Isolation and characterization of compounds from *Podocarpus henkelii* (Podocarpaceae) with activity against bacterial, fungal and viral pathogens

Victor P. Bagla

Thesis submitted in fulfilment of the requirements for the degree

Philosophiae Doctor

In the Phytomedicine Programme

Department of Paraclinical Sciences

Faculty of Veterinary Science

University of Pretoria

Supervisor: Prof. J.N. Eloff (DSc)

Co-supervisor: Dr. L.J. McGaw (PhD)

November 2011

i

© University of Pretoria

Declaration

I declare that the thesis hereby submitted to the University of Pretoria for the degree Philosophiae Doctor has not previously been submitted by me for a degree at this or any other University. That it is my own work in design and in execution, and that all material contained herein has been duly acknowledged.

Victor P. Bagla

Acknowledgement

This project is dedicated to my mum, late Princess Mamie Bagla, may your soul rest in perfect peace.

I want to thank the following:

- 1. God for his love, kindness, protection and mercy he has shown me through this period of my life and always.
- 2. Prof. J.N. Eloff for his guidance, expertise, supervision and moral support without which this study should have been impossible.
- 3. Dr. L.J. McGaw for her expert supervision and guidance throughout this project. Your positive criticisms have opened my horizon in research.
- 4. Dr. F. Botha for her guidance and support.
- 5. All my colleagues in the Phytomedicine Programme for their friendship, understanding and help in making my stay with the group a success.
- 6. Tharien for her assistance and positive spirit towards students of the Phytomedicine programme.
- 7. The Bagla, Abibu and Smith families for their endless support during this period and always.

Table of content

Declaration	ii
Acknowledgement	iii
List of tables	xii
List of figures	xvi
List of abbreviations	xviii
Publications from the thesis	xxii
Abstract	xxiii

Chapter 1: Introduction

1.1.	Introduction	1
1.2.	Resistance development to antimicrobial agents	2
1.2.1.	Viruses	2
1.2.2.	Bacteria	3
1.2.3.	Fungi	5
1.3.	Adverse effect associated with the use of antimicrobial agents	6
1.3.1.	Antiviral agents	6
1.3.2.	Antibacterial agents	7
1.3.3.	Antifungal agents	9
1.4.	Virus	10
1.4.1.	Impact of viral disease outbreak on agriculture and livestock	11

Chapter 2: Literature review on the antimicrobial activity of plant extract

2.1. Ethnomedicine in infections disease treatment and the relevance of cell culture in toxicity studies of	medicinal
plants	13
2.2. Use of plants as antimicrobial agents	14
2.3. Common class of antiviral compounds present in medicinal plants	17

2.4. Cell cultures and toxicity studies	20
2.5. Antioxidants and cell culture	21
2.6. Hypothesis	24
2.7. Aims of the study	24
2.8. Objective	24

Chapter 3: Materials and Methods

3.1. Plant collection	25
3.2. Plant preparation and storage	25
3.3. Extraction of plant material	25
3.4. Thin layer chromatography (TLC) analysis of crude extracts	25
3.5. Determination of qualitative antioxidant activity of extracts	26
3.6. Solvent-solvent fractionation	27
3.7. Antibacterial activity	28
3.7.1. Bioautography on TLC plates	28
3.7.2. Microdilution assay for MIC determination	28
3.8. Antifungal assay	29
3.8.1. Bioautography on TLC plates	29
3.8.2. Microdilution assay for MIC determination	30
3.8.3. Determination of total activity	30
3.9. Determination of Cytotoxicity of extracts, fractions and pure compounds (MTT)	30
3.10. Genotoxicity testing of isolated compounds	31
3.11. Antiviral assay	32
3.11.1. Cell cultures and viruses	32
3.11.2. Virucidal assay	32
3.11.3. Attachment assay	33

Chapter 4: Comparative cytotoxicity studies of extracts of selected medicinal plants on different cell types

4.1. Introduction	34
4.2. Materials and methods	36
4.2.1. Plant collection and preparation	36
4.2.2. Determination of qualitative antioxidant activity of extracts	36
4.2.3. Determination of Cytotoxicity of extracts	36
4.3. Results and discussion	38
4.3.1. Effect of extracting solvents on yield of extracts	38
4.3.2. Cytotoxic effect of extracts on cells	40
4.3.2.1. Microscopic determination of cytotoxic effect of extracts of all the plants on different cell type	40
4.3.2.2. Determination of cytotoxicity by MTT assay	43
4.3.2.2.1. Plumbago zeylanica	43
4.3.2.2.2. Ekebergia capensis	48
4.3.2.2.3. Annona senegalensis	48
4.3.2.2.4. Carissa edulis	49
4.3.2.2.5. Podocarpus henkelii	51
4.3.2.3. Antioxidant activity	53
4.5. Conclusion	54

Chapter 5: The antibacterial activity of different extracts of selected South African plant species

5.1. Introduction	56
5.2. Materials and methods	58

5.2.1. Thin layer chromatography (TLC) analysis of crude extracts	58
5.2.2. Bioautography on TLC plates	58
5.2.3. Microdilution assay for MIC determination	58
5.2.3. Determination of cytotoxic effect of the extracts on different cell types	59
5.3. Results and discussion	59
5.3.1. Chemical constituents of the crude extracts	59
5.3.2. Inhibition of bacterial growth using bioautography	61
5.3.3. Antibacterial activity of extracts in terms of MIC values	64
5.4. Conclusion	68

Chapter 6: Evaluation of different extracts of selected South African plant species for antiviral activity

6.1. Introduction	70
6.2. Materials and Methods	72
6.2.1. Viral pathogens used in the study	72
6.2.2. Cell cultures	72
6.2.3. Determination of cytotoxic effect of extracts on cells	72
6.2.4. Virucidal assay	73
6.2.5. Attachment assay	73
6.3. Results and discussion	73
6.4. Conclusion	83

Chapter 7: Evaluation of different extracts of selected South African plant species for antifungal activity

7.1. Introduction	84
7.2. Materials and Methods	85
7.2.1. Thin layer chromatography (TLC) analysis of crude extracts	85
7.2.2. Bioautography on TLC plates	85
7.2.3. Microdilution assay for MIC determination	85
7.2.4. Determination of total activity	86
7.2.5. Determination of cytotoxic effect of the extracts on different cell types	86
7.3. Results and discussion	86
7.3.1. Inhibition of bacterial growth using bioautography	86
7.3.2. Antifungal activity of extracts in terms of MIC values	90
7.4. Conclusion	95

Chapter 8: Plant selection and antimicrobial activity of solvent – solvent fractions of leaf material

8.1. Introduction	96
8.1.1. Description of the plant Podocarpus henkelii stapt ex Dallim. & Jacks.	96
8.1.2. Taxonomy	96
8.1.3. Chemotaxonomy	99
8.1.4. Medicinal uses	103
8.2. Material and Methods	105
8.2.1. Solvent-solvent fractionation of leaf material	105
8.2.2. Analysis and concentration of fractions	105
8.2.3. Bioassay – guided fractionation	105

8.3. Results and discussion	106
8.4. Conclussion	111

Chapter 9: Isolation and determination of chemical structure of compounds from *Podocarpus Henkelii* Stapt Ex Dallim. & Jacks

9.1. Introduction	112
9.2. Methods	112
9.2.1. Column chromatography	112
9.2.2. Structural elucidation	113
9.3. Results and discussion	113
9.4. Conclusion	114

Chapter 10: Biological activity and toxicity studies of isolated compounds from *Podocarpus Henkelii* Stapf Ex Dallim. & Jacks

10.1. Introduction	115
10.2. Materials and Methods	116
10.2.1. Determination of minimum inhibitory concentration (MIC) of isolated compounds against bacterial pat	thogens 116
10.2.2. Determination of minimum inhibitory concentration (MIC) of isolated compounds against fungal patho	ogens
	116
10.2.3. Virucidal assay	117
10.2.4 Attachment assay	117

10.2.5. Cytotoxicity assay using MTT	117
10.2.6. Genotoxicity testing of isolated compounds	118
10.3. Results and Discussion	118
10.3.1. Antibacterial activity of compounds	118
10.3.2. Antifungal activity of compounds	121
10.3.3. Antiviral activity of compounds	123
10.3.4. Toxicity studies of compounds	123
10.4. Conclusion	124

Chapter 11: General discussion and conclusion

Appendix	132
References	131
11.7. Evaluating the correlation between antiviral and antimicrobial activity	129
11.6. The cytotoxicity and genotoxic activity of isolated compounds	128
11.5. Isolation and biological activity of isolated compounds	128
11.4. Selection of plant species for fuxther investigation	127
11.3. Determining the antiviral activity of different extracts of selected plant species	127
11.2. Determining the cytotoxic effect of the different extracts on different cell types	126
11.1. Antibacterial and antifungal activity of different extracts of selected plant species	125

List of table

Table 2.1: Some drugs of natural origin	15
Table 2.2: Plants containing antimicrobial activity	16
Table 2.3: Major classes of antimicrobial compounds from plants	17
Table 2.4: Mechanism of action of the most active antiviral compounds from medicinal plants	19
Table 4.1: Plants used in the study and their ethnomedicinal indication	37
Table 4.2: Comparison of the cytotoxic effect of extractants at varying concentrations on different cell types a five point safety scale after microscopic evaluation (1–5)	based on 41
Table 4.3. Relative cytotoxicity of different extractants of plants on the different cell types and plant s different concentrations	species at 42
Table 4.4. Relative cytotoxicity of extracts of different extractants and cell types on different plant s	species at

42

different concentrations

Table 4.5. Relative cytotoxicity of extracts of different extractants and different plant species on three	e cell types
tested at different concentrations	43
Table 4.6: CC ₅₀ values of different extracts of the same plant on different cell types	51
Table 5.1: Retention factor (Rf) values of active constituents representing zones of inhibition of bacterial bioautograms	growth on 62
Table 5.2: Antibacterial activity of selected plant species against Gram-positive and Gram-negative bacte mg/mℓ)	ria (MIC in 65
Table 5.3: Total activity values of different plant extracts against bacteria after 24 hours of incubation	66
Table 5.4: Selectivity index values relating observed activity of extracts with cytotoxicity	67
Table 6.1: Virucidal activity of extracts of selected plants against test organisms following incubation of	virus with
extracts for 1-3 h prior to inoculation onto confluent host monolayer cells	76
Table 6.2: Antiviral activity of extracts of selected plants against test organisms following addition of	
monolayer cells and incubation for 1 – 3 h prior to addition of extracts Table 6.3: Selectivity index (SI) values (ug/mł) indicating virucidal activity of extracts of selected plant	77 s following
incubation of virus with extracts prior to inoculation onto confluent host monolayer cells	81

Table 6.4: Selectivity index (SI) values (ug/mℓ) indicating antiviral activity of extracts of selected plants against test organisms following addition of equal volume of virus onto monolayer cells and incubation prior to addition of extracts 82

Table 7.1: R_f value of antifungal compounds detected in different extracts of selected plants on bioautography	88
Table 7.2: Antifungal activity of selected plant species against animal fungal pathogens (mg/ml)	89
Table 7.3: Total activity values of different extracts of plants on pathogenic fungi after	93
24 hours of incubation	
Table 7.4: Selectivity index using vero cell toxicity of extracts	94
Table 8.1: Traditional and proposed taxa in the Podocarpaceae	98
Table 8.2. Medicinal uses of <i>Podocarpus</i> species	103
Table 8.3a: R_f value of compound in solvent-solvent fraction active against bacterial pathogens	109
Table 8.3b: R_f value of compound in solvent-solvent fraction active against fungal pathogens	109
Table 10.1a: Minimum inhibitory concentration values (ug/mℓ) of isolated compounds against two Gram-po	ositive and
two Gram-negative bacteria after 12 and 24 h incubation	120
Table 10.1b: Selectivity index values of compounds against bacterial pathogens after 12	
and 24h incubation	120

Table 10.2a: Minimum inhibitory concentration values (ug/mł) of compounds against selected fungal pathogens after 24 and 48 h incubation

Table 10.2b: Selectivity index values of compounds against fungal pathogens after 24 and 48h incubation	122
Table 10.3a: Number of his+ revertants in Salmonella typhimurium strains TA98 and TA100 produced	122
by isolated compounds	

 Table 10.3b: Cytotoxicity of isolated compounds on different cell types
 124

List of figures

Figure 2.1: Flow chart of sequence for the study of plants used in traditional medicine	14
Figure 2.2: Response of cells to oxidative stress	23
Figure 3.1: Flow chart of solvent-solvent fractionation of leaves	27
Figure 4.1: Percentage yield of plant material extracted using four different solvents for extraction	39
Figure 4.2: Viability of Vero cell exposed to extracts of different plant species extracted using solvents of varying polarity	45
Figure 4.3: Viability of CRFK cell exposed to extracts of different plant species extracted using solvents of varying polarity	46
Figure 4.4: Viability of bovine dermis cell exposed to extracts of different plant species extracted using solvents of varying polarity	47
Figure 4.5. Thin layer chromatogram eluted in CEF indicating presence of antioxidantconstituent in PH = <i>Pethenkelii</i> and CE = <i>Carissa edulis</i> 53	odocarpus
Figure 5.1: Thin layer chromatogram eluted in CEF of separated constituents of the same plant using different solvents for extraction	60
Figure 5.2. A representative bioautograph eluted in BEA indicating inhibition of growth of S.areus	63

Figure 7.1. A representative bioautograph eluted in BEA indicating inhibition of growth of C.neoformans	87
Figure 8.1: Chemical structures and pharmacological activities of some compounds isolated from s Podocarpus and revised genera	species of 100
Figure 8.1: Chemical structures and pharmacological activities of some compounds isolated from s Podocarpus and revised genera	species of 101
Figure 8.1: Chemical structures and pharmacological activities of some compounds isolated from s Podocarpus and revised genera	species of 102
Figure 8.2: Bioautography of solvent solvent fractions indicating zones of inhibition on TLC plants agains pathogens	st bacteria 107
Figure 8.3: Bioautography of solvent solvent fractions of indicating zones of inhibition on TLC plates agai pathogen	inst fungal 108
Figure 9.1: Structure of compounds isolated from Podocarpus henkelii	114

List of abbreviations

Ace	Acetone
AIDS	Acquired immune deficiency syndrome
Amp-B	Amphotericin-B
Ann.s	Annona senegalensis
AS	Acokanthera schimperi
ATCC	American type culture collection
BEA	Benzene/ethanol/ammonium hydroxide
BERB	Berberine chloride
BD	Bovine dermis cells
CC ₅₀	Cytotoxicity (50% cell death)
CE	Carissa edulis
CEF	Chloroform/ethyl acetate/formic acid
CDV	Canine distemper virus
СНВ	Chronic hepatitis B
CMV	Cytomegalovirus
CPE	Cytopathic effect
CPIV	Canine Parainfluenza virus
CRFK	Crandell feline kidney cells
DCM	Dichloromethane
DMEN	Dulbecos minimun essential medium

DMSO	Dimethyl sulfoxide
DNA	Dioxiribonucliec acid
DPPH	1-1-diphenyl-2-picryl-hydrazyl
EC	Ekebergia capensis
EC ₅₀	Effective concentration 50
ELIZA	Enzyme linked immunosorbent assay
EMW	Ethyl acetate/methanol/water
EsbL	Extended spectrum b-lactamase
FCS	Fetal calf serum
FHV	Feline herpes virus
FMDV	Foot and Mouth Disease Virus
FMD	Foot and Mouth Disease
GI	Gastrointestinal
HAART	Highly active antiretroviral therapy
HCMV	Human cytomegalovirus
Hep G2	Human hepatoma cell line
Hex	Hexane
HIV	Human immunodeficiency virus
HSV	Herpes simplex virus
ICTV	International Committee on Taxonomy of Viruses
ICU	Intensive care unit
INT	<i>p</i> -iodonitrotetrazolium violet,

LSD	Lumpy skin disease
LSDV	Lumpy skin disease virus
MDR	Multidrug resistance
MEM	Minimum essential medium
Met	Methanol
MH	Müller-Hinton
MIC	Minimum inhibitory concentration
MPs	Medicinal plants
MRSA	Methicillin- resistant Staphylococcus aureus
MTT	3-[4,5-dimethylthiazol-2-yl]-2,5-
	diphenyltetrazolium bromide
NCCLS	National Committee for Clinical Laboratory Standards
NCE	New chemical entities
N/D	Not done
OD	Optical density
OD OECD	Optical density Organisation for Economic Cooperation
	Organisation for Economic Cooperation
OECD	Organisation for Economic Cooperation and Development
OECD	Organisation for Economic Cooperation and Development Office International des Epizooties
OECD OIE OPC	Organisation for Economic Cooperation and Development Office International des Epizooties Oropharyngeal candidosis
OECD OIE OPC PBS	Organisation for Economic Cooperation and Development Office International des Epizooties Oropharyngeal candidosis Phosphate buffered saline

Pz	Plumbago zeylanica
REACH	Registration, Evaluation and Authorisation
	of Chemicals
R _f	Retardation factor
RNA	Ribonucliec acid,
ROS	Reactive oxygen species
RP	Rinderpest
RS	Reactive species
RSV	Respiratory syncytial virus
RVF	Rift Valley fever
Sca	Schrebera alata,
SD	Sabrouraud dextrose broth,
SI	Selectivity index,
SV	Simian virus
TCID ₅₀	Tissue culture infective dose 50
TLC	Thin layer chromatography
UK	United Kingdom
UV	Ultraviolet
VREF	Vancomycin resistant Enterococcus faecalis
VZV	Varicella-zoster virus
WHO	World Health Organisation
4-NQO	Nitroquinoline-1-oxide
	_

Publications from this thesis

- Bagla, V.P., McGaw, L.J., and Eloff, J.N. (2011). The antiviral activity of plants used to treat various ailments and their possible relevance in treating viral infections in ethnoveterinary medicine. Journal of Veterinary Microbiology, doi:10.1016/j.vetmic.2011.09.015.
- Bagla, V.P., McGaw, L.J. and Eloff, J.N. Different extracts of leaves of traditionally used South African trees have different antibacterial, antioxidant and cytotoxic activities.
- Bagla, V.P., McGaw, L.J., Elgorashi, E.E., and Eloff, J.N. Biological activity and toxicity studies of isolated compounds from *Podocarpus henkelii* Stapf ex Dallim. & Jacks.
- Bagla, V.P., McGaw, L.J. and Eloff, J.N. Evaluation of different extracts of selected South African plant species for antifungal activity.

Bagla, V.P., McGaw, L.J. and Eloff, J.N. Comparative cytotoxicity studies of extracts of selected medicinal plants on different cell types.

Abstract

Diseases caused by bacteria, fungi and viruses pose a significant threat especially to poor rural communities. Viral infections are frequently complicated by secondary bacterial and fungal infections which remain a major challenge globally and in particular, in sub Sahara Africa amongst humans and animals alike. The main aim of this study was to develop a low toxicity plant extract or isolated compound active against viral, bacteria and fungal pathogens from selected plant species.

Seven tree species that were investigated were *Acokanthera schimperi*, *Carissa edulis*, *Ekebergia capensis*, *Podocarpus henkellii*, *Plumbago zeylanica*, *Annona senegalensis* and *Schrebera alata* traditionally used in the treatments of various ailments were selected and extracted using solvents of varying polarity. Extracts of selected plants were tested for activity against two Gram positive and two Gram negative bacterial namely *Enterococcus faecalis* and *Staphylococcus aureus* and two Gram-negative species, *Pseudomonas aeruginosa* and *Escherichia coli* respectively, three fungal pathogens: *Candida albicans*, *Cryptococcus neoformans* and *Aspergillus fumigates* and four enveloped animal viruses: feline herpes virus–1 (FHV-1, dsDNA), canine distemper virus (CDV, ssRNA), canine parainfluenza virus-2 (CPIV-2, ssRNA) and lumpy skin disease virus strain V248/93 (LSDV, dsDNA). The presence of antioxidant constituents in the different extracts and cytotoxicity against three cell types CRFK, bovine dermis and Vero cells were determined. Bioautography and the serial microplate dilution methods were used to determine the number of antimicrobial compounds and antimicrobial activity of extracts against bacterial and fungal pathogens. Virucidal and attachments assays were used to determine the activity against viral pathogens. Qualitative antioxidant activities of extracts were tested using the DPPH reagent and cytotoxicity using the MTT assay.

Biological activity was observed in all the extracts against one or more organisms on bioautography. The intermediately polar system (CEF) separated more active constituents. Some extracts had compounds with similar R_f values active against one or more organisms. In both the antibacterial and antifungal assays, acetone extracts had the highest activity followed by DCM against one or more pathogens. Hexanes extracts were the least active. *P. henkellii* extracts had more active compounds against the bacteria and *Annona senegalensis* against the fungi. In the microdilution assay, *S. aureus* was the most susceptible bacterial organism to extracts of the different plant, followed by *P. aeruginosa* and *Escherichia coli*, and *E. faecalis* the least. *C. neoformans* on the other hand was the most susceptible fungal pathogen. In the antiviral assay, although activity was observed with hexane extracts of some plants in the virucidal assay, the most potent inhibition was observed with the acetone and methanol extracts of *Podocarpus henkelii* against CDV and LSDV in the virucidal assay and acetone extracts in the attachment assay.

In general the hexane was the least toxic while the intermediate polarity extracts were generally the most toxic indicating that highly polar compounds were possibly poorly or highly absorbed through membranes in the former and later respectively. Of the three cell types used CRFK was the most sensitive followed by bovine dermis and Vero cells the least. Cytotoxicity studies of extracts of the different plants revealed *A. senegalensis and A. schimperi* extracts were the most toxic plants in the cellular assay. These plants are toxic to animals and the cytoxicity is in line with the *in vivo* toxicity. The protective effects of antioxidant constituents in some extracts varied and appear to be influenced by the metabolism of the type of cell in culture. It also appears to suggest that metabolism in kidney-derived cells can be influenced by species variation in the origin of cells.

P. henkellii was selected for isolation of bioactive compound. Three compounds were isolated and their structure elucidated using ¹³C and ¹H NMR and mass spectrometric data. The antibacterial, antifungal and antiviral activity of the isolated compounds 7', 4', 7", 4"', tetramethoxy amentoflavone (C1), isoginkgetin (C2) and Podocarpusflavone–A (C3) were determined. Compound C2 was the most active against *E. coli* and *S. aureus* (MIC = $60 \mu g/m\ell$) and a selectivity index (SI) value of 16.67. The compound was also active against *A. fumigatus* and *C. neoformans* (SI = 33.33) suggesting both antibacterial and antifungal activity with relative safety. Compound C3 had a broad spectrum of activity against *E. faecalis* and *P. aeruginosa* with SI values of 4. A less potent activity of the compounds was obtained in both the virucidal and attachment assays against test pathogens, indicating the lower activity of the antimicrobial activity of biflavonoids. The compounds C1 and C2 had no toxic effect on the three cell types and mutagenicity studies indicated no activity of these compounds.

Podocarpusflavone-A occurs in every species of *Podocarpus* so far investigated, except *P. latifolius*. These studies represent the first isolation of bioactive compounds from *P. henkellii*. Although a different extractant was used than that used by traditional healers, the presence of antiviral compounds in *Podocarpus henkelii* against two unrelated viruses may justify on a chemotaxonomic basis the traditional use of related species *Podocarpus latifolius* and *Podocarpus falcatus* in the traditional treatment of canine distemper infection in dogs.