
        protected DataGridView dataGridView1 = null; 
        DataTable tdt = new DataTable(); 
        int logCount; 
 
        Timer Clock; 
 
        int flooding = 0; 
        int lineNumber = 1; 
 
        public Form1() 
        { 
            InitializeComponent(); 
            
        } 
 
        DataColumn getNewColumn(string ColName, string ColType) 
        { 
            //This function simply creates a new column to be used in the DataTable 
            DataColumn dc = new DataColumn(); 
            dc.ColumnName = ColName; 
            dc.DataType = System.Type.GetType(ColType); 
            return dc; 
        } 
 
        void CreateNewRow(string [,] list, int count) 
        { 
            //Create a DataRow based on the DataTable 
             
            for(int i = 0; i < count; i++) 
            { 
                if (list[i, 63].CompareTo("del") != 0) 
                { 
                    DataRow ARow = tdt.NewRow(); 
                    ARow["Line"] = lineNumber++; 
                    ARow["Date"] = list[i, 0]; 
                    ARow["Forensic MoteID"] = list[i, 1]; 
                    for (int k = 1; k < 61; k++) 
                    { 
                        if (k == 3) 
                        { 
                            ARow["Originating MoteID"] = list[i, k + 1]; 
                        } 
                        else if (k == 8) 
                        { 
                            ARow["Light Value"] = list[i, k + 1]; 
                        } 
                        else if (k == 9) 
                        { 
                            ARow["Humidity Value"] = list[i, k + 1]; 
                        } 
                        else if (k == 10) 
                        { 
                            ARow["Temperature Value"] = list[i, k + 1]; 
                        } 
                        else 
                        { 
                            ARow["Byte " + k] = list[i, k + 1]; 
                        } 
                    } 
                    ARow["Seen By"] = list[i, 62]; 
 
 
                    //Now that we have all the values in the DataRow, we add the row to 
                    //the DataTable 
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                    tdt.Rows.Add(ARow); 
                } 
            } 
             
        } 
 
 
        private void Form1_Load(object sender, EventArgs e) 
        { 
            this.WindowState = FormWindowState.Maximized; 
 
            /* 
            Add Columns to the datatable 
            We're not using all these columns, but at first I thought they may 
            be useful, so I left them in and simply hide them lower down 
            */ 
            tdt.Columns.Add(getNewColumn("Line", "System.String")); 
            tdt.Columns.Add(getNewColumn("Date", "System.String")); 
            tdt.PrimaryKey = new DataColumn[] { tdt.Columns["ID"] }; 
            tdt.Columns.Add(getNewColumn("Seen By", "System.String")); 
            tdt.Columns.Add(getNewColumn("Forensic MoteID", "System.String")); 
            for (int i = 1; i < 61; i++) 
            { 
                if (i == 3) 
                { 
                    tdt.Columns.Add(getNewColumn("Originating MoteID", "System.String")); 
                } 
                else if (i == 8) 
                { 
                    tdt.Columns.Add(getNewColumn("Light Value", "System.String")); 
                } 
                else if (i == 9) 
                { 
                    tdt.Columns.Add(getNewColumn("Humidity Value", "System.String")); 
                } 
                else if (i == 10) 
                { 
                    tdt.Columns.Add(getNewColumn("Temperature Value", "System.String")); 
                } 
                else 
                { 
                    tdt.Columns.Add(getNewColumn("Byte " + i, "System.String")); 
                } 
            } 
 
             
                logCount = 1; 
 
                string line; 
                //Open a text file for reading 
                System.IO.StreamReader file = new System.IO.StreamReader(@"C:\\wsnlog\\" + 
   String.Format("[{0:dd-MM-yyyy}]", DateTime.Now) + "_log_" + logCount + ".txt"); 
          
                // Read the file and add it to the datagridview, if google related 
 
                string[] initial = new string[100000]; 
                int count = 0; 
 
 
                //MessageBox.Show("The calculations are complete", "My Application"); 
 
                while ((line = file.ReadLine()) != null) 
                { 
                    if (line.Contains("100 100 100")) 
                    { 
                        initial[count] = line; 
                        count++; 
                    } 
 
                } 
                
 
                string[,] list = new string[count, 64]; 
                for (int index = 0; index < count; index++) 
                { 
 
                    line = initial[index]; 
                    int ColStart = 0; 
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                    int ColEnd = 0; 
                    string ColValue = ""; 
                    //Get the date from the line parameter 
                    list[index, 0] = line.Substring(1, 23); 
 
                    ColStart = 34; 
                    for (int i = 0; i < 8; i++) 
                    { 
 
                        ColEnd = line.IndexOf(" ", ColStart); 
                        ColValue = line.Substring(ColStart, ColEnd - ColStart); 
 
 
                        ColStart = ColEnd + 1; 
                    } 
 
                    ColEnd = line.IndexOf(" ", ColStart); 
 
 
                    //Forensic MoteID 
                    list[index, 1] = line.Substring(ColStart, ColEnd - ColStart); 
                    list[index, 62] = list[index, 1]; 
                    ColStart = ColEnd + 1; 
 
                    //Move one character on and repeat the process for the remaining columns 
                    for (int i = 1; i < 61; i++) 
                    { 
                        ColEnd = line.IndexOf(" ", ColStart); 
                        ColValue = line.Substring(ColStart, ColEnd - ColStart); 
                        list[index, i + 1] = ColValue; 
                        ColStart = ColEnd + 1; 
                    } 
                    list[index, 63] = "a"; 
                } 
                /* Array INDEXES 
                 * 0 = Date 
                 * 1 = Which Forensic Mote Received it 
                 * 2 - 61 = bytes 
                 * 62 = also seen by 
                 */ 
 
                for (int i = 0; i < count; i++) 
                { 
                    if (list[i, 63].CompareTo("del") != 0) 
                    { 
                        for (int j = 0; j < count; j++) 
                        { 
                            if (i != j) 
                            { 
                                bool samePacket = true; 
                                for (int k = 2; k < 62; k++) 
                                { 
                                    if (list[i, k].CompareTo(list[j, k]) != 0 || list[i,  
     62].Contains(list[j, 1])) 
                                    { 
                                        samePacket = false; 
                                    } 
                                    if (!samePacket) 
                                    { 
                                        break; 
                                    } 
                                } 
                                if (samePacket) 
                                { 
                                    list[i, 62] = list[i, 62] + ", " + list[j, 1]; 
                                    list[j, 63] = "del"; 
                                } 
                            } 
                        } 
                    } 
                } 
 
                CreateNewRow(list, count); 
 
                // MessageBox.Show(count + " " + list.Length); 
 
 
                file.Close(); 
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                /* 
                Create the DataGridView programatically 
                */ 
                dataGridView1 = new DataGridView(); 
                this.Controls.Add(dataGridView1); 
                dataGridView1.ColumnCount = 1; 
                DataGridViewCellStyle style = dataGridView1.ColumnHeadersDefaultCellStyle; 
                style.BackColor = Color.BlueViolet; 
                style.ForeColor = Color.Black; 
                style.Font = new Font(dataGridView1.Font, FontStyle.Bold); 
                // dataGridView1.EditMode = DataGridViewEditMode.EditOnEnter; 
                dataGridView1.Name = "dataGridView1"; 
                dataGridView1.Location = new Point(10, 10); 
                dataGridView1.Size = new Size(this.Width - 20, this.Height - 200); 
                dataGridView1.AutoSizeRowsMode = DataGridViewAutoSizeRowsMode.AllCells; 
                dataGridView1.AutoSizeColumnsMode = DataGridViewAutoSizeColumnsMode.AllCells; 
                dataGridView1.ColumnHeadersBorderStyle = DataGridViewHeaderBorderStyle.Raised; 
                dataGridView1.ColumnHeadersHeight = 54; 
                dataGridView1.CellBorderStyle = DataGridViewCellBorderStyle.Single; 
                dataGridView1.GridColor = SystemColors.ActiveBorder; 
                dataGridView1.RowHeadersVisible = false; 
                dataGridView1.SelectionMode = DataGridViewSelectionMode.FullRowSelect; 
                dataGridView1.MultiSelect = false; 
                dataGridView1.BackgroundColor = Color.Honeydew; 
                dataGridView1.Dock = DockStyle.Fill; 
                dataGridView1.AutoSize = true; 
                 
 
                //Assign the DataTable which we created earlier to the DataGridView 
                dataGridView1.DataSource = tdt; 
 
                for (int i = 0; i < dataGridView1.RowCount - 1; i++) 
                { 
                    String CNumColour = dataGridView1.Rows[i].Cells["Seen By"].Value.ToString(); 
                    if (CNumColour.Contains(",")) 
                    { 
                        dataGridView1.Rows[i].Cells[1].Style.BackColor = Color.Aqua; 
                    } 
                } 
 
 
                //Hide some columns we're not interested in 
                for (int i = 0; i < 1; i++) 
                { 
                    dataGridView1.Columns[i].Visible = false; 
                } 
 
                dataGridView1.Columns[13].Visible = false; 
                //Resize columns for best fit 
                // dataGridView1.AutoSizeColumns 
                //(DataGridViewAutoSizeColumnCriteria.HeaderAndDisplayedRows); 
                 
             
            Clock = new Timer(); 
            Clock.Interval = 500; 
            Clock.Start(); 
            Clock.Tick += new EventHandler(Timer_Tick); 
            flooding = count; 
 
        } 
 
        public void Timer_Tick(object sender, EventArgs eArgs) 
        { 
            if (sender == Clock) 
            { 
                logCount++; 
                if (logCount < 8) 
                { 
                    string line; 
                    //Open a text file for reading 
                    System.IO.StreamReader file = new System.IO.StreamReader(@"C:\\wsnlog\\" + 
   String.Format("[{0:dd-MM-yyyy}]", DateTime.Now) + "_log_" + logCount + 
   ".txt"); 
                    
                    // System.IO.StreamReader aheadFile = new System.IO.StreamReader(@"output.txt"); 
                    // string nextLine = aheadFile.ReadLine(); 
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                    // Read the file and add it to the datagridview, if google related 
 
                    string[] initial = new string[100000]; 
                    int count = 0; 
 
                    while ((line = file.ReadLine()) != null) 
                    { 
                        if (line.Contains("100 100 100")) 
                        { 
                            initial[count] = line; 
                            count++; 
                        } 
 
                    } 
 
                    string[,] list = new string[count, 64]; 
                    for (int index = 0; index < count; index++) 
                    { 
 
                        line = initial[index]; 
                        int ColStart = 0; 
                        int ColEnd = 0; 
                        string ColValue = ""; 
                        //Get the date from the line parameter 
                        list[index, 0] = line.Substring(1, 23); 
 
                        ColStart = 34; 
                        for (int i = 0; i < 8; i++) 
                        { 
 
                            ColEnd = line.IndexOf(" ", ColStart); 
                            ColValue = line.Substring(ColStart, ColEnd - ColStart); 
 
 
                            ColStart = ColEnd + 1; 
                        } 
 
                        ColEnd = line.IndexOf(" ", ColStart); 
 
                        //Forensic MoteID 
                        list[index, 1] = line.Substring(ColStart, ColEnd - ColStart); 
                        list[index, 62] = list[index, 1]; 
                        ColStart = ColEnd + 1; 
 
                        //Move one character on and repeat the process for the remaining columns 
                        for (int i = 1; i < 61; i++) 
                        { 
                            ColEnd = line.IndexOf(" ", ColStart); 
                            ColValue = line.Substring(ColStart, ColEnd - ColStart); 
                            list[index, i + 1] = ColValue; 
                            ColStart = ColEnd + 1; 
                        } 
                        list[index, 63] = "a"; 
                    } 
                    /* Array INDEXES 
                     * 0 = Date 
                     * 1 = Which Forensic Mote Received it 
                     * 2 - 61 = bytes 
                     * 62 = also seen by 
                     */ 
 
                    for (int i = 0; i < count; i++) 
                    { 
                        if (list[i, 63].CompareTo("del") != 0) 
                        { 
                            for (int j = 0; j < count; j++) 
                            { 
                                if (i != j) 
                                { 
                                    bool samePacket = true; 
                                    for (int k = 2; k < 62; k++) 
                                    { 
                                        if (list[i, k].CompareTo(list[j, k]) != 0 || list[i,  
     62].Contains(list[j, 1])) 
                                        { 
                                            samePacket = false; 
                                        } 
                                        if (!samePacket) 
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                                        { 
                                            break; 
                                        } 
                                    } 
                                    if (samePacket) 
                                    { 
                                        list[i, 62] = list[i, 62] + ", " + list[j, 1]; 
                                        list[j, 63] = "del"; 
                                    } 
                                } 
                            } 
                        } 
                    } 
 
                    CreateNewRow(list, count); 
 
                    file.Close(); 
                    tdt.Merge(tdt); 
 
                    for (int i = 0; i < dataGridView1.RowCount - 1; i++) 
                    { 
                        String CNumColour = dataGridView1.Rows[i].Cells["Seen By"].Value.ToString(); 
                        if (CNumColour.Contains(",")) 
                        { 
                            dataGridView1.Rows[i].Cells[1].Style.BackColor = Color.Aqua; 
                        } 
                    } 
 
                    if (flooding == 0) 
                    { 
                        flooding = count; 
                    } 
 
                    int oldFlood = flooding; 
 
                    flooding += count; 
                    flooding = flooding / 2; 
                    if ((flooding - oldFlood) > 5) 
                    { 
                        MessageBox.Show("------Possible Flooding Occured------\nThere were " + 
    oldFlood + " packets on average for the previous minute.\nWe now have "
    + flooding + " packets per minute on average.", "FLOODING ALERT"); 
                        if ((dataGridView1.RowCount - flooding) > 0) 
                        { 
                            for (int i = dataGridView1.RowCount - flooding; i <   
     dataGridView1.RowCount - 1; i++) 
                            { 
                                dataGridView1.Rows[i].Cells[2].Style.BackColor = Color.Salmon; 
                            } 
                        } 
                        else 
                        { 
                            for (int i = 0; i < dataGridView1.RowCount - 1; i++) 
                            { 
                                dataGridView1.Rows[i].Cells[2].Style.BackColor = Color.Salmon; 
                            } 
                        } 
                    } 
                } 
                else 
                { 
                    for (int i = 0; i < dataGridView1.RowCount - 1; i++) 
                    { 
                        String CNumColour = dataGridView1.Rows[i].Cells["Seen By"].Value.ToString(); 
                        if (CNumColour.Contains(",")) 
                        { 
                            dataGridView1.Rows[i].Cells[1].Style.BackColor = Color.Aqua; 
                             
                        } 
                    } 
 
                } 
            } 
        } 
 
    } 
}  
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A.5 oWSN Field Mote 

using System; 
using Microsoft.SPOT; 
using Microsoft.SPOT.Cryptography; 
using Crossbow.lib.utils; 
using Crossbow.platform.imote2; 
using Crossbow.radio.cc2420; 
using Crossbow.sensor.its400; 
 
namespace MiddleMote 
{ 
    public class Program 
    { 
        static Leds m_Leds = new Leds(); 
 
        static int BLACK = 0; 
        static int RED = 1; 
        static int BLUE = 2; 
        static int PURPLE = 3; 
        static int GREEN = 4; 
        static int YELLOW = 5; 
        static int TEAL = 6; 
        static int WHITE = 7; 
 
        static ushort _rfChannel = (ushort)RadioChannel.Ch11; // channel 11 
        static ushort _rfPower = (ushort)RadioPower.M10DBM;  // -10dbm 
        static ushort _panAddr = 0xFFFF;  // Pan Address 
        static ushort _moteAddr = 0xFFFF;  // Local Address 
        static ushort _srcAddr = 0xFFFF;  // Local Address 
        static int _nodeid = UniqueID.SerialID; 
        static int _default_nodeid = 0x01; 
        static int timeout = 5000; 
        static byte[] lastSeenPacket = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
  15, 15 }; 
 
        static int count = _nodeid; 
 
        static byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; 
 //not null, length 0 - n, 16 bytes used  
        static byte[] oldKey = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 };
  //not null, length 0 - n, 16 bytes used  
        static byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };// only first 8 bytes used, null or 
 less than 8 bytes are padded with zeros at end  
 
        public static void Main() 
        { 
            SerialDump.print("App [MiddleMote]: Started."); // Print the applicaiton identifier 
 
            Radio radio = new Radio(_rfChannel, _rfPower, _panAddr, _moteAddr); 
             
            Its400 sensor = new Its400(); 
 
            if (_nodeid == 0xFFFF) 
            { 
                _nodeid = _default_nodeid;  // set to default if there is not UID in the flash 
            } 
 
            m_Leds.set(RED); 
 
            int round = 1; 
            for (;;) 
            { 
                int randomNumber = Microsoft.SPOT.Math.Random(3); 
                SerialDump.print("Random Number Chosen "+ randomNumber +" on Execution Round " +  
  round); 
                for (int i = 0; i <= randomNumber; i++) 
                { 
                    Observe(radio); 
                } 
                 
                TransmitStats(radio,sensor); 
                SerialDump.print("------------------------------------------------------------------
  ------------------------------------"); 
                round++; 
            } 
        } 
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        private static void TransmitStats(Radio radio, Its400 sensor) 
        { 
            SerialDump.print("----------------------------------------------------------------------
  --------------------------------"); 
            SerialDump.print("Transmitting own stats"); 
            m_Leds.set(PURPLE); 
            if (requestToSend(radio)) 
            { 
                string stringToConvert = _nodeid + "@ - Light - " + sensor.Light + " - Humidity - " 
  + sensor.Humidity + " - Temperature - " + sensor.TempSensirion; 
                byte[] packet = StrToByteArray(stringToConvert); 
                 
                Key_TinyEncryptionAlgorithm xteaData = new Key_TinyEncryptionAlgorithm(key); 
 

byte[] cipherBytes = xteaData.Encrypt(packet, 0, packet.Length, iv);     
//Encryption 

 
                lastSeenPacket = cipherBytes; 
                SerialDump.print("^^^^^^^^^^^^^Sending DATA PACKET^^^^^^^^^^^^^"); 
                SerialDump.print("Unencrypted DATA String: " + ByteArrayToStr(packet)); 
                SerialDump.print("Unencrypted DATA Packet: " + BufferToString(packet)); 
                SerialDump.print("Encrypted DATA Packet:   " + BufferToString(cipherBytes)); 
 
                radio.Send((ushort)0xFFFF, (ushort)0xFFFF, cipherBytes); 
                SerialDump.print("^^^^^^^^^^^^^Sending DATA PACKET^^^^^^^^^^^^^"); 
            } 
            else 
            { 
                SerialDump.print("Request to send failed no data sent"); 
            } 
        } 
 
        private static bool requestToSend(Radio radio) 
        { 
            m_Leds.set(YELLOW); 
            SerialDump.print("%%%%%%%%%%%%%Sending RTS%%%%%%%%%%%%%"); 
            Microsoft.SPOT.Math.Randomize(); 
            string newKey = "" + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) + 
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10); 
 
            string stringToConvert = _nodeid + "@RTS#" + newKey; 
            byte[] packet = StrToByteArray(stringToConvert); 
             
            Key_TinyEncryptionAlgorithm xteaRTS = new Key_TinyEncryptionAlgorithm(key); 
 
            byte[] cipherBytes = xteaRTS.Encrypt(packet, 0, packet.Length, iv);     //Encryption 
 
            SerialDump.print("Unencrypted RTS String: " + ByteArrayToStr(packet)); 
            SerialDump.print("Unencrypted RTS Packet: " + BufferToString(packet)); 
            SerialDump.print("Encrypted RTS Packet:   " + BufferToString(cipherBytes)); 
 
            lastSeenPacket = cipherBytes; 
            radio.Send((ushort)0xFFFF, (ushort)0xFFFF, cipherBytes); 
            SerialDump.print("%%%%%%%%%%%%%RTS SENT%%%%%%%%%%%%%"); 
            oldKey = key; 
            key = StrToByteArray(newKey); 
 
            for (int i = 0; i < 3; i++) 
            { 
                byte[] packetReceived = null; 
 
                try 
                { 
                    SerialDump.print("$$$$$$$$$$$$$Waiting for CTS$$$$$$$$$$$$$"); 
                    packetReceived = radio.ReceiveAny(ref _panAddr, ref _srcAddr, timeout); 
 
                    if (packetReceived != null) 
                    { 
                        m_Leds.set(YELLOW); 
                        SerialDump.print("Packed Received: YELLOW"); 
                        if (AnalyzeCTS(packetReceived)) 
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                        { 
                            m_Leds.set(TEAL); 
                            SerialDump.print("$$$$$$$$$$$$$CTS Received$$$$$$$$$$$$$"); 
                            return true; 
                        } 
                    } 
                } 
                catch (System.Exception ex) 
                { 
                    SerialDump.print("App [CountRecieve]: " + ex.Message); 
                } 
            } 
            key = oldKey; 
            return false; 
        } 
 
        private static bool AnalyzeCTS(byte[] packet) 
        { 
            try 
            { 
 
                Key_TinyEncryptionAlgorithm xteaCTS = new Key_TinyEncryptionAlgorithm(key); 
                byte[] restoredBytes = xteaCTS.Decrypt(packet, 0, packet.Length, iv); //Decryption 
 
                string receivedPacket = ByteArrayToStr(restoredBytes); 
 
                string packetID = receivedPacket.Substring(0, receivedPacket.IndexOf('@')); 
                if ("base".CompareTo(packetID) == 0) 
                { 
                    SerialDump.print("Unencrypted CTS String: " + ByteArrayToStr(restoredBytes)); 
                    SerialDump.print("Unencrypted CTS Packet: " + BufferToString(restoredBytes)); 
                    SerialDump.print("Encrypted CTS Packet:   " + BufferToString(packet)); 
 
                    key = StrToByteArray(receivedPacket.Substring(receivedPacket.IndexOf('#')+1)); 
                    return true; 
                } 
                else 
                { 
                    return false; 
                } 
            } 
            catch 
            { 
                SerialDump.print("Malformed Packet"); 
                return false; 
            } 
        } 
 
        public static void Observe(Radio radio) 
        { 
            m_Leds.set(GREEN); 
            SerialDump.print("Observeing for data: GREEN"); 
            byte[] packetReceived = null; 
 
            try 
            { 
                SerialDump.print("Waiting for packet"); 
                packetReceived = radio.ReceiveAny(ref _panAddr, ref _srcAddr, timeout); 
 
                if (packetReceived != null) 
                { 
                    m_Leds.set(BLACK); 
                    SerialDump.print("Packed Received: BLACK"); 
                    if (AnalyzePacket(packetReceived)) 
                    { 
                        retransmitPacket(packetReceived, radio); 
                    } 
                } 
                else 
                { 
                    SerialDump.print("Nothing Received: BLACK"); 
                    m_Leds.set(BLACK); 
                } 
            } 
            catch (System.Exception ex) 
            { 
                SerialDump.print("App [CountRecieve]: " + ex.Message); 
            } 
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        } 
 
        private static void retransmitPacket(byte[] packet, Radio radio) 
        { 
                SerialDump.print("Retransmitting received Packet"); 
                m_Leds.set(WHITE); 
                 
                radio.Send(_panAddr, _moteAddr, packet); 
                SerialDump.print("Sleeping 50ms after packet retransmit"); 
                System.Threading.Thread.Sleep(50); 
                 
        } 
 
        private static bool AnalyzePacket(byte [] packet) 
        { 
            try 
            { 
                SerialDump.print("Analyzing Packet: " + BufferToString(packet)); 
                SerialDump.print("Analyzing Packet: "); 
                if (BufferToString(packet).CompareTo(BufferToString(lastSeenPacket)) == 0) 
                { 
                    SerialDump.print("Packet has already been seen."); 
                    return false; 
                } 
                else 
                { 
                    SerialDump.print("New Packet - Retransmit"); 
                    lastSeenPacket = packet; 
                    return true; 
                } 
            } 
            catch 
            { 
                SerialDump.print("Malformed Packet"); 
                return false; 
            } 
        } 
 
        public static byte[] StrToByteArray(string str) 
        { 
            return System.Text.UTF8Encoding.UTF8.GetBytes(str); 
             
        } 
 
        public static string ByteArrayToStr(byte [] dBytes) 
        { 
            char[] temp = System.Text.UTF8Encoding.UTF8.GetChars(dBytes); 
            return new string(temp); 
        } 
 
        private static string ByteToHex(byte b) 
        { 
            const string hex = "0123456789ABCDEF"; 
            int lowNibble = b & 0x0F; 
            int highNibble = (b & 0xF0) >> 4; 
            string s = new string(new char[] { hex[highNibble], hex[lowNibble] }); 
            return s; 
        } 
 
        private static string BufferToString(byte[] buffer) 
        { 
            if (buffer == null) 
                throw new ArgumentNullException("buffer"); 
            string s = string.Empty; 
            for (int i = 0; i < buffer.Length; i++) 
            { 
                s += ByteToHex(buffer[i]) + " "; 
                if (i > 0 && i % 16 == 0) 
                    s += "\n"; 
            } 
            return s; 
        } 
 
    } 
} 
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A.6 oWSN Base Station 

using System; 
using Microsoft.SPOT; 
using Microsoft.SPOT.Cryptography; 
using Crossbow.lib.utils; 
using Crossbow.platform.imote2; 
using Crossbow.radio.cc2420; 
using Crossbow.sensor.its400; 
 
namespace BaseStation 
{ 
    public class Program 
    { 
        static Leds m_Leds = new Leds(); 
 
        static int BLACK = 0; 
        static int RED = 1; 
        static int BLUE = 2; 
        static int PURPLE = 3; 
        static int GREEN = 4; 
        static int YELLOW = 5; 
        static int TEAL = 6; 
        static int WHITE = 7; 
 
        static ushort _rfChannel = (ushort)RadioChannel.Ch11; // channel 11 
        static ushort _rfPower = (ushort)RadioPower.M10DBM;  // -10dbm 
        static ushort _panAddr = 0xFFFF;  // Pan Address 
        static ushort _moteAddr = 0xFFFF;  // Local Address 
        static ushort _srcAddr = 0xFFFF;  // Local Address 
        static int _nodeid = UniqueID.SerialID; 
        static int _default_nodeid = 0x01; 
        static int timeout = 5000; 
        static byte[] lastSeenPacket = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 
 0, 0 }; 
 
        static int count = _nodeid; 
 
        static byte[] key = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; 
 //not null, length 0 - n, 16 bytes used  
        static byte[] oldKey = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 }; 
 //not null, length 0 - n, 16 bytes used  
        static byte[] iv = new byte[] { 1, 2, 3, 4, 5, 6, 7, 8 };// only first 8 bytes used, null or 
 less than 8 bytes are padded with zeros at end  
 
 
        public static void Main() 
        { 
            SerialDump.print("App [BaseStation]: Started."); // Print the applicaiton identifier 
 
            Radio radio = new Radio(_rfChannel, _rfPower, _panAddr, _moteAddr); 
 
            if (_nodeid == 0xFFFF) 
            { 
                _nodeid = _default_nodeid;  // set to default if there is not UID in the flash 
            } 
 
            m_Leds.set(RED); 
 
            for (; ; ) 
            { 
                Observe(radio); 
            } 
        } 
 
        public static void Observe(Radio radio) 
        { 
            m_Leds.set(RED); 
            SerialDump.print("Observeing for data: RED"); 
            byte[] packetReceived = null; 
 
            try 
            { 
                SerialDump.print("Waiting for packet"); 
                packetReceived = radio.ReceiveAny(ref _panAddr, ref _srcAddr, timeout); 
 
                if (packetReceived != null) 
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                { 
                    m_Leds.set(BLUE); 
                    SerialDump.print("Packed Received: BLUE"); 
                    if (BufferToString(lastSeenPacket).CompareTo(BufferToString(packetReceived)) !=   
               0) 
                    { 
 
                        if (AnalyzeRTS(packetReceived)) 
                        { 
                            transmitCTS(packetReceived, radio); 
                        } 
                    } 
                    else 
                    { 
                        SerialDump.print("Repeat of CTS packet received"); 
                    } 
 
                } 
                else 
                { 
                    SerialDump.print("Nothing Received: BLACK"); 
                    m_Leds.set(BLACK); 
                } 
            } 
            catch (System.Exception ex) 
            { 
                SerialDump.print("App [BaseStation]: " + ex.Message); 
            } 
 
        } 
 
        private static void transmitCTS(byte[] packet, Radio radio) 
        { 
            Key_TinyEncryptionAlgorithm xteaRTS = new Key_TinyEncryptionAlgorithm(key); 
            byte[] restoredBytes = xteaRTS.Decrypt(packet, 0, packet.Length, iv); //Decryption 
            string receivedPacket = ByteArrayToStr(restoredBytes); 
 
            string packetID = receivedPacket.Substring(0, receivedPacket.IndexOf('@')); 
            SerialDump.print("$$$$$$$$$$$$Sending CTS$$$$$$$$$$$$"); 
            Microsoft.SPOT.Math.Randomize(); 
            string newKey = "" + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) + 
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) 
                 + Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10) +   
  Microsoft.SPOT.Math.Random(10) + Microsoft.SPOT.Math.Random(10); 
                
            string stringToConvert = "base" + "@CTS" + packetID + "#" + newKey; 
 
            byte[] packetCTS = StrToByteArray(stringToConvert); 
 
            string CTSKey = receivedPacket.Substring(receivedPacket.IndexOf('#') + 1); 
             
            oldKey = key; 
            key = StrToByteArray(CTSKey); 
 
            Key_TinyEncryptionAlgorithm xteaCTS = new Key_TinyEncryptionAlgorithm(key); 
            byte[] cipherBytes = xteaCTS.Encrypt(packetCTS, 0, packetCTS.Length, iv); //Encryption 
 
            key = StrToByteArray(newKey); 
 
            SerialDump.print("Unencrypted CTS String: " + ByteArrayToStr(packetCTS)); 
            SerialDump.print("Unencrypted CTS Packet: " + BufferToString(packetCTS)); 
            SerialDump.print("Encrypted CTS Packet:   " + BufferToString(cipherBytes)); 
 
            lastSeenPacket = packetCTS; 
 
 
            radio.Send((ushort)0xFFFF, (ushort)0xFFFF, cipherBytes); 
            SerialDump.print("$$$$$$$$$$$$CTS SENT$$$$$$$$$$$$"); 
        } 
 
        private static bool AnalyzeRTS(byte[] packet) 
        { 
            try 
            { 
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                Key_TinyEncryptionAlgorithm xteaRTS = new Key_TinyEncryptionAlgorithm(key); 
                byte[] restoredBytes = xteaRTS.Decrypt(packet, 0, packet.Length, iv); //Decryption 
                string receivedPacket = ByteArrayToStr(restoredBytes); 
                 
                 
                
                if (receivedPacket.IndexOf("Light") != -1) 
                { 
                    SerialDump.print("^^^^^^^^^^^^^DATA RECEIVED^^^^^^^^^^^^^"); 
                    SerialDump.print("Unencrypted DATA String: " + ByteArrayToStr(restoredBytes)); 
                    SerialDump.print("Unencrypted DATA Packet: " + BufferToString(restoredBytes)); 
                    SerialDump.print("Encrypted DATA Packet:   " + BufferToString(packet)); 
                    return false; 
                } 
                else 
                { 
                    SerialDump.print("%%%%%%%%%%%%%RTS RECEIVED%%%%%%%%%%%%%"); 
                    SerialDump.print("Unencrypted RTS String: " + ByteArrayToStr(restoredBytes)); 
                    SerialDump.print("Unencrypted RTS Packet: " + BufferToString(restoredBytes)); 
                    SerialDump.print("Encrypted RTS Packet:   " + BufferToString(packet)); 
                    string packetID = receivedPacket.Substring(receivedPacket.IndexOf('@') + 1,  
   receivedPacket.IndexOf('#') - receivedPacket.IndexOf('@') - 1); 
 
                    if ("RTS".CompareTo(packetID) == 0) 
                    { 
                        return true; 
                    } 
                    else 
                    { 
                        return false; 
                    } 
                } 
            } 
            catch 
            { 
                SerialDump.print("Malformed Packet"); 
                return false; 
            } 
 
        } 
 
        public static byte[] StrToByteArray(string str) 
        { 
            return System.Text.UTF8Encoding.UTF8.GetBytes(str); 
 
        } 
 
        public static string ByteArrayToStr(byte[] dBytes) 
        { 
            char[] temp = System.Text.UTF8Encoding.UTF8.GetChars(dBytes); 
            return new string(temp); 
        } 
 
        private static string ByteToHex(byte b) 
        { 
            const string hex = "0123456789ABCDEF"; 
            int lowNibble = b & 0x0F; 
            int highNibble = (b & 0xF0) >> 4; 
            string s = new string(new char[] { hex[highNibble], hex[lowNibble] }); 
            return s; 
        } 
 
        private static string BufferToString(byte[] buffer) 
        { 
            if (buffer == null) 
                throw new ArgumentNullException("buffer"); 
            string s = string.Empty; 
            for (int i = 0; i < buffer.Length; i++) 
            { 
                s += ByteToHex(buffer[i]) + " "; 
                if (i > 0 && i % 16 == 0) 
                    s += "\n"; 
            } 
            return s; 
        } 
    } 
} 
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Appendix B: Published Papers 

The papers are added in an 'as is' format in order to preserve the formatting in which the papers 

were published, this includes retaining original page numbering format. These papers are presented 

in a chronological order of date published. The first paper, which is concerned with a security 

protocol within wireless sensor networks, is titled “A Secure Communication Protocol for Wireless 

Sensor Networks.” The second paper entitled “Social engineering attack detection model: SEADM” 

is not directly related to wireless sensor networks but was also published during this research. The 

third paper entitled “Requirements for Wireless Sensor Networks in Order to Achieve Digital 

Forensic Readiness” relates directly to this research as it shows the list of requirements in order to 

achieve digital forensic readiness in a wireless sensor network. The fourth paper, entitled “A 

prototype for achieving digital forensic readiness on wireless sensor networks” is also directly 

related to this research as it was used to show that having a set of requirements is extremely helpful 

when trying to implement digital forensic readiness in wireless sensor networks. 

These papers start on the subsequent page. 
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A Secure Communication Protocol for Wireless Sensor Networks 
 
Francois Mouton, HS Venter 
University of Pretoria 
 
Abstract  
 
The field of wireless sensor networking is still a new and upcoming one and unfortunately still 
lacking in terms of security. All communications between different nodes (motes) are sent out in 
a broadcast fashion. These broadcasts could easily be intercepted by any adverse mote in the 
vicinity. This paper proposes a security protocol which can be implemented in current wireless 
sensor networks. The proposed protocol relies on symmetric encryption where the encryption 
key changes constantly throughout the communication. Furthermore we evaluate the efficiency 
of the proposed security protocol against some known attacks on wireless sensor networks in 
order to show how such attacks can be thwarted. 
 
Keywords: communication, encryption, security, wireless sensor networks, XTEA. 
 
1 Introduction 
 
Striving towards a better lifestyle has lead to a great improvement in the technology we 
have access to in today’s world. These technologies should be implemented in such a 
way that almost anyone can use them with little or no effort. This is partially due to the 
fact that many of the technologies we use today have converged to a single device. As 
an example, mobile phones have advanced from simply being communication items to 
almost being fully functional computers. The rapid adoption of mobile phones has lead 
to the development of next-generation networks (NGNs) (Orecchia et al 2004; Santi 
2005; Tseng et al 2003) which provide a new platform for many different applications of 
wireless and ad-hoc networks in a ubiquitous environment. Wireless sensor networks 
(WSNs) form part of NGNs and form the main focal point in this paper. 
In general, all of the above-mentioned technologies were developed to help and improve 
our ability to accomplish our tasks on a daily basis. They have, unfortunately, also 
become some of the main targets for people who have ideas of malicious and mal intent 
on their agendas. In addition, when it comes to wireless, there is a greater risk as data is 
transferred over the air between devices, which make them more susceptible to data 
interception than tapping into a physical network. In addition, the data which might be 
intercepted raises a confidentiality issue, discouraging certain people from using these 
wireless devices. 
Wireless sensor networks inherit many of the aforementioned problems. The nodes in a 
wireless sensor network can be referred to as either sensors or motes. In this paper 
they are referred to as motes. Wireless sensor networks are vulnerable to the attacks 
of those who want to steal valuable data generated by the motes. The motes typically 
broadcast the data to other motes in the vicinity. The receiving motes continue 
broadcasting the data until it is able to reach the gateway, also referred to as the base 
station. The data is then sent to a central server (Orecchia et al 2004; Slijepcevic et al 
2002). It is difficult to determine whether there is another wireless sensor network in 
the area that is eavesdropping on the data being transferred. 
Another huge problem with wireless sensor networks is their physical design. It consists 
of small objects (motes) which are scattered or strategically placed throughout a specific 
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area. These motes could be physically removed or damaged by someone moving around 
in the area. The motes are also dependant on a battery which powers the device. Even if 
the motes are physically secured, attackers could attempt to force communication with 
the motes on a continuous basis. This would drain the battery power and cause the 
motes to become unresponsive. 
This paper does not address all the above-mentioned problems, however, the purpose 
of this paper is to identify known attacks on wireless sensor networks and suggest a 
security protocol which would make a wireless sensor network less vulnerable and 
susceptible to these types of attacks.  
The remainder of the paper is structured as follows. The second section provides 
background in terms of wireless sensor networks and known attacks on wireless sensor 
networks. Section three discusses the proposed security protocol and how it can be 
implemented. The fourth section contains a discussion about the effectiveness of the 
security protocol against possible attacks we have proposed. Finally, the last section 
concludes with a summary of the security protocol and future work. 
 
2 Background 
 
Wireless Sensor Networks (WSNs) is still a relatively new area of research in 
Computer Science. The first papers on WSNs only appeared around the start of the 
21st century. Most of the research on WSNs has been on new areas where WSNs can 
be applied to modern lifestyles. Before suggesting a solution to the security issue, this 
paper will provide background information necessary for a better understanding of 
WSNs. 
 
2.1 Wireless Sensor Networks 
 
WSNs belong to the general family of sensor networks that use multiple distributed 
sensors to retrieve data from various environments of interest. Chong and Kumar 
(2003) provide a history on previous accomplishments of WSNs. He also shows how 
WSNs have evolved in terms of sensing, communication and computing. WSNs consist 
of wireless nodes with embedded processors, ad-hoc networks (Estring et al 2001) and 
wireless communication (Ye et al 2002). The authors summarise the concept of WSNs 
to be an ad-hoc network which consists of tiny and resilient computing nodes known as 
motes or sensors. These motes are extremely efficient with regard to power 
consumption and can collaborate with other motes within their vicinity effectively. A 
graphical representation of a wireless sensor network is provided in fig.1 and the 
functions of each of the components are briefly summarised in Table 1 (Heinzelman et al 
1999; Sohrabi et al 2002).  
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Fig. 1. A graphical representation of a wireless sensor network. 

Table 1. Summary of the functions of each component in Fig.1. 

WSN component Brief summary of the component 

User 
The user can interact with the WSN through the 
management server.  

Management Server 
The management server serves as an interface console for 
the WSN. 

Sensor Field 
The sensor field denotes the physical boundaries of the 
WSN. 

Wireless Sensor Node 
(mote) 

Each mote contains a small subset of the various sensors. 
Motes in the network can also act as repeaters for packets 
which need to reach the base station. 

Base Station 

A base station serves as a gateway-node through which the 
information of the motes has to travel to reach the 
management server. 

Short-range Wireless 
Communication 

Short-range wireless communication links are established 
between neighbouring motes and the neighbouring base 
stations. 

Long-range High-
speed Communication 

Long-range high-speed communication links are established 
between further-ranged base stations and the management 
server. 
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WSNs can be used in many environments. Motes may consist of many different types of 
sensors, such as thermal, visual, infrared, radar or acoustic. These motes can then 
monitor a wide variety of ambient conditions, including humidity, pressure, sound, noise 
levels, temperature, lightning conditions and objects moving through a designated area 
(Elson and Estrin 2001; Kahn et al 1999). 
Some applications of WSNs include military applications such as tracking moving objects 
and battlefield surveillance (Zhao et al 2002). Environmental applications include habitat 
monitoring, forest fire detection and flood detection (Mainwaring et al. 2002). Health 
applications include tracking and monitoring doctors and patients in hospitals and drug 
administration in hospitals (Lu et al 2002). Finally, WSNs also include home and building 
automation applications. 
The next subsection focuses on introducing the reader to known attacks on wireless 
sensor networks. 
 
2.2 Known attacks on wireless sensor networks 
 
There are quite a number of known attacks which can render the entire network 
ineffective (Perrig et al 2004). The focus will be on four of these attacks, namely data 
interception, flooding attacks, sinkhole attacks and attacks which require physical access 
to the motes. These attacks are briefly discussed in the next subsections. 
 
2.2.1 Data Interception 
 
Each mote broadcasts the information it has gathered from its ambient surroundings in 
an attempt to reach the other motes. Currently, as far as the authors are aware, there 
is no encryption on the data which is broadcasted throughout the WSN. This allows a 
hostile entity to plant its own WSN in the surrounding area. The hostile WSN can then 
eavesdrop on any communication and will pass on any intercepted information to the 
hostile management server (Slijepcevic et al 2002). This could disclose valuable 
information of the owner of the legitimate WSN to the hostile entity. 
 
2.2.2 Flooding Attacks 
 
WSN motes are by default set to accept any incoming traffic. It takes this information 
and then processes it in order to determine what should be done with it. The receiving 
and processing of the data drain valuable battery power from the mote. 
If a hostile entity injects a hostile WSN into the range of the legitimate WSN, a flooding 
attack can then be launched on the legitimate WSN. A flooding attack is an attack which 
constantly sends out information to all the motes in its vicinity. This type of attack could 
also be seen as a DoS (denial of service) attack (Perrig et al 2004), because the attack 
would drain the motes in the legitimate WSN of their battery power. This would render 
the motes useless and they would have to be replaced with a new set of motes with 
fresh batteries. 
 
2.2.3 Sinkhole Attacks 
 
This is one of the most difficult attacks to deal with when using wireless sensor 
networks (Zhu et al 2006). In a sinkhole attack, an adverse mote will try to attract 
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information from its neighbours (Karlof and Wagner 2003). It would then either pass 
this information on to a hostile entity or just drop the packets. This would lead to a 
DoS attack on the legitimate WSN. 
This attack is accomplished by a hostile mote broadcasting a message to the 
neighbouring motes, that itself is the closest to the base station. All the motes in that 
vicinity would then assume that this information is correct and would not attempt to 
send information to other motes or the base station, but rather to the hostile mote. 
This would allow the hostile mote to then receive all the network packets in the vicinity 
of other motes, causing legitimate information never to reach the base station. 
 
2.2.4 Attacks Which Require Physical Access to the Motes 
 
Most research articles that we have consulted have very little emphasis on these types 
of attacks. It is very important to note that an intruder could physically connect his 
workstation to a mote, once found, and transfer all the code which is on the mote 
directly to his workstation using an appropriate interface. 
An attacker could even then take the code he received, modify it and deploy it back 
onto the mote. This is a very powerful attack as it appears as if the legitimate mote is 
sending legitimate communication to other legitimate WSN motes, while it is in fact 
falsified communication injected by an attacker. 
In the next section the proposed security protocol will be introduced and explained, 
after which a discussion follows on how the above-mentioned attacks can be thwarted. 
 
3 Proposed WSN Security Protocol 
 
The proposed security protocol consists of an implementation of the XTEA (eXtended 
Tiny Encryption Algorithm) and a new way of having dynamic encryption keys in the 
network. A prototype of the protocol was developed and demonstrated on an existing 
WSN consisting of Crossbow Imote2 sensor motes. The remainder of this section is 
dedicated to introducing the Imote2 sensor motes, the XTEA algorithm and an 
explanation of how the proposed security protocol works. 
 
3.1 Imote2 Sensor Motes   
 
The Crossbow Imote2 is an advanced sensor network node platform designed for 
demanding wireless sensor network applications that require high CPU performance 
and reliability. Each sensor node in the prototype consists of a battery board, an Imote2 
board and an ITS400 sensor board. The base station only consists of an Imote2 board as 
it is powered by a USB port. 
 
3.2 eXtended Tiny Encryption Algorithm 
 
The eXtended Tiny Encryption Algorithm (XTEA) is an extension of Tiny Encryption 
Algorithm (TEA) which is a very simple cryptographic algorithm. TEA is a very small 
algorithm and it uses very little resources and processing power. The extended version 
of TEA is a very good cipher when a relatively high level of security is required and 
when computational power is limited (Blom et al). The cipher was designed by Roger 
Needham and David Wheeler of the Cambridge Computer Laboratory, and the 
algorithm was presented in a technical report in 1997 (Hong et al 2004). 
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It is important to note that XTEA is a symmetrical encryption algorithm. This means 
that the key that was used to encrypt a packet must also be used to decrypt the same 
packet. Thus, both parties involved in the communication must have the encryption key. 
This poses a problem in WSNs because motes are vulnerable when they can be 
physically picked up by an attacker. This allows an attacker to monitor the traffic 
throughout the network and extract the key from the mote to decrypt the traffic which 
has been gathered. The protocol proposed in this paper, however, specifically addresses 
this issue and the protocol is explained in further detail in the next section. Another 
classic problem with symmetric key encryption is the key distribution problem, 
however, the authors assume that, due to the nature of a WSN, keys are distributed on 
the motes when they are scattered of strategically placed. Hence, no initial key 
distribution has to take place. 
 
3.3 Protocol Implementation 
 
The protocol which is presented in this paper relies heavily on the use of request–to-
send (RTS) and clear-to-send (CTS) operations. Every message passing throughout the 
network would be encrypted using XTEA. The key used for encryption would be 
changed as packets are sent back and forth to prevent an attacker to use a ciphertext-
only attack. This attack occurs when an attacker is able to collect a large amount of 
ciphertext and deduce from that the key or the plaintext which was transmitted. The 
protocol must not remove the main functionality of a WSN of being an ad-hoc network 
where extra motes can be added dynamically to the network. In the following 
subsections an explanation of the protocol is provided wherein each of the main 
functions of the protocol are discussed separately. 
 
3.3.1 Broadcasting packets throughout the network 
 
The protocol does not save any predefined routes to any mote anywhere in the 
network. It has been implemented in such a fashion specifically to avoid sinkhole attacks. 
The network is immune to a rouge mote if the rouge mote attempts to act like a 
sinkhole to broadcast information that it is the mote nearest to the base station. 
Every packet that is sent in the network will be broadcasted from the mote which sent 
it, to all its neighbouring motes. This has the possibility to introduce extra overhead to 
the network, but this is addressed in how we handle repeating packets in section 3.3.6. 
The first packet that a mote will broadcast throughout the network is a RTS packet. 
This type of packet will be discussed in detail in the following section. 
 
3.3.2 Request to send 
 
The RTS packet consists of three fields: the mote ID which is unique to each mote in 
the network, a RTS flag which indicates that this packet is indeed a RTS packet, and a 
randomly generated key which is afterwards used to encrypt the CTS packet. 
The generated key is referred to as the CTSKey. It is generated by using a random 
number generator which is built into the hardware of the mote. We assume that the 
random number generator contains enough entropy to generate a random-like 
sequence that is not predictable in a feasible amount of time. 
After the RTS has been sent, the mote moves into an idle state where it is listening for a 
CTS packet. The amount of time to wait for the CTS can be manually defined. In an 
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experimental setup a time of ten seconds is the maximum threshold to wait. If it 
receives a CTS it will send a data packet which is discussed in section 3.3.4, otherwise it 
will go into an observe mode which is discussed in section 3.3.6. 
The packet that is sent can be formulated to resemble fig.2 where the data inside the 
brackets is encrypted with the initial mote key (MoteKey v1.1), which is before the 
brackets: 

 

 
Fig. 2. The RTS Packet 

The next section explains how the CTS packet is constructed and transmitted. 
 
3.3.3 Clear to send 
 
The base station is the only mote that is able to interpret CTS packets. This is due to 
the fact that only the base should be allowed to capture any data generated on the 
network and be able to decipher it. 
The network is also immune to rogue motes attempting to send fake CTS packets, as a 
true CTS packet will be encrypted. Thus, for a rogue mote to send a fake CTS packet, it 
would need to know what encryption scheme and key to use. 
The base station decrypts the RTS packet using MoteKey v1.1 for the particular mote 
ID. Note that each base station is initially preloaded with a list of the initial mote keys. 
The base station interprets the RTS packet and determines from which mote it 
originated in the network. It then looks up if the mote ID corresponds to a mote ID 
that is supposed to be in the network and after this verification has succeeded it then 
sends out the CTS packet. The CTS packet can, therefore, only be sent by the base 
station if a valid RTS packet was received by the base station. 
The CTS packet consists of the base station ID, a CTS flag to indicate it is indeed a CTS 
packet and a randomly generated key which will be used to transmit data towards the 
base station in future communication with the base station. This packet is encrypted 
using the randomly-generated CTS key which was received in the RTS packet. 

The packet that is sent can be formulated to resemble fig.3 where the data inside the 
brackets is encrypted with the key which is before the brackets: 

 

 
Fig. 3. The CTS Packet 

The next section explains how each data packet is constructed and transmitted. 
 
3.3.4 The data packet 
 
The mote that sent off the RTS packet is still in a state of waiting for the CTS. When it 
receives the CTS it uses the CTSKey it generated to decrypt this packet.  If the CTS 
packet was successfully decrypted then it is indeed a valid CTS packet. The mote then 
determines if the base station ID, as received in the CTS packet, corresponds with the 
base station ID the mote has previously been authenticated with. 
If all three of these conditions are met, the mote reads MoteKey v1.2 from the CTS 
packet and then replaces its mote key with this new mote key. This process is further 
explained in section 3.3.5. The data packet is then constructed with information 
gathered from the ITS400 sensor board. 
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In our implementation we retrieved the light, humidity and temperature data from the 
sensor board. The data is then constructed into such a data packet. At the front of the 
data packet the mote ID is added again. The packet is then encrypted with the new moe 
key and sent back to the base station. 
The data packet that is sent can be formulated to resemble fig.4 where the data inside 
the brackets is encrypted with the key precedes before the brackets: 

 

 
Fig. 4. The Data Packet 
 

Enough background is given for us to summarise and discuss the entire encryption 
protocol and how the keys are changed throughout all the packet transfers described in 
the previous sections. We repeat some of the previously mentioned concepts for the 
sake of clarity. 
 
3.3.5 The encryption key handling 
 
The encryption key handling is explained in fig.5. 

 

Fig. 5. Encryption key handling 

Before the WSN is deployed into the sensor field, each mote is preloaded with an 
encryption key. This key is referred to as MoteKey vX.Y. The vX.Y represents the 
following: X is the mote ID and Y is the version number of the key, indicating how many 
times the MoteKey has been changed. For this example we can assume that we are 
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using mote ID 1 and the initial version of the key, i.e. Y is equal to 1. The base station 
has a list of all the motes that are deployed into the sensor field with each mote’s 
associated initial MoteKey (i.e. MoteKey v.X.1 for each mote). Each mote can, therefore, 
be uniquely identified on the base station by using the mote’s ID to correspond which 
MoteKey belongs to each mote. 
In the RTS phase a random CTSKey is generated. The RTS packet then contains all the 
RTS related information and the CTSKey. This packet is then encrypted using MoteKey 
v1.1 before it is broadcasted into the WSN. The mote ID is not encrypted though, but 
is sent along with the RTS packet. The mote which sent the packet also temporarily 
saves the CTSKey. 
Upon receipt of the RTS packet by the base station, it analyses the mote ID and uses 
the corresponding MoteKey to decrypt the packet. In this case it would be MoteKey 
v1.1. If the RTS packet was decrypted successfully, the base station generates a new 
MoteKey. This key would now be known as MoteKey v1.2. The base station also 
extracts the CTSKey from the RTS packet. After this key has been extracted, the CTS 
packet is constructed and the MoteKey v1.2 is added onto the packet. The packet is 
then encrypted using the CTSKey and is then sent back to the mote that sent the RTS. 
MoteKey v1.2 is only stored in a temporary slot and MoteKey v1.1 is not yet replaced. 
When the CTS packet arrives at the mote, it tries to decrypt the packet with the CTS 
Key. In the case that it was unsuccessful, it means that the mote received a packet in the 
network which is actually not a CTS packet meant for the particular mote. It does 
however still continue to wait for the predefined threshold, i.e. 10 seconds, for the real 
CTS packet. In the case that it was successful, it analyses the base station ID and 
determines if this was the intended base station ID it sent the original RTS packet to. If 
the base station ID is indeed correct, the mote then tests the mote ID and the CTS 
signature as discussed before. The mote then checks for the new MoteKey. It then 
replaces MoteKey v1.1 with MoteKey v1.2. This new key is only written to the RAM on 
the mote. If the mote is switched off or has to reboot for whatever reason, only 
MoteKey v1.1 will be available. Thus, if the mote reboots, it will be disconnected from 
the network for security reasons and will be discussed later. The Data packet is then 
generated by using the data received from the ITS400 sensor board. The data packet 
consists of the mote ID and the sensor data which has been encrypted using MoteKey 
v1.2. The data packet is then transmitted to the base station. 
The base station then receives this data packet and determines which mote it came 
from by looking at the mote ID. At this stage the base station is not able to determine if 
this is a RTS or a data packet. It first attempts to decrypt the packet using MoteKey v1.2 
which has been stored in temporary storage (in the base station’s RAM). If the base 
station was able to decrypt the package successfully, only then does it replace MoteKey 
v1.1 with MoteKey v1.2 as this will mean that the CTS packet successfully arrived at the 
mote, which originally sent the RTS packet. However, if the base station was unable to 
decrypt the packet, it then resorts back to MoteKey v1.1 to attempt to decrypt it. If it is 
successful with MoteKey v1.1, it is an indication that the CTS did not arrive in tact at 
the mote. The packet which has then been received would be another RTS packet. The 
base station would then send a new CTS packet. The sensory data that is decrypted by 
the base station is then directly sent to the management server. This process continues 
every time new sensory data is sent from a mote to the base station. 
Using the protocol described above, we are able to create a secure channel between 
each mote in the field and the base station. Every packet that is sent throughout the 
network will effectively be encrypted with a different key.  
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3.3.6 Repeating packets 
 
Every mote in the network spends most of its time only observing packets that go 
around in the network. The motes only actually transmit their sensory data on specified 
time intervals. 
A mote is in an observation phase when it is capturing packets that are generated by 
other motes in the WSN. A mote first tests if the packet that has been received has 
already been seen by comparing the packet to previously received packets. If the packet 
has already been seen, the mote will not retransmit it again. If the mote retransmits the 
packet that has been previously seen again, the possibility exists that the entire network 
might get flooded and no communication could occur further on. 
In the scenario where the packet has not been seen before, the mote retransmits the 
packet to all of its neighbouring motes. The neighbouring motes will then test if they 
have seen the packet and if not, they will retransmit the packet further. If two packets 
are received at the exact same time, they are put into a queue and analysed sequentially 
by the receiving mote. 
 
3.3.7 Handling network failures 
 
The protocol shows promising resilience to errors. If a packet cannot be interpreted by 
a mote, it is most likely a malformed packet. The mote simply drops the packet and 
switches to observe mode. The main concern we have with the protocol is when the 
encryption keys go out of sync (i.e. a mote is disconnected from the network e.g. by 
rebooting it, running out of power etc.). The encryption key on the mote will only be 
updated if the base station has successfully responded with a CTS. We can assume that 
if there a path existed to the base station, there would always be a path back to the 
mote. 
The protocol is also resilient against single motes failing in the network as long as there 
is still a possible path to the base station. Due to the way the packets are broadcasted 
we are always assured that packets will reach the destination if a path exists to the 
destination. 
 
3.3.8 Redeploying motes or adding new motes to the network 
 
As we have discussed earlier, if a mote reboots for whatever reason or the batteries 
need are replaced, the mote will lose all communication to the network as the keys will 
be out of sync. This technique, however, has been implemented as a security precaution. 
It allows us to remove the vulnerability where someone can physically take the mote 
and reprogram some extra data onto it which could be malicious to our network. The 
mote that has been tampered with will not be able to communicate to our base station. 
If a mote has to be redeployed or a new mote has to be added, it must first be assigned 
a MoteKey vX.1. This key must also be added to the base station’s list of keys. This 
technique allows us to easily control which motes are allowed into the network and 
which are not. We can also use this to remotely disable communication of certain 
motes to the base station, if necessary (i.e. if a mote was compromised). If the base 
station does not know the MoteKey of a mote, it will reject any communication coming 
from the mote. 
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4 Discussion of the Proposed Security Protocol 
 
This section discusses the use of the proposed security protocol in an existing WSN. A 
graphical representation of a scenario of how the security protocol was implemented in 
a prototype scenario can be seen in fig.1. In the following subsections explain how each 
of the attacks mentioned in the background section can be prevented using our 
proposed protocol. In addition, a discussion on the limitations of the protocol is also 
provided here. 
 
4.1 Flooding Attack 
 
In the opinion of the authors, flooding attacks are one of the most difficult attacks to 
thwart in a WSN. We have physically simulated a flooding attack on a WSN using our 
protocol. The results are promising, because the WSN was very resilient to the flooding 
attack. 
We simulated the flooding of a WSN by having the motes transmitting sensor data 
faster than it usually would. During normal operation of the WSN, however, each mote 
waits for a predefined number of packets to pass through it or a specified timeframe 
before it decides to transmit its own sensor data. In the case where a flooding attack is 
present this waiting cycle is almost nullified. There is however a slight benefit to this. 
This will cause the part of the network which is being flooded to send data faster and 
we will be able to determine where the flooding attack originates from. This allows us 
to physically go and eliminate the rogue mote in the network which is flooding our 
network. According to the authors, the only successful way to fully eliminate a mote 
that is flooding a WSN is to physically go into the sensor field and remove it. 
 
4.2 Sinkhole Attack 
 
The sinkhole attack is a very devastating attack on a network and, as shown previously, 
a single sinkhole has the ability to fully disable a network. The protocol we are 
proposing is, however, very effective against a sinkhole attack. Since the protocol does 
not rely on a predefined route to the base station, a sinkhole which propagates a route 
to the base station will have no effect on the network. 
This makes our protocol one of the best countermeasures to sinkhole attacks in WSNs.  
 
4.3 Data Interception 
 
In our protocol we use end-to-end encryption. This means that any data which is sent 
over the network towards another mote will be encrypted through all the motes it has 
to pass in order to get to the destination. 
As we have discussed before, the protocol is also very resilient against a cipher text 
attack. This is due to the fact that we change the encryption key on every transmission. 
We are aware that there is a potential flaw with the way in which we apply the 
encryption. The problem arises when an attacker captures all the traffic in the network 
and then might be able to decrypt a single packet from that traffic using a brute-force 
attack. This might allow the attacker to be able to decrypt a whole chain of 
communication between a single mote and the base station if all the traffic has been 
captured. We have, however, not considered this to be a great concern. For an attacker 
to brute-force a single packet, it might take an extended time, such as months or years. 
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The attacker needs to capture all communication during this timeframe, which is 
practically infeasible. 
For example, if we were using AES to crack a single key, all the traffic can be decrypted 
from that point onwards. However, this is true in almost any encryption scheme 
available up to date. Therefore, research into this is beyond the scope of this paper. 
 
4.4 Attacks Which Require Physical Access to the Mote 
 
The main issue we are dealing with here is that an attacker could connect his 
workstation to a mote and retrieve all the code which was imbedded on the mote. 
This is actually a very critical issue as encrypted keys could be stored on the mote. The 
attacker could also only slightly modify the operation of the mote and cause it to 
become a hostile mote to the network. This is also a very difficult attack to avoid as 
motes are normally scattered in a sensor field and is not monitored that often. Also the 
mote that the attacker uses might have been taken from our network, modified, and 
redeployed into the field. 
This issue is, however, addressed by the protocol since any mote that is redeployed into 
the network has to be provided with a new encryption key for entry into the network. 
Any mote that has been powered down will not be able to communicate to the base 
station until initial authentication takes place again. 
In the next section we discuss the throughput and the known limitations of our 
protocol. 
 
4.5 Throughput and Limitations of the Security Protocol 
 
It is the opinion of the authors that the main concern with any proposed protocol is 
whether it will be able to handle large amounts of network traffic. Most WSN 
applications need to transfer data in almost real time. This is the case where WSNs are 
used to track objects travelling in a sensor field or where it monitors for forest fires or 
any other natural disaster. These applications are often time critical applications and 
they can also not afford to lose any single packet in the case of an emergency. 
We have stress-tested the protocol and have found that we can send about 6 to 8 data 
packets from a single mote per second. This would estimate to 18 to 24 packets 
exchanged on the network per second. We are quite confident that we can classify this 
as almost real time communication and would be sufficient for WSN applications. 
However, it is also very important that we address the limitations of the protocol. The 
main limitation we have with the protocol is the physical effort it takes to deploy new 
motes into the network or replace the batteries on motes. If a new mote is deployed or 
batteries have to be replaced, a new encryption key has to be generated and manually 
added to the base station before this mote can communicate back to the base station. 
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Conclusion 
 
Wireless sensor networks currently have very little security mechanisms embedded into 
them and are susceptible to a myriad of attacks, especially denial-of-service attacks. This 
paper proposed a security protocol which can be implemented in WSNs in order to 
improve WSN security. 
This paper mainly focused on thwarting flooding attacks, sinkhole attacks, data 
interception and attacks which could occur if an attacker had physical access to the 
motes. In the opinion of the authors, we believe that there are room for improvement 
on preventing flooding attacks in WSNs. Flooding attacks are one of the most difficult 
attacks to thwart, because extensive processing power is required to analyse packets 
and determine that it is a flooding attack. If we simply start rejecting packets after a 
certain threshold, we could be the cause of a self-inflicted denial-of–service attack on 
our own network, should legitimate packets be wrongfully rejected.  
The security protocol that was proposed used XTEA to perform end-to-end encryption 
on the network. Encryption keys were also exchanged using this algorithm. It provided 
us with the functionality that data which were intercepted could not be decrypted easily 
and the network was fully resilient against sinkhole attacks. It also provided more 
efficient security in terms of redeploying motes or adding new motes to the WSN. 
This paper showed that the proposed WSN security protocol is resilient against most of 
the known attacks on wireless sensor networks and would be of benefit to any existing 
WSN which has little or no imbedded security. 
In further research the authors will explore finding additional countermeasures for 
other types of attacks on wireless sensor networks.  In addition, the authors also plan 
to explore the possibilities of injecting a second WSN as a forensic WSN. Such a 
forensic WSN might also act as an intrusion detection system in a WSN environment. 
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Abstract—Social engineering is a real threat to industries in this 
day and age even though the severity of it is extremely 
downplayed. The difficulty with social engineering attacks is 
mostly the ability to identify them. Social engineers target call 
centre employees, as they are normally underpaid, under skilled 
workers whom have limited knowledge about the information 
technology infrastructure. These workers are thus easy targets 
for the social engineer. This paper proposes a model which can 
be used by these workers to detect social engineering attacks in a 
call centre environment. The model is a quick and effective way 
to determine if the requester is trying to manipulate an 
individual into disclosing information to which the requester does 
not have authorization for. 

Keywords:Social engineering, social psycholgy, emotional state, 
information sensitivity. 

I.  INTRODUCTION 

Social engineering, in this context, refers to various 
techniques that are utilized to obtain information in order to 
bypass security systems, through the exploitation of human 
vulnerability [1].  As clearly stated by various authors [2], [3], 
[4], [5], the human element is the ‘glitch’ or vulnerable 
element within security systems. It is the basic ‘good’ human 
natured characteristics that make people vulnerable to the 
techniques used by social engineers, as it activates various 
psychological vulnerabilities, which could be used to 
manipulate the individual to disclose the requested information 
[2], [5]. 

Individuals make themselves even more vulnerable to 
social engineering attacks by not expecting to ever be a victim 
of such an attack, and many will never know that they were a 
victim of such an attack.  The majority of the public are not 
aware of this technique, and do not fully comprehend the 
extent to which these techniques to obtain information, can be 
used, and the potential it holds for dire personal, economic and 
social consequences and losses for the individual and 
institution. An individual may believe that the information they 
posses is of no particular value to another person, nor could it 
be used for any malicious act, and will thus be more willing to 
disclose information freely.  However, the social engineer is 
dedicated to researching various aspects and gathering 

information from various sources. Combined the acquired 
information can have dire consequences. 

On the other end of the spectrum, the individual might 
believe that they will not fall prey to such an attack, as they 
would be able to recognize such an attack instantaneously.  
However, the social engineer is a skilled human manipulator, 
preying on human vulnerabilities using various psychological 
triggers that could foil human judgment. 

The problem is to successfully detect social engineering 
attacks whilst working in a stressful environment, where 
decisions must be made instantaneously. It is for this reason 
that a practical model, that can be easily implemented and used 
by all levels of employees, is necessary and proposed within 
this paper.  This model should be used in combination with 
training on various social engineering techniques, the 
psychological vulnerabilities it may elicit, and institutional 
policies and procedures. 

The two main perspectives of social engineering - the 
psychological perspective and the computer science 
perspective - are accounted for within this model.  The 
psychological perspective focuses on the emotional state and 
cognitive abilities of the individual. The computer science 
perspective focuses on information sensitivity, one of the 
cornerstones of information security. Other important factors 
incorporated within this model are the urgency of requested 
information and an individual’s comprehension of the 
requested information.   

The remainder of the paper is structured as follows. 
Section 2 provides background about Social engineering, and 
Section 3 discusses background on the process of human 
reasoning and decision-making. Section 4 introduces the 
proposed model, as presented within this paper, which was 
developed for social engineering attack detection and provides 
an in-depth discussion of each of the pertinent elements of the 
model. Section 5 provides scenarios in order to demonstrate the 
effectiveness of the model. Finally, Section 6 concludes with a 
summary of the social engineering attack detection model and 
suggested future work. 

978-1-4244-5495-2/10/$26.00 ©2010 IEEE

 
 
 



II. SOCIAL ENGINEERING 

According to [1] social engineering is defined as the 
techniques used to exploit human vulnerability to bypass 
security systems in order to gather information.  As indicated 
by this definition, social engineering attacks imply interaction 
with other individuals, indicating the psychological aspect of 
social engineering. 

Various psychological vulnerabilities and triggers, used by 
social engineers, have been identified, which aim to influence 
the individual’s emotional state and cognitive abilities in order 
to obtain information.  To successfully defend against these 
psychological triggers, the individual will need to have a clear 
understanding of these triggers in order to recognize each 
during a social engineering attack.  Seven psychological 
vulnerabilities has been defined by [6]. These psychological 
vulnerabilities are the following [2],[3],[7],[8]:  

Strong Affect: When a strong emotion is triggered, such as 
anger, excitement, fear or anxiety, an individual’s cognitive 
ability may be seriously hampered. This may include their 
ability to make decisions rationally, evaluate the situation, 
make counterarguments, and reason logically, which is why 
this is such an effective technique used by social engineers [8].  
A phishing attack could be used as an example.  These are 
thoroughly planned criminal attacks, where websites are 
designed to masquerade as the authentic site, in order to obtain 
another individual’s authentication credentials and confidential 
information illegally for financial gain. Phishing attacks are 
mostly distributed over e-mail as this is one of the easier ways 
to reach a large distribution of the population in order to ensure 
the success of the attack. A disparity is created between the 
individual’s perception and the truth, eliciting a heightened fear 
response, where cognitive abilities are compromised, and the 
probability of ensuring that the correspondence is legitimate 
will be minimal [9]. 

Overloading:  This technique has a time element, with the 
result that the individual becomes cognitively pacified or 
compliant, through the bombardment of a series of hurried 
persuasive axioms [8].   

Reciprocation: “One good deed deserves another”; Social 
exchange theory states that individuals, on receiving a kind 
gesture from another, feels obligated to reciprocate with 
kindness.  The social engineer might create a problem for the 
individual, only to fix it again, in order to make the individual 
feel obligated to reciprocate by disclosing information [7]. 

Deceptive Relationship: To obtain information, the social 
engineer will identify an individual to purposefully build and 
establish a relationship.  This is done with a particular purpose, 
as individuals tend to share information freely within 
established relationships [8]. 

Diffusion of responsibility and moral duty: The individual 
is made to believe that their actions - to disclose information, 
even though it is against policy - will have greater benefits and 
important beneficial consequences, such as to help save an 
employee or helping the institution, and that they will not be 
held solely responsible for their actions [8]. 

Authority:  By the social engineer portraying an authority 
figure, the individual is more likely to comply with the request 
to disclose information, as an authority figure almost implicitly 
elicit a conditioned response to adhere to their wishes and 
demands, combined with a fear of punishment if the individual 
may appear to undermine their authority by verifying their 
legitimacy [7],[8]. 

Integrity and Consistency:  Individuals have an intrinsic 
desire to uphold their commitments, even if it were not their 
own [8].  

These triggers could be used to perform a social 
engineering attack on an unsuspecting victim, which could lead 
the victim to experience a sense of discomfort, whether just an 
uneasiness or even anxiety, as all these attacks prey on the 
victim’s psychological vulnerabilities. One would expect that a 
victim would be able to use these clues of discomfort to detect 
that he is being targeted by a social engineering attack. 
However, this is the ideal and not realty, as the human 
reasoning and decision-making process is extremely complex, 
and prone to error. 

The following section discusses the human reasoning and 
decision-making process and how it applies to detecting social 
engineering attacks. 

III. HUMAN REASONING 

The human ability to make conscious, rational judgments, 
which underlie their decisions, will not always be the ideal.  
This can be ascribed to various human factors, such as limited 
information-processing capacity, the use of heuristics (mental 
processes, or shortcuts, used to simplify the process of 
judgment, which can lead to judgmental error), personal 
preferences, and a vulnerability to be influenced by emotions 
and manipulated by others.  Human decision making is a 
complex process, where most decisions that need to be made 
will not have only one ideal option, and the same decision will 
not be made by all people [10],[11]. 

Within the subjective utility theory, the subjective 
experience of an individual is taken into consideration, where 
the goal is to maximize gain and to avoid losses.  This 
subjective experience refers to the individual’s own personal 
judgment on value (utility) and likelihood (probability), instead 
of objective criteria and computations, where personal 
characteristics have an impact [11],[12]. 

The individual will follow a series of steps to come to a 
decision.  First, for each option, they will multiply the 
subjective probability by the positive subjective utility, 
followed by subtracting the calculation, as before, for negative 
subjective utility.  Based on these expected values, individuals 
will make their decision [11]. 

Risk will always be an integral part of decision-making, as 
the possible outcome is uncertain.  The subjective expected 
utility theory is the most widely applied model regarding risk 
decisions.  Within this extended version of the subjective 
expected utility theory, it allows for subjective probabilities, 
where judgments are made based on the person’s belief on 
likelihood, and where no objective mathematical probabilities 
are available.  This theory cannot, however, predict human 

 
 
 



decisions.  As indicated by the term subjective, each person 
will have their own set of values and characteristics.  By 
considering the particular individual's subjective expected 
utilities and their subjective estimates of probabilities of cost 
and benefits, one can predict the optimal decision for that 
particular individual [10],[11]. 

Within this subjective expected utility theory model it is 
believed that the individual will try to achieve a well-reasoned 
decision by considering all the possible alternatives and 
information available, calculating the probability of each 
probable outcome and the cost and benefits it may hold [10].  
Based on this theory, a decision to disclose information will be 
based on risk-benefit analysis [10]. 

Decision analysis, a technology based on subjective 
expected utility theory, attempts to aid better decision making 
[10].  This approach attempts to aid people to comprehend and 
have clarity regarding their goals and values, to search for 
possible options and verification of facts.  One of the 
techniques used by decision analysis is decision trees.  
Decision trees are representations of decisions, which aid 
complex decision-making by breaking it down into more 
manageable components.  Values are assigned to each element, 
whereupon ideal decision principles are applied to integrate 
these elements.  By combing the probabilities and the utilities 
that correspond to each possible outcome, the best alternative 
is selected [10]. 

People do not possess a stable set of pre-existing values 
that are simply applied; their decisions will be determined by 
the present context, and the demands of the decision [10]. 

As indicated by literature, individuals find it difficult to 
make rational decisions in a limited time frame, especially 
regarding complex matters.  With the skill of the social 
engineer and the complexity of the attack he is performing, at 
best, an uninformed individual would only be able to make an 
educated guess regarding the likelihood of being targeted by a 
social engineering attack.  An individual would need a 
predefined set of guidelines on which to measure the likelihood 
of a social engineering attack in order to make a more informed 
decision. 

The following section is devoted to proposing a practical 
application model to determine if a social engineering attack is 
being performed.  

IV. SOCIAL ENGNEERING ATTACK DETECTION MODEL 

(SEADM) 

As indicated, a model is needed as guideline to detect social 
engineering attacks. The authors propose a social engineering 
attack detection model, making use of a decision tree, by 
breaking the process down into more manageable components, 
and guidelines to aid decision-making (SEADM) in figure 1.  

This paper firstly addresses each of these states individually 
as shown in figure 1 before the full model is discussed with 
examples. Throughout this discussion the term individual is 

defined as the person dealing with the incoming call and the 
term requester is defined as the person whom is making the call 
and requesting the information. 

A. How would you describe your emotional state? 

The first necessary step in this model, and one that will 
have to be considered throughout the process, would be for the 
individual to be conscious of, and able to evaluate their 
emotional state, on an ongoing basis.  This implies a 
consciousness of emotion and how it can affect one’s 
decisions. 

In the same manner, the individual should evaluate the 
emotion the requester elicit within themselves, as the 
psychological vulnerabilities, that might be triggered by a 
social engineering attack, is directly aimed to create certain 
emotional states in order to obtain information. 

We are all familiar with a day that start off horribly and 
seem to continue with every possible thing going wrong. For 
example, the car broke down on the way to work, followed by 
a negative emotional experience whether it be family problems 
or a argument with a spouse or colleague.  All factors and 
negative events influence our emotional state and hamper our 
ability to make rational, thought-through decisions [13].  In 
such a negative emotional state it is more likely to be a victim 
of social engineering: concentration is low, irritability and 
frustration is high, where an individual can possibly provide a 
requester with information just to get rid of them. 

It is necessary to emphasize again what a critical role an 
individual’s emotional state can play in the safekeeping of 
privileged information.  If an individual is in a negative 
emotional space, the individual will not always be able to make 
a rational decision on the sensitivity level of the information of 
a request, or to whom it may be disclosed.  This could result in 
costly losses to the institution and individual. 

Awareness and consciousness of one’s emotional state will 
not be an easy task, or even always a possible task for all 
individuals. With training and rehearsal this skill can and will 
improve. For this reason the authors are in the process of 
developing a quick self-evaluation electronic questionnaire that 
individuals will be able to use.  However, in combination with 
the model, training by the institution can be emphasized on the 
various techniques used, the psychological vulnerabilities the 
attacker may elicit, and institutional policy and procedures. 

It is important to note that judging one’s own emotional 
state could be a tedious matter and some individuals are unable 
to perform this task. It is for this reason that an automated self-
evaluation electronic questionnaire would be implemented. The 
questionnaire would consist of a large database of questions, of 
which only a few would be used per evaluation of this state. 
Only a few would be used each time as there is a time 
constraint associated with the model and individuals would be 
unable and reluctant to perform a self-evaluation task if it takes 
an excessive amount of time. The timeframe for completing 
this state should be within a few seconds. 

 
 
 



Figure 1.  Social Engineering Detection Model 

 
 
 



If the individual or the self-evaluating questionnaire finds that 
the individual is too emotional, the call or email request 
should rather be escalated to another individual.  Of course 
this has the implication, and danger, of people using this as a 
tool to shift their work responsibilities to another, as well as 
promote further frustration for all people involved.  However, 
the dangers of social engineering, obtaining privileged 
information, which can lead to great losses to the institution 
and possibly the individual, are a much greater threat. 

B. Do you have access to the information requested and do 
you understand the request? 

When a request for particular information is made, the 
individual needs to judge if they possess adequate knowledge 
regarding the requested information, and if they have access to 
the information which is being requested, to adequately 
provide this information.  Obviously, if the individual does not 
have the knowledge required, they will not be able to provide 
the information, and could refer the requester to another 
individual, who will also then follow this model.  If the 
individual judge that they have adequate knowledge on the 
subject in question the following step can be taken. 

C. Is the information requested already in the public 
domain? 

Individuals should have a clear understanding of what 
information are readily accessible to the public regarding their 
institution and related information.  The information in the 
public domain could include contact details and working hours, 
which could be available on the institutions website, and thus 
be legally provided to a requester.  

D. Is the requester’s identity verifiable? 

The individual now needs to verify the identity of the 
requester, to enable them to make an informed and rational 
decision if information should be provided to the requester at a 
later stage of the model. If the requester’s identity cannot be 
verified, a different set of states will be examined to determine 
if the information should be provided. 

Important to remember is that the social engineer might be 
portraying himself as an authority figure within the institution, 
a computer technician, or any other persona that might elicit 
compliance.  As humans we are inclined to make quick 
assumptions regarding people and their stature, based on 
trivialities such as clothing.  If someone is dressed in the proper 
attire, use the appropriate institutional jargon, using an 
important individual’s name, does not necessarily indicate that 
the individual is trustworthy. Social engineers do an enormous 
amount of research before an attack if warranted.  If at any time 
the individual feels unsure, they should contact their manager, 
to obtain authority to provide, or not provide, the information 
requested.  

To verify the requester’s identity, the following should be 
taken into account and used to form a global impression to base 
the decision on whether to provide or not provide the requested 
information: authority, credibility, previous interaction, and 
knowledge of the person’s existence will have to be taken into 
account.   

Some of the techniques that can aid in the verification 
process of an individual’s identity are the following:  Caller 
Identification; Calling back the requestor on a predetermined 
phone number; To request a secure email; To request a secure 
password; To request a face-to-face interaction with the 
individual, where he would provide proper identification, 
Where another employee can vouch for the requester; To 
contact the requester's immediate supervisor in order to verify 
his/her identity; To use an employee directory [3]. 

In this model it is suggested that the individual should be 
able to determine at least three of the four components to 
successfully verify the individual.  Each of these qualities will 
now be individually addressed. 

1) Authority level of the requester 
Authority is part of any institution, with an almost 

conditioned response from employees to adhere to their wishes 
and demands, combined with a fear of punishment if the 
individual may appear to undermine their authority [7].  For 
this reason it is a very effective technique used by social 
engineers to obtain privileged information.  The institution 
needs to provide an environment where the employee feels 
comfortable, and are expected to question the authority figure’s 
identity when disclosing sensitive information.   

With the determining authority, the employee also needs to 
know, with the help of a clear institutional policy, what 
authorization level a particular person of authority has, in 
regards to what privileged information can be provided.  

2) Credibility of the requester 
The employee needs to judge the level of credibility of the 

requester.  However, this is a challenging task, as establishing 
credibility is the first step the social engineer undertakes, and 
what the attack will be based on. 

If the requester knows the jargon used by the particular 
institution, people easily assume that the requester is an 
employee at their particular institution. The requester could, for 
example, be an ex-employee, quite knowledgeable about the 
jargon and procedures. Such ex-employee might seek revenge 
with the goal of obtaining particular sensitive information. 

The credibility of the requester is measured on the basis of 
how he/she responds on predefined of set of questions which 
can be used to determine the credibility of a requester. 

3) Previous interaction with the requester 
If the individual had previous interaction with the requester, 

especially a longstanding history of interaction, the decision 
and knowledge to what information can be provided will be an 
easy task.  However, few interactions with the requester, 
especially by telephone and email alone, should be considered 
in conjunction with other verification techniques, to be able to 
make an informed and safe decision regarding the disclosure of 
information. 

4) Are you aware of the existence of the requester? 
This refers to the knowledge that the requester exists within 

the institution or an outside collaborating partner on a project 
can support the verification of the requester.  However, this 
should also be used in conjunction with the other verification 
techniques, as the requester could be a social engineer 

 
 
 



portraying himself as the well-known figure in order to obtain 
privileged information. 

It is suggested that within institutional policies and 
procedures, a classification system of information should be 
established, whereupon a document should be compiled and 
made available to all, of all personnel indicating what level of 
information authorization each has, which will simplify the 
process. 

E. How sensitive is the information that is being requested? 

It is critical that the individual are knowledgeable, and have 
absolute clarity, what information is privileged, and what 
information are authorized to be provided, and to whom, thus 
depicting the level of information sensitivity. This skill can be 
nurtured and enhanced through training on institutional policies 
and procedures. 

For the purpose of this model, information is divided into 
two categories, privileged and non-privileged information. 
Privileged information indicating information requiring a form 
of authorization, and non-privileged information indicating 
information that requires no authorization and are freely 
available.  

The proposed model should be used in conjunction with an 
institution’s policies and procedures on information sensitivity.  
These policies and procedures should include clear, easily 
understandable and easily accessible guidelines to verify the 
authorization level needed in order to request the specific 
information. 

As each institution is unique, each will have to create and 
establish their own security policies to address the 
classification of sensitivity of particular information, under 
which circumstances it may be divulged, and to which 
particular individuals or institutions.  These policies should 
also include processes and accountability for reporting 
suspected incidents [7]. 

After determining whether information is privileged or non-
privileged, the individual will need to determine if the 
requester has the necessary authority to request the 
information. 

F. Does the requester have the necessary authority to 
request the information? 

With the aid of the previous steps the individual possess the 
necessary knowledge regarding the requester’s identity and 
authority level, together with the information classification.  
The individual can now determine whether the requester has a 
level of authority on the same level or higher as the level of 
sensitivity of the information. If the requester possess 
authorization on the same authority level or higher needed for 
the particular information, the next step - the level of 
experienced discomfort - can be considered.   

However, if the authority figure does not have the 
necessary authorization, or if the individual feels that the 
request made is not legitimate, the model will treat the 
requester as a non-verified individual.  In this scenario the 
following step - to determine the necessity of the information 
to fulfill required duties - will be considered. 

G. Is it necessary to provide information in order for the 
requester to perform his duties? 

A subjective estimation needs to be made if it will be 
beneficial or detrimental to provide the information to the 
requester at the particular time of the request, as well as how it 
could empower the individual to complete their work. The 
individual should be sure that if he/she provides information to 
the requester that it would indeed be beneficial to both parties 
involved. 

Apart from establishing if the information would help the 
requester to complete his duties, one would also need to 
consider the urgency of the request. 

H. Is it an urgent request which needs to be fullfilled? 

The individual needs to assess the urgency that the 
requested information is needed.  If the information is not 
urgently needed, and any doubts exist, the information does not 
have to be provided, or can be provided at a later time.  With 
the time leniency, an authority can be consulted, who can 
choose to further investigate, or provide authorization to 
divulge the requested information. 

If the information is urgently needed, whether it is to 
complete an urgent project, or in a life threatening situation 
such  as where an individual’s medical insurance number is 
required as he was injured at work, the employee should 
consider the next step of level of experienced discomfort. 

I. Level of Experienced Discomfort 

Evaluation of one’s emotions is again emphasized, where 
an individual will have to trust the emotions they are 
experiencing at that particular time, e.g. “trust your gut”.  If the 
level of discomfort experienced is evaluated as too high, 
information should rather not be provided, as certain 
techniques used by social engineers may elicit high levels of 
emotional discomfort, enabling them to obtain privileged 
information.  Part of the social engineer's skill set is the ability 
to profile individuals, using the appropriate technique for the 
particular individual, forcing them into a desired role.  This 
technique is called altercasting [1].  In a certain scenario they 
may be aggressive and threatening towards the individual, 
causing high levels of anxiety, where the individual's cognitive 
ability to reason, to be able to stay calm and focused, and to be 
able to make rational counterarguments, are detrimentally 
influenced.  In another scenario, and also the most frequently 
used form of this technique, the individual will be ascribed to 
the role of helper, where the individual could experience 
discomfort and possibly guilt - an emotion most people try to 
avoid - if they do not oblige to the request. 

If, however, the individual does not experience any 
discomfort or if the level of discomfort is understandable and 
acceptable, information can be provided, as the previous steps 
have been successfully completed. 

The next section demonstrates the application of the model 
by use of examples. 

V. DISCUSSION 

Three example scenarios are provided within this section. 
The first scenario is a legitimate request by a bank account 

 
 
 



holder, requesting his bank account balance. The second 
scenario also depicts a request for a bank account balance, 
however, by a social engineer. The third depicts a basic 
scenario where a request is made regarding the closing time of 
a store.  

Within all the provided scenarios in this paper, it will be 
assumed that the individual dealing with the request is in a 
stable emotional state.  

A. Scenario one 

A telephonic request is made to obtain a personal bank 
account balance.  The process, according to the SEADM 
model, will be following: 

Emotional state of the call centre agent will be analyzed, 
which will equate to stable. 

Do you have access to the information requested and do 
you understand the request? Yes. 

Is the information requested already in the public domain? 
An individual’s bank balance is not public information and 
will, thus, be necessary for the agent to verify the identity of 
the requestor. 

The requestor will need to identify himself, and establish 
his credibility by providing the call centre agent with his 
personal information.  The call centre agent then verifies the 
information by comparing it to the information on the system 
when the bank account was created.  This verifies the question 
of being aware of the existence of this requester, as well as the 
authority level of the requestor. 

How sensitive is the information being requested? A bank 
account balance is classified as privileged information. 

Does the requester have the necessary authority to request 
the information?  Yes. 

Lastly the call centre agent would need to analyze his level 
of experienced discomfort, which would be acceptable as there 
were no issues in this call. 

Within the process completed, in this scenario, access can 
be provided, allowing the call centre agent to provide the 
requester with his bank balance. 

B. Scenario two 

This scenario also depicts a request for a bank account 
balance, however, by a social engineer. 

Emotional state will be analyzed, which will equate to 
stable. 

Do you have access to the information requested and do 
you understand the request? Yes.  

Is the information requested already in the public domain? 
An individual’s bank balance is not public information, and 
will thus be necessary for the agent to verify the identity of the 
requestor. 

The requestor, who, in this scenario is a social engineer, 
will attempt to identify himself. This can proceed in one of two 
ways. The social engineer could be in possession of adequate 
information pertaining to the victim’s personal and banking 

details.  This information used in conjunction with his various 
skills and techniques, for example overloading, can convince 
the call centre agent he is the legitimate requester. This could 
lead the call centre agent to experience a high level of 
discomfort. The call center agent could elevate the request to 
another individual with higher authority to adequately manage 
the request, or could deny access to the information.  

To fully explain the model, this paper will examine the 
alternative route, where the social engineer failed to validate 
himself as the owner of the bank account but he has validated 
himself as a friend of the owner of the bank account. 

How sensitive is the information being requested? A bank 
account balance is classified as privileged information. 

Does the requester have the necessary authority to request 
the information?  Within this alternative scenario the answer 
would be no. A friend will not have authorization to privileged 
information as a bank account balance.   

Is it necessary to provide information in order for the 
requester to perform his duties? The social engineer could 
portray himself as the bank account holder's accountant, 
explaining that he needs the information to complete his duties. 
Assuming the call centre agent allows this, he will move onto 
the urgency test. 

The call centre agent needs to determine the urgency of the 
request.  However, a legitimate accountant would ask the 
account holder to contact the bank and obtain the necessary 
information.  In this scenario the call centre agent would need 
to elevate the request, and report the request as a suspicious.  

This scenario depicts how a social engineering attack could 
have been thwarted. The last scenario depicts a request to 
public information. 

C. Scenario three 

Within this scenario a request is made regarding the closing 
time of the institution. 

Emotional state will be analyzed, which will equate to 
stable. 

Does the individual have access to the information 
requested and understand the request?  Within this scenario the 
individual have the necessary information regarding the 
operating hours of the institution and understands what 
information is being requested. 

The operating hours of the institution is information which 
is already in the public domain, and thus can be provided to the 
requester. 

This paper concludes by providing a brief summary and the 
potential advantages it may hold to an institution if applied 
together with adequate training. 

VI. CONLCLUSION 

Social engineering is very difficult to detect, as the social 
engineer possess various skills and effective techniques, 
preying on human vulnerabilities, which makes these attacks 
often go without notice.  What makes detection even more 
difficult is that many people are unaware of this technique and 

 
 
 



the potential threat, and dire consequences it holds for the 
individual and for institutions.   

As of yet, only training has predominantly been considered 
as preventative measure to social engineering.  However, it has 
been shown that training is soon forgotten, especially in the 
real work environment, rendering training only as ineffective 
against social engineering.  It is proposed that a visible 
practically applied, user-friendly aid, as the SEADM, will aid 
in the daily awareness of the threat, and thus protection against 
social engineering.  

It has been shown by the use of scenarios that the proposed 
model is indeed feasible as a preventative measure to social 
engineering attacks. This model makes a valuable contribution 
to the field of social engineering, as it aids in the detection of 
social engineering attacks, by breaking down the decision-
making process into manageable components. 

Future research will aim to improve the SEADM, by 
designing an automated electronic emotional self-evaluation 
questionnaire.  This will aid the model by removing the 
subjectivity from the emotional state question and provide an 
objective way to measure an individual’s emotional state. The 
authors will also explore research by [2] to illustrate the 
probable increase in awareness of an individual’s own 
vulnerability to such an attack, through practical application of 
social engineering in training. Lastly, some action research in a 
call centre will be completed in order to verify the usability of 
SEADM. 
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Abstract 
The field of wireless sensor networking is a new and upcoming one and unfortunately still lacking as far as 
digital forensics is concerned. All communications between different nodes (also known as motes) are sent out in 
a broadcast fashion. These broadcasts make it quite difficult to capture data packets forensically whilst retaining 
their integrity and authenticity. This paper examines the differences between IEEE 802.15.4 wireless sensor 
networks and IEEE 802.11x wireless networks when it comes to implementing digital forensic readiness within 
the network environment. It focuses on the differences in the communication protocol, proof of authenticity and 
integrity, time stamping, modification of the network after deployment and other differences between IEEE 
802.15.4 wireless sensor networks and IEEE 802.11x wireless networks. Each of these elements is discussed, 
after which a table is provided that shows the specific requirements to be taken into account when proposing 
digital forensic readiness in a wireless sensor network environment. 

Keywords 
forensic readiness, digital forensics, wireless sensor networks 

1. Introduction 

Our pursuit of a better lifestyle has led to a vast improvement in the technology to which we 
have access in today’s world. The concept of a wireless sensor network (WSN) is just another 
technology developed to improve our ability to better accomplish our daily tasks. The 
implementation of security protocols on WSNs has not received much attention to date, and, 
even more so, very little consideration has been given to digital forensics within a WSN 
environment. 

The problem is that currently there is no formal set of requirements for achieving digital 
forensic readiness in wireless sensor networks. The purpose of this paper is to determine how 
IEEE 802.15.4 wireless sensor networks differ from IEEE 802.11x wireless networks when it 
comes to implementing digital forensic readiness. 

The remainder of the paper is structured as follows: The second section provides some 
background information about WSNs and digital forensic readiness. Section 3 discusses the 
differences between IEEE 802.11x wireless networks and IEEE 802.15.4 wireless sensor 
networks with regard to digital forensic readiness. Section 4 proposes a set of requirements 
that need to be adhered to when implementing digital forensic readiness for wireless sensor 
networks. Finally, a summary is provided of the forensic readiness requirements that are 
proposed and of future work to be done in this field. 

2. Background 

Wireless sensor networks still constitute a relatively new area of research in computer science 
and the first papers on WSNs were only published in the last decade (Chong & Kumar, 2003; 

 
 
 



Mouton & Venter, 2009). Much of the research on WSNs has been dedicated to new areas of 
application aimed at supporting our modern lifestyle. Some background information for a 
better understanding of WSNs is provided next, before strategies for the achievement of 
digital forensic readiness for WSNs are suggested. 

2.1 Wireless Sensor Networks 

WSNs belong to the general family of sensor networks that use multiple distributed sensors to 
retrieve data from various environments of interest. Chong and Kumar (2003) provide a 
history of previous accomplishments of WSNs and show how they have evolved in terms of 
sensing, communication and computing. WSNs consist of wireless nodes with embedded 
processors and ad hoc networks (Estrin et al., 2001), and involve wireless communication 
(Ye, Heidemann & Estrin, 2002). Mouton and Venter (2009) define a WSN as an ad hoc 
network that consists of tiny and resilient computing nodes known as motes or sensors. These 
motes are extremely efficient with regard to power consumption and can collaborate 
effectively with other motes in their vicinity. A graphical representation of a wireless sensor 
network is provided in Figure 1, while in Table 1 the functions of each of the components are 
subsequently summarised briefly (Mouton & Venter, 2009; Heinzelman, Kulik & 
Balakrishnan, 1999; Sohrabi et al., 2000). 

 

Figure 1: A graphical representation of a wireless sensor network (Mouton & Venter, 2009). 
 

 

 

 
 
 



WSN component Functions of each component 
User The user can interact with the WSN through the management server.  
Management Server The management server serves as an interface console for the WSN. 
Sensor Field The sensor field denotes the physical boundaries of the WSN. 

Wireless Sensor Node 
(mote) 

Each mote contains a small subset of the various sensors. Motes in the 
network can also act as repeaters for packets that need to reach the base 
station. 

Base Station 
A base station serves as a gateway node through which the information of 
the motes has to travel to reach the management server. 

Short-range Wireless 
Communication 

Short-range wireless communication links are established between 
neighbouring motes and the neighbouring base stations. 

Long-range High-speed 
Communication 

Long-range high-speed communication links are established between 
further-ranged base stations and the management server. 

Table 1: Brief summary of functions of the components of a wireless sensor network (Mouton & 
Venter, 2009). 

WSNs can be used in many environments. Their motes may consist of many different types of 
sensors, such as thermal, visual, infrared, radar or acoustic. These motes can monitor a wide 
variety of ambient conditions, including humidity, pressure, sound, noise levels, temperature, 
lightning conditions and objects moving through a designated area (Elson & Estrin, 2001; 
Kahn, Katz & Pister, 1999). 

Some applications of WSNs include military applications such as the tracking of moving 
objects and battlefield surveillance (Zhao, Shin & Reich, 2002); environmental applications 
such as habitat monitoring, forest fire detection and flood detection (Mainwaring et al., 2002); 
and health applications such as the tracking and monitoring of doctors and patients in 
hospitals, as well as of drug administration in hospitals (Lu et al., 2002). Finally, WSNs can 
also be used for home and building automation applications. 

The next subsection focuses on providing the reader with a workable definition of digital 
forensic readiness in a WSN context. 

2.2 Digital Forensic Readiness 

To achieve digital forensic readiness in any type of environment, it is essential to first 
establish an acceptable definition for it. However, since it is a fairly new concept and the 
subject of divergent opinions, consensus must still be reached in this regard.  

In defining digital forensic readiness, Tan (2001) identifies two objectives that have to be 
balanced carefully: maximising the ability to collect credible digital evidence, and minimising 
the cost of performing a digital forensic investigation. Tan also argues that several steps need 
to be taken to ensure that an environment is ready as far as digital forensics is concerned. 
Rowlingson (2004), on the other hand, suggests ten steps that describe the key activities in 
implementing a digital forensic readiness programme. Because Rowlingson’s steps have 
actually been designed to create a business process model for digital forensic readiness, this 
paper gives preference to Tan’s objectives for meeting the requirements of digital forensic 
readiness in a WSN environment. 

Even though Tan’s two objectives provide a very good definition of digital forensic readiness, 
it is important to refine them somewhat to make the definition more specific to a WSN 
environment. For the purpose of this paper, digital forensic readiness is defined as the notion 
to perform a digital forensic investigation in the shortest amount of time with the least amount 

 
 
 



of cost and without having to disrupt the original network that has to perform mission-critical 
tasks. This definition is set as the main goal for achieving digital forensic readiness on WSNs.  

The next section discusses the differences between IEEE 802.15.4 wireless sensor networks 
and IEEE 802.11x wireless networks when it comes to implementing digital forensic 
readiness. 

3. Differences between WSNs and WLANs 

WSNs have special needs compared to IEEE 802.11x wireless networks and hence have more 
specialised requirements than would apply to wireless networks (also known as wireless local 
area networks or WLANs). There are many important factors that make a WSN unique and 
distinguish it from a WLAN. The factors that are addressed in this paper are the following: 

• Communication protocol 
• Proof of authenticity and integrity 
• Time stamping 
• Modification of the network after deployment 
• Protocol data packets 
• Radio frequencies 
• Power supply 
• Network overhead 
• Data integrity 

 
The factors listed above are the main ones that differentiate WSN environments from WLAN 
environments. The reasoning behind the choice of these factors will become apparent in the 
coming subsections, where each factor is addressed individually. It is, however, important to 
remember that the core of the argument about the importance of these factors concerns the 
manner in which they influence the design decision of how to implement a digital forensic 
readiness application for WSNs. 

While examining each of these factors, it is important to note that the authors assume that no 
modification to the original WSN (hence forward referred to as oWSN) is allowed and thus a 
secondary independent forensic WSN (hence forward referred to as fWSN) would be used for 
the digital forensic readiness implementation of the oWSN. 

The discussions in each subsection below briefly focus on how these factors differ from 
WLAN to WSN, and subsequently our focus shifts to how to address them in WSNs. 

3.1. Communication Protocol 

All communication within a WSN occurs in a broadcast fashion and thus a mote never really 
knows which of its neighbouring motes actually receives the packet (Akyildiz et al., 2002; 
Tseng, Ni & Shih, 2003). The default functioning of a mote in the sensor field is to receive all 
packets – upon receipt of a packet it then has to analyse if the packet was meant for it or not. 
This analysis requires some processing that drains the battery of the mote, which is an 
important consideration in WSN communication. 

The broadcasting technique used in WSNs is very different from the communication 
techniques used in an IEEE 802.11x wireless network. In the WLAN environment, one can 
determine if a packet has arrived at its destination by monitoring the network, since 

 
 
 



acknowledgement packets are sent to confirm the receipt of packets (Xylomenos & Polyzos, 
1999; Xylomenos et al., 2001). This is not the case in a WSN environment. 

Due to the broadcasting fashion in which WSNs communicate, the mote that broadcasts 
packets will never be completely sure whether the packet was received by the mote for which 
the packet was intended. This uncertainty could be overcome by introducing a communication 
protocol that allows the receiving mote to reply with a receipt acknowledgement packet. 
However, because this would require extra transmissions that can lead to a greater battery 
drain, this procedure cannot simply be implemented in all WSNs. The suggested technique 
also has several other disadvantages. If a flooding attack is launched against the oWSN, it 
would compel the oWSN to reply to each flooding attempt with receipt acknowledgement 
messages, which would then flood the entire oWSN. 

Considering that a protocol founded on receipt acknowledgement packets can have such a 
severe impact on a WSN environment, it seems quite impractical to use such a protocol in this 
environment. Hence the authors have agreed to accept that most WSN motes will be uncertain 
as to whether or not packets have actually arrived at their destination. This causes severe 
problems in terms of forensic monitoring with a secondary network. It could likely be the case 
that the packets received by the oWSN base station might differ from those received by the 
fWSN base station in the case that some of the packets are dropped in either of the two WSNs. 
In the case of the fWSN, however, this problem could be avoided by implementing a protocol 
that uses receipt acknowledgement packets, because it is in the nature of a forensic network to 
always be sure that the information received at either point of the communication line 
contains some degree of authenticity and integrity. In order to achieve sound digital forensic 
readiness, it is crucial to prove the authenticity and integrity of the data packets that have been 
received. The next subsection focuses on defining what the authors see as authenticity and 
integrity. The differences between maintaining the authenticity and integrity from a WLAN 
and a WSN perspective are also discussed, as well as possible ways of maintaining 
authenticity and integrity within a WSN environment. 

3.2. Proof of Authenticity and Integrity 

Authenticity and integrity first need to be defined as there could be different opinions on 
precisely what each of them means. In the context of this paper, authenticity is defined as the 
certainty that the origin and destination of the data packet are kept intact throughout its whole 
lifetime. The lifetime of a data packet runs from the time that it is sent from the first mote up 
to the time when it is received and processed by the base station. Next, integrity is defined as 
the certainty that the correctness of the data within the data packet is kept intact throughout 
the lifetime of the data packet. 

Numerous techniques for proving the authenticity and integrity of packets in an IEEE 802.11x 
wireless network have already been published (Chen, Jiang & Liu, 2005; Komori & Saito, 
2004; (Guizani & Raju, 2005). Firewalls, Intrusion Detection Systems, Wireless Routers and 
Wireless Network Interface Cards are all examples of equipment you would find in an IEEE 
802.11x wireless network and most of these devices have the ability to generate a log or some 
other way of showing which data packets have passed through the network. Most of these 
abilities are fairly simple techniques that are performed by the device itself. In most cases 
where a log file is generated, it is safe to assume that the information reflected in the log file 
is actually the true pattern of traffic that has passed through the device. However, this is only 
the case when it is certain that the device is not defective or that the log file has not been 
tampered with. This single log file can also be backed up by looking at all the other devices 

 
 
 



through which this single packet has travelled, as most devices in an IEEE 802.11x 
environment should have some form of logging. In a WSN environment, however, very little 
or no logging is done on the motes in the sensor field, due to various reasons. These reasons 
can include the limited power source and the limited storage space that these devices have. 
WSN equipment, by default, only does logging at the base station and if logging were to be 
required at every mote, one would have to go and implement this yourself. This obviously 
raises another issue, namely as to the trustworthiness of the code with which one does the 
logging. Tried and tested techniques for logging are generally more trustworthy than one’s 
own attempts at implementing logging. It is easier to defend the authenticity and integrity of a 
well-known logging technique than that of a self-developed technique. In the case where a 
self-developed technique is used, it must be based on some solid theory as to why it can 
provide authenticity and integrity. Because WSNs differ so significantly from WLANs, the 
authors have decided to propose a form of logging that is based on the Casey Certainty Scale 
(Casey, 2002). 

Fortunately, in a WSN environment, multiple motes tend to be able to each capture the same 
data packet simply because they are all in range of a particular broadcasted packet. This is a 
feature of WSNs, which is not the case in IEEE 802.11x networks. Most devices in WLANs 
will ignore packets that are not meant for them and do not even attempt to log these packets. 
The opposite is true for WSNs, where motes attempt to capture every data packet within 
range. This feature of WSNs can be successfully exploited in an attempt to prove the 
authenticity and integrity of packets in the WSN. All the packets captured by each 
independent fWSN mote could be forwarded to the base station, as a central point of analysis, 
in an effort to prove the authenticity and integrity of the data packet according to the Casey 
Certainty Scale (Casey, 2002). 

According to Casey (2002), the integrity and authenticity of information is more certain if this 
information was recorded by different independent sources. Each mote can, in essence, be 
seen as an independent source. Thus, the authenticity and integrity of each packet can be 
determined based on the number of motes in the network that have received the same 
broadcasted packet. This paper therefore assumes that, in accordance with the Casey Certainty 
Scale (Casey, 2002), a packet that has been seen by a larger number of motes has far greater 
authenticity and integrity than a packet that has only been seen by a few forensic motes in the 
network. 

The above technique constitutes only one of several ways to determine the authenticity and 
integrity of the packets in a WSN. Time stamping and the sequence of packets can also be 
used for this purpose. However, time stamping in a WSN is a tedious task. The next 
subsection is nevertheless devoted to it. 

3.3. Time stamping 

Time stamping in a WLAN environment is a fairly easy task, since all the devices in a WLAN 
would under normal conditions either have access to a time server or have been set with the 
correct time. Thus, time stamping in the logs for a WLAN would under most conditions be 
correct, provided that the device has not been tampered with or is not faulty. In the case of a 
WSN, however, only the management server (which is connected to the base station) has a 
sense of time. The motes in a WSN environment have no sense of physical world time and the 
only measurement they can use is their own sense of time, which is the time that has elapsed 
since they were switched on (Sundararaman, Buy & Kshemkalyani, 2005; Su & Akyildiz, 
2005; Sun, Ning & Wang, 2006). Such elapsed time can be measured on WSN devices in 

 
 
 



terms of ticks, where each tick represents 100 nanoseconds (Sundararaman, Buy & 
Kshemkalyani, 2005). This uptime, although fairly accurate, is a poor indication of time, 
because each mote in the entire network has to be switched on simultaneously and the time 
should also be synchronised by transmitting their uptime along with their data packets. It is 
impractical to switch on motes simultaneously and synchronisation is not feasible due to 
resource restrictions. 

When tests were conducted concerning the time stamping of WSNs, the authors noted that it 
takes at most one second to capture any data packet and transmit it to the fWSN base station. 
This nevertheless introduced a time delay between capturing a packet and receiving it at the 
base station. The time delay also differed according to the distance of the fWSN mote from the 
base station in terms of hops and physical distance. Thus the time stamps at the base station 
are not an accurate reflection of when the packet was initially captured, as the base station is 
the only device that can assign an accurate time stamp if it is connected to the management 
server. (The reason for this is that only the management server has access to a time server 
(Sundararaman, Buy & Kshemkalyani, 2005; Su & Akyildiz, 2005).) It is also important to 
note that each fWSN mote captures packets sequentially, in the order that the oWSN motes 
transmit their data packets. This proves to be a vital piece of information, because one would 
then be able to claim that even if the time stamps are altered, the sequence would still be 
intact. The order in which they arrive at the fWSN will stay intact even if the time stamps are 
slightly delayed. This allows one to assume that the time delay between capturing the packet 
and sending it to the forensic base station would not really affect the authenticity and integrity 
of the packets, as the sequence of packets can be used to determine their authenticity and 
integrity. 

The trustworthiness of log time stamps is an issue that many digital forensics researchers have 
queried and investigated (Schatz, Mohay & Clark, 2006; Schneier & Kelsey, 1999). The 
dilemma faced by the fWSN is merely intensified. It becomes a more severe issue to trust the 
time stamps as the limitation as having no access to a centralised time server for WSNs might 
prevent them from reflecting the correct time. However, since the sequence of the data 
packets is not altered, this (rather than the time stamps) could be used to verify the 
authenticity and integrity of the data packets. This paper therefore assumes that the fixed 
sequence of the data packets is more important than the precise time at which they were 
transmitted. More information can be gathered by looking at the sequence of the data packets 
than by looking at their time of transmission. 

It is therefore sufficient to capture the data packets and merely provide a time stamp for them 
as soon as they arrive at the fWSN base station. In the event that this is done, one would 
admittedly create a time stamp error. The time stamp error would nonetheless be a constant 
error for each oWSN mote respectively, as it would reflect the time the data packet was first 
transmitted together with the added time it took for this data packet to reach the fWSN base 
station. The fWSN base station, which is connected to a time server, assigns a time stamp to 
each data packet upon its arrival there. This allows the order of the packets to be kept intact 
and records a one-second error on the time stamp of each packet due to the fact that the base 
station assigns the time stamps and not the forensic mote that captured the packet initially. 
The time stamp error stays constant for all the packets received from a specific mote in the 
sensor field and thus it is still possible to guarantee the authenticity and integrity of a packet. 
This constant error could be measured, if needed, by comparing the time stamps at the oWSN 
base station and the fWSN base station. The time stamp, combined with the sequence of the 
data packets, would then be sufficient to be used in a forensic investigation. 

 
 
 



Another issue that the authors have considered while examining the differences between 
WLANs and WSNs is the feasibility of modifying the network after it has been deployed. 
This matter is discussed in the following subsection. 

3.4. Modification of the network after deployment  

Being able to modify the network after deployment is the only factor that was found to be 
fairly similar between WLANs and WSNs, as it is always possible to modify code on a device 
by retracting it from the field, redeveloping it and then redeploying it back into the field. 
However, the practicality of altering oWSN devices after deployment must be taken into 
consideration. It is important to remember that oWSN motes are usually scattered in an area 
and to alter them, one would have to go and collect the entire network and redeploy it. Hence, 
it seems essential that the oWSN should not be modified to accommodate an fWSN solution. 
This is the very reason why the authors have opted to add an overlaying fWSN to the oWSN in 
order to do all the forensic monitoring. The overlaying fWSN would consist of a separate set 
of WSN motes that does not affect the oWSN and also requires no modification of the oWSN. 

The difficulty and impracticality of modifying the oWSN has led the authors to believe that 
this should also be seen as a specific requirement when attempting to provide forensic 
readiness to a WSN environment. Considering that we cannot easily alter the oWSN, we must 
ensure that the fWSN should be able to handle any type of protocol headers and footers that 
could originate from the oWSN. Against this background, the next subsection focuses on the 
protocol data packets that are used by WSN devices and the reasons why it is important to 
take this into consideration when implementing an overlaying fWSN. 

3.5. Protocol Data Packets 

The oWSN can have many different types of communication protocols in its normal operation. 
For example, the data packets can include packets to determine the routing protocol, sensory 
packets, encrypted packets or even malformed packets. In order to ensure that all of the 
possible protocols used in WSNs are encapsulated in this approach, it has been assumed that 
the oWSN uses an address-free protocol. This protocol generates the largest amount of 
network overhead in WSNs, as it would cause data to be sent from a source mote in the 
network to every other mote in the network on each data transmission (Dunkels, Osterlind & 
Zhitao, 2007). The most commonly used address-free protocols are data dissemination 
protocols, where neither the sender mote nor any of the other motes in the network knows the 
address of the receiving mote. If the fWSN is able to successfully log this communication of 
an address-free protocol in a way that ensures authenticity and integrity, one could assume 
that the name-based WSN protocols would effortlessly be accounted for, as they have much 
less network overhead (Dunkels, Osterlind & Zhitao, 2007). 

As is also the case in WLANs, the motes in the fWSN should listen in promiscuous mode and 
should be able to handle any type of packet that is transmitted or received by the oWSN. The 
authors define promiscuous mode to be a configuration of the WSN mote in which all traffic 
within the WSN mote's frequency range and wireless range will be received by the WSN 
mote. Thus, if an attacker uses a foreign mote to inject data into the oWSN, the fWSN should 
also be able to listen in on this data. This requirement should be fairly simple to adhere to, 
because if the fWSN is implemented on the same type of equipment, it should be possible to 
intercept all communication. 

 
 
 



Lastly, the fWSN should be using a name-based WSN protocol for communication between 
other fWSN motes as it is more optimal in terms of network overhead than address-free 
protocols. In name-based protocols the source mote knows the address of the receiving mote 
and the motes between the sender and receiver know the path to the receiving mote (Dunkels, 
Osterlind & Zhitao, 2007). 

All the major differences between WSNs and WLANs have now been discussed. Due to space 
constraints, discussions on radio frequencies, power supply, network overhead and data 
integrity have been omitted. However, the following section is devoted to arranging all these 
factors, including the ones that have been excluded from the discussion, into a single 
workable list of requirements that need to be adhered to when implementing digital forensic 
readiness in a WSN environment. 

4. Forensic Readiness Requirements for WSNs 

The previous sections identified the factors that differentiate between WLANs and WSNs in 
terms of digital forensic readiness. These factors were simply broad overviews of issues to be 
considered in the WSN environment (most of which do not exist in a WLAN environment).  

The authors consequently propose a broad, yet detailed set of the important requirements to be 
adhered to in order to successfully implement digital forensic readiness in a WSN 
environment. This list of requirements (see Table 2) could serve as a good starting point for 
anyone working on digital forensic readiness and makes it easier for an individual to 
implement digital forensic readiness within a WSN environment. Most other researchers 
focus mainly on one or two of these requirements by going into more detail on them in their 
research papers, but many other requirements are usually not mentioned, regardless of their 
importance.  

Table 2 therefore gives a quick but comprehensive overview and summarises all the important 
requirements that need to be taken into account in order to achieve digital forensic readiness 
in an IEEE 802.15.4 WSN environment. 

  

 
 
 



Factors Detailed requirement list 

Communication Protocol 

1. The fWSN should use a receipt acknowledgement packet protocol to ensure that all data packets 
captured by the motes in the field do indeed reach the base station. 

2. The broadcasted communication from the oWSN should be intercepted in a manner that ensures that 
the data packets are not altered in any fashion. 

3. The fWSN should be able to capture all possible types of communication that can be sent from the 
oWSN. 

 
 

Proof of Authenticity and 
Integrity 

 

4. The authenticity and integrity of all the data packets should remain intact while being captured on 
the fWSN. 

5. The data packets that are captured in the fWSN should be stored in such a way that their authenticity 
and integrity are not compromised. 

6. It should be possible to verify the authenticity and integrity of all the data packets in case a digital 
investigation takes place. 

Time Stamping 

7. The data packets should have a time stamp assigned to them that does not violate their authenticity 
and integrity. 

8. The sequence of the packets captured should reflect the true sequence in which they were 
transmitted from the original network. 

Modification of the network 
after deployment 

9. It should be possible to implement the fWSN without any modification of the oWSN. 

Protocol Data Packets 10. The fWSN should be designed in such a manner that the network topology or the routing protocol 
used by the oWSN does not influence the fWSN’s operation. 

Radio Frequencies 

11. The fWSN should be able to communicate on the same radio frequencies that are available to the 
oWSN. 

12. All communication within the fWSN should occur on a frequency not utilised in the oWSN. 
13. If an intruder WSN is in the area and communicates on a frequency that influences the oWSN, then 

the fWSN should be able to forensically capture these data packets. 

Power Supply 14. The fWSN should not increase power consumption in the oWSN and the fWSN should have at least 
the same or a longer network lifetime than the oWSN in terms of battery power. 

Network Overhead 15. While intercepting communication, there should be no extra network overhead on the oWSN. 

Data Integrity 16. The fWSN should by no means be able to influence the oWSN or influence any sensory data 
transmitted within the oWSN.  

Table 2: Requirements in order to achieve digital forensic readiness in a IEEE 802.15.4 
WSN environment 

The list in table 2 provides a sound basis to start from when attempting to achieve digital 
forensic readiness in a WSN environment. The following section concludes this paper and 
proposes future work. 

5. Conclusion 

Wireless sensor networks constitute a type of network that makes any type of digital forensic 
analysis very difficult due to the nature of the network. This paper therefore proposed a list of 
requirements that need to be taken into consideration when implementing digital forensic 
readiness for an IEEE 802.15.4 wireless sensor network.  

The main aim of this paper was to establish the differences between IEEE 802.15.4 wireless 
sensor networks and IEEE 802.11x wireless networks from a digital forensic readiness point 
of view. The problem was that currently there is no formal set of requirements for 
successfully implementing digital forensic readiness in wireless sensor networks. This 
problem was addressed by focusing on the special needs WSNs have for digital forensic 
readiness and providing a list of requirements that need to be taken into account when 
implementing digital forensic readiness in WSNs.  

 
 
 



In future research, the authors intend to explore this list of requirements in greater detail and 
develop a digital forensic readiness prototype for wireless sensor networks. The focus of the 
research will be to develop the prototype in such a way that it proves to be robust enough to 
function in most types of WSNs. 
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Abstract—The field of wireless sensor networking is still a new 

and upcoming one and, unfortunately, still lacking in terms of 

digital forensics. All communications between different nodes 

(also known as motes) are sent out in a broadcast fashion. These 

broadcasts make it quite difficult to capture data packets 

forensically whilst retaining integrity and authenticity of the data 

packets. This paper examines whether and how one can add a 

digital forensic readiness layer to an existing IEEE 802.15.4 

wireless sensor network without any modification to the existing 

wireless sensor network. This paper also provides 

demonstrations of a working prototype to show that a digital 

forensic readiness layer can be added to an existing wireless 

sensor network, if the prototype adheres to a list of requirements 

in order to achieve digital forensic readiness in a wireless sensor 

network environment. This is done by performing several 

demonstrations which resemble real world wireless sensor 

network scenarios in order to show that the prototype does 

indeed add a layer of digital forensic readiness to the existing 

wireless sensor network.  

Keywords- forensic readiness, digital forensic; wireless sensor 

networks 

I.  INTRODUCTION 

Striving towards a better lifestyle has lead to a great 
improvement in the technology we have access to in today‟s 
world. The concept of a wireless sensor network is just another 
technology developed to improve our ability to accomplish our 
daily tasks. The implementation of security protocols on WSNs 
has not received much attention up to date, and, even more so, 
very little focus has been shed on digital forensics within a 
WSN environment. The motivation for this paper is the need to 
explore and expand on the field of digital forensic readiness, 
focusing on wireless sensor networks. The authors feel that 
there is still much research required in this area. 

The problem is that currently there exists only a list of 
requirements in order to achieve digital forensic readiness in a 
wireless sensor network, and these requirements have not yet 
been tested by means of a prototype and with real world 
wireless sensor network scenarios. The goal of this paper is, 
therefore, to test if these requirements are sufficient in order to 
achieve digital forensic readiness in a wireless sensor network. 
The prototype, specifically, attempts to demonstrate whether a 
digital forensics layer can be added on top of an existing IEEE 
802.15.4 wireless sensor network without any modification to 

the existing IEEE 802.15.4 wireless sensor network. The 
purpose of this paper is to design a prototype according to the 
list of requirements and perform demonstrations in order to 
show the usability of the list of requirements. This paper also 
shows that it is possible to implement digital forensic readiness 
on an existing wireless sensor network without any 
modification to the existing wireless sensor network. 

The remainder of the paper is structured as follows: the 
second section provides a background to WSNs and digital 
forensic readiness. Section three provides the requirements for 
achieving digital forensic readiness in IEEE 802.15.4 wireless 
sensor networks. Section four demonstrates the prototype 
which has been implemented taking all the requirements from 
section three into account. Finally, the last section concludes 
with an overview of the demonstrations and proposes future 
work. 

II. BACKGROUND 

First, Wireless Sensor Networks (WSNs) still comprise a 
relatively new area of research in computer science and the 
first papers on WSNs only appeared around the start of the 21st 
century  [1], [2]. Much of the research on WSNs has been on 
new areas of application aimed at supporting our modern 
lifestyle. Some background information for a better 
understanding of WSNs is provided next before a solution to 
the digital forensic readiness for WSNs is suggested. 

A. Wireless Sensor Networks 

WSNs belong to the general family of sensor networks that 
use multiple distributed sensors to retrieve data from various 
environments of interest. Chong and Kumar [1] provide a 
history on previous accomplishments of WSNs and show how 
they have evolved in terms of sensing, communication and 
computing. WSNs consist of wireless nodes with embedded 
processors and ad hoc networks [3], and involve wireless 
communication [4]. Mouton and Venter [2] define a WSN as 
an ad hoc network that consists of tiny and resilient computing 
nodes known as motes or sensors. These motes are extremely 
efficient with regard to power consumption and can collaborate 
effectively with other motes within their vicinity. A graphical 
representation of a wireless sensor network is provided in 
Figure 1 and the functions of each of the components are 
briefly summarised in Table 1[2], [5], [6]. 

 
 
 



 
Figure 1 A graphical representation of a wireless sensor network [2]. 

TABLE I.  BRIEF SUMMARY OF FUNCTIONS OF THE COMPONENTS OF A 

WIRELESS SENSOR NETWORK [2] 

WSN component Brief summary of the component 

User 
The user can interact with the WSN 

through the management server. 

Management Server 
The management server serves as an 

interface console for the WSN. 

Sensor Field 
The sensor field denotes the physical 

boundaries of the WSN. 

Wireless Sensor 
Node (mote) 

Each mote contains a small subset of 
the various sensors. Motes in the 

network can also act as repeaters for 
packets that need to reach the base 

station. 

Base Station 

A base station serves as a gateway 
node through which the information of 

the motes has to travel to reach the 
management server. 

Short-range 
Wireless 

Communication 

Short-range wireless communication 
links are established between 
neighbouring motes and the 
neighbouring base stations. 

Long-range High-
speed 

Communication 

Long-range high-speed 
communication links are established 
between further-ranged base stations 

and the management server. 

 

WSNs can be used in many environments. Their motes may 
consist of many different types of sensors, such as thermal, 
visual, infrared, radar or acoustic. These motes can monitor a 
wide variety of ambient conditions, including humidity, 
pressure, sound, noise levels, temperature, lightning conditions 
and objects moving through a designated area  [7],  [8]. 

Some applications of WSNs include military applications 
such as the tracking of moving objects and battlefield 
surveillance[9]. Environmental applications include habitat 

monitoring, forest fire detection and flood detection [10]. 
Health applications include the tracking and monitoring of 
doctors and patients in hospitals, as well as drug administration 
in hospitals [11]. Finally, WSNs can also be used for home and 
building automation applications. 

The next subsection focuses on providing the reader with a 
workable definition for digital forensic readiness in a WSN 
context. 

B. Digital Forensic Readiness 

To achieve digital forensic readiness in any type of 
environment, it is essential to establish an acceptable definition 
for it. However, since it is still a fairly new concept, many 
people have different opinions about it. 

Tan [12] identifies two objectives as part of a definition for 
digital forensic readiness that have to be carefully balanced: 
maximising the ability to collect credible digital evidence, as 
against minimising the cost of performing a digital forensic 
investigation. Tan also argues that several steps need to be 
taken to ensure that an environment is ready as far as digital 
forensics is concerned. On the other hand Rowlingson [13] 
suggests ten steps that describe the key activities in 
implementing a digital forensic readiness programme. Because 
Rowlingson‟s steps have actually been designed to create a 
business process model for digital forensic readiness, this 
dissertation gives preference to Tan‟s two objectives for 
meeting the requirements of digital forensic readiness in a 
WSN environment. 

Even though Tan‟s objectives provide a very good 
definition of digital forensic readiness, it is still important to 
refine this to make it more specific to a WSN environment. For 
the purpose of this paper, digital forensic readiness is defined 
as the notion to perform a digital forensic investigation in the 
shortest amount of time with the least amount of cost and 
without having to disrupt the original network that has to 
perform mission critical tasks. This definition is set as the main 
goal for achieving digital forensic readiness on WSNs.  

The definition provided focuses on three elements. These 
three elements are, respectively: the time period required to 
perform a digital forensic investigation, the cost involved in 
performing a digital forensic investigation and the ability to 
collect the evidence without disrupting the environment. 

Each of these three elements is discussed separately in the 
following subsections as they are pivotal to the achievement of 
digital forensic readiness. 

1) Time Period Required to Perform a Digital Forensic 

Investigation 

 
Digital forensic readiness is put in place in order to 

decrease the time period it takes to perform a digital forensic 
investigation [12]. 

In an environment where digital forensic readiness is 
implemented, the time it takes from when the incident occurs 
until the incident-related information can be analysed is kept to 
a minimum. This is because the digital forensic readiness 
systems ensure that the information is captured into a separate 

 
 
 



environment on which the work-related systems are not 
dependent [13]. 

The nature of the digital forensic readiness environment 
being separate from the work-related environment brings us to 
the next important factor: the cost involved in performing a 
digital forensic investigation. 

2) Cost Involved in Performing a Digital Forensic 

Investigation 

 
In the case where a digital forensic investigation is required 

in an environment which is not compliant to a digital forensic 
readiness solution, this could potentially cost the organisation a 
large amount of money [12]. 

Considering the cost involved in implementing digital 
forensic readiness versus the cost involved in conducting a 
digital forensic investigation without having digital forensic 
readiness implemented, it would be fair to say that one would 
rather be safe than sorry. In other words, one would rather 
incur the costs of digital forensic readiness and be ready should 
an incident occur, than have to pay more money should an 
incident occur [12], [14]. 

This subsection briefly touched on the cost involved in 
digital forensic readiness, the next subsection focuses on how 
digital forensic readiness can also be used to minimise costs by 
preventing disruption of the environment. 

3) Collecting Evidence without Disrupting the 

Environment 

 
The collection of evidence in a digital forensic readiness 

environment would occur far more easily than in an 
environment without digital forensic readiness. This is due to 
the nature of the digital forensic readiness environment, 
whereby it is separated from the mission critical environment. 

One would be able to take down an entire digital forensic 
readiness system if it has been configured to be running as a 
separate system from the main environment. This allows one to 
thoroughly perform the collection of digital evidence without 
the added pressure of time limitations. 

Considering the time saved, cost minimized and the lack of 
disruption caused to the environment by the implementation of 
a digital forensic readiness environment, this paper has shown 
how an organisation would benefit from the implementation of 
such an environment. The next section very briefly shows the 
requirements in order to achieve digital forensic readiness in a 
wireless sensor network environment. 

III. REQUIREMENTS IN ORDER TO ACHIEVE DIGITAL 

FORENSIC READINESS 

In a previous paper by Mouton and Venter [15], it has been 
shown which requirements are needed for a prototype in order 
to achieve digital forensic readiness in a wireless sensor 
network environment. The table from the previous paper is 
provided here as it is an important reference point to the 
prototype in order to implement digital forensic readiness on 
wireless sensor networks. 

In the table, and also for the rest of the paper, the term 
„original WSN‟ is referred to as oWSN while the term 
„secondary independent forensic WSN‟ is referred to as fWSN. 
The oWSN is the existing WSN which is already deployed in 
the field, whereas the fWSN is the digital forensic readiness 
network which adds a digital forensic readiness layer on top of 
the oWSN. 

TABLE II.  REQUIREMENTS IN ORDER TO ACHIEVE DIGITAL FORENSIC 

READINESS IN AN IEEE 802.15.4 WSN ENVIRONMENT [15] 

Requirements in order to achieve digital forensic readiness in an 
IEEE 802.15.4 WSN environment 

1. The fWSN should use a receipt acknowledgement packet protocol 
to ensure that all data packets captured by the motes in the field do 
indeed reach the base station. 

2. The broadcasted communication from the oWSN should be 
intercepted in a manner which ensures that the data packets are not 
altered in any fashion. 

3. The fWSN should be able to capture all possible types of 
communication which can be sent from the oWSN. 

4. The authenticity and integrity of all the data packets should remain 
intact whilst they are being captured on the fWSN. 

5. The data packets which are captured in the fWSN should be stored 
in such a way that the authenticity and integrity is not compromised. 

6. The authenticity and integrity of all the data packets should be able 
to be verified in case a digital investigation takes place. 

7. The data packets should have a timestamp assigned to them that 
does not violate their authenticity and integrity. 

8. This sequence of the packets captured should reflect the true 
sequence in which they were transmitted from the original network. 

9. The fWSN should be able to be implemented without any 
modification of the oWSN. 

10. The fWSN should be designed in such a manner that the network 
topology or the routing protocol used by the oWSN does not influence 
the fWSN‟s operation. 

11. The fWSN should be able to communicate on the same radio 
frequencies as the ones which the oWSN is capable of using. 

12. All communication within the fWSN should occur on a frequency 
which is not utilised in the oWSN. 

13. If an intruder WSN is in the area and communicates on a 
frequency which influences the oWSN then the fWSN should be able 
to forensically capture these data packets. 

14. The fWSN should not increase the power consumption in the 
oWSN and the fWSN should have at least the same network lifetime 
or longer than the oWSN in terms of battery power. 

15. Whilst intercepting communication there should be no extra 
network overhead on the oWSN. 

16. The fWSN should by no means be able to influence the oWSN or 
influence any sensory data transmitted within the oWSN. 

 

Having provided this list of requirements, the following 
section will demonstrate a working protocol, which takes into 

 
 
 



account all these requirements in order to achieve digital 
forensic readiness in a WSN environment.  

IV. DIGITAL FORENSIC READINESS PROTOTYPE 

The proposed digital forensic readiness prototype adheres 
to all the requirements which have been set and presented in 
the previous section. The implementation of the prototype was 
done on the Crossbow Imote2 boards. The Crossbow Imote2 is 
an advanced WSN node platform designed for demanding 
WSN applications that require high processing power wireless 
link performance and reliability [16]. We do realise that the 
Crossbow Imote2 is an extremely powerful mote. This was, 
however, the only mote at our disposal in the development of 
the prototype. The Crossbow Imote2 motes can communicate 
on the frequency between 2.405 GHz and 2.480 GHz with each 
channel separated by 5 MHz [16]. All the coding for the 
implementation was done in .net Micro Framework Version 2.0 
as it is supported by the Crossbow Imote2 circuit boards [16]. 

Three demonstrations were done to show that it is possible 
to provide digital forensic readiness whilst adhering to the 
constraints which were provided in the previous section. For 
the first demonstration, a sample WSN network was used as 
the original network. The original network was able to measure 
temperature, light and humidity. In the first demonstration the 
network was setup as can be seen in figure 2. 

 

Figure 2 A graphical representation of the network layout for the first 

demonstration. 

In figure 2 each mote has a unique MoteID allocated to it as 
specified in the figure. The wireless link is used to show which 
motes are in range of a specific mote to receive its broadcasted 
messages. The original mote, labelled ID-102, can be seen by 
both digital forensic WSN motes FID-202 and FID-201, 
whereas original mote ID-101 can only be seen by FID-201. 
This should cause a resulting log where all the packets 
transmitted from ID-102 should be seen by both FID-201 and 
FID202, however, all the packets transmitted by ID-101 are 
only seen by FID-201. The small scale of the demonstrations is 
due to the limited size of the network as the authors only had 
access to four WSN motes and two base stations for testing 
purposes. 

In figure 3 it can be seen how the prototype displays the log 
file which has been generated from the digital forensic base 

station. The columns have all been provided with names to 
make it easier to recognise which data is being displayed in the 
figure. Figure 5, however, is included to show that all the data 
is actually only recorded in terms of bytes and that the column 
names are actually labeled “Byte 1” through to “Byte 64”. 

 

Figure 3 Demonstration to show how packets on the outskirts of the network 

are handled 

It is important to note that there are some columns omitted 
on the snapshots of the demonstration figures. This was done to 
retain readability of the snapshots and only the information 
which applies to each demonstration was kept on each 
snapshot. In figure 3 the “Line” column is simply a line 
number indicator which makes it easier to discuss specific lines 
from the figure in this paper. The grey colour in the “Line” 
column is added if the data packet was seen by more than one 
mote in the FWSN. The “Date” column represents the 
timestamp for the packet. The “Seen By” column represents 
which motes in the FWSN were in range of the packet when it 
was transmitted. The “Forensic MoteID” column represents the 
digital forensic mote in the FWSN which was the closest to the 
packet and thus received it first. The “Originating MoteID” 
column represents which mote in the OWSN transmitted this 
packet. The “Byte 6” column is the packet number which is 
transmitted by the motes in the OWSN and this increases by 
one for each transmission. The “Light Value” column is a light 
measurement which is one of the purposes of the original 
network – to measure light intensity. The motes in the OWSN 
also measures other things like humidity and temperature, but 
we only use the light intensity sensor for the purposes of this 
paper as this is sufficient enough to provide proof of concept. It 
can be seen from figure 3 that FID-202 was only able to see 
communication coming from ID-102 as indicated by the 
“Originating MoteID” column, whereas FID-201 was able to 
see communication from both ID-101 and ID-102. Thus, if this 
information were to be used in a digital forensic analysis, one 
would be more certain of the authenticity and integrity of the 
data packets which have been sent by ID-102 as both digital 
forensic motes were able to see communication coming from it. 
It can, however, be said that the information received from ID-
101 also has a degree of authenticity and integrity because the 
data which was received from the FWSN can be matched with 
the data from the OWSN. The authenticity and integrity of ID-
101‟s data can also be verified by realising that the data packets 
that ID-101 sent were only seen by FID-201, as indicated by 
the “Seen By” column, and this is consistent throughout the 

 
 
 



entire log. The data received from the FWSN could also be 
used to verify data from the OWSN if there happens to be a 
dispute about the legitimacy of the data. Figure 4 shows the 
data which was received in the same demonstration session as 
figure 3 but here the data is sorted according to which OWSN 
mote has sent the data. 

 

Figure 4 The log for the first demonstration sorted by Originating MoteID 

In all the following demonstrations the network layout was 
changed so that the digital forensic motes were able to see all 
other motes in the network. The purpose of these 
demonstrations is to observe the versatility of the FWSN. The 
second demonstration focuses on the ability of the FWSN to 
capture data packets from WSNs consisting of different 
hardware, but which are operating on the same frequency 
range. 

 

Figure 5  Demonstration to show the FWSN captures packets from separate 
OWSNs simultaneously. 

It is clear from figure 5 that all the labels at the top are now 
labeled “Byte 1” to “Byte 7”. The columns actually go up to 
“Byte 64”, which is the maximum size of any packet that can 
be sent over a WSN using the Crossbow Imote2 hardware. In 
the figure, Byte 3 is the originating MoteID and Byte 5 is the 
packet length. For this demonstration a Crossbow TelosB mote 
was used as an OWSN mote. This TelosB mote belongs to 
students in the engineering department and the authors have no 
knowledge as to what the actual purpose was of the mote, as 
we were only interested in if we can capture the data. This 
mote had been assigned a MoteID of 47, which was assigned 
by someone else, as no alterations were made on the mote for 
the demonstrations. One of the motes, with MoteID 102, from 
the previous demonstration was also used as an OWSN mote. 
The OWSN, thus, consisted of these two motes. This 

demonstration was performed to prove that the FWSN is able 
to capture data from any type of WSN with the single 
requirement that the communication between the motes is 
within the radio frequency range that the digital forensic 
readiness network is capable of monitoring. One can see from 
figure 5 that the FWSN motes were successfully able to capture 
the data from both the MoteID 47 and MoteID 102 as indicated 
by the “Byte 3” column. In the case where the OWSN radio 
frequency falls outside the scope of the FWSN radio frequency 
range, the software can simply be installed on other types of 
FWSN motes which would be capable of the required 
frequency range. 

In the third and final demonstration, which can be observed 
in figure 6, it is shown that the FWSN can be used to confirm 
the integrity of the data as captured from the OWSN. This 
demonstration was carried out by taking a single OWSN mote 
and initially placing it in a location where it received direct 
sunlight so that its temperature sensor can measure the heat at 
this location. After a while, this OWSN sensor was moved into 
a cool, dark location. The fluctuations of the temperature were 
then seen on the OWSN logs, but the FWSN logs provided a 
backup of this data to confirm the authenticity and integrity of 
the data. These fluctuations can be seen in figure 6 where it is 
indicated by the last column labeled “Temperature Value”, 

 

Figure 6 Demonstration to show the FWSN captures packets with authenticity 

and integrity intact 

This shows that adding digital forensic readiness to an 
existing WSN added the benefit that one could monitor the 
OWSN to confirm the data which was received by the motes of 
the OWSN or for troubleshooting faults in the OWSN. 

The next section concludes the paper by discussing the 
strength of the implementation and how it has provided digital 
forensic readiness to an existing network. 

V. CONCLUSION 

The wireless sensor network is a type of network which 
makes it very difficult for any type of digital forensic analysis 

 
 
 



due to the nature of the network. This paper proposed a digital 
forensic readiness prototype implementation which can be 
deployed on top of an existing IEEE 802.15.4 WSN to provide 
a layer of digital forensic readiness to the network without 
modifying the original network. 

This paper focused mainly on being able to add a digital 
forensic readiness network to any existing WSN without 
having previous knowledge of the existing network or having 
to modify it. The problem that this paper addressed was that 
currently there exists only a list of requirements in order to 
achieve digital forensic readiness in a wireless sensor network, 
and these requirements have not yet been tested by means of a 
prototype and with real world wireless sensor network 
scenarios. This paper has shown that using the list of 
requirements in order to design a prototype is beneficial whilst 
adding digital forensic readiness to any WSN environment. 
This paper showed that the prototype was able to successfully 
provide a digital forensic layer to any existing WSN whilst 
adhering to all the digital forensic readiness requirements that 
have been set out. 

As this is only a prototype implementation it has only been 
demonstrated by the use of four motes. In future research this 
can be expanded to a larger network with more motes. This can 
be achieved by using network simulator tools such as NS2 and 
OMNET++. The authors will also explore the ability to detect 
flooding attacks using the digital forensic WSN. The digital 
forensic WSN should be able to easily determine if there is a 
sudden influx of data packets on the network at a certain point 
in the network. This will be examined by making use of 
demonstrations as were used in this paper and further 
modifications to the protocol. We, as the authors, feel that the 
flooding attack on WSNs still needs a substantial amount of 
attention. 
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