
Chapter 5 

The three-degree-of-freedom 


planar parallel manipulator 


5.1 Introduction 

As an extension to the work presented in the previous chapter, the con

strained optimization formulations presented here are aimed at determining 

3-dof planar parallel manipulator designs so that a prescribed workspace is 

fully enclosed and well-conditioned with respect to some performance index. 

Depending on the particular application, certain manipulator performance 

criteria may be of more importance than others (see Section 1.4.1). The 

performance measure used here is the condition number of the manipulator 

Jacobian matrix, although a number of other performance measures, or a 

combination of such measures, could also have been used. The optimization 

method used in performing the optimization is the Dynamic-Q method. 

In the next two sections the 3-RPR planar parallel manipulator, and the 

kinematics and determination of the condition number for this manipulator, 

are presented. The remainder of this chapter then separately deals with the 
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89 CHAPTER 5. THE 3-DOF PPM 

topics of workspace determination and dimensional synthesis of 3-dof parallel 

manipulators. In Sections 5.4 and 5.5 the chord workspace determination 

methodology is extended to the determination of constant orientation and 

dextrous workspaces of planar 3-RPR manipulators. 

The P synthesis methodology developed in Chapter 4 is then applied to the 

3-dof planar manipulator. Three forms of the dimensional synthesis prob

lem are proposed and implemented. These forms differ from each other in 

the way that the orientational ability of the 3-dof platform is accounted for. 

Respectively, the dimensional synthesis is performed for a single constant 

orientation workspace (SO synthesis), multiple constant orientation work

spaces (MO synthesis), and for a dextrous workspace (D synthesis). These 

methodologies and are discussed in Sections 5.6 to 5.8. 

5.2 	 The three-degree-of-freedom parallel ma

nipulator 

The manipulator considered in this chapter is the 3-dof planar parallel mecha

nism shown in Figure 5.1. The manipulator consists of a platform of length 2r 

connected to a base by three linear actuators, which control the three output 

degrees of freedom of the platform. The actuators have leg lengths ll' l2 and I3 

and are joined to the base and platform by means of revolute joints identified 

by the letters A-E. It will be assumed that Yc YD = YEo The coordinates 

of point P, the mid-point of the platform, are (xp, yp) and the orientation of 

the platform is cpp. With reference to the definitions given in Section 4.2, the 

actuator leg lengths are the input variables, i.e. v [ll,z2, l3F E 1JC3. The 

global coordinates of the working point P form the output coordinates, i.e. 

u - [xp, yp]T E ~2. In contrast with the 2-dof manipulator considered in 

the previous chapter, the 3-dof manipulator may, in addition to positioning 

P in the x - Y plane, be orientated at an angle cpp by controlling the three 
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C E 
~----------------------~------------------~ 
(XC,YC) (XE, YE) 

Figure 5.1: The 3-dof parallel manipulator 

leg lengths. It is evident that this manipulator thus has three degrees of 

freedom. The rotation angle of the platform is considered as an intermediate 

coordinate w ¢p. For the 3-dof manipulator nu = 2, nv = 3 and nw l. 

The generalized coordinates for this platform are therefore given by 

(5.1) 

In the vicinity of an assembled configuration the input, output and interme

diate coordinates satisfy the m independent kinematic constraint equations 

of the form 

<p(q) = <p(u, v, w) = 0 (5.2) 

For the 3-dof planar parallel manipulator, m = 3. 

In general, factors imposed by the physical construction of the planar par

allel manipulator, which limit the workspace, may be related to the input 

variables or a combination of input, output and intermediate variables. An 

example of former type for the planar parallel manipulator are leg length 

limits, and of the latter, limits on the angular displacement of the revolute 

 
 
 



91 CHAPTER 5. THE 3-DOF PPM 

joints connecting the legs to the ground and to the platform. These limiting 

factors are described by means of inequality constraints and may respectively 

take the general forms 

(5.3) 

gmin :::; g(u, v, w) < gtnaX (5.4) 

Limits on the platform orientation (intermediate coordinate) take one of two 

forms given by 

(5.5) 

or w = wfix (5.6) 

where wfix is a prescribed fixed scalar quantity. 

The above definitions are necessary in order to facilitate the mathematical 

description of kinematics and workspaces types of the 3-dof planar parallel 

manipulator. 

5.3 	 The kinematics and condition number of 

the manipulator 

In general, the parallel manipulator inverse kinematics are easy to solve. For 

the manipulator under consideration, the three leg lengths are given by 

zi = (xp r cos ¢p - xc) 2 (yp - r sin ¢p YC)2 

Z2
2 (xp rcos¢p XD)2 +- (yp - r sin ¢p YD)2 (5.7) 

l~ (Xp + rcos¢p XE)2 (yp+rsin¢p YE)2 
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Writing in the standard form of the kinematic constraint equations (5.2) and 

using the coordinates definitions from the previous section, (5.7) become 

V2 (Ul - r cos w - XC)2 (U2 - r sin w - Yc)2] 
cI>(u, v, w) = V~ (Ul - rcosw - XD)2 (U2 - rsin w - YD)2 (5.8) 

[ 
v~ (Ul -+ r cos w - XE)2 - (U21- r sin w - YE)2 

o 

The explicit expressions for v in terms of u and w, v v(u,w), may be 

determined from (5.7), allowing constraints (5.3) to be written as follows: 

(5.9) 

where v min [lmin lmin tminlT and v min = [zmax lmax zmaxlT
1'2'3 1'2'3 . 

As in Chapter 4, the specific performance used here to characterize the perfor

mance of the 3-dof planar parallel manipulator is the inverse of the condition 

number of the Jacobian matrix of the manipulator. The accuracy of control 

of the manipulator is dependent on the condition number, denoted here by 

/'i,. Since /'i, tends to infinity as the manipulator approaches a singular po

sition, maximizing the inverse condition number, /'i,-l, also ensures that the 

manipulator remains far away from singular positions. From (5.2), an inverse 

transformation relating the input, output and intermediate velocities can be 

determined: 

(5.10) 

where () [u T,wjT, and Jo and J v are the respective constraint Jacobian 

matrices containing the partial derivatives of the m kinematic constraints 

(5.2) with respect to the variables () and v. Equation (5.10) can be rewritten 

as 

(5.11) 

where J -J:;IJO. Recall that for the parallel manipulator studied here 

m,=n nv=nu-+nw. 
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One point now arises due to the platform's orientational ability. In contrast to 

the the 2-dof case, the Jacobian of the manipulator contains entries related 

to both positional and rotational abilities of the platform. The condition 

number will thus inherently contain a mix of these terms. It is important to 

normalize the positional terms of the Jacobian matrix so that positional and 

rotational abilities are equally represented by the condition number. Pittens 

and Podhorodeski [71] and Stoughton and Arai [78] note this occurrence and 

suggest that the best approach is to normalize the positional terms of the 

Jacobian with respect to the platform radius r, a suggestion which is adopted 

here. 

In explicit terms, differentiation, with respect to time, of the kinematic con

straints (5.2), and writing in the form (5.10) yields 

[ :~: ~~: ~:~::::-~:~::: J[~.:J [~: ~ J[:J (5.12) 
XBE YBE -rXBE sm w + rYBE cosw wOO V3 V3 

where the notation XAB = XA XB is used, and XA = Ul - rcosw, YA = 
U2 - rsinw, XB Ul +rcosw and YB = 712 rsinw. 

The Jacobian J of the 3-dof planar manipulator, as defined by (5.11), is thus 

given by 

xAC/rvl YAC/rvl (rxAcsin w rYAC cos W)/Vl J 
J X AD / rV2 YAD / rV2 (rxAD sin w rYAD cos w) / V2 (5.13) 

[ 
XBE/rv3 YBE/rv3 (-rxBE sin w + rYBE cos W)/V3 

Note the normalization of the positional terms in the first two columns by 

the platform radius r. The condition number K, of this 3 x 3 Jacobian may 

be determined using equations (4.19) and (4.20) of Section 4.7.2. 
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5.4 	 Constant orientation workspace determi

nation 

5.4.1 	 Workspace definition 

The constant orientation workspace associated with a fixed value w = wfix 

of the intermediate variable, in the form of (5.6), is denoted WC[wfixl. In 

agreement with the definition given in Section 1.3.1, the constant orientation 

workspace of the 3-dof manipulator can be defined mathematically 8..9 

WC[wfix 
] 	 {u E Rnu : cp(u, v, w) = 0, with v satisfying (5.3), (5.14) 

g(u, v, w) satisfying (5.4) and w satisfying (5.6)} 

Intuitively the boundary aWC[wfix ] of the constant orientation workspace 

may be defined as 

aWC[wfix
] = {u E Rnu : u E WC[wfix ] and ::I an s E Rnu such that for 

u' = u + AS, A E 1R arbitrarily small and either 

positive or negative, no v exists that satisfies (5.15) 

cp(u', v,w) = OJ as well as inequalities (5.3) and (5.4), 

and equality constraint (5.6)} 

5.4.2 	 Mapping the constant orientation workspace bound

ary 

The boundary of the constant orientation workspace may be mapped numer

ically by means of the chord method. The basic methodology remains the 
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same as described in Appendix C, however the precise optimization problems 

used to determine points on the workspace boundary, differ for two reasons 

from those given by (C.9) and (C.12). 

The first reason for the difference is that it has been noted that the opti

mization problems, used to determine successive points on the workspace 

boundary, can be solved much more efficiently by reducing the number of 

optimization variables. In the original form of both the ray and chord meth

ods for maximal workspace determination, the output and intermediate co

ordinates of the manipulator were the optimization variables. For planar 

parallel manipulators, the resulting optimization problems thus contained 

three variables, and one equality constraint dictating the direction in which 

the next boundary point was determined. It is possible, however, to enforce 

the equality constraint explicitly and analytically in the optimization prob

lem, resulting in a reduction by one of the number of required optimization 

variables. The resulting increase in efficiency is a result both of this, and 

the elimination of the numerical equality constraint and associated equality 

gradient function evaluations. 

The second reason for the different form of the optimization problems, of 

course, is that the platform orientation (the intermediate coordinate) is now 

fixed for the constant orientation workspace. This again reduces the number 

of optimization variables by one, since this requirement can also be explicitly 

and analytically enforced in the optimization problem. 

For these reasons, the precise forms of optimization problems (C.9) and 

(C.12) for constant orientation workspace determination are as follows. Given 

a radiating point uO inside the constant orientation workspace WC[wfix ], and 

a search direction specified by a unit vector S1 E !}i2, the output coordinates 

u in terms of a scalar r is given by 

(5.16) 

An initial point b I u(r*) on the constant orientation workspace boundary 
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(a) (b) 

Figure 5.2: The importance of mapping bifurcation points 

the two active constraints. This can be easily accomplished by solving the 

following least squares optimization problem: 

(5.20) 

where p contains the active set of constraints from (5.3) or (5.4) and pext the 

corresponding upper or lower limits. Active constraints, and the presence of 

bifurcation points can be determined by continuously monitoring the values 

of constraints (5.3) or (5.4) while tracing the workspace boundary. Figure 5.2 

illustrates the importance of mapping bifurcation points. Successive points 

determined along the workspace boundary aWe using the chord method are 

h i -I, ... ,hi+2. It is evident on comparison of Figure 5.2 (a) and (b) that 

the inclusion of the bifurcation point Bj results in a much more accurate 

representation of the workspace boundary. 

5.5 Dextrous workspace determination 

This section presents a new numerical multi-level optimization methodology 

for determining dextrous workspaces of planar parallel manipulators. The 

methodology is based on the chord method discussed in Appendix C, which 

was extended and refined in the previous section for determining constant 

orientation workspaces. It should be noted that the method proposed here 

 
 
 



98 CHAPTER 5. THE 3-DOF PPM 

differs from the optimization method for determining dextrous workspaces 

proposed by Du Plessis and Snyman [18]). 

5.5.1 Workspace definitions 

Dextrous workspace 

The dextrous requirement for the manipulator at a point u is that all orien

tations in the range 

(5.21) 

can be attained by the manipulator (see Section 1.3.1). The dextrous work

space wD[¢min, ¢max] of the planar manipulator is thus defined as: 

WD = {u E })in'lL: q,(u, v, w) 0, with V satisfying (5.3) (5.22) 

and g(u, v,w) satisfying (5.4) for all wE [¢min,¢maxl} 

The boundary awD of the dextrous workspace can thus be defined as: 

awD -- {u E })in'lL: U E WD and :3 an s ERn'lL such that for (5.23) 

u' = u AS, A E })i arbitrarily small and either positive 

or negative, no v exists that satisfies q,(u', v, w) 0; 

as well as inequalities (5.3) and (5.4) for all w E [¢min, ¢max]} 

In order to calculate the dextrous workspace, it is necessary to be able to 

calculate the manipulator orientation workspace, for any given position u, as 

welL 

Orientation workspace 

The orientation workspace ~VO[Ufix] of a manipulator, for a fixed position u fix 

of the working point, is the set of orientations that can be attained by the 
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manipulator end-effector (see Section 1.3.1). For a planar manipulator, since 

only one rotation is possible (about the z-axis perpendicular to the plane), 

the orientation workspace is one-dimensional and can easily be specified by 
maxthe maximum w and minimum wmin orientations attainable by the ma

nipulator end-effector. For a given ufix , the orientation workspace can thus 

be described mathematically as 

WO[ufix
] {w E 1R: Cl>(ufix 

, v, w) 0 with v satisfying (5.24) 

(5.3) and g(ufix 
, v, w) satisfying (5.4)} 

The boundary 8Wo of the orientation workspace for a planar manipulator 

is thus 

8WO[ufix
] 	 {w E 0 and ::3 a A E msuch that for w' w + A 

with A arbitrarily small and either positive or (5.25) 

negative, no v exists that satisfies Cl>(ufix 
, v, w') = 0 

as well as conditions (5.3) and (5.4)} 

fix	 min and wIn practical terms, for u , the values of w max may easily be obtained 

numerically by solution of the following optimization problem. 

max (w wave) 2 
w 

subject to v min :s; v(ufix , w) :s; v max , (5.26) 

gmin :s; g ( U fix, v, w) :s; gma..'{ 

where wave is a suitably chosen value of the manipulator orientation that lies 

inside the orientation workspace. By choosing a suitable starting point for 

optimization problem (5.26) the values of w min and wmax, corresponding to 

the two extreme local minima, can be determined. 
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5.5.2 Mapping the dextrous workspace boundary 

Finding an initial point on the workspace boundary 

Finding an initial point on the dextrous workspace boundary requires the 

sequential solution of three problems: 

1. 	Finding the assembled point ua of the manipulator with input coordi

nates at their average value. 

2. 	 Finding the point u d where the manipulator has its greatest dextrous 

ability. 

3. 	 Determining an initial point b I on the dextrous workspace boundary. 

These three steps are realized through the implementation of three different 

constrained optimization problems, which result in a reliable and automatic 

determination of the initial boundary point b i . 

Step 1 essentially involves the solution of the forward kinematics of the ma

nipulator, i.e. solve for u and win (5.2) with v prescribed as 

(5.27) 

In practice this can be done by solving the least squares optimization problem 

min Ilv(u, w) - vl12 	 (5.28) 
u,w 

where v(u, w) denotes the inverse kinematic solution of (5.2) for any given 

u and w. The solution of this problem yields the correct value for u a . 

The point of greatest dexterity of the manipulator u d (Step 2) can similarly 

be determined by means of the unconstrained optimization problem: 

(5.29) 

 
 
 



101 CHAPTER 5. THE 3-DOF PPM 

feasible_ :_ infeasible 
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Figure 5.3: Finding an initial point on the dextrous workspace boundary 

where the values of wmin(u) and wmax(u) for a fixed u, are determined by 

solution of optimization problem (5.26), i.e. by determining the orientation 

workspace of the manipulator at point u. 

Consistent with the definition of 8WD in (5.23), an initial point b 1 on the 

dextrous workspace boundary in an arbitrary direction from ud, designated 

by a unit vector SI E ?lin'lL, is determined by solving the following constrained 

optimization problem (corresponding to optimization problem (C.g) in Ap

pendix C): 

r 

such that Cl = ¢= - wmax(u(r)) ~ 0; (5.30) 

C2 = wmin(u(r)) ¢min < a 

where u(r) ud + rsl. The solution of this problem is schematically illus

trated in Figure 5.3. Once more the the values of wmin(u) and wmax(u) for a 

point u in (5.30), are determined by solution of optimization problem (5.26). 
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Mapping the workspace boundary 

Once an initial point on the workspace boundary has been found, subsequent 

points can be mapped using the chord methodology. The updated form of 

optimization problem (C.12) is 

such that Cl ¢max wmax(u(w)) ~ 0; (5.31) 

C2 = wmirI(u(w)) ¢rnin ~ 0 

where u(w) is as defined in (5.18), and wmirI and wmax are determined using 

optimization problem (5.26), hence the description of the methodology as 

multi-level. The basic form of the chord methodology remains otherwise the 

same as described in Appendix C. 

5.5.3 Determination of bifurcation points 

It is evident that any point on the dextrous workspace boundary will be 

associated with either a maximum ¢rnax or minimum ¢min orientation of the 

manipulator (see Figure 5.3). In addition, since the solution to optimization 

problem (5.26) is implicit in solving (5.31), each boundary point is also asso

ciated with an extreme leg value. In fact, the workspace boundary is associ

ated with a number of curves, each corresponding to a different extreme leg 

value and associated extreme platform orientation. Points where these curves 

meet are termed bifurcation points since the manipulator may assume one 

of two distinct extreme states when travelling clockwise or counter-clockwise 

along the workspace boundary from such a point. When determining the 

dextrous workspace, a distinction must be made between two different types 

of bifurcation points. 
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Type I bifurcation points 

Type I bifurcation points occur along the workspace boundary when two 

intersecting boundary curves are both associated with the same extreme 

orientation, either ¢min or ¢max of the platform. Each curve will additionally 

be associated with one leg at an extreme length. In the vicinity of the 

intersection, the precisely active leg, and associated active boundary curve, 

can be determined by examination of the final values of the constraints from 

optimization problem (5.31). In this way, at the intersection or bifurcation 

point, two legs m and n will both be at known extreme values v:t and v~xt, 

and the platform will be at a known extreme orientation ¢ext. We need then 

to simply solve the inverse kinematics to determine the exact coordinates of 

the type I bifurcation point Bi. This is done by the solution of the following 

optimization problem: 

(5.32) 

which will yield the coordinates of the bifurcation point. 

Type II bifurcation points 

Type II bifurcation points are associated with a change in the active extreme 

orientation of the platform. Thus at these points the maximum wmax and 

minimum wmin values of platform orientation will both simultaneously be 

exactly equal to the maximum and minimum prescribed orientation values 

¢ma:x and ¢min. Therefore to determine such points, constraints Cl and C2 

given in equations (5.30) and (5.31) must both be exactly satisfied. This 

may be accomplished by solving the following unconstrained optimization 

problem: 

min {(¢max wmax(U))2 + (¢min _ wmin(u))2} (5.33) 
u 

The complete multi-level optimization algorithm for dextrous workspace de

termination is summarized in Algorithm 5.1. 
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Algorithm 5.1 Dextrous workspace determination 

1. 	 Determine the assembled point u a of the mechanism using optimization 

problem (5.28). 

2. 	 Determine the point of greatest dexterity u d using optimization prob

lem (5.29). 

3. 	 Determine an initial point on the workspace boundary by means of 

optimization problem (5.30). 

4. 	 Using optimization problem (5.31), determine successive points along 

the boundary at chord intervals d. Identify and map type I and II bi

furcation points as they occur using either optimization problem (5.32) 

or (5.33). 

5. 	 Terminate when condition (C.14) becomes true or when the specified 

maximum number of iterations is exceeded. 
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Xc yc XD XE r 

M1 -1 0 1 2 1 

M2 -0.75 0 0.75 1.5 0.75 

M2 -0.5 0 0.5 1 0.25 

Table 5.1: Geometric parameters for manipulator designs M1-M3 

5.5.4 Numerical results 

Three different manipulator geometries, denoted M1-M3 are used in illus

trating the proposed methodology. The three sets of five parameters defining 

the three different manipulator designs are given in Table 5.1. Extreme leg 

lTinlengths for the manipulators considered here are lTin V2, l~n 

1 [rna:;{ [rna:;{ = 2 zrnax 13. The chord algorithm described in AloO'orithm , 1 '2 '3 Vu 

5.1, implemented in FORTRAN on a 1.6 GHz Pentium 4 computer, was ap

plied in determining the various dextrous works paces of these manipulators. 

The dextrous workspaces were obtained for various ranges of dexterity and 

are given in Figures 5.4 to 5.6. For the various dextrous workspaces obtained, 

Table 5.2 gives the number of points determined on each workspace boundary 

nb, as well as the computational time t required for computing each dextrous 

workspace. Investigation of the performance of the algorithm has revealed 

that a large portion of the computational cost is related to solving optimiza

tion problem (5.26), to determine the manipulator orientation workspaces. 

In many cases, it may be possible to determine such orientation workspaces 

analytically, which would dramatically reduce the time needed to compute 

the dextrous workspa~e. Here though, the numerical approach has been pre

sented since it provides an alternative, generally applicable methodology. 
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r 

Figure 5.4: Dextrous workspaces of Ml 
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Figure 5.5: Dextrous workspaces of M2 
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5.6 	 Optimization for a single prescribed con

stant orientation workspace 

The constrained optimization methodology developed in Section 4.7 is ap

plied here to the 3-dof manipulator in the following form: 

SO synthesis: Determine a manipulator design that reaches, 

with optimal conditioning, a prescribed constant orientation work

space. 

5.6.1 	 Optimization formulation 

As is Section 4.5.1, the prescribed workspace is defined by polar coordinates 

((3P) Tp) centered on a local coordinate system:r! - y' at 0'. The boundary of 

the constant workspace WeC[¢fix] associated with design d is represented in 

a similar manner (refer to Figure 4.2). The chord method (see Section 5.4) 

is used to generate points b!, with corresponding polar coordinates ({3!, T~), 

on the constant orientation workspace boundary. 

Dropping the [¢fix], which is implicit when referring to constant orientation 

workspaces W C for the rest of this section, the part of the prescribed work

space Wpc not intersecting calculated workspace We? is denoted 8W~, and 

the part of workspace Wec not intersecting W~ is denoted 8Wec, The calcu

lation of approximations to the areas 8Wpc and 8~Vec is performed using the 

numerical scheme described in Section 4.5.1. 

SO synthesis is thus achieved by solution of the following optimization prob

 
 
 



109 CHAPTER 5. THE 3-DOF PPM 

lem: 

max { min ;;;-1 (d, u)}
d uEW,f[4>fi"l 

subject to the inequality constraint (5.34) 

g(d) ~ 0 

where the intermediate coordinate w ¢lrx is prescribed and fixed, and where 

the inequality constraint function g(d) is defined as 

(5.35) 

where r is calculated as before (see Section 4.7). The solution to optimization 

problem (5.34) seeks to improve the single worst point with respect to chosen 

performance measure, ;;;-1, within the prescribed workspace, W;. 

Once again the question of how to determine the smallest value of ;;;-1 over 

the set u E W; arises. It has been shown for the planar 2-dof manipulator, 

that the maximum value of ;;; (or minimum of ;;;-1) will lie on the boundary 

8Wpc of the prescribed workspace (See Appendix D). An assumption is made 

that a similar result can be found for the particular 3-dof manipulator to be 

investigated here. The minimum value of the inverse condition number ;;;-1 

can thus be approximated by calculating ;;;-1 at points b~, i I, ... ,nbc si

multaneously to the determination of the boundary points b~, i 1, ... , nbc. 

The overall minimum of the ;;;-1 values at these candidate points may then 

easily be determined. Based on the results presented throughout this chapter 

it appears that the above assumption is valid. 

5.6.2 Numerical results 

The method described above, and embodied by optimization problem (5.34), 

has been applied to the 3-dof planar parallel manipulator for three different 

prescribed workspaces. These prescribed works paces are centered at 0' = 
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Ng f(dO) f* g* d* 

PI 21 0.759 0.912 0.2E  5 [-1.111,0.2317,1.277,1.967,0.9l59jT 

P2 17 0.768 0.927 OAE  9 [-1.153,0.3003,1.275,1.906,0.9401jT 

P3 71 0.747 0.943 O.lE  4 [-1.170,0.3365,1.463,1.946,0.9108]T 

Table 5.3: SO synthesis solutions 

[1,1.5JT. They are chosen to correspond to workspaces PI-P3 in Section 4.7, 

scaled down by a factor of 5 for workspaces PI and P2 and by 7 for P3. 

This was done so that the prescribed workspaces were of such diameter that 

feasible solutions for the choice of actuator leg lengths existed. It is assumed 

the actuators have been chosen and thus that the maximum and minimum 

leg lengths are predetermined. The remaining five design variables for the 

problem are thus 

(5.36) 

Actuator limits were chosen as l~in = 12 lr.nax = 2 i = 1 2 and loon~ y £', ~ , -, 3 

1, lrax = -13. Actuator leg lengths and the initial design vector dO 

[-1,0,1,2,1JT were selected to correspond to the manipulator studied by 

Haug et al. [16]. 

The prescribed workspaces PI-P3, the workspace corresponding to the initial 

design vector and inverse condition number contours for this startign design 

are shown in Figure 5.7(a). The Dynamic-Q optimization algorithm (see 

Chapter 3) was used to perform the optimization with move limit p- 0.1, 

termination parameters Cf = lO-6 and Cx lO-4, and a finite difference 

interval r lO-6 for calculating the gradients of the optimization functions. 

The chord length for calculating the workspace was d = 0.02. For all manip

ulators the orientation of the platform was fixed at ¢>p 0°. 

Numerical results for each of the runs from the starting point dO and for 

the different prescribed workspaces are reported in Table 5.3, which gives 

the number of gradient evaluations Ng required for convergenee, the initial 
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Figure 5.7: SO synthesis (a) prescribed workspaces P1-P3, manipulator work

space and corresponding ",-1 contours corresponding to the starting design 

and (b) prescribed workspace P1 and corresponding optimal manipulator 

workspace and ",-1 contours 
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Figure 5.8: SO synthesis manipulator workspace and ",-1 contours corre

sponding to the optimal design for prescribed workspaces (a) P2 and (b) 

P3 
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Figure 5.9: SO synthesis convergence histories for (a) PI, (b) P2 and (c) P3 

function value f(dO), converged objective function value 1*, corresponding in

equality constraint function value g* and components of the optimum design 

vector d*. The resultant workspaces and inverse condition number contours 

corresponding to PI-P3 are shown in Figure 5.7(c) and Figure 5.8(a) and 

(b) respectively. Finally Figure 5.9 gives the convergence histories for the 

various prescribed workspaces. 

5.7 	 Optimization for multiple prescribed con

stant orientation workspaces 

MO synthesis: Determine a manipulator design that reaches, 

with optimal conditioning, multiple prescribed constant orienta

tion workspaces. 

5.7.1 	 Optimization formulation 

Some strategy needs to be implemented for dealing with the orientational 

capability of the manipulator. This point is addressed by evaluating the 

SO optimization problem of the previous section at various angular "slices" 
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through the workspace. This is the approach used by Boudreau and Gosselin 

[86] in an unconstrained case. Accordingly, in the methodology proposed 

here, the minimization over u [x, y]T in (5.34) is carried out, not only for 

a single prescribed value of 4>p, but over multiple slices of the prescribed 

workspace corresponding to mS! fixed values of 4>P. For illustration of the 

methodology in this section mS! = 3 with slices through the workspace at 

4>P 4>rnin, 4>int, 4>ma:x. In solving the MO optimization problem the resulting 

design is expected to fulfil the dexterity requirement of operating over the 

range of 4>P = [4>min, 4>1naX] within the prescribed workspace. 

Optimization problem (5.34), modified to allow for optimization over the 

three values (ms] 3) of w 4>p, becomes 

max { min ,..,-1 (d, u)}
d UEWf[</>'J, i=1,... ,ms1 

subject to the inequality constraint (5.37) 

g(d) ::; 0 

The inequality constraint function is defined as follows: 

1,. = 1, ... ,msJ 1'f S > 0 
g (d) (5.38) 

if S 0 

5.7.2 Numerical results 

The prescribed workspaces P1-P3, corresponding to those used in Section 5.6, 

are shown in Figure 5.10. The manipulator workspaces corresponding to an 

initial design vector dO = [-0.75,0, 0.75,1.5, O. 75jT for the various constant 

orientations, as well as the corresponding inverse condition number contours 

are shown in the same figure. Actuator limits were again chosen as lfin = ../2, 
Ifa:x = 2, i 1,2 and l:fin = 1, lr;ax J3. The constant orientation slices 

through the workspace were made at4>p = -5°,0°,+5°. Figure 5.10 clearly 
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Ng !(dO) g* d*f* 
PI 33 0.677 0.901 0.2E  5 [-1.034,0.2484, 1.331, 1.657, 0.8553F 

P2 25 0.681 0.917 O.lE 4 [-1.061,0.2721,1.345,1.718,0.861jT 

P3 44 0.666 0.915 O.1E - 4 [-1.072,0.3103, 1.420, 1.621, 0.8778F 

Table 5.4: MO synthesis solutions 
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Figure 5.10: MO synthesis prescribed workspaces P1-P3 and manipulator 

workspace and ~-l contours corresponding to the starting design 

shows that the initial design dO is infeasible because for each orientational 

slice the prescribed workspace is not contained in the reachable workspace. 

The Dynamic-Q optimization algori thm move limit used was p = 0.1 and 

the chord length for calculating the workspace was d 0.02. Convergence 

tolerances used for Dynamic-Q were Cx 10-4 and cf 10-5 and a finite 

difference of r = 10-6 was used for calculating function gradients. 

The workspaces, and ~-l contours corresponding to the optimal designs for 

prescribed workspaces P1-P3 are shown in Figures 5.11 to 5.13. Table 5.4 

summarizes the number of gradient evaluations Ng required for convergence, 

the initial f (dO) and final f* objective function values, inequality constraint 

function value at convergence c* and optimal design d* for each prescribed 

workspace. Figure 5.14 shows the convergence histories for the various opti

mization runs. 
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Figure 5.11: MO synthesis manipulator workspace and ~-l contours corre

sponding to the optimal design for prescribed workspace PI 
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Figure 5.12: MO synthesis manipulator workspace and ~-l contours corre

sponding to the optimal design for prescribed workspace P2 
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Figure 5.13: MO synthesis manipulator workspace and ~-l contours corre

sponding to the optimal design for prescribed workspace P3 
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Figure 5.14: MO synthesis convergence histories for (a) P1, (b) P2 and (c) 

P3 

5.8 	 Optimization for a prescribed dextrous 

workspace 

D synthesis: Determine a manipulator design that reaches, with 

optimal conditioning, a prescribed [continuous} dextrous work

space. 

5.8.1 	 Optimization formulation 

Using the methodology for determining dextrous workspaces developed in 

Section 5.5, the planar parallel manipulator can, as an alternative to MO 

methodology, be directly synthesized for a prescribed dextrous workspace and 

optimal conditioning. The form of the optimization problem for achieving 

this is 

max { min /'i',-l (d, u)}
d UEW? Ipminj,W?[4>maxj 

subject to the inequality constraint (5.39) 

g(d) :::; 0 
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where the inequality constraint function is defined as follows: 

6wtl¢min, ¢max] if 6wtl¢nlln, ¢max] > 0 
9 (d) (5.40){ -r2 if 6wt[¢nlln, ¢max] = 0 

The minimum value of the condition number is determined using the same 

approach as given in Section 5.6. Once again it is assumed that the minimum 

value of occurs on the boundary of the prescribed workspace. Further

more it is expected, based on the results obtained in Section 5.7, that the 

minimum value will also be associated with an extreme platform orienta

tion, ¢min or ¢max. Thus in determining the minimum value of /1,-1 over 

wt[¢min, ¢min], only the workspace boundaries of WpC[¢min] and w;[¢max], 

corresponding to the "edges" of the prescribed dextrous workspace, are con

sidered. These assumptions appear to be valid, based on the results obtained 

here. 

5.8.2 Numerical results 

The optimization problem embodied in (5.39) has been implemented, once 

more using the Dynamic-Q algorithm to find optimal designs for prescribed 

workspace P1-P3. Parameters used for Dynamic-Q were convergence tol

erances ex 10-4 and e f = 10-6 and a move limit p = 0.05. Gradients 

were calculated using central differences and a finite difference interval of 

r 10-3 . A chord length of d = 0.02 was used for all calculations. Results 

obtained are summarized in Figures 5.15 and 5.16 and Table 5.5. The various 

quantities given in Table 5.5 are the same as those given in Table 5.4. 

Comparison of these results with those given for the MO synthesis in Section 

5.7.2 indicates that, in general, Jv ::::; JAW. This is to be expected, since the 

specification of a prescribed dextrous workspace places a more stringent re

quirement on the numerical optimization, resulting in lower optimal objective 

function values in these cases. 
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Figure 5.15: D synthesis (a) prescribed workspaces Pl-P3, manipulator work

space and corresponding 1';,-1 contours corresponding to the starting design 

and (b) prescribed workspace PI and corresponding optimal manipulator 

workspace and 1';,-1 contours 
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Figure 5.16: D synthesis manipulator workspace and 1';,-1 contours corre

sponding to the optimal design for prescribed workspaces (a) P2 and (b) 

P3 

 
 
 



119 CHAPTER 5. THE 3-DOF PPM 

Ng r g* d* 

PI 33 0.677 0.897 0.2E -5 [-0.9884,0.2466,1.339,1.664,0.8413jT 

P2 36 0.681 0.916 0.6E 7 [-1.050,0.2717,1.356,1.716,0.8500)T 

P3 52 0.660 0.892 O.lE -4 [-0.9890,0.2816,1.362,1.668,0.8678JT 

Table 5.5: D synthesis solutions 
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Figure 5.17: D synthesis convergence histories for (a) PI, (b) P2 and (c) P3 
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5.9 Conclusion 

The chord workspace determination methodology, as proposed at the start 

of this chapter, for the determination of constant orientation and dextrous 

workspaces, is a reliable and efficient numerical methodology. This has been 

proven by the fact that optimization of the 3-dof manipulators in the latter 

part of the chapter inherently requires many manipulator workspaces evalu

ations, which have been performed robustly by the chord method. 

For the 3-dof manipulator studied here the dimensional synthesis results ob

tained are encouraging, optimum solutions having been obtained with mini

mal computational effort compared to that which would have been required 

using evolutionary optimization algorithms. ~br each of the three synthesis 

methodologies presented, not only are manipulator dimensions determined 

so that the prescribed workspace can be reached by the manipulator, but also 

so that the inverse condition number is as high as possible throughout the 

prescribed workspace. The proposed methodology produces convincing re

sults, indicating it to be a stable and efficient numerical method for designing 

planar parallel manipulators. The Dynamic-Q optimization algorithm used 

in the synthesis methodology exhibits high efficiency in solving the associated 

optimization problem. 

 
 
 


