Structure elucidation of antiplasmodial sesquiterpene lactones from *Vernonia staehelinoides* and *Oncosiphon piluliferum*

by

Pamisha Pillay

Submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE in the Faculty of Natural & Agricultural Sciences University of Pretoria Pretoria

Supervisor : Prof R. Vleggaar

December 2005

Declaration

I, the undersigned, hereby declare that the work contained in this dissertation is my own original work and that I have not previously, in its entirety or in part, submitted it at any university for a degree.

Signature:

Date:

P. Pillay

SUMMARY

Malaria continues to be a major cause of mortality and morbidity especially in Sub-Saharan Africa. The emergence and spread of drug resistant parasites has highlighted the need for new chemically diverse, effective drugs. Historically, one of the major sources of antimalarial agents and novel template compounds has been higher order plants. The widespread use of medicinal plants for the treatment of malaria in South Africa represents a diverse resource of potential antimalarial drugs.

Two South African plants, *Vernonia staehelinoides* and *Oncosiphon piluliferum*, were identified as potential sources of new antimalarial drugs through a national multidisciplinary-consortium project aimed at scientifically validating South African medicinal plants for the treatment of malaria. The *in vitro* antiplasmodial activity of extracts of these plants warranted further investigation to identify the biologically active components. Bio-assay guided fractionation based on *in vitro* antiplasmodial activity against the D10 *P. falciparum* strain was used to identify the compounds responsible for the observed activity. Compounds were purified using silica gel column chromatography. The structures of the isolated compounds were elucidated using spectroscopic techniques.

Bioassay-guided fractionation of the organic extracts of *V. staehelinoides* leaves identified a pair of structurally-related hirsutinolides with significant *in vitro* antiplasmodial activity. The compounds were found to be cytotoxic at similar concentrations but proved to be interesting scaffolds for potential structure-activity relationship studies.

Three germacranolides and two eudesmanolides were identified through bioassayguided fractionation of the organic *O. piluliferum* extract. Selected derivatizations were conducted in order to fully characterize the compounds. The absolute configuration of the major active germacranolide was determined using Mosher's method. The effect of the reduction of the α -methylene group of the major active germacranolide on antiplasmodial activity and cytotoxicity was also investigated. The 5 compounds and the reduction product were found to possess varying degrees of *in vitro* antiplasmodial activity and cytotoxicity. None was sufficiently active or selective to be a viable drug candidate but the potential for further structure-activity relationship studies exists.

ACKNOWLEDGEMENTS

I would like to express my gratitude to my supervisor, Prof. R. Vleggaar, for his invaluable supervision and insight throughout the duration of this work. In addition, I wish to thank my CSIR colleagues Dr Vinesh Maharaj, Dr Gerda Fouche and Dr Louis Ackerman for their guidance.

I gratefully acknowledge the Department of Science and Technology for the Innovation fund Grant (Project 31313) and am also grateful to the Innovation Fund Project Administrators and the CSIR for permission to present this work for degree purposes.

Special mention must be made of members of the Antimalarial consortium who personally contributed to this research: Prof Peter Folb (MRC), Dr Niresh Bhagwandhin (MRC), Prof Pete Smith (UCT), Dr Cailean Clarkson (UCT), Dr Neil Crouch (SANBI), Jean Meyer (SANBI) and Dr Kelly Chibale (UCT).

Heartfelt thanks to my family and friends for their love and support. To my brothers, thank you for your inspiration and encouragement. I dedicate this thesis to my mum and dad who have made great sacrifices to ensure we were able to pursue our dreams.

Om Saraswati Namah

ABBREVIATIONS/FORMULAE COMMONLY USED

SANBI MRC CSIR UCT WHO	South African National Biodiversity Institute Medical Research Council Council for Scientific and Industrial Research University of Cape Town World Health Organisation
Ac	acetyl
Acetyl-CoA	acetyl coenzyme A
APAD	3-acetylpyridine adenine dinucleotide
CDCI ₃	deuterated chloroform
C_6D_6	deuterated benzene
СНО	Chinese Hamster Ovarian
DMAP	4-(dimethylamino)pyridine
DMAPP	dimethylallyl pyrophosphate
DMF	dimethylformamide
DMSO	dimethyl sulphoxide
FPP	farnesyl pyrophosphate
GGPP	geranylgeranyl pyrophosphate
GAP	glyceraldehyde 3-phoshate
GPP	geranyl pyrophosphate
H ₂ O	water
HMG-CoA	3-hydroxy-3-methylglutaryl coenzyme A
HEPES	<i>N</i> -[2-hydroxyethyl]-piperazine- <i>N</i> '-[2-ethanesulphonic acid]
IPP	isopentenyl pyrophosphate
MVA	mevalonic acid
MTT	3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
MeOH	methanol
MTPA	α-methoxy-α-trifluoromethylphenyl acetic acid

NaBH₄	sodium borohydride
NaHCO₃	sodium hydrogen carbonate
Na ₂ SO ₄	sodium sulphate
NAD	nicotinamide adenine dinucleotide
NADP	nicotinamide adenine dinucleotide phosphate
NADPH	reduced form of nicotinamide adenine dinucleotide phosphate
NBT	nitroblue tetrazolium
Ме	methyl
MeOH	methanol
pLDH	parasite lactate dehydrogenase
PES	phenazine ethosulphate
PBS	phosphate buffered saline
PRBC	packed red blood cells
RPMI	Roswell Park Memorial Institute medium
RBC	red blood cells
SH	thiol or sulfanil
TRIS	tris(hydroxymethyl)aminomethane
Α	absorbance
br	broad resonance
COSY	correlated spectroscopy
С	concentration
d	doublet
dd	doublet of doublets
ddd	doublet of doublets of doublets
dddd	doublet of doublets of doublets
ddq	doublet of doublets of quartets
ddt	doublet of doublets of triplets
DEPT	distortionless enhancement by polarisation transfer
dq	doublet of quartets
dt	doublet of triplets

¹ H NMRproton (¹ H) nuclear magnetic resonance spectroscopy ¹³ C NMRcarbon-13 nuclear magnetic resonance spectroscopyHR EI-MShigh resolution electron ionization- mass spectrometryHMBCheteronuclear multiple bond correlationHSQCheteronuclear single quantum correlationHzhertzJcoupling constantLit.LiteratureIC ₅₀ inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmelting pointm/zmass-to-charge-ratioppmparts per million	MS	IS electron ionization- mass spectrometry
HR EI-MShigh resolution electron ionization- mass spectrometryHMBCheteronuclear multiple bond correlationHSQCheteronuclear single quantum correlationHzhertzJcoupling constantLit.LiteratureIC ₅₀ inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio	NMR	MR proton (¹ H) nuclear magnetic resonance spectroscopy
HMBCheteronuclear multiple bond correlationHSQCheteronuclear single quantum correlationHzhertzJcoupling constantLit.LiteratureIC ₅₀ inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio	NMR	IMR carbon-13 nuclear magnetic resonance spectroscopy
HSQCheteronuclear single quantum correlationHzhertzJcoupling constantLit.LiteratureIC ₅₀ inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio	EI-MS	I-MS high resolution electron ionization- mass spectrometry
HzhertzJcoupling constantLit.LiteratureIC ₅₀ inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio	1BC	C heteronuclear multiple bond correlation
Jcoupling constantLit.LiteratureIC50inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio	QC	C heteronuclear single quantum correlation
Lit.LiteratureIC50inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio		hertz
IC50inhibitory concentration at which 50% inhibition is achievedNOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio		coupling constant
NOESYnuclear Overhauser effect spectroscopymmultipletmpmelting pointm/zmass-to-charge-ratio		Literature
m multiplet mp melting point m/z mass-to-charge-ratio	0	inhibitory concentration at which 50% inhibition is achieved
mpmelting pointm/zmass-to-charge-ratio	ESY	SY nuclear Overhauser effect spectroscopy
m/z mass-to-charge-ratio		multiplet
)	melting point
ppm parts per million	Ζ	mass-to-charge-ratio
	n	parts per million
q quartet		quartet
R _f retention factor		retention factor
s singlet		singlet
t triplet		triplet
RI resistance index		resistance index
SI selectivity index		selectivity index
TLC thin layer chromatography	С	thin layer chromatography

cm	centimeters
h	hours
kV	kilovolts
mg	milligrams
mg/L	milligrams per liter
mm	millimeters
mmol	millimoles

- ng/ml nanograms per milliliter
- nm nanometers
- μM micromolar

μg/ml micrograms per milliliter

- g/L grams per liter
- spp. species
- subsp. subspecies
- et al. and others
- *i.e.* that is
- viz. namely

CONTENTS

SUMMARY	i
ACKNOWLEDGEMENTS	iii
ABBREVIATIONS/FORMULAE COMMONLY USED	vi

CHAPTER 1

Malaria and antimalarials from plants

1.1	History of Malaria	1
1.2	Malaria Today	2
1.3	The Malaria Parasite	3
1.4	Malaria Prevention and Control	5
1.5	Malaria Treatment	6
1.6	Resistance to Antimalarial Drugs	10
1.7	Need for New Antimalarials	11
1.8	Traditional Medicine	11
1.9	Medicinal Plants	12
1.10	Drugs from Plants	14
1.11	Antimalarials from Plants	16
1.12	Antimalarial Drug Discovery	18
1.13	Scope of this Study	19

CHAPTER 2

Sesquiterpene lactones

2.1.	Secondary Plant Metabolites	21
2.2.	Terpenoids	22
2.3.	Sesquiterpene Lactone Skeleton	25
2.4.	Sesquiterpene Lactone Biosynthesis	26
2.5.	Biological Activities of Sesquiterpene Lactones	27
2.5 2.5 2.5	2. Antiplasmodial Activity of Sesquiterpene Lactones	28 29 32

CHAPTER 3

Antiplasmodial Activity of Vernonia staehelinoides

3.1	Ver	nonia staehelinoides Harv.	33
3.2	١n v	vitro Antiplasmodial Activity of V. staehelinoides Extracts	34
3.3	Bioa	assay-guided Fractionation of the V. staehelinoides Extracts	35
	3.3.1 3.3.2	Bioassay-guided Fractionation of P01009A Bioassay-guided Fractionation of P01009B	35 35
3.4	Targ	eted Purification of Active Compounds from V. staehelinoides	36
3.5		tification and Characterization of Compounds (50) and (51) <i>V. staehelinoides</i>	38
	3.5.2	Structural Elucidation of 13-Acetoxy-1,4 β -epoxy-8 α - (2-methylpropenoyl)-3-oxo-1,5,7(11)-germacratrien-12,6-olide (50) Structural Elucidation of 13-Acetoxy-8 α -(4-acetoxy-3-methyl-2 <i>Z</i> - butenoyl)-1,4 β -epoxy-3-oxo-1,5,7(11)-germacratrien-12,6-olide (51)	39 44
	3.5.3		47
3.6	<i>In vi</i> and	<i>tro</i> Antiplasmodial Activity and Cytotoxicity of Compounds (50) (51)	49
3.7	Conc	clusion and Research Prospects	52

CHAPTER 4

Antiplasmodial Activity of Oncosiphon piluliferum

4.1	Oncosi	phon piluliferum	53
4.2	In vitro	Antiplasmodial Activity of O. piluliferum Extracts	54
4.3		y-guided Fractionation of the O. piluliferum Dichloromethane	
	Extract		55
	.3.1	Primary Fractionation of P01609A	55
	.3.2	Further Purification of Fraction 7I	55
	.3.3	Further Purification of Fraction 7M	56
4	.3.4	Further Purification of Fraction 70	58
4.4	Targete	ed Purification of Compounds (59)-(63) from P01609A	59
4.5	Identific	cation and Characterization of Compounds (59)–(63)	
	from O	. piluliferum	62
4	.5.1	Structure Elucidation of 4,5 <i>a</i> -epoxy-6 <i>a</i> -hydroxy-	
		1(10) <i>E</i> ,11(13)- germacradien-12,8α-olide (59)	62
4	.5.2	Structure Elucidation of 1β , 6α -dihydroxy-	
		4(15),11(13)-eudesmadien-12,8 <i>a</i> -olide (60)	68
4	.5.3	Structure Elucidation of 1β , 6α -dihydroxy-3,11(13)-	
		eudesmadien-12,8α-olide (61)	72
4	.5.4	Structure Elucidation of 1α,6α-dihydroxy-4E,9Z,11(13)-	
		germacratrien-12,8α-olide (62)	75
4	.5.5	Structure Elucidation of 1α , 6α -dihydroxy-4 <i>E</i> ,10(14),11(13)-	
		germacratrien-12,8α-olide (63)	80
	.5.6	Characterization of Compounds (59) – (63)	84
	.5.7	Absolute Configurations of Compounds (59) – (63)	85
	.5.7.1	Mosher Esters of Compound (63) Mosher's Method	86
	.5.7.2		87
4	.5.7.3	Application of Mosher's Method – Absolute Stereochemistry of Compound (63)	87
	.5.7.4	Biosynthesis of Compounds (59) – (62)	89
	-		
4.6	NaBH ₄	Reduction of Compound (63)	91
4.7		Antiplasmodial Activity and Cytotoxicity of Compounds from	
	O. piluli	ferum	94
4.8	Conclu	sion and Research Prospects	96

CHAPTER 5 Experimental

5.1	Plant Material	98
5.2.	Extract Preparation	98
5.3	In Vitro Antiplasmodial Activity	99
5.4	Bioassay-guided Fractionation, Targeted Purification and Selected Derivatisations of Active Compounds	101
	5.4.1 Bioassay-guided Fractionation of P01009A 5.4.2 Bioassay-guided Fractionation of P01009B 5.4.3 Targeted Purification of Active Compounds from P01009A	101 102 103
	5.4.4 Bioassay-guided Fractionation of P01609A	106
	5.4.5 Targeted Purification and Selected Derivatisations of Active Compounds from P01069A	111
5.5	Nuclear Magnetic Resonance (NMR) Spectroscopy	118
5.6	Mass Spectrometry	118
5.7	X-ray Crystallography	118
5.8	Optical Rotations	118
5.9	Melting Point Determinations	118
5.10	In Vitro Cytotoxicity Assay	118
Арр	pendix (A): Crystallographic data for Compound (60)	121
App	endix (B): Crystallographic data for Compound (62)	129
App	endix (C): Crystallographic data for Compound (66)	149
App	endix (D): Crystallographic data for Compound (63)	157