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SUMMARY 
CORRECTION OF RADIALLY ASYMMETRIC LENS DISTORTION WITH CLOSED FORM SOLUTION 

AND INVERSE FUNCTION 
by 

Jason Peter de Villiers 
Study Leader: Dr Ronelle Geldenhuys 

Department of Electrical, Electronic & Computer Engineering, Univ. of Pretoria 
Master of Engineering (Electronic Engineering) 

 
The current paradigm in the lens distortion characterization industry is to use simple radial 

distortion models with only one or two radial terms. Tangential terms and the optimal 

distortion centre are also seldom determined. Inherent in the models currently used is the 

assumption that lens distortion is radially symmetrical. The reason for the use of these 

models is partly due to the perceived instability of more complex lens distortion models.  

This dissertation shows, in the first of its three hypotheses, that higher order models are 

indeed beneficial, when their parameters are determined using modern numerical 

optimization techniques. They are both stable and provide superior characterization. 

Although it is true that the first two radial terms dominate the distortion characterization, 

this work proves superior characterization is possible for those applications that may 

require it. 

The third hypothesis challenges the assumption of the radial symmetry of lens distortion. 

Building on the foundation provided by the first hypothesis, a sample of lens distortion 

models of similar and greater complexity to those found in literature are modified to have a 

radial gain, allowing the distortion corrections to vary both with polar angle and distance 

from the distortion centre. Four angular gains are evaluated, and two provide better 

characterization. The elliptical gain was the only method to both consistently improve the 

characterization and not ‘skew’ the corrected images. This gain was shown to improve 

characterization by as much as 50% for simple (single radial term) models and by 7% for 

even the most complex models. 

To create an undistorted image from a distorted image captured through a lens which has 

had its distortion characterized, one needs to find the corresponding distorted pixel for each 

undistorted pixel in the corrected image. This is either done iteratively or using a 

simplified model typically based on the Taylor expansion of a simple (one or two radial 

coefficients) distortion model. The first method is accurate yet slow and the second, the 

opposite. The second hypothesis of this research successfully combines the advantages of 
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both methods without any of their disadvantages. It was shown that, using the superior 

characterization of high order radial models (when fitted with modern numerical 

optimization methods) together with the ‘side-effect’ undistorted image points created in 

the lens distortion characterization, it is possible to fit a ‘reverse’ model from the 

undistorted to distorted domains. This reverse characterization is of similar complexity to 

the simplified models yet provides characterization equivalent to the iterative techniques. 

Compared to using simplified models the reverse mapping yields an improvement of more 

than tenfold - from the many tenths of pixels to a few hundredths. 

Keywords: 
Lens distortion, distortion correction, numerical optimization, radial distortion, 
asymmetric radial distortion, inverse distortion 
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Die huidige standaard vir die karakterisering van lensvervorming, is om eenvoudige radiale 

vervormingsmodelle met slegs een of twee radiale terme te gebruik.  Raaklynige terme en 

die optimale vervormingsmiddelpunt word selde bepaal.  Hierdie modelle is gebaseer op 

die implisiete aanname dat lensvervorming radiaal simmetries is.  Die motivering vir die 

gebruik van hierdie modelle, kan deels toegeskryf word aan die persepsie dat meer 

komplekse modelle onstabiel is. 

In hierdie verhandeling word aangetoon, in die eerste van drie hipoteses, dat hoër orde 

modelle wel voordelig is, wanneer passing met behulp van moderne numeriese 

optimeringsmetodes geskied.  Die modelle is stabiel en verskaf aansienlik beter 

karakterisering van lensvervorming.  Die eerste twee radiale terme domineer wel die 

karakterisering, maar dit word aangetoon dat beter resultate bereik kan word in gevalle 

waar dit benodig word/geregverdig is. 

In die derde hipotese word die aanname van radiaal simmetriese lensvervorming 

bevraagteken.  Deur die eerste hipotese verder te neem, word modelle met vergelykbare en 

groter kompleksiteit as dié in die literatuur aangepas/uitgebrei om radiale aanwins in te 

sluit.  Die modelle laat beide die poolhoek en afstand van die vervormingsmiddelpunt van 

die korreksies toe om te varieer.  Vier metodes is ge-evalueer.  Twee van hierdie metodes 

lei tot beter karakterisering.  Die koniese/elliptiese aanwins metode is die enigste wat 

deurgaans die karakterisering verbeter en nie ’n skewe gekorrigeerde beeld lewer nie.  Die 

aanwins verbeter die karakterisering met tot 50% vir eenvoudige (enkel radiale term) 

modelle en tot 7% vir die mees komplekse modelle. 

Deur die gepaardgaande vervormde beeldelement vir elke onvervormde beeldelement te 

bepaal, kan ‘n onvervormde beeld van ‘n vervormde een gevorm word, waar die betrokke 

lens se vervorming gekarakteriseer is.  Dit kan iteratief gedoen word, of deur die gebruik 
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van ‘n vereenvoudigde model wat gebasseer is op ‘n Taylor uitbreiding van ‘n eenvoudige 

(een of twee radiale koëffisiënte) vervormingsmodel.  Die eerste metode is akkuraat, maar 

stadig, en die tweede metode presies die teenoorgestelde.  Die tweede hipotese in die 

verhandeling kombineer die voordele van beide metodes sonder enige van die nadele.  Dit 

word aangetoon dat dit moontlik is om ‘n ‘inverse’ model te pas van die onvervormde na 

die vervormde areas, deur beter karakterisering van hoër orde radiale modelle (wanneer 

gepas met moderne numeriese optimeringsmetodes) tesame met die ‘newe-effek’ van 

onvervormde beeldpunte wat geskep is tydens karakterisering lensvervormings.  Hierdie 

inverse karakterisering is vergelykbaar in kompleksiteit met die vereenvoudigde modelle, 

maar lewer ekwivalente resultate aan iteratiewe tegnieke.  In vergelyking met 

vereenvoudigde modelle, lewer die inverse passing ‘n tienvoudige verbetering – van 

tiendes van ‘n beeldelement na slegs ‘n paar honderstes. 

 
Sleutelwoorde: 
Lens vervorming, vervormingskorreksie, numeriese optimering, radiale 
vervorming, asimmetriese radiale vervorming, inverse vervorming 
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CHAPTER 1. 
RESEARCH OVERVIEW 

This section describes the research that was done, it places the research in context and 

discusses the contribution made. Finally, the methodology of the research is described and 

an outline of the rest of this dissertation provided. 

1.1. Introduction 

Photogrammetry is a measurement technique whereby three dimensional (3D) 

measurements are made from one or more two dimensional (2D) images taken of the 

object to be measured. With the advent of more and more inexpensive camera equipment 

(which make use of cheaper lenses with higher distortion), particularly digital photography 

equipment, cameras are being used for increasingly varied and diverse applications such as 

machine vision [1–9], image stitching [10, 11], product defect detection [12], motion 

capture [2], better video compression [13], 3D measurement/reconstruction [14-18], and 

the digital archiving of documents and archaeological artefacts [19, 20]. Previously, 

expensive lenses which optically reduced distortion, or expensive equipment to measure 

and characterize lens distortion were used [7, 14, 16, 18]. Much work has been done to 

cheaply and easily calibrate lenses using everyday images or images of simple calibration 

patterns, examples of this can be found in [2, 4, 8, 9, 12, 14, 15, 17, 19-23]. 

Figure 1.1 illustrates the relationship between a point in the image plane, and the distortion 

and image centres, and forms the basis for the overview of the different parameters 

involved in camera calibration. 
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Figure 1.1  Image Plane Diagram depicting the point P in the image plane and its polar 

coordinates from the principle point in the image. The difference between principle point and 

image centre, and the image plane normal and lens optical axis are also shown. 

With reference to Figure 1.1, P is the projection of a point in space onto the image plane. 

(0, 0) is the centre of the image plane, note that the intersection of the lens optical axis does 

not (in general) intersect the plane at this point, and is also offset from the normal of the 

image plane by an angle α. θ is the angle of the line (in the image plane) joining the optical 

axis intersection point and the projected point P, r is the length of this line segment. 

The relationship between a point in free space and its projection on the image plane is 

dependant on the following parameters [1, 3, 5-9, 16, 24, 25]: 

• Camera Extrinsic Parameters. These parameters transform a point in world 

coordinate to camera coordinate, and include the position and attitude of the camera 

in the world. Afterwards the point is still 3D but is now referenced to the camera. 

• Camera Intrinsic Parameters. These parameters transform a point in camera 

coordinates to a pixel position, and include focal length, X scale Factor, Y scale 

factor, X/Y orthogonality and the optical axis intersection point. 

• Lens Distortion. All lenses induce a non-linear mapping between a point and its 

projection on the image plane, the amount of nonlinearity is dependant on various 
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parameters including the field of view (FOV) and the exact optical geometry of 

complex lenses [25, 26]. This difference between the actual image position of a 

point and the point predicted by the extrinsic and intrinsic camera parameters is the 

distortion. 

It is thus necessary to correct for lens distortion if accurate measurements are to be made 

using the linear intrinsic and extrinsic camera parameters [1-27]. This is the focus of this 

dissertation, as the determination of extrinsic and intrinsic parameters is a mature science. 

This dissertation does not study the effect of aberrations which are points in the image 

where the effective focal length differs from the nominal focal length (refer to §3.2). 

1.2. Problem statement 

Current lens distortion techniques do not fully explain all distortion evident in some lenses, 

refer to §4.3 for an example of this. Additionally, many proposed distortion correction 

models choose, for reasons of numerical stability of parameter determination, to ignore 

known distortion contributions. Examples of this are ignoring higher order radial distortion 

terms [e.g. 7, 17, 21-23]; ignoring the offset between distortion centre and image centre 

[e.g. 7, 23]; and ignoring tangential distortion [e.g. 7 -9]. Table 4.1 quantifies the distortion 

contributions considered by the models found in literature. Many lens distortion models 

require numerical iteration even after their distortion parameters have been determined, in 

order to calculate inverse distortion. 

The aim of this research is to attempt to alleviate the above phenomena. 

1.3. Scope of research 

This research will focus on three primary goals: 

1. To determine what numerical methods are used to determine the parameters for the 

various distortion models, and investigate how this can be made more robust, 

specifically with the aim of being stable with the inclusion of additional model 

parameters. 

2. To determine if a suitably accurate estimation of the inverse distortion (distortion 

correction) can be repeatably and robustly determined. 

3. To investigate if the implicit assumption inherent to non-cartesian models that 

distortion is radially symmetric is valid, and whether extending models to allow for 

radial asymmetry will improve distortion correction. 



 

 

Chapter 1 Introduction 

Electrical, Electronic and Computer Engineering 4 

1.4. Research context 

Photogrammetry and lens distortion are phenomena that have been studied and modelled 

for many decades and are mature sciences. The determination of camera intrinsic and 

extrinsic parameters has had much work done [1, 3, 5-9, 16, 24, 25], and is also mature. 

Lens distortion has had less work done on it, and with the exception of a few landmark 

papers such as those by Conrady [26] and Brown [14, 27] only received attention with the 

advent of computing power and digital imaging. However, much work has been done 

since, notably by Tsai [7], Stein [17] and Zhang [8, 9]. This research aims to build on this 

knowledge and advance it a step further, specifically to facilitate real-time precision 

distortion correction and inversion. 

1.5. Research Approach 

The approach taken in this research is one of study and hypothesis formulation followed by 

experimental verification and analysis as described below. 

Research Questions 

During the process of conducting the literature study, the following questions were used to 

determine the hypotheses and to verify them: 

• What assumptions, both implicit and explicit, are being made? 
• What parallels to other fields can be drawn? 
• What advances in technology and knowledge have occurred? 
• How can this be tested/verified? 

Literature Study 

An extensive literature study was undertaken, in which seminal papers, ideas and persons 

were identified. An understanding of lens distortion, and the different models thereof was 

sought. These models were then classified in terms of distortion type, complexity, 

relevance and effectiveness taking into account both the time they were derived and their 

intended context of use. 

Hypothesis Formulation 

Using the questions listed above and the understanding gained from the literature study, 

hypotheses were determined. 
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Experiment set-up and data capturing 

For each hypothesis, the data required to verify it was determined. Given this required data 

an experiment to obtain it was derived, as well as a measure to determine the effectiveness 

of the hypotheses. 

Hypothesis verification/validation 

Using the data provided by the experiments each hypothesis was studied and tested to 

determine its effect. 

Analysis of results 

Using the effectiveness measure and the results of each hypothesis’ implementation, the 

effect on lens distortion and thus the ultimate viability of each hypothesis was determined. 

1.6. Notation 

This section defines the mathematical notation used throughout this dissertation. 

x or x A vector 

kx or xk The value of vector x at iteration k. 

x or X A scalar 

x
a  The Xth norm of the vector a. 

1.7. Organization of the dissertation 

This rest of this dissertation is organised in the following manner: 

Chapter 2:  Literature study summarizes the results of the literature study that was 

undertaken. The current state of knowledge of lens distortion is presented in a manner 

applicable to the research undertaken. The need for distortion modelling is presented 

followed by an overview of the history of photogrammetry. Thereafter, distortion models 

found in literature are used to characterize lens distortion first by method of modelling 

(polar vs. Cartesian) and then by time of use (before, during or after image capture). The 

need for determining the inverse mapping from the undistorted to distorted domains is 
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explained, and finally a thorough discussion of numerical optimisation as pertinent to lens 

distortion characterization is provided with emphasis on four particular algorithms. 

Chapter 3:  Configuration contains the configuration of the experiments used to gather the 

data which was used to verify the hypotheses. The equipment used to capture the 

experimental data, the camera and lens, and the optical reference jigs are described. Line 

straightness measures based on gradients and fitting errors are derived. 

Chapter 4:  Hypothesis 1: Parameter estimation is robust when determined with 

modern optimization methods shows that higher order radial models can be used to better 

characterize distortion provided sound optimization principles are followed.. 

Chapter 5:  Hypothesis 2: Correction of barrel distortion can be modelled as 

pincushion distortion shows that inverse distortion need not be a trade off between speed 

of execution and accuracy, a method with both characteristics is devised.. 

Chapter 6:  Hypothesis 3: Distortion is not necessarily radially symmetrical 

quantatively shows that distortion is not perfectly symmetrical and that allowing 

asymmetry can enhance even the superior characterization of Chapter 1. 

Chapter 7:  Conclusions the results of the research are placed in context and scope for 

future work is provided. Each hypothesis is discussed, including its impact on current lens 

distortion paradigms, how they may be applied in practice and when they are applicable.
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CHAPTER 2. 
LITERATURE STUDY 

2.1. The need for lens distortion modelling 

Every photogrammetric and machine vision application has different requirements. If the 

requirement is to make an image seem undistorted to cursory inspection, then correction to 

the nearest pixel will suffice as it did for Fernandes et al [12]. Similarly if one is required 

to stitch images together to form a larger image, then elaborate distortion modelling is 

unnecessary as shown by Hsu and Sawhney [11]. However there are applications where 

cameras are used to make highly precise measurements, and where as much of the 

distortion as possible is desired to be modelled and accounted for. 

In 1992 Shih et al [34] did a study on the effect of different noise sources on camera 

calibration and also included the effects of ignoring lens distortion. Clearly lenses that 

exhibit substantial distortion, such as the fish-eye lens, can never have their distortion 

ignored, and Shih et al derived an error bound which can be used to determine if the 

distortion is acceptable for a particular application and lens. 

Jeong et al [24], purposefully chose to neglect the effect of lens distortion in determining 

extrinsic and intrinsic camera parameters. Their focus was the effect of using different line 

widths and they found that the different calibration parameters varied by between 1% and 

3%. The determined orientation of the camera was found to vary by as much as 2°. This is 

despite using an undisclosed lens that did not appear to exhibit significant distortion in the 

sample images in their paper, thus emphasising the need for lens distortion modelling. 

2.2. Overview of the history of photogrammetry 

Photogrammetry is as old as photography itself - the ambition being to make accurate 

measurements from 2D images. Perspective transformations however could not fully 

account for the positioning of real-world image points in the resultant image. This 

difference is due to lens distortion. Clark and Fryer [35] provide an excellent history of the 

evolution of lens distortion modelling and correction, this is summarized below with the 

addition of a few points pertinent to this dissertation. 
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Initially the applications for photogrammetry were primarily cartographic in nature, 

resulting largely from military surveillance needs. This progressed from terrestrial cameras 

to aerial cameras with the advent of reliable aircraft in World War I. The era from 1950 

through 1979 saw much development in the fields of lens distortion modelling, advancing 

it from the presiding qualitative approach to a more quantitative geometric approach based 

on an understanding of the operation of lens systems. 

Prior to 1950, lens distortion was treated by projecting each captured image through lens 

with which it was captured. Thereafter the primary issues of concern were the calibrated 

focal length (or principal distance) and the principle point. The latter is the point around 

which the distortion is most symmetrical radially. Distortion radial asymmetries and 

tangential components were deemed unimportant as long as they were within tolerance 

(typically 15-30µm in the image). These distortions were attributed to “thin prism 

distortion,” which equated the distortion to that that a hypothetical thin prism placed in 

front of the lens would induce. 

In 1965 at the Annual Convention of the American Photogrammetric Society Brown 

shifted the paradigm, he presented previously classified work which showed that the 

tangential distortion was attributable to the decentring of the lenses in the lens stack. He 

further proved that Conrady had been correct in his largely ignored ray tracing paper [26] 

published in 1919. Brown later published these findings in his scathing 1966 landmark 

paper: “Decentering Distortion of Lenses” [27].  

In 1971 Brown published another seminal paper: “Close Range Camera Calibration” [14]. 

In this paper Brown both provided a robust, computer-implementable algorithm to 

determine the lens distortion parameters for a certain object distance and how to interpolate 

between distortion parameters for two different object distances to produce the parameters 

for a third distance. Brown’s method to characterize a lens is known as the “plumb line 

method” which essentially formally states the truism: ‘straight lines are straight.’ Thus any 

curvature apparent in an image of straight lines is due to lens distortion, as the perspective 

transformation is linear. Brown’s lens distortion formula is given as: 
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where: 

(xu, yu)   = undistorted image point, 

(xd, yd)   = distorted image point, 

(xc, yc)   = centre of distortion, 

Kn          = Nth radial distortion coefficient,  

Pn          = Nth tangential distortion coefficient,  

r           = 22 )()( cdcd yyxx −+− , and 

“…” indicates an infinite series. 

 

Eq 2-1 

Eq 2-1 has been used unchanged since. With the advent of low cost computing and Charge 

Coupled Devices (CCD) making digital imagery commercially and increasingly cheaply 

available, Brown’s equations have been applied to such realms as computer vision and 

process automation. Clark and Fryer note that this has been done successfully despite 

digital cameras and their lenses differing in size, focal length, image size, mass, quality and 

focus (fixed versus variable/zoom) from their analogue counterparts that were  purpose 

built for photogrammetry. 

Eq 2-1 is an infinite series, however in practice a finite number of radial and tangential 

parameters are used. Typically one or two radial terms and often zero tangential terms, in 

this dissertation the term “higher order” when referring to Eq 2-1 means that more three or 

more radial terms are modelled and probably two or more tangential terms. 

Since the 1980’s the primary focus on lens distortion research has been in the digital 

domain [35]. The focus was on calibration using inexpensive equipment, resulting in 

computationally efficient distortion corrections. 

 In 1987 Tsai [7] published a paper describing a two step method for camera calibration, 

where the principle point is fixed at the centre of the image, and a single radial parameter 

and no tangential parameters are modelled. Tsai claimed that higher order versions of Eq 

2-1 result in numerical instability, without specifying the exact method used to attempt to 

determine the parameters. 
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In 1999 Zhang [8] published a method whereby a simple (laser printable) coplanar pattern 

can be used to characterize a lens’ distortion from three unknown views of the pattern. 

Zhang presented his method for two radial and no tangential distortion parameters claming 

that the remaining terms were comparably insignificant. 

2.3. Types of lens distortion models 

Two types of lens distortion models are evident in literature, with the primary difference 

being whether distortion is modelled with polar or Cartesian coordinates. 

2.3.1. Radial lens distortion models 

The vast majority of lens distortion models are of the radial type, this is due to most lenses 

having spherical elements. Radial distortion models assume that points move radially in or 

out towards or away from a distortion centre roughly in the centre of the image. The 

amount of distortion is solely dependant on the distance of the point from the distortion 

centre (i.e. the distortion is radially symmetrical). Some models allow for tangential 

distortion, although the direction and magnitude of the distortion is also solely dependant 

on the distance from the distortion centre. This is summarized in Figure 2.1. 

 

Figure 2.1 Radial and tangential distortion depicted in the image plane. The black circle is 

the distorted (measurable) image point and the white circle its corresponding undistorted 

image point, the outline is the image plane. 

Depending on whether the radial component of the distortion pulls points closer to the 

centre (typical of wide angle lenses [10]) or pushes the points out (typical of telephoto 
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lenses [10]) the distortion is referred to as barrel distortion or pin cushion distortion 

respectively. Figure 2.2 depicts this, and it also shows how a barrel distorted image is 

smaller than its corresponding undistorted image, and how pincushion distorted images are 

larger. 

 

Figure 2.2 Barrel and pincushion distortion. The blue rectangle indicates the boundaries of 

the undistorted image; the red shape depicts the blue rectangle subject to barrel distortion; 

and the green shape the blue rectangle subject to pincushion distortion. 

The pre-eminent radial distortion model is that of Brown [14, 27], however other models 

do exist, and tend to based on rigorous study of the physical properties of lenses. Note that 

Brown’s model is only strictly radial if no tangential terms are modelled, however this 

degenerate case is commonly used. The next sections discuss each of these types in further 

detail. 

2.3.1.1. Curve fitting methods 

These models are those characterized by the Brown lens distortion model. All of these 

methods optimize the parameters of their model until the distortion is at a minimum.  

One of the most common distortion measures is the straightness of straight lines. Pioneered 

by Brown in 1971 [14] with his ‘plumb-line method’ this distortion measure has been used 

extensively since. Essentially, points on a line (that should be straight) are found, either 

manually as Brown did in 1971 or automatically by edge detection algorithms on digital 

images. Given these points, one possible distortion measure is the sum of the perpendicular 
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(or vertical) distances of the points from the best fit straight line through them. Brown used 

a polar representation of the straight lines and the perpendicular distance from the lines, as 

did [4].  [21 -23] used the sum of the differences between the gradients calculated from 

adjacent pairs or points along the line and thus did not need to actually determine the best 

fit line. Cucchiara et al [2] used the Hough Transform and took the maximum of the Hough 

Space as an inverse indication of the amount of distortion. Clearly these methods will be 

adversely affected if real-life curves are mistakenly identified as lines which should be 

straight in the image. 

A second measure, which requires a known physical set up, is where 3D reference points 

(whose positions in space are precisely known) are projected onto the image plane, via the 

camera’s extrinsic and intrinsic parameters (resulting in the undistorted point) and then 

compared to the actual image points distorted by the radial distortion model. The sum of 

the distances (in pixels) between the projected and the actual images of the points (after 

having distortion applied to them) is the distortion measure. These methods (e.g. [1, 3, 16]) 

are dependant on the prior knowledge of the extrinsic and intrinsic parameters, or require 

their simultaneous determination. Additionally, these methods are sensitive to the 

error/noise with which the reference points’ positions are known and the accuracy with 

which the (sub)pixel position of the reference points can be found in the image. 

Finally, if multiple images of a scene with repeatably (algorithmically) identifiable markers 

are taken by a camera whose intrinsic parameters remain constant, then it is possible to use 

epipolar geometry to determine the relative camera positions (i.e. extrinsic parameters) and 

project the markers from one image to the other. The difference between the projection of a 

marker onto an image and the actual position is due to distortion. The distortion measure is 

then simply the sum of distances between the projected markers and actual markers. This 

technique was pioneered by [17] and has been used extensively since [8-9, 33]. 

2.3.1.2. Physical modelling methods 

These models are based on physical and optical phenomena, directly observable in a lens 

system. Distortion models of this nature are less common than the curve fitting variety. 

 Conrady’s model [26] was the first such model to correctly model radial and tangential 

distortion, with the latter being the direct result of the non-perfect relative centering of the 

lenses in the optical assembly. Conrady’s model was based on rigorous analytical ray 

tracing of light through decentered perfect spherical lenses. 
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A further example of such models is that of Perš and Kovačič [5]. This model is based on 

the comparison of the fringes of a wide FOV camera’s image to that obtained by an 

idealised pinhole camera which is non-perpendicular to the image plane. A unique feature 

of this model is that it has no parameters specific to distortion, the radial distortion is a 

function only of the focal length. The results presented by Perš and Kovačič show a 

significant improvement in distortion, although the Root Mean Square (RMS) pixel 

distance from the best fit straight lines through the corrected points are still in the order of 

1 pixel in the image centre and 3 pixels at the image edge, for the 768 pixels by 576 pixels 

image. The focal lengths were a particularly short 6.5mm and 8.5mm, however these are 

still longer than the camera used in this dissertation (refer to §3.1). 

2.3.2. Cartesian lens distortion models 

The second broad variety of lens distortion models is the Cartesian class. These models 

typically do not assume that the distortion is radially symmetrical.  

Examples of these methods include those of:  Sagawa, et al [28], Nijmeijer, et al [32], and 

Tsatsakis et al [18]. In this class of model a direct relationship between a pixel in the 

(distorted) image and its corresponding projection vector is sought. This is done by 

determining a look up table for a subset of the pixels (typically a grid of every (e.g.) 50 

pixels across and down) and then interpolating between these pixels for the rest of the 

pixels in the image. 

Arguably some of the most ingenious work in lens distortion revolves around the exact 

manner in which the corresponding vectors for the chosen subset of pixels are determined. 

Sagawa et al placed the camera to be calibrated a known distance in front of a high 

resolution plasma panel and displayed (alternately) vertical and horizontal bars and used 

their intersections. By varying the widths and locations of the bars a very dense subset grid 

was obtained thus minimizing the need for, and error induced by interpolation. 

Tsatsakis et al placed the (analogue video) camera-to-be-calibrated in front a line grid 

whose intersections are known. This grid was mounted on a linear transducer and could 

move back and forth relative to the camera. So (assuming the camera’s roll is aligned to 

that of the grid) for any given pixel there is a distance such that a horizontal grid row will 

pass perfectly through it. The same is true for a second distance with a second, different, 

grid line (provided the grid density and size and transducer range of movement suffice). 

Thus using the known vertical distance between the grid lines and the two displacements of 
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the grid relative to the camera, the elevation of the pixel’s unit vector can be calculated. 

Similarly the vertical grid components can be used to determine the azimuth of the pixel’s 

unit vector. 

Claus and Fitzgibbon [15] took a different approach. They chose to fit a separate 

adjustment model for the X and Y coordinates. The model is a rational function which 

consists of the full 2-variable 2nd order polynomial (c0x2 + c1xy + c2y2 + c3x +c4y + c5) of X 

and Y, over another such polynomial. The X and Y adjustments have the same denominator 

polynomial in common, thus giving a total of 18 parameters. The parameters are 

determined analytically using epipolar geometry and reprojection as discussed in §2.3.1.1. 

An interesting model in this class is Candocia’s scale preserving model [10]. Candocia was 

interested in keeping the size of the distorted image constant after distortion correction, in 

order to aide combining the images into a larger image. As a starting point he took 

Brown’s model and chose to make the X adjustment a function only of the square of the 

distorted Y position, and vice versa, thus changing the model from a radial one to a 

Cartesian one. Candocia supplied subjective proof of the distortion correction and its 

superiority for its intended purpose. Candocia did not divulge how the single distortion 

correction parameter was determined, nor did he provide a quantative measure of the 

distortion correction - such as the RMS pixel distance of edge lines to the best fit straight 

line through them. 

2.4. Methods of lens distortion parameter determination 

There are three points in time when information to characterize lens distortion can be 

collected: before the picture is taken, while the picture is taken, or after the picture is taken. 

These are discussed in the following sections. 

2.4.1. Prior characterisation – camera calibration 

This class can be broken down in to two types: those that require expensive, highly 

calibrated laboratory setups, and those that require only simple setups. 

Multiple examples of the first type are available in literature [1, 3, 6, 7, 13, 16, 25, 28]. All 

of these methods have 3D reference points whose positions are precisely known (typically) 

to within 1mm relative to each other. Depending on the method, single or multiple images 

are captured, and these may or may not be from known camera positions. These methods 

then use the extrinsic and intrinsic parameters to project each 3D reference point onto the 
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image plane, and adjust the distortion model’s parameters until the points best coincide 

with the actual image of the points. This obviously requires knowledge of the extrinsic and 

intrinsic parameters; this must either be determined before hand, or determined 

simultaneously with distortion parameters.  

There are two predominant types of laboratory target setups: planar checkerboards and 

planar arrays of circles. The 3D reference points are then the checker intersections or circle 

centres respectively. Both checkerboards and circle arrays can be manufactured to 

extremely tight tolerances and have their intersections/centres measured very accurately. If 

non-planar patterns are desired these are made up of multiple planar patterns, such as 

Heikkila and Silven’s corner cube with circles [16] 

On the image side, checker intersections are determined by finding (typically using least 

squares) the best fit second order, or higher, surface as a function of intensity versus X and 

Y in a window roughly centred around the intersection of interest. The saddle point of the 

surface (i.e. the point which is both the minimum intensity on the diagonal from white 

checker to white checker and the maximum intensity form black checker to black checker) 

is then the intersection pixel position. Lucchese and Mitra [36] show how this may be done 

and obtain a sub-pixel accurate result. The two dominant methods of circle centre 

determination are to use the centroid (intensity centre of gravity) or to find the best fit 

ellipse and use its centre, Redert et al [37] provide an algorithm to do the latter and find the 

centre to within a less than a pixel. 

The quality of calibration obtained using laboratory setups as described above is typically 

superior to other methods due to the precision of the measurements used, due to the 

precision of the knowledge of the physical setup. However this precision needs to be 

balanced against the cost of the calibration and equipment and the acceptable level of 

distortion for the application. 

The second type of prior distortion determination involves the use of less elaborate setups, 

typically the positions of the references are not known precisely, only their geometry. The 

majority of these methods cannot determine the camera intrinsic and extrinsic parameters. 

The quintessential example of these methods is Brown’s plumb line method [14] which 

uses only lengths of cord pulled taught by weights suspended in oil, with pins and the like 

used to get lines which are non-horizontal. Fernandes et al [12] used a grid which had 

concentric circles and radii radiating outwards from the circle’s centre. Zhang [8, 9] uses a 

simple printed array of non-connected squares. 
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All of these methods are based on the “straight lines are straight” curve fitting 

methodology described in §2.3.1.1. Points along a line are determined either manually 

from an enlarged print of the image as Brown did in 1971 or via an edge detection 

algorithm. Fernandes et al used the concentric circles and radii to determine the distortion 

centre by moving the grid relative to the camera until none of the radiating lines appeared 

to be distorted, thereafter the grid lines were used to determine the distortion. Zhang used 

an edge detection algorithm to identify the (collinear) corners of the squares on his 

calibration pattern. Once the points on the lines have been determined, the distortion 

parameters (starting with an initial estimate) can be numerically refined by the methods 

described in §2.6. 

2.4.2. Live characterisation – photo calibration 

Of the three methods this seems to be the least common, only Lin and Fuh [20] of the 

articles surveyed used this method. Live determination involves placing sufficient 

reference data around the object to be photographed so that lens distortion characterisation 

can be performed using this data. This is inherently unsuitable for many applications (e.g. 

aerial photography). 

Lin and Fuh were concerned with the digital archival of ancient scrolls. They placed the 

scrolls on a grid of horizontal and vertical lines, such that parts of the grid are visible all 

around the scroll, and the camera is normal to the grid/scroll plane. A Fast Fourier 

Transform (FFT) is performed horizontally and vertically on the image parts that have grid 

lines visible to identify the grid lines. Each identified grid line is then matched to its 

corresponding grid line in reality. Using the known grid spacing, the distortion from the 

ideal pin hole camera model for each grid line intersection is determined in X and Y (i.e. 

this is a Cartesian model). The distortion for the rest of the image is then interpolated using 

the nearest known (intersection) points. Lin and Fuh did not provide any quantative 

measure of the distortion correction. 

2.4.3. Post characterisation – photo correction 

This method is used when an image (or footage) has been captured with an unknown 

camera and one wants to remove the lens distortion. There are two types of post 

characterization methods: “straight lines are straight” and multi-image reprojection. 

The first method involves the manual or automatic identification of lines in the (distorted) 

image which are thought to be straight lines in reality. Thereafter, points along these lines 
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are identified and one the “straight lines are straight” curve fitting distortion measures 

(refer to §2.3.1.1) is used to minimize the distortion. Clearly this method requires straight 

lines to be present in the image, so a close up of flower could not be corrected. Depending 

on the contrast, the identification of points by edge detection methods may suffer 

significant noise. Finally, the incorrect identification of real-life curves as lines-which-

should-be-straight will corrupt the distortion characterization. 

Examples of this method are the trio of related papers by Ahmed, Farag and El-Melegy. In 

2001, Ahmed and Farag [21] provided an analytic solution based on a distortion measure 

which is the sum of the difference of the gradient over each line to be straightened (as 

discussed in §2.3.1.1). This solution is then numerically refined. Melegy and Farag [23] 

refined this in 2003 by adding the ability to move to higher order distortion models and to 

eliminate noisy data using the least median of squares technique. In 2005, Ahmed and 

Farag [22] showed that modelling tangential distortion alleviated the effect of not 

accurately determining the distortion centre, they further claimed that high order models 

over fit the data for a particular image, and thus cannot be used for other images with the 

same camera. This could have been rectified by performing the calibration using multiple 

images from the same camera. 

Cucchiara et al [2] used the Hough transform of the identified points and then used the 

maximum of the Hough Space as their distortion measure. The Hough space that they used 

was the standard rho-theta space, although they weighted the bins with the intensity of the 

point found by their line detection algorithm. They used a course-to-fine search technique 

to characterise their distortion, a method which worked because they elected to use only a 

single distortion parameter: first order radial distortion. More parameters would have 

increased the search space such that this method would not be viable, and a gradient based 

method would be required. Having only a single radial distortion parameter also allowed 

for an exact analytical inverse function. 

The second type of post characterization is using re-projection from multiple images. In 

this method feature points, such as the corners of windows, doors, etc, are identified. One 

or more further images are then required that have same feature points. Additionally the 

physical relationship between the feature points needs to be constant – so one cannot use 

this method with images of moving objects. Finally, the intrinsic parameters need to be 

constant for all the images taken. The repeatability and accuracy with which the feature 

points can be found is of paramount importance if the distortion is to be accurately 
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modelled. Epipolar lines are used to determine the relative positions of the cameras, and so 

the feature points can be projected from one image onto another. The difference between 

the detected feature point and the projected feature point is the distortion measure. 

An example of this type of distortion correction is Claus and Fitzgibbon’s rational function 

model [15], where they fit 18 parameters to perform their Cartesian correction. 

2.5. The need for the inverse of distortion 

§2.3 and §2.4 above give an overview of how lens distortion is characterized. All of these 

methods allow one to take a point (pixel) in the distorted image, and determine where that 

point would be if the image were not distorted.  

However, in practise, one generates an undistorted image in the opposite manner. One 

starts with a blank slate for the undistorted image, and for every pixel determines which 

distorted pixel to use. In general it is unlikely that the calculated source distorted pixel has 

integer coordinates, and so some interpolation between the four adjacent pixels is 

necessary. Typically bilinear interpolation is used, as depicted and explained in Figure 2.3 

and Eq 2-2 respectively. For non-grayscale images the interpolation is performed for red, 

green and blue individually 
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Figure 2.3 Bilinear interpolation data sources. The spot marked X, falls between the integer 

coordinates at which the pixel values are known, Eq 2-2 shows how to determine the value at 

X. 

 I(X+a, Y+b) = (1-b)((1-a)I(X,Y)+aI(X+1,Y))+ 

b((1-a)I(X,Y+1)+aI(X+1, Y+1)) 
where: 

I(m, n)  = is the intensity of the pixel at (m, n), 

a          = sub-pixel distance from closest pixel to the left and where a )1,0[∈ , and  

b          = sub-pixel distance from closest pixel above and where b )1,0[∈ . 

Eq 2-2 

There is a second reason why the inverse of distortion is needed. It is often desirable to 

know where in the image an object in free space would appear. This point can be projected 

onto the image plane via the extrinsic and intrinsic parameters, thus obtaining the 

undistorted position, and the inverse of the distortion model must be used to obtain the 

distorted (i.e. image) position. An example of an application that requires this is a tracking 

system where a moving reference is in the field of view of a camera, one would then like to 

be able to predict where the reference will be in the next image so that either the area of the 

image searched for the reference is reduced and/or comparison of the predicted and 

detected reference points can be done as a believability check. 
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The ability to find the distorted pixel which corresponds to an undistorted picture is known 

variously as undistortion, distortion correction and inverse distortion. Inspection of 

Brown’s distortion model in Eq 2-1 shows that except for trivial first order radial 

implementations with no tangential modelling the equation is nonlinear in terms of r2. Thus 

although finding a distorted point’s corresponding undistorted point is simple, the opposite 

is not true.  Typically one guesses where the undistorted point is (possibly by calculating 

the correction of a distorted point at the undistorted point’s position, and subtracting 

instead of adding that correction) and then adjusts that point until the distance between its 

corresponding undistorted point and that original undistorted point is acceptably close to 

zero. This involves an iterative numerical refinement of the guessed distorted position. 

This is neither a quick nor a deterministic procedure, making it undesirable for real-time 

applications. 

Although Candocia’s scale preserving model [10] (which (refer to §2.3.2) is a simplified 

version of Brown’s model) has an analytic inverse distortion, it requires solving two 5th 

order polynomials (one each for X and Y) for each pixel in the undistorted domain. Since a 

fourth order polynomial is the highest order whose roots can be solved analytically, this 

too requires an iterative solution to find at least one of the roots. 

2.6. Nonlinear multi-dimensional optimisation techniques 

Many algorithms have been developed to find the minimum of a given function. The 

choice of algorithm depends on the exact characteristics of the function such as: whether it 

is quadratic, the number of parameters, whether it is differentiable, whether the solution 

must be constrained to a certain space, the accuracy of the initial guess and even whether 

the function is known in closed form or whether it is a “black-box” (perhaps the result of 

an intricate and time consuming simulation or experiment). This last also determines 

whether the derivatives are known or must be numerically approximated. 

A representative sample of four techniques suitable to lens distortion is presented here, 

starting with the earliest and most basic technique and progressing through to the more 

advanced techniques. 

2.6.1. Steepest Descent (SD) 

SD is the simplest multi-dimensional non-linear optimisation technique. It is a first order 

optimisation technique, which means that only the first order derivative information of the 
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function to be minimised is used. Optimisation theory states that the gradient ( f∇  - vector 

of first order partial derivatives) provides the direction of steepest ascent, and therefore the 

chosen search direction is f∇− normalised to a unit vector. 

With the search direction (dk) known, the problem is reduced to a single parameter search 

from the original N parameters, i.e. the problem becomes solve α>0 such that f(xk+αdk) is a 

minimum. Various techniques to do this line search are available in any textbook on 

numerical techniques/optimisation such as that of Snyman [38] and Burden and Faires 

[39]. The method chosen for this dissertation is Powell’s quadratic interpolation. In this 

method the function is evaluated at the current position, and at the maximum step size 

taken in the search direction. Halfway between these positions the function is re-evaluated, 

and if this is not lower than the function at the current position, the distance between that 

point and the current point is halved until the function is lower, or the point becomes closer 

than the tolerance to the current point. Assuming that this last does not happen, a quadratic 

is fitted between the three points, as a function of distance from the current point. The 

turning point of the function is taken as the next point, although it is clipped to the 

maximum step size. 

The algorithm for SD is given below: 
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where: 

f      = function of N variables to be minimised, 

f∇  = partial derivative vector of f, 

dk    = the search direction of steepest descent, 

α     = the step in the direction of dk (which minimises f.), and 

k     = the iteration number. 

Eq 2-3 

It is worth noting that SD will always converge to a local minimum (if it exists), but since 

the minimum is found for each dk, it follows that each dk+1 is perpendicular to dk, i.e. they 

are orthogonal. Therefore SD ‘zig-zags’ to the final solution and requires a theoretical 

infinite amount of iterations to find the minimum for quadratic problems. Thus, to stop the 

iterative technique, a maximum number of iterations is specified, and the process will 
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terminate if the norm of the gradient or the step-size (α) drop below specified thresholds or 

if the maximum number of iterations is exceeded. 

The implementation of SD used for this dissertation uses the line search algorithm 

suggested by [39] which is an adaptation of Powell’s quadratic interpolation. 

2.6.2. Levenberg-Marquardt Algorithm (LMA) 

This is the de-facto standard optimisation technique used for lens distortion parameter 

determination. LMA was first formulated by Levenberg in 1943 [40], and later 

independently formulated by Marquardt in 1963 [41]. The LMA is a damped least-squares 

second order non-linear numerical optimisation technique. Its iterative formula, to solve M 

equations, (fi, i Є [1, M]) of N variables is 
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where: 

Jk(xk) = M by N Jacobian matrix of partial derivatives at xk, 

Fk(xk) = M by 1 vector of values of the M equations at xk, 

λk       = is the damping factor at iteration k and λk > 0, 

xk        = the current estimate of the optimal point x*, 

k        = the iteration number, and 

q        = step to improve estimate of x*. 

Eq 2-4 

By comparison, the classical second order technique is Newton’s method for non-linear 

systems, as per Burden and Faires [39]. The technique’s basic formula is: 
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where: 

Hk(xk)     = N by N Hessian matrix of second partial derivatives at xk, 

)( kxf∇  = M by 1 vector of partial derivatives of f(x)at xk, 

xk            = the current estimate of the optimal point x*, 

k             = the iteration number,  

q            = step to improve estimate of x*, and 

f(x)        = function of N variables to be minimised. 

Eq 2-5 
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Eq 2-5 is an extension of Newton’s method to find the roots of a single variable function, 

both to higher (N) dimensions, and to find not the zero of the function, but the zero of its 

derivative – i.e. the minimum (or maximum). 

Comparison between Eq 2-4 and Eq 2-5 reveals that the Newton’s Hessian matrix has been 

replaced by the Jacobian, and both sides have been multiplied by the transpose of the 

Jacobian, this is to find the least squares zero to the M equations. Note that M has to be 

greater than or equal to N for Jk
T(xk)Jk(xk) to be non-singular and thus invertible. In 

addition a multiple of the identity matrix is added to the least squares Hessian estimate. For 

λk = 0 Eq 2-4 is simply the Newtonian method applied in the least squares sense. However, 

the larger λk, the closer the resultant step direction is to the steepest descent search 

direction and the smaller the magnitude of that step. 

Note if λk = 0, and )()( xg
x

xf
i

i ∂
∂

=   then M = N and Eq 2-4 and Eq 2-5 are equivalent. 

So LMA is an interpolation between the Newtonian method for systems, which has 

quadratic convergence but is not guaranteed to converge [38], and steepest descent - which 

has guaranteed convergence but an extremely slow convergence rate due to its orthogonal 

search directions [38]. The optimality of this interpolation is dependant on λk and how it is 

changed from iteration to iteration. 

2.6.3. Fletcher-Reeves (FR) Conjugate Gradient Method 

It was noted in the description of SD (§2.6.1) that the direction of steepest descent was 

used as the direction for the line search to minimize the function f of N variables. It was 

also further stated that the strict adherence to the steepest descent direction, led to each 

search direction being orthogonal to the previous direction and that this slowed 

convergence to the final solution. 

To prevent this, yet still retain the robustness of first order optimisation techniques, 

Fletcher and Reeves [42] suggested using vectors which were conjugate with respect to the 

Hessian matrix. This would allow for the successive search directions to use knowledge 

gained from previous search directions, resulting in successive search directions not being 

orthogonal. 

To illustrate this, Figure 2.4 portrays the SD search directions for a function with an 

elliptical minimum, and Figure 2.5 depicts the FR search directions for the same function 

and starting point. 
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Figure 2.4 Successive SD search directions, depicting the orthogonality of the SD search 

directions for this simple contour diagram of a function of two variables. 

 

 

Figure 2.5 Successive FR search directions, depicting the non-orthogonal FR search 

directions. For quadratic error surfaces, such as this, FR finds the minimum in two 

iterations. 

It is apparent how even the slight eccentricity in Figure 2.4and Figure 2.5 results in zig-

zagging for SD, whereas the FR directions provided by  
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min , 

where: 

f      = function of N variables to be minimised, 

f∇  = partial derivative vector of f, 

dk    = the search direction of steepest descent, 

α     =  the step in direction of dk which minimises f, and 

k     = the iteration number. 

Eq 2-6 

find the minimum in two steps for this simple quadratic case. Fletcher and Reeves [42] 

show that for a quadratic function of N variables that Eq 3-4 converges in N steps. For 

non-quadratic functions the FR technique is comparable to second order techniques in 

terms of convergence, but does not suffer from their sensitivity. The periodic ‘forgetting’ 

of the accumulated knowledge evident in Eq 3-4 is to improve the convergence for 

enharmonic functions.  

2.6.4. Leapfrog Dynamic Method for Unconstrained Minimization 

The Leapfrog Algorithm is the most recently developed of the algorithms considered.  As 

it uses only gradient information to find the minimum, it is a first order technique. 

Figure A. 1 in Appendix A portrays the implementation of the algorithm. It simulates a 

particle which appears at rest at the provided starting point and is subjected to accelerations 

induced by the gradient of the function. It worth noting that the acceleration induces a 

velocity and momentum which allows the particle to go over “humps” and thus finds not 

the nearest local minimum, but the nearest “low local” minimum. 

For more information  the interested reader is referred to the original paper [43] and a 

guide to optimization [38] by the author of the Leapfrog Algorithm, Prof .J.A. Snyman. 
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2.6.5. Summary of the optimization techniques’ attributes 

Steepest descent does not require the function to be quadratic or to have a smooth gradient. 

It is guaranteed to find the closest downhill local optimum if it exists, however its 

convergence is slow, particularly when the function is sensitive to a subset of its variables. 

Fletcher-Reeves assumes that the function is quadratic in nature in the vicinity of the 

minimum and uses this information to select better search directions to increase 

convergence to the minimum. If the function is not quadratic the search may veer off, 

eventually terminating in a different local minimum. 

Levenberg-Marquardt also assumes that the function is quadratic, however it is more 

sensitive to this than is Fletcher-Reeves, as it takes a Newtonian step based on a quadratic 

best fit of the current area of the function and can thus step completely out the current local 

minimum’s valley particularly if the rate of change of the gradient is steep. Its fall back to 

steepest descent will only be activated if the step results in a higher function evaluation, 

which may not happen if another shallow minimum’s valley is entered from the top of a 

deeper (better) minimum’s valley. Highly correlated parameters also cause premature 

convergence. 

Leapfrog does not make any quadratic assumptions, and is robust in the presence of noise. 

Its momentum characteristic allows it to flow over ripples in the function to find a deeper 

minimum further down the valley, however this makes it prone to over fitting data. 

Leapfrog’s convergence is not as fast as Fletcher-Reeves.
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CHAPTER 3. 
CONFIGURATION OF EXPERIMENTS 

This chapter details the common methods used to capture data to test and verify the 

hypotheses. It also defines the measures that were used quantify the distortion of an image, 

which then provide the error which can be minimized with an optimization technique. 

3.1. Short focal length, wide FOV camera 

Carl Zeiss Optronics (http://www.zeiss.com/optronics) has developed an extremely 

compact camera with a custom optical lens assembly as part of its optical helmet tracker 

system. The specifications of this camera pertinent to this dissertation are: 

• Nominal Focal Length:  5mm 

• Field of View:   78° horizontally 

• Image resolution  667 pixels by 502 pixels 

In total 32 of these cameras were evaluated. The first 8 have a different lens design to the 

final 24, although both designs have the nominal characteristics stated above. The pixels of 

the imager used are square, and the horizontal and vertical axis are orthogonal. 

3.2. Calibrated reference point jig 

This jig provides circular optical reference points that are densely packed over a large 

physical area and can be individually activated. For proprietary reasons the details of this 

jig cannot be divulged except as noted below. 

The jig consists of 504 circular optical references arranged into six concentric squares, 

with the number of references remaining constant per area instead of per concentric square. 

This provides more data points at the edge of the field of view where the distortion is 

greatest. 

The optical references are not point sources but rather circular references which to 

alleviates the affect of any aberrations, and justifies their exclusion from this study. 

A sample of 32 of the cameras discussed in §3.1 each captured the jig’s optical references 

from four different positions, so that the entire FOV of the camera was sampled. 

http://www.zeiss.com/optronics
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Figure 3.1 illustrates what the captured data for all four positions looks like, each 

position’s captured data is in a different colour.  

 

Figure 3.1 Collated image of the calibrated reference point jig as seen from four different 
positions covering the entire FOV showing the severe distortion. The purple outline 

represents the camera’s FOV. 
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Figure 3.2 A depiction of the distorted and undistorted points of the calibrated reference jig 
as seen from camera position one. The solid points are the distorted points, and the outlines 

are undistorted points. The purple outline represents the camera’s FOV. 

Note the extremely high bowing of what should have been the straight lines of the 

concentric squares. For reference, the undistorted points (as calculated using a 3rd order 

radial, 3rd order tangential, variable distortion centre radial model) for the first camera 

position are plotted with the distorted points in Figure 3.2. Where an Nth order implies N 

terms, note that a first order tangential model is therefore not possible. The displacement in 

the top right is equivalent to 73 pixels, or 8.7% of the diagonal FOV. 

3.3. Definition of residual distortion 

In order to determine how distorted an image is, one needs a quantative, repeatable 

measure. This allows one to measure the residual error after performing a lens distortion 

correction, and refine the parameters of the correction until the distortion is at a minimum. 

Both measures below are of the “straight lines are straight” variety. This implies that an 

image of a straight line taken with a distortion-free camera/lens would yield a straight line 

in the image. Thus any curvature of straight lines is due to lens distortion. 

3.3.1. RMS miss distance of data points from a straight line 

Brown [14] proposed the plumb-line method in 1971 and it has been used almost 

universally since. Essentially, given points along a supposed-to-be-straight line, Brown 
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fitted the least-squares straight line through the points, the error (for that line) was the sum 

of the perpendicular distances from the line.  

For this dissertation a slight adaptation to the above was done whereby the perpendicular 

distance between the point and the line is still used, but the line is expressed in the more 

familiar form of y as a function of x. The following equation, 
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where: 

c1 = gradient of the straight line, 

c0 = vertical offset of straight line, 

d = 2D direction vector of straight line, 

dn = unit vector in direction of straight line, 

pl = a point on the line, and 

pp = the point off the line to which to calculate the distance. 

 

Eq 3-1 

shows how this can be easily done by converting the equation for a straight line into its 

geometric equivalent of a vector pointing along the line and a point on the line. Thereafter 

the vector from the line-point to the point has the projection of itself along the line 

subtracted from it - resulting in the perpendicular vector from the line to the point. The 

magnitude of this vector is then clearly the desired perpendicular distance. 

Table 3.1 provides the statistics of the distortion measures of the raw data used in this 

hypothesis for the 32 cameras and reference jig described in §3.1 and §3.2 respectively. 

Note that the standard deviation of the RMS values serves only to verify that there are two 

populations of sensors, as both the standard deviation for the first 8 sensors and for the last 

24 sensors are significantly smaller than the standard deviations for all 32 sensors. 
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Table 3.1 RMS perpendicular distance distortion measures for camera population set prior to 

any distortion correction. 

RMS Distance (pixels)  

 1st 8 Last 24 All 

Min 1.662 4.214 1.662 

Max 1.952 4.379 4.379 

Average 1.768 4.302 3.669 

Std Dev 0.105 0.035 1.116 

3.3.2. Sum of gradient differences 

A second distortion measure was derived so as to provide a different error ‘surface’ to be 

minimized - to further test the robustness of the optimisation techniques. Multiple different 

options were considered; including the minimising the leading coefficients of the best-fit 

quadratics through the lines, and the sum of gradient differences between the left and right 

pairs of points for each adjacent trio of points on a line as depicted in Figure 3.3 and 

explained by Eq 3-2. 
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Figure 3.3 Exaggerated diagram showing points on a line and the corresponding coordinates. 
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Eq 3-2 is similar to the distortion measure used by [21 – 23], however the sum of quadratic 

coefficients distortion measure proved to have a very flat error surface, and the adjacent 

gradient difference sum proved to be very insensitive to small perturbations in the 

distortion model parameters and also to have many false minimums. This is evident by 

considering the points on the line to be distorted to lie on a shallow arc (as is typically the 

case with lens distortion), the change in gradient between any three adjacent point is very 

small (e.g. P0, P1 and P2 in Figure 3.3) whereas the change in over the entire line is vast, 

as evidenced by the gradients between points Pn  and Pn-1 and points P0 and P1 in Figure 

3.3. Additionally Eq 3-2 is very sensitive to near-vertical lines due to the asymptotic 
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tendency of their gradients to infinity, thus resulting in large distortion measures for lines 

that are in fact reasonably straight. 

To counter this, the gradient between each adjacent pair of points is compared not to the 

gradient for the immediately prior adjacent pair’s gradient, but the gradient calculated from 

the first two points as evidenced in the following equation. The sensitivity to vertical lines 

is countered by calculating the gradient of the lines expressed as x as a function of y for 

lines whose gradient is greater than unity, as evidenced by Eq 3-3. 
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 Eq 3-3 

Table 3.2 provides the statistics of the distortion measures of the raw data used in this 

hypothesis for the 32 cameras and reference jig described in §3.1 and §3.2 respectively. 

Table 3.2 Uncompensated sum of gradient differences distortion measures for camera 

population set 

Gradient Difference  

 1st 8 Last 24 All 

Min 54.053 129.536 54.053 

Max 68.134 151.089 151.089 

Average 59.139 137.562 117.956 

Std Dev 4.615 4.816 34.819 
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CHAPTER 4. 
HYPOTHESIS 1: PARAMETER ESTIMATION IS ROBUST 

WHEN DETERMINED WITH MODERN OPTIMIZATION 

METHODS 

4.1. Hypothesis Formulation 

An accepted truism evident in the articles researched is that using higher order versions of 

Brown’s distortion model [14, 27] both yields diminishing returns, and makes the 

numerical determination of the distortion parameters unstable. There is also a strong 

contingent stating that tangential distortion is not relevant and that it is unnecessary to 

determine the exact centre of distortion (the image centre is close enough). 

Much of this stems from the Tsai’s landmark paper [7] in which he states: “However, my 

experience shows that for industrial machine vision application[s], only radial distortion 

needs to be considered, and only one term is needed. Any more elaborate modeling not 

only would not help but also would cause numerical instability.” Quantative proof of this is 

not provided, nor is the numerical technique used specified, only a suggestion that the 

distortion parameters can be found “using [a] standard optimization scheme such as 

steepest descent.” This hypothesis will determine if Tsai’s assertion is true by testing the 

stability of high order models when their parameters are determined with modern 

optimization techniques. 

Many researchers have either accepted Tsai’s statement as truth or come to a similar 

conclusion independently. Table 4.1 summarizes the order of radial and tangential 

distortion modeled and whether the distortion centre is numerically determined or assumed 

to be either the image centre or principle point. The table also lists whether the justification 

for the order of the model is due to the numerical instability of higher order models or their 

perceived lack of benefit. Finally, a mark in the last column indicates that the only 

justification provided for a low order model is a reference to Tsai. 
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Table 4.1 Distortion model complexity and justification summary 

Reference 
Num 

Radial 

Num 

Tangential 

Determine 

Distortion 

Centre 

Instability 
Not 

Beneficial 

Justified 

only by 

Tsai ref 

Ahmed & Farag [21] 1 1 X  X X 

Ahmed & Farag [22] 1 1 X  X X 

Bacakoglu & Kamel [1] 1 2   X  

Cucchiara, et al [2] 1 0   X X 

Fernandes, et al [12] 1 0   X  

Graf & Hanning [3] 2 0  X X X 

Hsu, and Hawney [11] 1 0     

Heikkila & Silven [16] 2 2 X    

Karras, et al. [19] 2 0   X  

Mallon & Whelan [31] 2 0   X  

McLean [4] 1 0 X  X  

El-Melegy & Farag [23] Variable 2  X X  

Meng & Zhuang [25] 1 0 X  X  

Stein [17] 2 0 X    

Tsai[7] 1 0  X X X 

Yu, Chung [29] 1 0     

Yu [30] 1 0     

Zhang [9] 2 0  X X  

Zheng, et al. [13] 2 0   X X 
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In 2005 Graf and Hanning [3] showed that different optimisation techniques provided 

different solutions given the same starting point for lens distortion characterization. In 

particular, LMA performed poorly. 

Many researchers chose LMA to perform their numerical optimisation, a superficially 

sound decision. The algorithm converges quickly, and is supposed to combine the 

guaranteed convergence of steepest descent with the rapid convergence of the Newton’s 

method. There are two subtle reasons why one should not use LMA for lens distortion 

characterization. Newton’s method, in using the matrix of 2nd order partial derivatives, 

implicitly assumes that the error surface is quadratic, and can rapidly diverge if this is not 

true. Secondly, the algorithm performs poorly when the parameters to be minimized are 

highly correlated (a fact stated in Marquardt’s original derivation [41]), in particular this 

causes the damping factor to increase drastically, which in turn decreases the step size until 

it drops below the convergence threshold, yielding a false claim to have achieved 

convergence. 

Few of the papers researched (with the notable eption Brown’s [14, 27]) presented details 

of their numerical optimisation, often stating that (as did Tsai [7]) that any optimisation 

technique could be used or perhaps stating that LMA or Newtonian iteration was used. 

Current optimization theory [38] states that each parameter needs to be scaled so that the 

error’s gradient vector’s magnitude is equally sensitive to changes in any parameter. 

Additionally, many advances in numerical techniques have occurred since the Newtonian, 

Steepest Descent and LMA algorithms were developed, the last of these three (LMA) was 

developed in 1963. 

It is suggested that improving the optimization methods – both via modern optimisation 

algorithms and proper scaling – will allow for robust and repeatable lens distortion 

characterization, even of high order models. 

4.2. Verification 

To test the theory that the determination of radial lens distortion’s parameters is stable and 

robust when modern numerical optimisation techniques are used, four different numerical 

optimisation techniques were implemented. 
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The first technique is the simplest and original technique: steepest descent. Refer to §2.6.1 

or handbooks on numerical techniques [39] or optimisation [38] for details of the 

algorithm.  

The second algorithm implemented is the Levenberg-Marquardt algorithm, a popular 

choice for numerical determination of lens distortion parameters. Refer to §2.6.2 or the 

original papers by Levenberg [40] and Marquardt [41] for details on the algorithm. In the 

implementation of the algorithm, the algorithm is aborted if the damping factor exceeds 

10300, which is approaching the limits of 64bit floating-point arithmetic computation.  

In keeping with the chronological order of the algorithms, the third is the Fletcher-Reeves 

conjugate gradient algorithm. Refer to §2.6.3 or the original paper by Fletcher and Reeves 

[42]. Most handbooks on numerical optimisation (e.g. [38]) will give a brief description, 

although interestingly may not mention the periodic “forgetting” of the gradient 

information that vastly enhanced FR’s performance for lens distortion parameter 

determination. The line search technique used for FR is identical to that described for SD. 

The final, and most recently developed, algorithm implemented is the Leap Frog 

algorithm, so named after the integration technique it uses. Despite being a gradient 

technique, this algorithm performs no explicit line searches. For more details refer to 

§2.6.4 or Snyman’s paper [43]. 

All the algorithms require gradient information, and LMA requires second order gradient 

information too. In order to keep the numerical optimisation algorithms generic, they 

receive only a pointer to the error function to be minimised (one of the line straightness 

measures of §3.3.1 and §3.3.2) and thus all gradient information must be estimated 

numerically. The chosen method to do this is the so called ‘central gradient.’ This entails 

evaluating the function at the point of interest plus a small positive delta in the variable of 

interest, and then evaluating the function at the point of interest minus the same small 

delta. The delta used to numerically determine the gradient was 10-8. The gradient is then 

the difference between the two evaluations divided by twice the delta. Second order 

derivatives entail four function evaluations, and a bilinear interpolation of their results. As 

the number of function calls required will be monitored, and in the interest of fair-play, the 

symmetric nature of the second order partial derivative matrix is exploited to minimize the 

number of function calls made by LMA. 
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In terms of convergence criteria, the four optimization techniques were all given the 

following criteria, where the step size is in scaled units as per Table 4.3 and the gradient is 

that of the error surface being modelled: 

• Maximum number of iterations: 1000 

• Minimum step size: 10-12. 

• Target gradient norm: 10-6. 

In total, seven different radial distortion models were tested, covering the entire range of 

those found in the literature study (§Chapter 2) as well as the addition of a few models of 

even higher order. Table 4.2 summarises the models implemented and indicates to which 

reference articles they are similar. The model naming convention also incorporates its 

basic parameters: a number after the R specifies the number of radial terms if greater than 

one, the number of tangential terms (if any) are indicated by a P and the number of terms, 

and DC indicates that the optimal distortion centre is found. 

Table 4.2 Summary of the radial distortion models implemented, indicating their similarity to 

models found in literature. 

Num Name Num Radial 
Num 

Tangential 

Distortion 

Centre 
Similar to 

1 R 1 0 N 
[2], [7], [11], [12], 

[20], [29], [30] 

2 RDC 1 0 Y [4] 

3 R2DC 2 0 Y [17], [31] 

4 R3P2 3 2 N None 

5 R3P2DC 3 2 Y None 

6 R3P3DC 3 3 Y [14] 

7 R5 5 0 N None 

In order to test the robustness of the algorithms, the starting point was chosen to represent 

no distortion. This is very far from the truth as indicated by Figure 3.2. This starting point 
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tests the ability and speed of the algorithms to converge from a distant starting point, and 

also allows for the possibility of false local minimums between the starting point and the 

global optimum. The distortion centre starting point is not the expected (333.5; 251) due to 

the blanking of a few rows and columns of the imager. Table 4.3 lists the starting points for 

each distortion parameter as defined by Brown’s model [14, 27] given in Eq 2-1. 

As mentioned in §4.1, scaling of variables is important to successful numerical 

optimisation. Essentially the aim of scaling is to make the error function (in the vicinity of 

the minimum) equally sensitive to small delta’s in any variable, i.e. the gradient vector’s 

elements should be of similar magnitude. This will ensure that the direction of each step is 

due to the shape of the function and not due to a misleading (un)sensitivity to one or more 

parameters. The correct method would be to obtain a particularly good starting point for a 

camera that is representative of the whole sample, and use the gradients at that point as the 

scale factors. However, as the purpose of this hypothesis is to test the robustness of the 

parameter determination, such thorough efforts were not undertaken. Instead, the scaling 

factors were manually adjusted until the all the models converged for a sample camera and 

the gradients appeared to be roughly of the same order of magnitude. The same scaling 

factors were used for all the algorithms. Table 4.3 lists the scale factors used. 

Table 4.3 Parameter Starting points and scale factors 

Parameter Starting Point Scale Factor 

K1 0.0 10-6 

K2 0.0 10-12 

K3 0.0 10-18 

K4 0.0 10-24 

K5 0.0 10-30 

P1 0.0 10-10 

P2 0.0 10-10 

P3 0.0 10-2 

xc 336.0 100 

yc 247.0 100 
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Finally, a discussion on the usage of the input data is pertinent. An explanation of the 

reference jig is provided in §3.2 which explains that for each camera all the visible 

reference points on the jig were captured for four different positions such that data over the 

entire FOV was captured. Five optimisations were performed for each camera/distortion 

model/error function combination. With reference to Figure 3.1 the data for the five 

optimisations are: 

1. Red and blue data points, 

2. Red and black data points, 

3. Green and blue data points, 

4. Green and black data points, 

5. Red, green, blue and black data points. 

The above combinations were chosen so that each optimisation input combination contains 

data in both the left and right half of the FOV, so as not to converge to a local minimum 

applicable for only one half of the image. 

4.3. Analysis of results 

As discussed in §4.2, 5 optimisations per camera/distortion model/error function 

combination were performed for a total of 1280 optimisations. Each optimisation yielded 

the optimisation success/error value, optimised parameters (between one and eight 

depending on the distortion model), optimised error value, and number of iterations 

required. Clearly the raw results are far too extensive to be explicitly provided in this 

dissertation (although they are available upon request) and so only the analysis of the raw 

results is provided herein. 

For each camera/distortion model/error model combination, the standard deviation of each 

parameter over the five optimisations (refer to §4.2) was calculated. This standard 

deviation is then averaged over the 32 cameras and all the parameters for the distortion 

model to yield a single relative value - which indicates how sensitive the optimisation to fit 

parameters for a particular distortion model is to variances in the input data when using 

that particular optimisation function and error function. The smaller this sensitivity 

measure is, the less sensitive the model/numerical technique combination is to input 

perturbations. 
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 The average optimised error value for each distortion model/optimisation value was also 

calculated. This information is given in Table 4.4 for the distortion measure provided in 

§3.3.1 and in Table 4.6 for the distortion measure provided in §3.3.2. The a priori error for 

Table 4.4 is 3.669 pixels RMS and 117.956 for Table 4.6. This same data is given 

pictorially in Figure 4.1 and Figure 4.2 for Table 4.4 and in Figure 4.3 and Figure 4.4 for 

Table 4.6. The smaller the average error is, the better the distortion characterization is. 

Finally, a summary of the time taken (to the nearest second) to perform all the 

optimisations for each distortion model/optimisation method is provided in Table 4.5 and 

Table 4.7 for the distortion measures of §3.3.1 and §3.3.2 respectively. 

Table 4.4 Summary of optimisation efficiency and repeatability per distortion model and 

optimisation method for the RMS perpendicular distance distortion measure. 

Steepest Descent 
Levenberg 

Marquardt 
Fletcher Reeves Leapfrog 

Distortion 

Model Ave 

Error 

(Pixels) 

Sensitivity 

Ave 

Error 

(Pixels) 

Sensitivity 

Ave 

Error 

(Pixels) 

Sensitivity 

Ave 

Error 

(Pixels) 

Sensitivity 

R 0.2810 0.010 1.8593 0.79 0.2810 0.010 0.2810 0.010 

RDC 0.2774 0.80 2.2858 1.4 0.2809 0.49 0.2659 1.4 

R2DC 0.0764 0.10 2.3670 1.2 0.0802 0.084 0.0719 0.27 

R3P2 0.0770 0.041 2.2159 0.75 0.0758 0.066 0.0742 0.097 

R3P2DC 0.0753 0.065 2.5708 0.71 0.0789 0.052 0.0710 0.21 

R3P3DC 0.0739 0.069 2.7033 0.63 0.0750 0.056 0.0703 0.26 

R5 0.0771 0.042 1.2676 0.91 0.0917 0.097 0.0742 0.12 
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Residual Distorton for RMS distance off best fit straight line distortion measure
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Figure 4.1 Average error for each distortion model as determined by each optimisation 

method tested for the RMS perpendicular distance distortion measure. 

Average parameter standard deviations for RMS perpendicular distance off straght line disortion 
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Figure 4.2 Average sensitivity measured for each optimisation method tested for the RMS 

perpendicular distortion measure. 
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Table 4.5 Time taken to perform optimisations, per distortion model and optimisation 

method for RMS perpendicular distance distortion measure. 

Distortion 

Model 

Steepest 

Descent 

Levenberg 

Marquardt 

Fletcher 

Reeves 
LeapFrog 

Total per 

Model 

R 4 3 5 4 16 

RDC 59 7 13 125 204 

R2DC 304 6 127 154 591 

R3P2 355 8 176 214 753 

R3P2DC 444 17 224 339 1024 

R3P3DC 490 19 244 402 1155 

R5 347 11 163 207 728 

Total per 

Optimisation 
2003 71 952 1445 4471 

 

Table 4.6 Summary of optimisation efficiency and repeatability per distortion model and 

optimisation method for the sum of gradient differences distortion measure. 

Steepest Descent 
Levenberg 

Marquardt 
Fletcher Reeves Leapfrog 

Distortion 

Model Ave 

Error 

(pixels) 

Sensitivity 

Ave 

Error 

(pixels) 

Sensitivity 

Ave 

Error 

(pixels) 

Sensitivity 

Ave 

Error 

(pixels) 

Sensitivity 

R 19.747 0.018 57.725 0.073 19.747 0.018 19.747 0.018 

RDC 19.739 0.053 57.642 0.072 19.745 0.072 19.627 0.68 

R2DC 12.644 0.24 57.670 0.20 12.767 0.15 12.457 0.63 

R3P2 12.790 0.090 57.725 0.058 12.801 0.098 12.624 0.48 

R3P2DC 12.605 0.17 57.653 0.15 12.734 0.12 12.247 0.60 

R3P3DC 12.410 0.19 57.670 0.13 12.553 0.15 12.047 0.49 

R5 12.789 0.093 57.724 0.054 12.800 0.11 12.590 0.66 
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Residual sum of gradient differences distortion measure
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Figure 4.3 Average error for each distortion model as determined by each optimisation 

method tested for the sum of gradient differences distortion measure. 
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Figure 4.4 Average sensitivity measured for each optimisation method tested for the sum of 

gradient differences distortion measure. 
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Table 4.7 Time taken to perform optimisations, per distortion model and optimisation 

method for the sum of gradient differences distortion measure. 

Distortion 

Model 

Steepest 

Descent 

Levenberg 

Marquardt 

Fletcher 

Reeves 
LeapFrog 

Total per 

Model 

R 3 1 4 9 17 

RDC 35 3 5 167 210 

R2DC 248 5 38 229 520 

R3P2 130 7 43 321 501 

R3P2DC 400 11 58 449 918 

R3P3DC 421 13 76 527 1037 

R5 127 7 41 310 485 

Total per 

Optimisation 
1364 47 265 2012 3688 

The average error columns of Table 4.4 and Table 4.6 provide a measure for how well the 

model characterizes the distortion evident in the cameras, lower values are better. Similarly 

the parameter standard deviation columns provide a measure of how much the parameters 

of the models varied when calculated using different combinations of the input data. Lower 

standard deviation values indicate the model/method combination is less sensitive to 

changes in input data (including noise). 

Evaluation of Table 4.4 and Table 4.6 (and their graphs if so desired) reveal the following: 

• LMA was by the far the worst performing algorithm (a point confirmed by [3]). 

This is due to its sensitivity to fitting models with highly correlated parameters. As 

the distortion model complexity increased, it produced poorer distortion 

characterization for the RMS perpendicular distance measure, and similar distortion 

characterizations for the sum of gradient differences distortion. LMA is excluded 

from consideration in the remarks below. When LMA converged, it met the 

convergence criteria of either step size, or gradient. The magnitude of the damping 

factor was not recorded. 

• The first radial distortion coefficient dominates the distortion characterization, as is 

evidenced by contrasting the first and second rows of Table 4.4 and Table 4.6 with 

Table 3.1and Table 3.2. 
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• Finding the optimum distortion centre improves the distortion characterization. 

This is evident by comparing the R and RDC results and R3P2 and R3P2DC 

results. This is also the most sensitive parameter to different input combinations, an 

observation which is both evident in the average parameter standard deviations for 

models which consider the distortion centre, and intuitive since the distortion centre 

will affect all the other distortion parameters. 

• Adding a second radial distortion coefficient (R2DC compared with RDC) 

drastically improves the distortion characterisation by approximately 72% and 35% 

for Table 4.4 and Table 4.6 respectively (unless, as noted above, the LMA is used). 

For the RMS perpendicular distance measure, it also improves the parameter 

standard deviations. 

• Increasing the number of radial distortion coefficients is less effective than 

compensating for the distortion centre (by comparison of the R5 and R2DC 

models’ average errors). 

• Modelling tangential distortion does improve the distortion characterization (i.e. the 

average error is less), this is evident both in the better characterisation of R3P2 vs 

R5, and R3P3DC vs R3P2DC. This improvement is in the order of 1-6% and 1.5-

3% for the RMS distance and gradient difference error functions respectively. 

In conjunction with Table 4.5 and Table 4.7 the following conclusions can also be made. 

• The distortion characterization does not become noticeably less robust with model 

complexity, as evident by the marginal variances in parameter standard deviations 

(with the exception of the RDC model), although the time to fit the parameters 

increases with model complexity. This is attributable to the modern optimization 

methods applied in this study. 

• Steepest descent and Fletcher-Reeves have similar results, except that Fletcher 

Reeves converges two- to five-fold quicker depending on the distortion measure.  

In fact steepest descent often failed to converge within the maximum (1000) 

iterations, as expected due to the slow convergence from its orthogonal search 

directions. 

• The Leapfrog algorithm in all cases obtained better distortion characterizations than 

the other methods (except in the simplest R model where it produced identical 

results to steepest descent and Fletcher-Reeves) albeit at the expense of processing 
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time similar to steepest descent. However its parameter standard deviations are 

noticeably worse than steepest descent’s and (especially) Fletcher-Reeves’, this is 

because of Leapfrog’s ability to find the nearest low-local minimum, essentially 

finding a better optimum for which ever data was used. Leapfrog is thus trading an  

increased susceptibility to input perturbations for a superior characterization of the 

input data it is supllied. 

• It is evident that the improvement in characterization with increased model 

complexity over and above R2DC is not significant for the lenses tested. These 

models are thus only desirable for high accuracy applications where it is useful to 

model and remove every systematic error possible. 

• The accuracy to which each parameter is known was not explicitly determined, 

however it can be stated that for each additional parameter tested in the seven 

distortion models the characterization improved. Thus it can be said that distortion 

model was sensitive to the additional parameter and it is that it was determined to 

within an order of the smallest allowable step size. A first order indication of the 

sensitivity of the parameters can be obtained from their scaling values in Table 4.3. 

• Despite the fact the characterization data that was captured consists of points on 

predominantly vertical or horizontal lines (this is a characteristic of the reference 

jig (§3.2)), the characterization will straighten lines in the image that are at any 

angle. This is because no use of the verticality or horizontalness of the lines is 

made, the best fit straight lines through the points are of generic form. Figure 4.5 

depicts both the distorted points and undistorted points for captured data of the 

reference jig taken with a camera with approximately 45°. The distortion 

characterization was performed using the normal set of four captured reference jig 

centroids, and the resultant parameters used on the centroids of the rolled image. 

The R3P3DC distortion model was used. 
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Figure 4.5 Corrected image of reference jig taken with a rolled camera 
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CHAPTER 5. 
HYPOTHESIS 2: CORRECTION OF BARREL DISTORTION 

CAN BE MODELLED AS PINCUSHION DISTORTION 

5.1. Hypothesis formulation 

The very nature of lens distortion correction yields a model to map distorted image points 

to their corresponding undistorted points in the image plane. §2.5 explains the need for 

inverse distortion, which maps undistorted image points back to their distorted positions. 

To undistort an image (once its distortion parameters have been modelled) one must 

determine, for every pixel in the undistorted image, what the corresponding distorted pixel 

is. There are many methods of doing this: 

1. The most obvious is also the most computationally intensive. This is to guess the 

distorted point, and iteratively refine it by using the fitted distortion function to see 

how closely each iteration’s distorted position’s corresponding undistorted point 

coincides with the desired undistorted point. Although this produces accurate results 

(with sufficient iterations) it is a processing and time demanding task and thus may not 

be suitable for real time applications. 

2. A second method is to pre-calculate and store a look up table containing each 

undistorted pixel’s corresponding distorted pixel. This table would be populated as 

described in the previous paragraph. However it requires a vast amount of memory as 

each distorted pixel will be a non-integer value. This may not always be possible in an 

embedded real-time application. 

3. The final method found in literature is to create a custom inverse distortion model, and 

analytically determine its parameters from those of the distortion model. This is 

typified by [31], where despite only using a second order radial distortion model with 

no tangential parameters, the resulting undistortion model has 6 parameters! Although 

these methods require neither extensive memory nor extensive processing, they are not 

as accurate. [31] obtained a mean accuracy of 0.42 and 0.32 pixels for a 6mm and 8mm 

lens respectively. 
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The Brown lens model can correct both barrel and pincushion distortion. Barrel distortion 

pulls image points closer to the distortion centre, and pincushion distortion pushes image 

points further out. It is thus suggested that using the Brown lens model the undistortion of 

a barrel distorted image can be modelled as pincushion distortion, optimally combining the 

accuracy of the numerically refined method with the processing and memory efficiency of 

the inverse distortion method. This will yield a model requiring only multiplications and 

summations, with eight (the maximum tested) or fewer predetermined parameters, and goal 

accuracy in the order of a tenth of a pixel. 

5.2. Verification  

Undistortion requires mapping undistorted image points to their corresponding distorted 

points. This requires knowledge of the undistorted image points’ coordinates - which are 

not generally known. An expensive 3D setup may be made whereby the position of 

reference points are known precisely relative to the focal point of the lens being calibrated. 

If the extrinsic and intrinsic camera parameters are known then the points can be projected 

into the image plane yielding the undistorted image points. Comparison with distorted 

image points acquired by taking an image through the lens may then take place. 

However this requires an expensive outlay, where the calibration of lens distortion is 

moving to simpler equipment such as checker boards. The proposed solution entails the 

reuse of the lens distortion data. All lens distortion characterizations create a set of 

supposedly undistorted image points from the distorted points. These points are then 

evaluated to obtain a measure of the residual distortion (eg §3.3.1 and §3.3.2), which is 

used to refine the distortion models parameters. The end result is a set of points which are 

deemed sufficiently undistorted for the application under consideration, together with their 

corresponding distorted points. 

A simple measure of the efficiency of the undistortion of an image is the sum of the square 

of the distances between the distorted positions calculated from the undistorted points and 

the true distorted points. This is represented by Eq 5-1: 
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where: 

(xdi, ydi) = ith distorted point, 

(xui, yui) = ith undistorted point, and 

f()         = inverse distortion function returning the distorted 

coordinate as a two element vector. 

 

Eq 5-1 

The distorted and undistorted points used for the verification of this hypothesis will be 

those resulting from the verification of hypothesis 1. For each of the 32 sample cameras, 

the 7 distortion models of Table 4.3 were fitted using 4 different numerical techniques, and 

using 2 different distortion measures. For each of the camera/model/technique/measure 

combinations the resultant undistorted and distorted points were output. If one only uses 

the data from the technique that yielded the best distortion characterization, this leaves 448 

camera/model/measure sample sets of approximately 2000 corresponding undistorted and 

distorted image point pairs. Further electing to only use the data calculated using the 

prevailing distortion measure defined in §3.3.1 reduces this to 224 data sets. This data will 

be used to test this hypothesis. 

For each camera/model/measure combination, the same distortion model that was used to 

characterize the distortion will be used to characterize the undistortion. Thereafter the 

distortion model which best characterizes the distortion across all 32 cameras, will be 

selected to re-characterize the inverse distortion of all 224 camera/model combinations. 

These results will allow us to determine how well each distortion model is able to 

characterize its own inverse distortion, and will also show the accuracy of which the best 

inverse characterization of a set of distorted and undistorted is capable. 

5.3. Analysis of results 

In the analysis LF was used to determine the optimal parameters for the undistortion 

model. Iteration continued for a maximum of 10000 iterations or until convergence was 

achieved either via obtaining a gradient with magnitude less than 10-6 or a step size of less 

than 10-6. The number of iterations may seem excessive however it was required as the 

maximum step size was constrained to 10-2. 

Figure 5.1 depicts the accuracy to which an undistorted pixel’s corresponding distorted 

pixel was determined, when the same distortion model that was used to characterize the 
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distortion was used to characterize the undistortion. The two different types of lenses are 

clearly evident, with the first 8 cameras performing better and worse for simpler and more 

complex distortion models respectively. It is perhaps surprising that R3P3DC (refer to 

Table 4.2 for distortion notation definition), which characterized distortion the best (refer 

to §4.3), yielded worse results than the other tangential models for the last 24 sensors. The 

reason for this is because R3P3DC often failed to converge within the maximum number 

of iterations (it did however not diverge it typically was either oscillating or converging 

slowly when computation ceased), as shown by Table 5.1. The reason for this lack of 

convergence is due primarily to a casually chosen starting point and to the decreased 

magnitudes of the elements of the gradient vector required to achieve a specified 

magnitude as the number of elements increases. Specifically, a gradient vector with one 

element requires this element to be 10-6 in order to have a magnitude of 10-6, a two element 

vector requires the elements be 1.41 times smaller or 0.707 x 10-6 on average to achieve 

this magnitude, the eight element R3P3DC error gradient requires each element be 2.90 

times smaller, or about 0.345 x 10-6 on average.  

Undistortion error per method used over sample data set
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Figure 5.1 Plot of RMS undistortion error, when the model used to undistort the image is the 

same as the model used to characterize the distortion 
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Table 5.1 Number of times convergence was not achieved within 10000 iterations over the 32 

camera sample set 

R RDC R2DC R3P2 R3P2DC R3P3DC R 5 

0 0 0 0 2 11 8 

Despite this, it is clear that accuracies far exceeding those of 0.42 and 0.32 pixels reported 

in [31] have been obtained, when models with at least two radial coefficients were used. 

This is shown in Figure 5.2.  

R3P2, which best modelled its own undistortion, was then used to model the undistortion 

for all the data as generated by the 7 distortion models of Table 4.3. Figure 5.3 depicts the 

results. In comparison with Figure 5.1 and Figure 5.2 it is evident that the R3P2 better 

models the undistortion for the simpler distortion models than they do themselves. It is on 

par with itself and the similarly complex R3P2DC model, however it is worse for models 

of higher complexity, markedly so for R3P3DC. The improvements obtained when using 

R3P2 are summarized in Figure 5.4. 
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Figure 5.2 Comparison of average RMS values when using the same method for undistortion 

as was used to characterize the distortion, to using R3P2. The values 0.42 and 0.32 are also 

plotted for reference purposes. 
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Undistortion error using only R3P2
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Figure 5.3  Plot of RMS undistortion error, when the model used to undistort the image is 

R3P2 instead of the model used to characterize the distortion 

This is partly due to the fact that convergence was not always achieved, particularly due 

when R3P3DC was modelled, as shown in Table 5.2. An additional factor is that distortion 

characterization inherent in the R3P3DC model’s data for the 32 cameras is of a more 

complex nature - as evident by R3P3DC’s superior performance over R3P2 in distortion 

characterization (refer to §4.3) – than R3P2 can sufficiently model. 

Table 5.2 Number of times convergence was not achieved within 10000 iterations over the 32 

camera sample set 

R RDC R2DC R3P2 R3P2DC R3P3DC R 5 

8 8 0 0 2 20 0 
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Average reduction achieved  by using R3P2 as undistortion function
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Figure 5.4  Average improvement in undistortion when using R3P2 instead of the model used 

for characterization, as a percentage of the original undistortion accuracy achieved using the 

same model undistortion and characterization. 

It has been shown that by applying sound optimization techniques, and using higher order 

distortion models (which were proven to be stable in §4.3) that inverse distortion can be 

effectively modelled. In particular the error involved in undistortion has been reduced by 

96% from that reported in literature [31] to 1.3 hundredths of a pixel for R3P2. This is 

despite the considerable distortion or up to 73 pixels inherent in the cameras used for this 

study (refer to §3.1). 

With regards to the processing time required, only a single model call is necessary, this is 

equivalent to one third of an iteration in the guess-and-refine scenario (where a minimum 

of three model calls would be necessary to determine the error gradient). Compared to 

analytical undistortion models, it has one fewer parameter than [31] (for R3P2) and is more 

suitable to hardware implementation as it does not required a floating point division. 

Undistortion in [10] requires solving a fifth order polynomial for every undistorted pixel, 

this cannot be done analytically and is therefore much more computationally intensive. 

Finally in [2] it is shown that even for a single radial parameter undistortion would require 

two cube roots, two square roots and 6 divisions if the analytical solution was to be used.
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CHAPTER 6. 
HYPOTHESIS 3: DISTORTION IS NOT NECESSARILY 

RADIALLY SYMMETRICAL 

6.1. Hypothesis formulation 

All the radial lens distortion models found in literature are based on Brown’s lens 

Distortion model [14, 27] as provided by Eq 2-1. In order to use Eq 2-1, each image point 

is converted from pixel (Cartesian) coordinates to polar coordinates with respect to the 

distortion centre.  However, Eq 2-1 assumes radial symmetry for the K and thus only the 

polar radius is used and the polar angle is discarded. To this radially symmetrical distortion 

is added the asymmetrical tangential distortion components. 

This assumption of radial symmetry is entirely valid if the image plane is exactly 

perpendicular to the optical axis, and the lenses have perfectly spherical surfaces and are 

aligned flawlessly. The tangential distortion component of Eq 2-1 allows for some 

decentring of the lenses, i.e. their optical axes are parallel yet not necessarily collinear. 

In practice, it is not possible to achieve the conditions stated above, especially if one is 

unable to afford top of the range lenses. It is thus proposed that a “radial gain” be 

incorporated as per Eq 6-1 where the radial components have an asymmetry factor which is 

independent of the tangential distortion components: 
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where: 

(xu, yu)   = undistorted image point, 

(xd, yd)   = distorted image point, 

(xc, yc)   = centre of distortion, 

Kn          = Nth radial distortion coefficient,  

Pn          = Nth tangential distortion coefficient, 

r           = 22 )()( cdcd yyxx −+− ,  

θ          = 







−
−−

cd

cd

xx
yy1tan , 

f(θ)      = radial gain, and 

“…” indicates an infinite series. 

Eq 6-1 

This radial gain function has to be continuous over the range [0, 2π) otherwise there will be 

distinct discontinuities evident in undistorted image lines. This also implies that f(0) = 

f(2π). The following sections define the candidate functions with this property that were 

evaluated in this study. 

6.1.1. Non-orthogonal conic slice 

Consider a cone whose tip is at the focal point and whose axis coincides with the lens’ 

axis. The intersection of the axis with the image plane is the principle point. The surface of 

the cone is the set of light rays which are all a certain angle off the optical axis. If the 

image plane is perfectly normal to the optical/cone axis, then these rays will produce a 

circle on the image plane. However, if this is not the case (which in the strictest sense it 

never can be), then these rays will create an ellipse. This implies that image coordinates of 

rays with the same angle between them and the optical axis, are different distances from 

the intersection point of the optical axis with the image plane depending on their polar 

angle in the image plane (θ in Figure 1.1). Figure 6.1 depicts an exaggerated example of 

this. 
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Figure 6.1  Depiction of the elliptical projection resulting from image plane non-orthogonality 

With reference to Figure 6.2, Eq 6-2 defines the radius (as a function of angle from the 

positive X axis) of an ellipse that is centred at the origin and whose major axis is parallel to 

the X axis. 

 ( ) ( )θθ 2222 sincos bar += , 

where: 

a   = major axis, 

b   = minor axis, 

r   = distance from origin to ellipse, and 

θ   = polar angle. 

 

Eq 6-2 
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Figure 6.2  Ellipse with major axis parallel to the X axis 

However, in general, the elliptical conical slice is unlikely to have its major axis parallel to 

the image plane X axis. Indeed, this would only be the case if the image plane was tilted 

about a vector parallel to the Y axis. Bearing this in mind and assuming (with out loss of 

generality) that the major axis has a length of 1, the final radial gain function can be 

expressed as 

 ( ) ( )αθαθθ −+−= 222 sincos)( bf , 

where: 

b   = minor axis and is less than 1, 

r   = distance from origin to ellipse 

θ   = polar angle, and 

α   = angle between the x axis and the major axis of the ellipse. 

 

Eq 6-3 

The parameters of this radial gain function to be optimised are b - the minor axis, and α – 

the angle between the X axis and the major axis of the ellipse. 

6.1.2. Zero order clamped polynomial 

The simplest, best understood and most tractable functions are polynomials, and so the 

simplest polynomial adhering to the requirements for an angular gain function is tested. 

Consider the simple polynomial xx π22 − , it has roots at x = 0 and x = 2π and is smooth for 

all x. It thus meets the requirements for a radial gain function but has a fixed form. Eq 6-4 

is a more generic form of this equation allowing the function to be more optimally fitted. 

Figure 6.3 depicts a possible radial gain for illustrative purposes. 
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 baf +−−−= ))(2)(()( 2 αθπαθθ , 

where: 

a is the gain, 

b is the offset, and 

α is the angular offset. 

Eq 6-4 
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Figure 6.3  Example zero order clamped polynomial radial gain, where a = 0.05, b = 1.0, and 

α = π/2. 

Figure 6.3 portrays the basic characteristics of this model: α pans the graph left or right, a 

controls its magnitude and b shifts the graph up and down. 

6.1.3. First order clamped polynomial 

As an improvement on the zero order clamped polynomial, an extra root was inserted in 

the domain of interest and allowed to be adjustable, as indicated by 
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 cbaf +−−−−−= )2))(())((()( παθαθαθθ , 

where: 

a is the gain, 

c is the offset,  

b is the second root, and 

α is the angular offset. 

Eq 6-5 

This will allow one to determine if higher order polynomials are a better fit for angular 

asymmetry. Figure 6.4 depicts the general shape of the first order clamped polynomial 

radial graph, whose parameters function similar to the corresponding parameters of §6.1.2, 

except for b which controls where the graph crosses the vertical offset. Note that the first 

order clamped polynomial does not have the first derivative discontinuity evident at the 

angular offset point, unlike the zero order version. 
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Figure 6.4  Example first order clamped polynomial radial gain, where a = 0.05, b = π, c = 1.0 

and α = π /4 

6.1.4. Floating Sine 

The final angular gain considered in this study is the classical sine wave, as it meets all the 

criteria stipulated for the angular gain, and will determine if fitting the harmonics of the 
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sinusoid (i.e. a Fourier series) is plausible. Holding the frequency of the wave constant, the 

general formula for a sine wave becomes. 

 baf +−= )sin()( αθθ , 

where: 

a is the gain, 

b is the vertical offset, and 

α is the angular offset. 

Eq 6-6 

Figure 6.5 depicts the familiar sine wave shape, the three parameters of the floating sine 

angular gain function are precisely the same as those of the zero order clamped polynomial 

angular gain function of §6.1.2. 
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Figure 6.5  Example floating sine angular gain function, where a = 0.2, b = 1.0 and α = 1 rad. 

6.2. Verification  

The data used to test this hypothesis are the captured centroids of the optical reference jig 

(§3.2) for the 32 cameras described in §3.1. Approximately 2000 reference points for each 

camera were captured and are known to form straight lines. Unlike the numerical 

robustness study (§Chapter 1), where different combinations of the 2000 reference points 

were used to test sensitivity to input perturbations, all the points will always be used for 

each camera. 
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In order to test the hypothesis, each camera had five different optimisations performed as 

described below.  

1. Unity angular gain, corresponding to the standard brown lens model of Eq 2-1. 

2. Elliptical angular gain, corresponding to the angular gain function of §6.1.1 

3. Zero order clamped polynomial angular gain, as described in §6.1.2. 

4. First order clamped polynomial angular gain, as described in §6.1.3. 

5. Floating sine angular gain as per §6.1.4. 

This will allow one to compare the effects of allowing different types of angular gain on 

the resultant optimally distortion free image, where the distortion measure used is the RMS 

perpendicular distance measure as described in §3.3.1. 

Each of the optimizations will be performed using the Leapfrog numerical optimization 

algorithm where the maximum number of iterations is restricted to 10000, the maximum 

step size is 0.1, and the convergence criteria are a step size of 10-8 or a gradient of less than 
610−n , where n is the number parameters being optimized. This last serves to ensure that 

each element of the gradient vector is, on average, less than 10-6 regardless of the number 

of the parameters, and thus does not require smaller gradient vector elements for 

convergence as the number of parameters being optimized increases. Finally the gradient 

calculation method used will be the central gradient as expressed by Eq 6-7 where the 

gradient step size was chosen to be 10-8 (i.e. the same order of magnitude as the minimum 

step size). 
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where: 

f is the function whose gradient vector is being determined, 

fi is the i-th element of the gradient vector,  

x is the position at which the gradient is being estimated, 

xj is the j-th value of the vector x, 

δ is the gradient calculation step size, and 

n is the number of parameters on which f is dependant. 

Eq 6-7 

5 optimisations will be done for each of the 32 cameras for each of the 7 distortion 

functions specified in Table 4.2. This will allow a comparison between the general 

applicability of each of the proposed angular gain functions, and determine if non-uniform 

angular gains can improve lens distortion characterization. 

It was seen during preliminary testing that angular gains could result in a skewness of the 

resulting undistorted domain. The skewness transforms a rectangular collection of 

corrected image points, into a trapezoidal or rhombic collection of points as illustrated by 

Figure 6.6 and Figure 6.7. In order to quantify this effect, each undistorted line, as 

generated by the variable angular gain distortion function, will be compared to the 

corresponding undistorted line as calculated when using the same distortion function with 

out any angular gain. The maximum angle between any of the 96 pairs of such lines (4 sets 

of images of 6 concentric squares) will then be taken as the skewness measure, i.e.: 
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where: 

i ∈[1, 96] is the line number being considered, 

pi, end is the last existing undistorted point in the variable radial gain line,  

pi,begin is the first existing undistorted point in the variable radial gain line,  

qi, end is the last existing undistorted point in the constant radial gain line, and 

qi,begin is the first existing undistorted point in the constant radial gain line. 

Eq 6-8 

 

 

Figure 6.6  Depiction of undistorted points from two views of the reference jig when no 

angular gain is used. The outline represents the camera’s FOV. 
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Figure 6.7  Depiction of undistorted points from two views of the reference jig, exhibiting 

skewness due to poor angular gain. The outline represents the camera's FOV. 

6.3. Analysis of results  

The raw results of all the optimizations performed are far too extensive to be presented 

here, and thus only the statistics for each of the distortion model/angular combinations are 

presented. The complete raw results are available upon request. 

As mentioned in §3.1 the 32 sample cameras contain two different lens designs. As the 

results differ for each of the lens designs, they are presented separately. 

Figure 6.8 to Figure 6.14 below present that data for the different distortion models as a 

series of box plots. The whiskers on the plot extend to the minimum and maximum 

improvements for a lens/model/gain combination. The box itself extends from the 25th to 

75th percentiles. All improvements are expressed as a percentage compared to having unity 

angular gain, where a positive value indicates an improvement, and negative values 

deterioration. The angular gains listed on the X axis of the graphs: conic, zero order, first 

order and floating sine correspond to those described paragraphs §6.1.1, §6.1.2, §6.1.3, and 

§6.1.4 respectively. 
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Figure 6.8  Box plot presentation of the improvements obtained by the different angular gains 

over unity gain for the R distortion model. 

Improvement for RDC model
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Figure 6.9  Box plot presentation of the improvements obtained by the different angular gains 

over unity gain for the RDC distortion model. 
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Improvement stats for R2DC model
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Figure 6.10  Box plot presentation of the improvements obtained by the different angular 

gains over unity gain for the R2DC distortion model. 

Improvement stats for R3P2 model
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Figure 6.11 Box plot presentation of the improvements obtained by the different angular 

gains over unity gain for the R3P2 distortion model. 
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Improvement stats for R3P2DC model
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Figure 6.12  Box plot presentation of the improvements obtained by the different angular 

gains over unity gain for the R3P2DC distortion model. 

Improvement stats for R3P3DC model
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Figure 6.13  Box plot presentation of the improvements obtained by the different angular 

gains over unity gain for the R3P3DC distortion model. 
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Improvement stats for R5 model
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Figure 6.14  Box plot presentation of the improvements obtained by the different angular 

gains over unity gain for the R5 distortion model. 

The average skewness, as per Eq 6-3, over all 32 cameras for each distortion model/ 

angular gain combination is presented in tabular form in Table 6.1 and pictorially in Figure 

6.15.  

Table 6.1  Average skewness in degrees of each distortion model/angular gain combination 

 Conic 
Zero 
Order 

First 
Order 

Floating 
Sine 

R 0.226 11.839 12.398 8.585 
RDC 0.233 11.778 12.395 8.593 
R2DC 0.218 3.605 7.364 0.836 
R3P2 0.225 3.633 7.472 0.755 
R3P2DC 0.213 3.618 7.500 0.712 
R3P3DC 0.241 3.633 7.646 0.743 
R5 0.217 3.625 7.463 0.751 
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Figure 6.15  Average skewness of each distortion model/angular gain combination. 

It is evident from Figure 6.8 and Figure 6.9 that one is able to dramatically improve the 

residual distortion of these simple models. This is particularly true for Lens A, however 

Lens B could not be significantly improved by the conical angular gain, which was the 

only gain function not to induce significant skewness. The remarkable similarity between 

Figure 6.8 and Figure 6.9 is attributable to the close relationship between the two distortion 

methods which only differ by virtue of the second method allowing a variable distortion 

centre. 

With regards to the five distortion models that have a second or higher order radial 

component (i.e. Figure 6.10 through Figure 6.14), only the conical and floating sine gains 

consistently improved the distortion characterization. This is true for both lens designs. 

The conical gain provided both a wider spread and higher average improvement compared 

to the floating sine method. Both of these methods also provided minimal skewnesses of 

less than one degree. Considering that this skewness is essentially a comparison with the 

non-perfect distortion correction obtained when using unity angular gain; both of the 

skewnesses of 0.22° and 0.75° obtained on average by the conic and floating sine methods 

respectively are acceptable. 
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Figure 6.16  Average percentage improvement of each angular method compared to unity 

angular gain. 

With reference to Figure 6.16, it can be stated that incorporating the angular component of 

the polar coordinate of an image point in the lens distortion function can improve the 

distortion characterization. It is evident from Figure 6.16 that the improvement seems to 

lessen with model complexity, which is expected as higher order models can better 

characterize the distortion. In particular the conical gain, which was derived from a 

physical phenomenon, seems to perform particularly well. 

It has been shown that angular gain can improve lens distortion characterization. As the 

purpose of this hypothesis was not to determine the optimal angular model but merely to 

ascertain if such a model would be beneficial, one can safely say that it has been verified.
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CHAPTER 7. 
CONCLUSIONS 

7.1. Comparison of results with previous research 

The first hypothesis challenged the prevailing belief that high order radial distortion 

models were not suitable to modern digital photogrammetric applications. This was due 

both to a perceived instability in the fitting of these models; and a belief that such models 

actually worsened the characterization of lens distortion. It was shown via the application 

of modern numerical optimization methods that higher order models can indeed be 

successfully used for digital photogrammetry. The fitting of the models was shown to be as 

stable as for lower order models, whilst they were shown to provide better characterization 

of lens distortion. 

Building on a stable foundation provided by the first hypothesis, the second hypothesis 

queried the established inverse distortion methods used. Previously one had to choose 

between an iterative (i.e. slow) yet accurate technique or a quick but less accurate model 

based on simplifications of the inverse of low order radial models. It was shown that a high 

order radial model could successfully be fitted to model the inverse distortion by reusing 

left-over distortion characterization data. Such an inverse characterization is of the same 

order of processor loading as the simplified inverse low order models, yet attains 

accuracies comparable to the iterative technique of 0.013 pixels RMS. 

The third hypothesis queried the core assumption of radial symmetry used in all radial lens 

distortion models. It was shown that multiplying the corrections of current radial models 

with a simple scale factor that is a function of the polar angle of the image point in 

question, improves lens distortion characterization. This improvement varies from 50% 

with the simplest distortion models to 6% for the most complex models which prior to this 

work (in the first hypothesis) had not even been deemed possible to use. 

7.2. Applicability of results  

The improved characterization accuracies yielded by this work were not vast. The superior 

characterization offered by the highest order model tested (a third order radial, third order 

tangential model with decentering) is only 3% (for the two lenses considered) when 

compared to the second order radial model commonly used in industry. The improvement 
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provided by allowing variable angular gain is then a further 6%. This improvement is only 

likely to be useful for high accuracy photogrammetric applications. Applications such as 

robotic vision, image stitching and distortion correction for visually aesthetic reasons are 

unlikely to find these improvements useful. 

The improvements to inverse distortion correction however are more dramatic. With only a 

single call to a model (which is of less complexity than current models), accuracy that is 

comparable to iterative procedures can attained. Whereas a minimum of 3 function calls are 

required to find the partial derivatives with respect to X and Y for each iteration (and this 

is a poor forward-difference approximation of the gradient – a central difference gradient 

with five models calls would be better) only one call needs to be made. This allows 

accurate inverse distortion modelling, enabling images to be undistorted accurately in real 

time. This is relevant to fields such as robotic vision, automatic defect detection, image 

registration and, of course, high accuracy photogrammetric measurements. 

7.3. Contribution made by this work 

In addition to definitive proof of the applicability of high order radial distortion models, 

two numerical optimization techniques were highlighted that are suitable to the task of 

fitting these models to the captured data. The Fletcher-Reeves method converges rapidly to 

a solution and is not affected by input perturbations. It is thus recommended when the data 

is noisy or limited in number or FOV coverage. The Leapfrog algorithm consistently finds 

a better fit for the models (therefore providing a better characterization) but is more 

sensitive to input perturbations, it is thus recommended when there is confidence in the 

quality of the data and it abundantly covers the entire FOV. 

Inverse distortion modelling has been advanced significantly. Using the undistorted 

positions created as a side effect in the distortion characterization, it was shown that the 

Leapfrog algorithm can fit a high order model such that with a single model call the 

distorted point corresponding to an undistorted point can be found to within a few 

hundredths of a pixel. This is an increase in accuracy of 25 fold compared to the current 

inverse distortion models and uses a third of the processing required for a single iteration 

of the iterative techniques. Low cost, low power, real-time distortion correction is now 

feasible. 

The accuracy of lens distortion characterization, already improved by using high order 

models, has been further enhanced by allowing distortion to be radially asymmetrical. This 
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has allowed images to be straightened so that points along straight lines are within 7 

hundredths of a pixel (RMS) of the line. This is an improvement of 5580% compared to 

the distorted image. The ability provided by the conic slice radial gain to algorithmically 

correct for non-orthogonality between the imager and optical assembly further paves the 

way for the use of less expensive equipment for photogrammetric applications. 

As two different lens types were used and the results varied for each type, this research 

highlights the need to determine what order of model is best suited to the lens type being 

used in the application at hand. It was shown that the different lenses had different 

properties concerning their initial distortion characteristics, responded differently to 

different distortion (and inverse distortion) characterization models, and differed in their 

improvements induced by variable radial gains.  

It has thus been shown that the characterization of any lens might be significantly 

improved by selection of an appropriate distortion model (possibly with a variable radial 

gain) and optimization technique. 

7.4. Future work to be done 

Better models for radial gain need to be developed. This work has successfully shown that 

such models will be beneficial to high accuracy photogrammetric applications.  

The conic slice radial gain model, which was the best performing radial gain model, would 

also benefit from further work. In particular the relationship between the eccentricity of the 

ellipse, its two foci, and its angle in the focal plane may possibly be exploited to determine 

the normal of the optical axis relative to the image plane. 

The comparable performance of the floating sine angular gain to the conic slice radial gain 

model suggests that future work using a Fourier series may be beneficial. 

Although the polynomial functions performed poorly, it may be beneficial to attempt using 

a set of orthogonal polynomials such as Legendre or Chebyshev  polynomials.
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Appendix A. Leapfrog Algorithm 
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 ix = # times velocity didn't increase
 ixm = max consecutive ix
 is = # times accelerations 90° apart
 ism = max consecutive is
 id = #times step size > max
idm = max consecutive id
p = time magnification factor
δt = time magnification increment
Δt = time step size
k = iteration num
x0 = starting point
xk = estimated optimum at iteration k
x* = estimated optimum at iteration k
δ = maximum step size
 kmax = maximum number of iterations
 εx = minimum stepsize
 εg = gradient convergence criteria
ak = acceleration at iteration k
vk = velocity iteration k

 

Figure A. 1  Leapfrog Algorithm flow diagram, adapted from [38] showing how LF simulates 

the motion of a charged particle subject to an N-dimensional field determined by the error 

gradient. 




