

In Vitro Medicinal Properties of Novel Compounds from Croton steenkampianus

By Adeboye Mutiu Adelekan

Submitted in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHIAE: PLANT SCIENCE Department of Plant Science

Faculty of Natural and Agricultural Sciences University of Pretoria

Promoter: Prof JJM Meyer

2009

© University of Pretoria

I declare that the thesis/dissertation, which I hereby submit for the degree PHD Plant Science at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution.

SIGNATURE:

Date: 26/01/2009

ACKNOWLEDGEMENTS

Glory be to God almighty for His grace and mercy over me throughout the study.

I also wish to thank the following people for the role they have played in the course of the research:

Prof JJM Meyer for the assistance, guidance and support given to me.

Prof AI Louw for his contribution.

The National Research Foundation and University of Pretoria for their financial support.

Dr Ahmed Hussein for his help in the isolation and identification of the compounds and for arranging antiplasmodial bioassay.

Dr Adrian Basson for help with the cytotoxicity testing.

Dr Benedict Bapela for assistance with the TB assay.

Dr Emmanuel Tshikalange for help with anti-HIV assay.

Prof P Smith (University of Cape Town), Bruce Tshilamulele and Luis David (Smithsonian Tropical Research Institute, Panama) for help with the malaria bioassays.

Eric Palmer, Department of Chemistry, University of Pretoria for the assistance with the NMR.

Prof Peet van Roogen for assistance with x-ray crystallography.

My wife Tsholofelo D Adelekan for her support and encouragement.

All my friends and well-wishers.

SUMMARY

In Vitro Medicinal Properties of Novel Compounds from Croton steenkampianus

by

Adeboye Mutiu Adelekan Promoter: Prof JJM Meyer Department of Plant Science Doctor of Philosophiae

The effect of infectious diseases on the population in the developing countries is of utmost concern. Malaria, tuberculosis (TB) and human immunodeficiency virus (HIV) are the three major infectious disease threats. They account for approximately half of the mortality caused by infectious diseases, which is almost half of the mortality in the developing countries. With no vaccine likely in the foreseeable future, drugs remain the best means of controlling infectious diseases. In the industrialized nations at the present time, some 50% of all prescribed drugs are derived or synthesized from natural products (animals, marine species, plants and micro-organisms). It has been estimated that plants are the most important source of medicine for more than 80% of the world's population. As previous work on the leaves of *Croton steenkampianus* gave promising results and revealed that it still contained bioactive compounds that could be isolated, it was chosen for further work.

The bioassay guided fractionation of the ethanol crude extract using silica and Sephadex column chromatography resulted in the isolation of six compounds: three flavoniods (quercetin, tamarixetin and eriodictyol), one new indane (1) (2,6-dimethyl-1-oxo-4 indanecarboxylic acid) and two new diterpenes (steenkrotin A (2) and steenkrotin B (3)) with novel skeletons. The structure of the compounds was determined using NMR, IR, UV, MS and X-ray crystallography.

Ethanol crude extract, quercetin, steenkrotin A, steenkrotin B and the indane were tested against four strains of *Plasmodium falciparum* (D6, D10, Dd2 and W2). Quercetin showed good antiplasmodial activity against the D10 and Dd2 strains. The antiplasmodial activity of steenkrotin A and crude extract were moderate. The antimalarial activity of steenkrotin A in particular is promising, as it showed more activity against resistant strains. The indane, and steekrotin B were not active against the strains of *P. falciparum* used (IC₅₀ > 10 µg/m). The IC₅₀ of the compounds improved when they were combined with chloroquine. However, the IC₅₀ of chloroquine was still the lowest. The compounds showed moderate bioactivity against *Bacillus cereus* and *Escherichia coli*. The three new compounds (1, 2 and 3) tested against *Mycobacterium* (H37Rv) were not active (IC₅₀ > 10 µg/ml). The indane (1) showed anti-HIV activity at 50 µg/ml against reverse transcriptase. The antioxidant activity of the compounds tested ranged from weak to excellent (>280.00 µg/ml for compound 1 and 2 to 0.05 µg/ml for quercetin).

The cytotoxicity of the compounds and extract were determined against Vero cells lines. Their IC₅₀ values ranged from 34.0 to 305.9 μ g/ml, which is higher and better than that of chloroquine. The IC₅₀ values obtained are: chloroquine (25.0), quercetin (33.6), steenkrotin A (35.0), ethanol extract (45.0), tamarixetin (53.8), indane (248.2) and steenkrotin B (305.9).

CONTENTS

Summary	i
Acknowledgements	iii
List of figures	
List of tables	
List of abbreviations	

Chapter 1: Introduction

1.1 Medicinal plants	3
1.2 Traditional medicine	4
1.2.1 African traditional medicine	5
1.2.2 American traditional medicine (North, Central and South)	6
1.2.2.1 North America	6
1.2.2.2 Central and South America	7
1.2.3 Australian and Southeast Asian medicine	7
1.2.4 Ayurvedic medicine (Indian traditional medicine)	8
1.2.5 Chinese traditional medicine	9
1.2.6 European medicine	10
1.2.7 Classical Arabic and North African traditional medicine	12
1.3 Drug discovery from medicinal plants	15
1.4 Synthesis and role of plant secondary metabolites	18
1.4.1 Terpenes	19
1.4.1.1 Monoterpenes	20
1.4.1.2 Sesquiterpenes	20
1.4.1.3 Diterpenes	21
1.4.1.4 Triterpenes	21
1.4.2 Phenolic compounds	21
1.4.2.1 Flavonoids	22
1.4.3 Nitrogen containing compounds	23
1.4.3.1 Alkaloids	24
1.4.3.2 Cyanogenic glycosides	25
1.5 Infectious diseases	25
1.5.1 Malaria	26
1.5.2 Human immunodeficiency virus	28

1.5.3 Tuberculosis	30
1.6 Antioxidant activity	31
1.7 Croton steenkampianus	32
1.8 Objectives	33
1.9 Scope of the thesis	33
1.10 Hypothesis	34
1.11 References	35

Chapter 2: Bioassay guided fractionation of the crude extract from *Croton steenkampianus*

2.1 Introduction	43
2.2 Materials and Methods	43
2.2.1 Collection of plant materials	43
2.2.2 Methods	44
2.2.2.1 Preparation of the crude extract	44
2.2.2.2 Bacterial culturing and antibacterial testing	44
2.2.2.3 Isolation and identification of compounds	45
2.2.2.4 Structure elucidation	46
2.3 Results and Discussion	48
2.4 References	75

Chapter 3: Antiplasmodial bioactivity of crude extract and isolated compounds

3.1 Introduction	79
3.2 Methods	80
3.2.1 Culture medium and washed human erythrocytes	80
3.2.2 <i>In vitro</i> culturing of malaria parasites	80
3.2.3 Giemsa stained thin blood smear preparations	81
3.2.4 <i>In vitro</i> synchronisation of malaria parasites	81
3.2.5 Preparation of microculture plates	82
3.2.6 Determination of antiplasmodial activity with the Malstat	
method	82

3.2.	7 Determination	of	antiplasmodial	activity	with	the	
micr	ofluorimetric metho	d					83
	3.2.7.1 Fluorime	tric s	usceptibility test				83
	3.2.7.2 Synergis	tic ac	tivity				84
3.3 Results	and Discussion						85
3.4 Refere	nces						87

Chapter 4: Antibacterial and antioxidant activity of isolated compounds

4.1 Introduction	91
4.2 Materials and Methods	92
4.2.1 Qualitative determination of antibacterial activity	92
4.2.2 Quantitative determination of antibacterial activity	92
4.2.3 Antimycobacterial testing	93
4.2.4 Antioxidant activity	94
4.2.4.1 Qualitative assay	94
4.2.4.2 Quantitative assay	94
4.3 Results and Discussion	95
4.4 References	100

Chapter 5: Anti-HIV activity of the isolated compounds

5.1 Introduction	104
5.1.1 HIV in South Africa	105
5.1.2 Anti-HIV compounds	106
5.1.3 Reverse transcriptase (RT)	107
5.1.4 Replication of HIV	107
5.2 Materials and Method	110
5.2.1 Materials	110
5.2.2 Method	110
5.3 Results	111
5.4 Discussion	111
5.5 References	113

Chapter 6: Cytotoxicity of the isolated compounds

6.1 Introduction	117
6.2 Materials and Method	118
6.2.1 Plant materials	118
6.2.2 Preparation of extract and isolation of the compounds	118
6.2.3 Cell culture	118
6.2.4 Toxicity screening (XTT viability assay)	119
6.3 Results and Discussion	120
6.4 References	124

Chapter 7: General discussion and conclusion

7.1 Introduction	127
7.2 Bioassay guided fractionation of the ethanol crude extract and	
isolated compounds	127
7.3 Biological evaluation of the isolated compounds	128
7.4 References	130

Appendix

Appendix 1 Paper published from thesis	132
--	-----

LIST OF FIGURES

Chapter 1

Figure 1.1 The structure of artemisinin and arteether	16
Figure 1.2 Schematic representation of a typical medicinal plant drug	
discovery process and development	17
Figure 1.3 Main pathways leading to secondary metabolites	19
Figure 1.4 Monoterpenes commonly found in essential oils	20
Figure 1.5 The pathways of secondary metabolites derived from precursors	
in the shikimate pathway	22
Figure 1.6 Basic structures of some flavonoids	23
Figure 1.7 Structures of some alkaloids	24
Figure 1.8 Global malaria distribution	27
Figure 1.9 Distribution of malaria in Africa	27
Figure 1.10 Croton steenkampianus leaves	33

Chapter 2

Figure 2.1 Schematic representation of the bioassay guided isolation of	
active compounds from <i>C. steenkampianus</i>	47
Figure 2.2 Typical results obtained from the pooled fractions from the silica	
column tested for antibacterial activity	48
Figure 2.3 TLC plates showing antibacterial activity of pure compounds	49
Figure 2.4 Structures of isolated compounds	50
Figure 2.5 ¹ H-NMR spectrum of tamarixetin	52
Figure 2.6 ¹ H-NMR spectrum of quercetin	53
Figure 2.7 ¹³ C-NMR spectrum of quercetin	53
Figure 2.8 ¹ H-NMR spectrum of eriodictyol	54
Figure 2.9 ¹ H-NMR spectrum of indane	55
Figure 2.10 ¹³ C-NMR spectrum of indane	55
Figure 2.11 COSY spectrum of indane	56
Figure 2.12 HMQC spectrum of indane	56

Figure 2.13 HMBC spectrum of indane	57
Figure 2.14 NOESY spectrum of indane	57
Figure 2.15 HMBC correlation of partial structure	58
Figure 2.16 ¹ H-NMR spectrum of steenkrotin A	62
Figure 2.17 ¹³ C-NMR spectrum of steenkrotin A	63
Figure 2.18 COSY spectrum of steenkrotin A	63
Figure 2.19 NEOSY spectrum of steenkrotin A	64
Figure 2.20 DEPT 135 spectrum of steenkrotin A	64
Figure 2.21 MS data of spectrum of steenkrotin A	65
Figure 2.22 X-ray structure of steenkrotin A	65
Figure 2.23 ¹ H-NMR spectrum of steenkrotin B	68
Figure 2.24 ¹³ C-NMR spectrum of steenkrotin B	69
Figure 2.25 DEPT 135 spectrum of steenkrotin B	69
Figure 2.26 COSY spectrum of steenkrotin B	70
Figure 2.27 HMQC spectrum of steenkrotin B	70
Figure 2.28 HMBC spectrum of steenkrotin B	71
Figure 2.29 ¹ H-NMR spectrum of steenkrotin B acetate	71
Figure 2.30 ¹³ C-NMR spectrum of steenkrotin B acetate	72
Figure 2.31 COSY spectrum of steenkrotin B acetate	72
Figure 2.32 HSQC spectrum of steenkrotin B acetate	73
Figure 2.33 HMBC spectrum of steenkrotin B acetate	73
Figure 2.34 NEOSY spectrum of steenkrotin B acetate	74

Chapter 4

Figure 4.1 Bioautogram of the indane in lanes 1-7	95
Figure 4.2 Qualitative antioxidant assay	97
Figure 4.3 Quantitative antioxidant assay	97
Figure 4.4 Antioxidant activities of the crude extract and compounds	99

Chapter 5

Figure 5.1 Human immunodeficiency virus	105
Figure 5.2 The HIV replication cycle	108
Figure 5.3 The immature and mature forms of the HIV	109

Chapter 6

Figure 6.1 The reduction of yellow tetrazolium salt MTT to purple formazan.	118
Figure 6.2 Sample plate design	119
Figure 6.3 Activity of the isolated compounds on the growth of Vero cells	
in μg/ml	121

LISTS OF TABLES

Table1.1 Botanical drugs used in traditional medicine which led to useful	
modern drugs	14
Table 2.1 NMR spectroscopic data for compound 1	51
Table 2.2 NMR spectroscopic data for compounds 2-4	60
Table 2.3 Significant NOE data of compounds 2-4	61
Table 3.1 Antiplasmodial activity of compounds and extract	85
Table 4.1 MIC of compounds against B. cereus and E. coli	96
Table 4.2 Quantitative antioxidant activities of the ethanol crude extract	
and the isolated compounds	97
Table 6.1 Cytotoxicity of the crude ethanol extract and compounds	
isolated from <i>C. steenkampianus</i> on Vero cells	120

LIST OF ABBREVIATIONS

¹³C-NMR: Carbon nuclear magnetic resonance 1H-NMR: Proton nuclear magnetic resonance AIDS: Acquired immune deficiency syndrome APAD: 3-Acetylpyrimidine adenine dinucleotide COSY: Correlated spectroscopy DEPT: Distortionless enhancement by polarization transfer DHFR: Dihydrofolate reductase DHODase: Dihydroorotate dehydrogenase DHPS: Dihydropteroate synthase DMSO: Dimethylsufoxide DPP: Dimethylallyl pyrophosphate EDTA: Ethylenediaminotetra-acetic acid FPIX: Ferriprotoporphyrin IX HEPES: N-2-hydroxyethylpiperazine-N-2-ethane sulfonic acid HIV: Human immunodeficiency virus HMBC: Heteronuclear multiple bond correlation HMQC: Heteronuclear multiple quantum correlation HSQC: Heteronuclear singlequantum coherence IPP: Isopentenyl pyrophosphate **IR: Infrared** LD₅₀: 50% Lethal dose MS: Mass spectroscopy MTCT: Mother-to-child transmission MTT: 3-[4, 5-Dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide NBT: Nitroblue tetrazolium NMR: Nuclear magnetic resonance NOESY: Nuclear overhauser effect spectroscopy NSP: National strategic plan PBS: Phosphate buffer saline PEP: Post-exposure prophylaxis PF: Potentiating factor

- SP: Sulphadoxine-pyrimethamine
- STD: Sexual transmitted disease
- STI: Sexual transmitted infection
- TLC: Thin layer chromatography
- TMS: Tetramethylsilane
- TRIS: N-tris (hydroxymethyl) aminomethane
- UNAIDS: Joint United Nations programme on HIV/AIDS
- UNGASS: United Nations general assembly session on HIV/AIDS
- UNICEF: United Nations children's fund
- USAID: United States agency for international development
- UV: Ultraviolet
- WHO: World health organization