AN ASYMMETRIC ECONOMETRIC MODEL OF THE SOUTH AFRICAN STOCK MARKET

by

HELENA CORNELIA MOOLMAN

Submitted in fulfillment of the requirements for the degree

PHD (ECONOMETRICS)

in the

FACULTY OF ECONOMICS AND MANAGEMENT SCIENCES

at the

UNIVERSITY OF PRETORIA

AN ASYMMETRIC MODEL OF THE SOUTH AFRICAN STOCK MARKET

BY

HELENA CORNELIA MOOLMAN

PROMOTOR DEPARTMENT DEGREE FOR WHICH THE THESIS IS PRESENTED PROF. C.B. DU TOIT ECONOMICS

PHD (ECONOMETRICS)

Abstract

In this study a structural model of the South African stock market, the Johannesburg Stock Exchange (JSE), was developed and estimated econometrically. The study has made three important contributions to the literature. Firstly, a structural model of the South African stock market has been developed, which quantifies the relationships between the stock market and macroeconomic variables while analyzing the impact of foreign markets and phenomena such as contagion, policy changes and structural economic changes on the JSE. This will improve the economic agents' understanding of the functioning of the stock market and potentially assist in forecasting the stock market.

Secondly, investors are generally assumed to be risk and/or loss averse. This study explains how this risk and/or loss aversion of investors can cause asymmetry in stock prices and the study evaluates different types of stock market asymmetry with advanced econometric techniques such as the threshold cointegration test of Siklos and Enders (2001) and a Markov switching regime model. The Markov switching regime model is used to model the South African business cycle and to construct an indicator for the state of the business cycle, which is in turn used to introduce cyclical asymmetry in the stock market model. The Markov switching regime model is in itself a substantial contribution to the literature since no Markov switching regime

model has been estimated for the South African business cycle yet. Apart from being used to capture cyclical asymmetry in the stock market, the Markov switching regime business cycle model can also be used to identify turning points in the South African economy and to model economic growth.

Finally, the forecasting performance of the stock market model developed in this study is compared to other stock market models. According to the results, this model is preferred to the other stock market models in terms of modelling and forecasting the level and direction of the JSE. This means that investors and policy markets can use this model to simulate the impact of changes in macroeconomic indicators on the future course of the stock market and use it to develop profitable trading rules.

CONTENTS

LI	IST OF TABLES		
LIST OF FIGURES			
1.	INTR	RODUCTION AND BACKGROUND	
	1.1	Introduction	1
	1.2	Objectives and methodology	3
	1.3	Contributions of this study	5
	1.4	Outline of the study	10

2. THE SOUTH AFRICAN STOCK MARKET AND THE ECONOMIC ENVIRONMENT

2.1	Introdu	action	13
2.2	The str	ructure of the Johannesburg stock exchange	14
2.3	The ro	ble and functioning of the South African financial market and	1 the
	Johanr	nesburg stock exchange	18
	2.3.1	The role and functioning of the South African financial market	18
	2.3.2	The role and functioning of the Johannesburg stock exchange	20
2.4	The so	cio-economic environment	20
2.5	The in	stitutional and policy setting	23
2.6	The in	npact of globalization and South Africa's emerging market statu	is on
	the JSI	E	26
	2.6.1	Globalization and global financial revolution	26
	2.6.2	The emerging market syndrome	28
2.7	Conclu	ision	29

3. STOCK MARKET THEORY

3.1	Introd	uction	32
3.2	The ef	fficient market hypothesis and the present value model	33
	3.2.1	The efficient market hypothesis and implications for stock m	arket
		modelling	33
	3.2.2	The present value model	35
3.3	Empir	ical implications of the present value model	37
	3.3.1	The discount rate	38
	3.3.2	Dividends and growth	41
3.4	Stock	market asymmetry	43
3.5	Concl	usion	46

4. A REVIEW ON EXISTING STOCK MARKET MODELS

4.1	Introd	uction	48
4.2	Intern	ational studies	49
	4.2.1	Studies evaluating stock market efficiency	49
	4.2.2	Structural stock market models	51
4.3	South	African studies	58
	4.3.1	Studies on the efficiency of the South African stock market	58
	4.3.2	Structural models of the South African stock market	60
4.4	Concl	usion	62

5. A MARKOV SWITCHING REGIME MODEL OF THE SOUTH AFRICAN BUSINESS CYCLE

5.1	Introduction	64
5.2	The relationship between the business cycle and the yield spread	66
5.3	The econometric techniques	67
	5.3.1 The Markov switching regime model	67
	5.3.2 The logit model	74
5.4	Existing Markov switching regime business cycle models	75

	5.4.1	Empirical Markov switching regime business cycle models	s with
		fixed transition probabilities	76
	5.4.2	Empirical Markov switching regime business cycle models	with
		time-varying transition probabilities	78
	5.4.3	The yield spread as predictor of business cycles	81
5.5	Empir	ical analysis of the South African business cycle	82
	5.5.1	Methodology	82
	5.5.2	The estimated linear model	83
	5.5.3	The estimated logit model	84
	5.5.4	The estimated Markov switching regime model	85
5.6	Mode	l selection	90
	5.6.1	Comparing linear and Markov switching regime models	90
	5.6.2	Comparing the estimated logit and Markov switching r	egime
		models	91
5.7	Concl	usion	92

6. EMPIRICAL ESTIMATION OF THE SOUTH AFRICAN STOCK MARKET

6.1	Introd	uction	94
6.2	Data		95
6.3	Efficie	ency of the South African stock market	100
6.4	The co	pintegration equation	102
	6.4.1	Stock market asymmetry conditional on characteristics of the	e error
		terms	103
	6.4.2	Stock market asymmetry conditional on the state of the bu	isiness
		cycle	107
6.5	The sh	nort-run dynamics: an error correction model	110
	6.5.1	Evaluation and diagnostic testing of the ECM	117
	6.5.2	Dynamic simulation	118
6.6	Policy	implications	119
6.7	Concl	usion	122

7. COMPARING MODELS AND FORECASTS OF THE LEVEL AND TURNING POINTS OF THE SOUTH AFRICAN STOCK MARKET

7.1	Introd	uction	124
7.2	Mode	lling the level of the stock market	125
	7.2.1	The stock market models	125
	7.2.2	Evaluating the stock market models	133
7.3	Mode	lling turning points in the stock market	141
	7.3.1	The turning point models	141
	7.3.2	Evaluating the turning point models	143
7.4	Concl	usion	146

8. SUMMARY AND CONCLUSION

8.1	Introduction	149
8.2	Modelling approach	151
8.3	Contributions of this study	155
8.4	Results	155
	8.4.1 Structural model	155
	8.4.2 Comparative performance	156
	8.4.3 Profitability	157
8.5	Conclusion	158

REFERENCES

160

APPENDICES

1.	Predicting turning points in the South African economy	177
2.	Model evaluation for different loss functions	192

LIST OF TABLES

Table 2.1	Characteristics of the JSE	15
Table 2.2	African stock markets (ranked by turnover) 1998	17
Table 5.1	Business cycle phases according to SARB since 1978	83
Table 5.2	Linear autoregressive model	83
Table 5.3	Logit model	84
Table 5.4	Parameters of growth equation in Markov switching regime mod	el 87
Table 5.5	Parameters of transition probability equation in Markov sw	itching
	regime model	88
Table 5.6	Model selection criteria for the linear and Markov models	90
Table 5.7	Model selection criteria for the logit and MS models	91
Table 6.1	List of variables	97
Table 6.2	Augmented Dickey-Fuller and Phillips-Perron tests for	non-
	stationarity, levels	98
Table 6.3	Augmented Dickey-Fuller and Phillips-Perron tests for	non-
	stationarity, first differences	99
Table 6.4	Cointegration results, Case (I) TAR-Adjustment	106
Table 6.5	Cointegration results, Case (II) MTAR-Adjustment	107
Table 6.6	Test statistics and choice criteria for selecting the order of the	e VAR
	model	108
Table 6.7	Trace test for cointegration	108
Table 6.8	Eigenvalue test for cointegration	109
Table 6.9	Cointegration equation	110
Table 6.10	Error correction model	113
Table 6.11	Error correction model with instrumental variables	115
Table 6.12	Diagnostic tests	118
Table 7.1	List of variables	126
Table 7.2	Model selection criteria for individual AR models	128
Table 7.3	Results of the FM-VAR estimation	129
Table 7.4	Reparameterized results of the FM-VAR	130
Table 7.5	Evaluation of the in-sample performance of the models	136
Table 7.6	Equal accuracy tests for in-sample performance	139
Table 7.7	Evaluation of the forecasting performance of the models	139

Table 7.8	Equal accuracy tests for forecasting performance	140
Table 7.9	In-sample performance of different trading strategies	144
Table 7.10	Forecasting performance of different trading strategies	145
Table 7.11	Forecasting profitability including dividends	145

LIST OF FIGURES

Figure 2	.1 Returns on the JSE and the South African social, economical, an	ıd
	political environment from 1960 25	,
Figure 5	.1 Recession probabilities of the logit model 85	;
Figure 5	.2 Markov switching regime model: time-varying transition probabilitie	es
	89)
Figure 6	.1The JSE all-share index96)
Figure 6	Actual and fitted values of the stock market 11	9
Figure 7	1.1Stock market models13	\$1
Figure 7	.2 The cointegration stock market model 13	\$1
Figure 7	.3The random walk stock market model13	52
Figure 7	.4The FM-VAR stock market model13	52
Figure 7	A moving-average model of the JSE14	2