Multidisciplinary Design and Optimisation of Liquid Containers for Sloshing and Impact

by

Thomas Charles Kingsley

Submitted in partial fulfilment of the Degree of Masters of Engineering (Mechanical Engineering)

In the Faculty of Engineering, the Built Environment and Information Technology

University of Pretoria

April 2005

Summary

Multidisciplinary Design and Optimisation of Liquid Containers for Sloshing and Impact

by

Thomas Charles Kingsley

Study Leader:Prof. Ken CraigYear:2005Department:Department of Mechanical and Aeronautical Engineering

The purpose of this study is to perform an investigation of the numerical methods that may contribute to the design and analysis of liquid containers. The study examines several of these methods individually, namely Computational Fluid Dynamics (CFD) analysis of sloshing and Finite Element Methods (FEM) analysis of impact, to evaluate their contribution to the design cycle. Techniques that enhance the use of the various methods are presented and examined to demonstrate effectiveness. In the case of sloshing analysis, experimental tests performed add to the understanding of the phenomena at hand and qualifies the validity of the numerical method used (CFD). As a final contribution, the study presents a method of utilising impact analysis tools, FEM, and CFD in a Multidisciplinary Design Optimisation (MDO) environment. This is an introductory attempt at demonstrating a single coupled multidisciplinary method of designing liquid containers.

The results of the study demonstrate a number of valuable numerical techniques that may be used in the design of liquid containers. The presented Total Deviation Value (TDV) proves to be an effective single quantification of sloshing performance and the CFD tools used to determine the value demonstrate sufficient ability to reproduce the sloshing event itself. More advanced experimental facilities would provide a more in-depth understanding of the limitations of the CFD analysis. The use of numerical optimisation adds a valuable dimension to the use of numerical simulations. Significant design improvements are possible for several design variables without performing exhaustive studies and provide interesting information about design trends. Finally, the use of multiple disciplines, FEM and CFD, in conjunction with the available numerical optimisation routines offers a powerful multidisciplinary design tool that can be adapted to any base geometry and is capable of finding optimal trade offs between the two disciplines according to the designer's needs.

This study provides a platform for further investigations in the use and coupling of sloshing and impact analysis in the design of industrial liquid container applications.

Keywords: Liquid Sloshing, Multidisciplinary Optimisation (MDO), Fluid Structure Interaction (FSI), Computational Fluid Dynamics (CFD), Finite Element Methods (FEM), Mathematical Optimisation, Successive Response Surface Method (SRSM), Volume Of Fluids (VOF), Total Deviation Value (TDV), Impact Analysis.

Acknowledgements

The author would like to thank the following people for the contributions to the successful completion of this study:

Prof. Ken Craig Mr De Kock Mr Haarhoff Mr Pretorius Ms Angela Kingsley

Without the selfless assistance of these people the completion of this study would not have been possible.

Table of Contents

TABLE OF CONTENTS	IV
LIST OF FIGURES AND TABLES	VII
CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE STUDY	5
2.1 Introduction	5
2.2 Sloshing	5
2.3 Fluid-Structure Interaction	9
2.4 Mathematical modelling	
2.4.1 Linear Wave Theory	
2.4.2 Equivalent Mechanical Systems	
2.4.3 Navier-Stokes Methods	
2.4.3.1 Conservation of Mass	
2.4.3.2 Conservation of Momentum	
2.4.3.3 Conservation of Energy Equation	
2.4.3.4 Turbulence Modelling	
2.4.3.5 Volume of Fluid Method	
2.4.4 Structural Finite Element Methods	
2.5 Experimental Methods	
2.6 Mathematical Optimisation	
2.6.1 Dynamic-Q	
2.6.2 LS-OPT	
2.6.2.1 Linear Approximations	
2.6.2.2 Quadratic Approximations	
2.6.2.3 Neural Network Metamodels	
2.6.2.3 Kriging Interpolation	
	27
2.7 Multidisciplinary Design Optimisation	
2.8 Conclusion	
CHAPTER 3: MODELLING OF SLOSHING	40
3.1 Introduction	40
3.1 Introduction	
3.2 Computational Fluid Dynamics	40
3.2.1 Grid Generation	40
3.2.2 CFD Model Setup	
3.3 Experimental Validation	
3.3.1 Experimental Setup	
3.3.2 Comparison of Results	

University of Pretoria etd – Kingsley, T C (2005)

3.3.2.1 Phase 1 Experimental Validation	
3.3.2.2 Phase 2 Experimental Validation	
3.3.3 Conclusion	63
CHAPTER 4: OPTIMISATION FOR SLOSHING	64
4.1 Introduction	64
4.2 Definition of Objective Function	64
4.3 Optimisation Problem Setup	67
4.3.1 LS-OPT 3-D Sloshing Case Optimisation	67
4.3.2 2-D Sloshing Cases Setup	70
4.3.2.1 Linear LS-OPT Design 1 (Case 1)	
4.3.2.2 Quadratic LS-OPT Design 1 (Case 2)	
4.3.2.3 Neural Network LS-OPT Design 1 (Case 3)	74
4.3.2.4 Dynamic-Q TDO Design 1 (Case 4)	
4.3.2.5 Quadratic LS-OPT Design 2 (Case 5)	
4.3.2.6 Linear LS-OPT Design 2b (Case 6)	
4.3.2.7 Quadratic LS-OPT Saddle Design 2 (Case 7)	
4.4 Optimisation Results	77
4.4.1 LS-OPT 3-D Sloshing Case Optimisation	
4.4.2 2-D Sloshing Optimisation Results	
4.4.2.1 Linear LS-OPT Design 1 (Case 1)	
4.4.2.2 Quadratic LS-OPT Design 1 (Case 2)	
4.4.2.3 Neural Network LS-OPT Design 1 (Case 3)	
4.4.2.4 Dynamic-Q TDO Design 1 (Case 4)	
4.4.2.5 Quadratic LS-OPT Design 2 (Case 5)	
4.4.2.6 Linear LS-OPT Design 2b (Case 6)	
4.4.2.7 Quadratic LS-OPT Saddle Point Design 2 (Case 7)	
4.4.2.8 Summary of 2D optimisation results	
4.5 Conclusion	
CHAPTER 5: OPTIMISATION FOR IMPACT	
5.1 Introduction	
	101
5.2 Impact Analysis	
5.2.1 Mesh generation	101
5.3 Mathematical Ontimisation	107
5.3.1 Definition of Problem	
5.3.7 Problem Setun	
5.3.2.1.3D Geometry Ontimisation Problem Definition	108
5 3 2 2 2D Geometry Optimisation Problem Definition	100
5.3.3 Optimisation Results	
5.3.3.1 LS-OPT 3D Impact Case Optimisation.	
5.3.3.2 Optimisation results for 2D "extruded" case	
5.4 Complexity	
5.4 Conclusion	117
CHAPTER 6. MULTIDISCIPLINARY DESIGN OPTIMISATIC	
SLOSHING AND IMPACT	

University of Pretoria etd – Kingsley, T C (2005)

6.1 Introduction	
6.2 Definition of MDO Problem	
6.2.1 Problem Setup	
6.2.2 Optimisation Problem Definition	
6.5 Optimisation Results	
6.5 Summary of Results	
6.7 Conclusion	
CHAPTER 7: CONCLUSION AND FUTURE WORK	130
REFERENCES	133

List of Figures and Tables

Figure 2.1: General wave form [9]	6
Figure 2.2: Particle Trajectories in plane periodic water waves [10].	7
Figure 2.3: Particle trajectories in pure standing waves [10]	8
Figure 2.4: Non-linear sloshing of water in a rectangular tank	8
Figure 2.5: Airbag/Crash testing and simulation [11,12]	9
Figure 2.6: Relation between propagation speed and wavelength [13]	.13
Figure 2.7: Dissipation effect of short wavelengths on wave propagation speed [13]	.13
Figure 2.8: Schematic of pendulum analogy	.16
Figure 2.9: The relation between Fc/Ff and ml [4]	.17
Figure 2.10: Graham and Rodriguez's LPM [1]	.18
Figure 2.11: Force ratio vs. dimensionless frequency for Graham and Rodriguez's LPM [1]	. 19
Figure 2.12: Basic mathematical optimisation flow-chart	.29
Figure 2.13: 3D function with saddle point $(Z = X^2 - Y^2)$.32
Figure 2.14: MDO cvcle for n disciplines	.38
Figure 3.1: Typical 3D geometry and mesh	.41
Figure 3.2: Typical 2D geometry	.42
Figure 3.3: Phase 1 experimental setun	.45
Figure 3.4: Location of camera at end of rail	.46
Figure 3.5: Acceleration measurement equipment	46
Figure 3.6. Acceleration data for experimental phase 1	47
Table 3 1 · Fauinment used in phase-2 experimental setup	48
Figure 3 7: Phase-2 experimental setup	49
Figure 3.8. Acceleration curves for phase 2 experimental setup	49
Figure 3.9: Raffled validation case (Hb = 80 mm, D = 015 mm)	.51
Figure 3 10: Sample of comparative free-surface states for haffled case (Experimental vs. CFD)	.51
Figure 3.11: Wave comparison for haffled tank $(LxWxH, Hb, ØD) = (250x200x200, 80, 15)mm$	
Experimental vs. CFD model at time. t [sec]	53
Figure 3.12: Sample of free surface states for un-baffled case (Experimental vs. CFD)	.54
Figure 3.13: Wave comparison for an un-baffled case: Experiment, laminar flow and k - ω turbulence	0
model at time. t [sec] · (LxWxH) = (250x200x200)mm	56
Figure 3 14: Configuration of phase two container and pressure point locations	58
Figure 3.15: Comparative frames of liquid motion for CFD and experimental models (50% fill level)) 59
Figure 3.16: Comparative gauge pressure plots for the experimental model and the CFD	61
Figure 3.17. Comparative amplitude/frequency domain plots of pressure signals	62
Figure 4.1: Example of free surface deviation versus time	66
Figure 4.2: Free-surface deviation for 3 baffled cases	66
Figure 4.3: Geometry of 3-D sloshing case	68
Figure 4.4: Geometry of 2-D container: Design-1	70
Figure 4.5: Geometry of 2-D container: Design-2	71
Table 4 1: Definition of ontimisation cases (2D sloshing)	72
Table 4.2: 3-D sloshing LS-OPT ontimisation results	78
Figure 4.6: Linear SRSM ontimisation history (3D sloshing)	79
Table 4 3. Points used for Kriging meta-model	80
Figure 4.7. Kriging surface of 3-D sloshing case (with permission J Haarhoff)	80
Table 4 4 Final results for Linear RSM design 1	.82
Figure 4.8. Ontimisation history for Linear RSM design 1	83
Figure 4.9. Design domain/subspace reduction for Baffle centroid (x_i)	84
Table 4.5: Final results for Ouadratic RSM design 1	.86
Figure 4.10: Ontimisation history for Ouadratic RSM design 1	.86
Figure 4.11: Trade-off progress for Quadratic RSM design 1	.88
Table 4.6: Final results for Neural Network Design 1	.89
Table 4.7: Final results for Dynamic-O Design 1	.90
Figure 4.12: Optimisation history for Dynamic-O design 1	.91
Table 4.8: Final results for Ouadratic RSM design 2	.92
Table 4.9: Final results for Linear RSM design 2b	.93

University of Pretoria etd – Kingsley, T C (2005)

Table 4.10: Final results for Quadratic RSM saddle point Design 2	95
Figure 4.15: Optimisation history for Quadratic RSM saddle point Design 2	95
Figure 4.16: Trade-off plot for TDV versus fill level for Quadratic RSM saddle point Design 2	96
Table 4.11: Summary of 2D-sloshing optimisation results	97
Figure 4.17: Comparative ANOVA plots for Quadratic and Linear RSM analyses	99
Figure 5.1: Geometry of 3D liquid container	. 102
Figure 5.2: Geometry of 2D "extruded" liquid container	. 103
Figure 5.3: Mesh used in LS-DYNA analysis	. 103
Table 5.1: Table of material properties	. 105
Figure 5.4: LS-DYNA load curves	. 106
Figure 5.5: Flowchart for optimisation of impact problems	. 108
Table 5.2: Final Results for 3D impact case	. 111
Figure 5.6: Optimisation history for 3D impact case	. 112
Figure 5.7: Optimum 3D impact-case geometry showing effective Von-Mises stress concentrations.	. 113
Table 5.3: Final result for 2D "extruded" impact case	. 114
Figure 5.8: Optimisation history for 2D "extruded" impact case	.114
Figure 5.9: Optimum 2D "extruded" impact-case geometry showing stress concentrations	.116
Figure 6.1: Geometry of container for MDO analysis	. 119
Figure 6.2: Flow diagram for MDO problem for sloshing and impact	. 121
Table 6.1: MDO analysis results	. 124
Figure 6.3: Multidisciplinary optimisation history	. 125
Figure 6.4: Final dimensions of MDO optimum design	. 126
Table 6.2: Summary of the optimisation results for the three optimisation scenarios	. 127