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CHAPTER 3 

EXPECTATIONS, LEARNING AND THE KALMAN FILTER 

Expectations are formed by intelligent agents who are not fully informed 

and who, as a consequence, must learn about their environment. 


(Hall and Garratt 1992a:52) 


3.1 INTRODUCTION 

Individuals frequently form expectations about the future level of prices e.g. when making 

consumption expenditure decisions and during wage bargaining. Expectations are formed 

conditional on economic agents' perceptions of the current economic environment or 

regime as well as possible time-related changes in that environment. 

Expectations, Le. anticipations or views of the future, have featured prominently in 

macroeconomic literature from the inception of the concept. Since 1930, when Irving 

Fisher introduced the 'anticipated rate of inflation' as the difference between the nominal 

and real interest rates, expectations have played an important role in economic theory. 

Formal analytical treatment of expectations formation, however, only emerged over the last 

quarter of this century. As a result, important advances in this area have occurred. 

The development of macroeconomic models over the past thirty years has forced 

economists to recognise that expectations are not to be treated as exogenous - or to be 

ignored at will but instead are central to our understanding of the functioning of the 

economy (Holden et al. 1985: 1). 

Historically, there have been two distinct methods of dealing with expectations in economic 

analysis - one is the direct measuring of expectations by conducting surveys to determine 

expectations, the other is to provide a simple model of expectations formation. 

Much early empirical work on expectations centred around attempts to provide direct 

measures of agents' expectations (e.g. Katona 1951, 1958; Tobin 1959 and Eisner 1965). 
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Much of this research was directed towards understanding the psychological underpinnings 

of individual expectations formation. 

Direct measures are, for obvious reasons, not a very plausible method of obtaining 

expected values for future outcomes of economic variables. Although undoubtedly useful 

in preparing economic forecasts, gathering direct measures of expectations is costly and 

time consuming; in addition the data become outdated rather quickly. Furthermore, and 

perhaps more importantly, direct measures of agents' expectations provide little insight into 

how expectations would change as policy changes. The breakthrough that led to a more 

general approach to expectations modelling came with the realisation that expectations 

could be treated as an unobservable component. In this study, the latter method is adopted: 

a simple model of expectations formation is specified and the coefficient vector of the 

expectations rule is treated as an unobservable component. 

This chapter surveys the theoretical developments on expectations formation by economic 

agents, starting with the adaptive expectations hypothesis. This is followed by rational 

expectations (or model-consistent expectations), and finally the process of learning (or 

boundedly rational expectations). A variable parameter estimation technique, namely the 

Kalman filter, which will be utilised in the estimation of consumer price expectations in 

South Africa, is discussed in section 3.4. Section 3.5 deals with the implementation of 

expectations in macro-models and section 3.6 reports on a number of international studies 

concerning the learning approach. The empirical result of application of the variable 

parameter estimation technique to the price expectations rule, is reported in Chapter 5. 

Price expectations are then implemented in a set of 'forward-looking' consumption 

functions, the result of which is also documented in Chapter 5. 

3.2 EXPECTATIONS IN MACRO MODELS 

Any macro model containing expectations can, in general terms, be defined as 

i = I. ..n t = I. ..T (3.1) 

 
 
 



30 


where 

y = the vector of current and lagged values of the n endogenous variables 

(Yit"'Yit-k, where k is the lag depth of the model) 

x = the vector of exogenous variables over all time periods (xo...xT) and 

expectation of Y for period t +1, based upon information available at 

period 1. 

This expectation may, m general, be viewed as being derived from another set of 

relationships, namely 

k = I. ..m. (3.2) 

The next section provides an exposition of different approaches in theory and practice to 

find expressions for equation (3.2). 

3.3 MODELS OF EXPECTATIONS FORMATION 

This section briefly discusses the theoretical development of expectations analysis and also 

refers to its implementation in empirical models. 

3.3.1 Adaptive expectations mechanisms 

During the twenty years after the Second World War, the adaptive expectations hypothesis 

(AEH), first proposed by Cagan (1956), enjoyed considerable popularity amongst 

econometricians as a simple and apparently sensible model of how economic agents form 

expectations . 

In modelling expectations of, say, future price levels, the hypothesis of adaptive 

expectations states that 

e _ e) _ <D( _ e)( t-IPt t-2 Pt-l - Pt-l t-2Pt-1 (3.3) 
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where t-I p~ represents the expected value of the price level in period t formed in period 

t-1. 

The individual therefore harbours a series of expectations for future outcomes of the price 

level and, in each period, the expectation for the future is revised in a way proportional 

with the most recently observed error. 

Rearranging (3.3) yields 

(3.4) 

and by successively substituting for the lagged expectations we get 

(3.5) 

Unobservable expectations with respect to the price level may thus be measured purely in 

terms of past observations of the actual price level. 

The above seemed intuitively appealing, as it states that expectations of the future are a 

simple extrapolation of the past. The deficiencies of this approach, however, gradually 

became apparent. The adaptive expectations rule would, for example, cause consistent and 

growing mistakes in periods when prices grow at a constant rate, of say 10 per cent. The 

adaptive expectations model would then consistently under-estimate the level of p, and it 

would do so at an increasing absolute amount over time, implying that an economic agent 

would make entirely predictable errors, even in the very long run. It is hard to believe that 

such a feature could be true of an intelligent economic agent. 

One way of addressing this problem is to generalise the rule to an extrapolative one, which 

can cope with growing variables. Fixed parameter rules in general are, however, liable to 

perform poorly in one circumstance or the other. An example of this is a change in the 

regime generating the underlying variable. The Lucas critique (Lucas 1976) pointed out 
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that when expectations are modelled by functions of lagged variables, the parameters of 

these functions may vary as the regime for determining the expectations variable changes. 

So if we assume that agents are intelligent and that they avoid consistent expectations 

errors, then any fixed parameter extrapolative expectations model will be unable to 

accommodate policy or other regime changes (Currie and Hall 1994:93). 

3.3.2 The concept of rational expectations 

The predominant paradigm for modelling expectations is the rational expectations 

hypothesis. The concept of rational expectations (RE) was originally formulated by Muth 

(1961). He suggested that agents form their expectations in the same way that they 

undertake other activities - that is, they use economic theory to predict the value of the 

variable and this is their 'rational' expectation. Rational expectations are thus simply 

predictions based on economic theory, using the information available at the time the 

predictions are made (Holden et al. 1985: 18). 

Walters (1971) preferred the term 'consistent' to 'rational' since the expectations are 

consistent with the relevant economic theory - it assumes that agents use information 

efficiently in such a way that the aggregate of all agents' expectations will not be 

systematically wrong. The seventies witnessed an explosion in theoretical work 

incorporating rational expectations, which then became closely linked with the neo-classical 

approach to macroeconomics, to the extent that the two approaches were widely regarded 

as synonymous. 

In the full or strong form of the rational expectations hypothesis, it is assumed that 

economic agents have a complete knowledge of the economic system about which they need 

to form expectations. This knowledge includes the functional form, the parameters of the 

system, as well as any exogenous process governing the system. 
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Formally, the rational expectations hypothesis (REH) may be stated as follows: 

(3.6) 


where 

p the variable being forecasted (i.e. the price level) 

tP~+s the prediction of the price level for time t+s, formed at time t and 

Et the statistical expectation c~mditional on information available at 

time t, when the forecast is made. 

The rational expectations hypothesis requires that the prediction made by the forecaster be 

consistent with the prediction generated by the model, conditional on information available 

at that time. Setting s = 1, equation (3.6) implies: 

(3.7) 

This equation asserts that the price fluctuates about its forecast level with a purely random 

error Et+ I that has a zero mean. This relationship between the price and its prediction, 

according to Turnovsky (1996:59), characterises an efficient market. It means that prices 

fully reflect available information, thus eliminating any systematic opportunities for making 

supernormal profits. As an empirical description, this assumption is an appealing one for 

asset and financial markets in which information is generally readily available. But it is 

probably less appealing for forecasting such quantities as the expectations of the consumer 

price index, which are likely to be based on far inferior information. 

Several arguments for and against, the rational expectations hypothesis are found in the 

literature. Some authors still maintain that one of the most compelling arguments in favour 

of the rational expectations hypothesis, is the relative weakness of the alternatives. As 

already noted, traditional expectations schemes, such as the adaptive expectations 

hypothesis, involve systematic forecasting errors. This is not particularly desirable, since 

one would expect individuals to learn this eventually and to abandon such rules or to 

modify them in some way. By contrast, the rational expectations hypothesis generates 
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expectations that are self-fulfilling to within a random error, which cannot be predicted on 

the basis of information available at the date when the expectations are formed. 

The most important objections to the rational expectations hypothesis concern the fact that 

the application thereof requires not only knowledge of the underlying structure of the 

model, but also of the relevant parameters. Specialists are unable to agree on a model, but 

even if they should find agreement, they usually obtain varying estimates for relevant 

coefficients. Much less will consumers, who are presumably less sophisticated in economic 

theory, but whose expectations we are attempting to model, have such information. This 

informational argument clearly has merit. 

The first estimated macroeconomic models incorporating rational expectations were those 

of Anderson (1979) and Fair (1979). The latter was a fairly large model with 84 equations, 

including expectations of future prices of the stock and bond markets. The solution 

technique in these applications (Fair and Taylor 1983) consists of a two part iteration 

scheme: first, values for the expectations variable are considered given and conventional 

Gauss-Seidel solution methods are used to solve the model conditional on these given 

values for expectations; second, the expectations variables are set equal to the solution 

values from the model derived in the first stage. The whole process is then repeated until 

the expectations variables used in the first stage are consistent with the updated values of 

the second stage. 

The rational expectations hypothesis has failed to become general practice in a forecasting 

context, due to a number of practical problems associated with this approach. Hall 

(1995:979) points out that the presence of rational expectations tends to cause jumps in the 

initial period value of a range of variables, for example the exchange rate, which is 

considered implausible by forecasters. However, it is in the large empirical models where 

the weakness of the rational expectations assumption has become most apparent. As a tool 

for analysing long-run behaviour, an assertion of rational expectations is both powerful and 

useful, but it is not a good representation of the short-run dynamic behaviour of many 

markets. Implementation in large models has in fact emphasised this weakness (Currie and 

Hall 1994: 109). Another practical problem related to the above, is that many policy 

options may be impossible to analyse under rational expectations. Hall and Garratt 
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(1998:257), e.g. illustrated how a permanent rise in interest rates would lead to an 

infinitely large jump in the exchange rate under the open arbitrage condition and the model 

then fails to yield a solution. 

Another fact to consider is the possibility that the information set may contain errors. In 

such instances, rational expectations assumptions will, by exploiting the information set to 

the full, make larger overall errors than the adaptive expectations assumption which makes 

less efficient use of the information. 

One conclusion to be drawn from the above, may be that agents do not have full 

information and full model-consistent expectations but that they learn about regime changes 

over time and assimilate new information. It WOUld, therefore, be natural to progress from 

strong rational expectations to a weaker model, which allows for the possibility of making 

errors in the short run, while ruling out long-run systematic or predictable errors. This 

gives rise to learning models. Learning models represent a shift from the assumption of 

full rationality on the part of economic agents in forming expectations, towards the idea of 

bounded rationality which is more consistent with the psychology literature on learning 

processes. 

3.3.3 Learning 

Learning models of expectations have increasingly received attention in the theoretical 

literature over the past decade or more. In response to the limitations of the rational 

expectations hypothesis imposed by the stringent assumption of full knowledge of the true 

structural model, a number of economists have introduced processes describing the way in 

which economic agents learn about the underlying economic structure over time. 

Cuthbertson (1988:224) reports on an early attempt by Friedman (1979) to provide an 

alternative optimising framework to rational expectations. Friedman advocates that given 

the true model Yt=XI~ +ut (where ut is a white noise error term), agents may sequentially 

update their estimate of the fixed true parameter vector ~ as more information on (Yl' xt ) 

becomes available a process of recursive least squares. Cuthbertson extends Friedman's 
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framework to include the case where (i) agents have some prior information about 0 (at 

time t=O) and (ii) 0 is allowed to vary stochastically. Friedman (1979:33-34) alludes to the 

latter outcome when he discusses the possibility that agents may perceive a simple linear 

model with time varying parameters as a good approximation to the complex 'true' model. 

Such a model would then represent a boundedly rational learning model of expectations. 

The concept of boundedly rational learning is the result of a slightly weaker informational 

assumption. It implies that agents use some 'reasonable' rule to form expectations and that 

the form of this rule remains constant over time while agents 'learn' the parameters of this 

rule. Agents are therefore not assumed to instantaneously know the 'true' model but they 

do use information optimally (or efficiently). 

Implementing boundedly rational learning in a macro model entails the specification of a 

relatively simple expectations rule and then allowing the parameters of this rule to vary, 

thus correcting previous errors made by that rule. Over time, the expectations rule would 

be expected to adjust to the particular regime under which the model is operating and a 

rational expectations solution will be established. However, in the short term, the learning 

rule allows for errors and hopefully generates a more plausible path to equilibrium. 

A serious issue with regard to the learning approach, and to a certain extent unresolved, is 

the selection of an appropriate expectations rule. In many instances, the reduced form of 

the structural equation containing the expectations variable, is the best vantage point for 

formulating the expectations rule (e.g. DeCanio 1979; Radner 1982; Bray and Slavin 1986; 

Hall and Garratt 1992a, 1992b). 

The specification of an expectations rule, such as equation (3.2), is based on the assumption 

that some element of the rule usually the parameter vector is not known with certainty. 

The basic idea is that over time, the economic agent will methodically increase his 

knowledge about the true values of these parameters. Equation (3.2) may therefore be 

restated to explicitly include the parameters of the rule: 

k =1. .. m (3.8) 
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where ~t is the vector of agents' estimates of the parameters at period t. Having specified 

the learning rule or the expectations rule, a mechanism that governs the evolution of these 

parameters through time needs to be specified. 

The way in which the parameters change can be determined in a number of ways. At the 

simplest level, agents could simply perform a set of 'rolling' regressions using ordinary 

least squares, each period adding the latest expectation error to the data set. According to 

Hall and Garratt (l992a:52), this simple form of learning does not respond well to 

structural changes. The more sophisticated mechanism based on the Kalman filter, is 

therefore preferable, although the steps are conceptually similar. 

The Kalman filter, proposed as an optimal method of implementing the learning process, 

will be discussed in the next section. 'Optimal' in this context would mean that expectations 

are correct on average and have minimum mean square prediction errors. 

To standardise on notation, note that t-lP; and tP;+l in equations (3.5), (3.7) and (3.8) may 

also be written as P~lt-1 and P~+llt' The latter corresponds to the notation used in the next 

section where a technical exposition of the Kalman filter algorithm is presented the 

Kalman filter may be viewed as a form of adaptive expectations where the adjustment 

parameter, and thus the price expectation, is updated each period based on new 

information. 

3.4 	 A TECHNICAL EXPOSITION OF STATE-SPACE MODELS AND THE 

KALMAN FILTER 

State-space models were originally developed by control engineers (Wiener 1949, Kalman 

1960, 1963). Kalman filtering, named after the contributions of R.E. Kalman, found 

applications in, for example, the technology of radars, aircraft stabilisation, the 

determination of coordinates in nautical or aerospace applications and chemical processes. 

It was not until the 1980s that state-space models received attention in economics literature 
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(amongst others, Lawson 1980; Harvey et al. 1986; Cuthbertson 1988; Barrel et al. 1994; 

Currie and Hall 1994). 

There are two major benefits to representing a dynamic system in state-space form. First, 

the state-space allows unobserved variables (known as the state variables) to be 

incorporated into, and estimated along with, the observable model. Second, state-space 

models can be estimated using the Kalman filter, a powerful recursive algorithm. Apart 

from estimating vector autoregressions with coefficients that change over time, this 

algorithm also provides a way to calculate exact finite-sample forecasts and the exact 

likelihood function for Gaussian ARMA processes. Also, factor matrix autocovariance­

generating functions or spectral densities may be determined by means of the Kalman filter 

(Hamilton 1994:372). 

State-space models have been applied in the economics and econometrics literature to 

model unobserved variables such as permanent income, expectations, measurement errors, 

missing observations, unobserved components (cycles and trends) and the natural rate of 

unemployment. Extensive surveys of applications of state-space models in econometrics 

can be found in Hamilton (1994:372-408) and Cuthbertson et al. (1992:191-225). 

Cuthbertson et al. (op cit.: 191) distinguish between two types of models especially 

amenable to representation via the Kalman filter, namely unobservable components models 

and time-varying parameter models. In this study, the state-space model with stochastically 

time-varying parameters has been applied to a linear regression, i.e. the price expectations 

rule, in which the coefficient vector changes over time. 

The next section describes how a dynamic system can be written in state-space form, which 

form is suitable for the application of the Kalman filter. 

3.4.1 The state-space representation of a dynamic system 

The state-space representation of the dynamics of an (nx 1) vector, Yl' is given by the 

following system of equations: 
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Yt = A'xt + H'~r + wr (3.9) 

~t+1 = F~( + V t+l (3.10) 

where A', H' and F are matrices of parameters of dimension (nxk), (nxr) and (rxr), 

respectively, and Xt is a (kx 1) vector of exogenous or predetermined variables. ~l is a (rx 1) 

vector of possibly unobserved state variables, known as the state vector. The first equation 

is known as the observation (or measurement) equation and the second is known as the state 

(or transition) equation. The (nxl) and (rxl) disturbance vectors W t and vt are assumed to 

be independent white noise with 

for t = ~ 
E(v,v" ) ={~ (3.11)

otherwise 

for t = ~ 
E(w, w',) = {~ (3.12)

otherwise 

where Q and Rare (rxr) and (nxn) matrices, respectively. The disturbances Vt and wt are 

assumed to be uncorrelated at all lags: 

for all t and ~. (3.13) 

The statement that Xt is predetermined or exogenous means that XI provides no information 

about or wt +s for s=0,1,2, ... beyond what is contained in Yt-j, Yt-2'''''YI' Thus, Xt could 

include lagged values of Y or variables which are uncorrelated with ~T and w, for all ~. 

The system of equations (3.9) through (3.13) is typically used to describe a finite series of 

observations {YI' Y2'''''YT} for which assumptions about the initial value of the state vector 

~t are needed. 

The various parameter matrices (F, Q, A, H or R) could be functions of time, as will be 

discussed in section 3.4.3. 
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Substituting (3.17) into (3.18), 
. 

A'xI - H'~tll_I)' (3.21) 

The coefficient matrix in (3.21) is known as the gain matrix and is denoted K1: 

Kr == FPt1t _1 + FPtlt_\H(H'PtHH + Rri. (3.22) 

For a derivation of these equations, see Hamilton (1994:379-380). Equations (3.17) and 

(3.18) may be called the updating equations and the value of ~t+llt denotes the best forecast 

of ~t+1 based on a constant and a linear trend function of (Yt,yt-l""'Yl'Xp Xt-2 , ... x\). The 

matrix Ptlt +1 gives the MSE of this forecast. 

The forecast OfYt+l is then given by 

(3.25) 


with the associated MSE 

(3.26) 


What still remains outstanding in the exposition above, is the estimation of the unknown 

parameter matrices F, Q, A, Hand R, which are determined through maximum likelihood 

estimation of these parameters. The Kalman filter was motivated in the above discussion in 

terms of linear projections. The forecasts ~tlt-I and Ylit-I are thus optimal within the set of 

forecasts that are linear in (Xt'St_I)' where SI_I == (y't-I ,y't-2 , ... ,y\ ,X\_l ,X't-2 , ... ,X'I )'. 

If the initial state ~I and the innovations {wt'V[}~_1 are multivariate Gaussian3
, then the 

stronger claim can be made that the forecasts ~tlt-l and Ytit-! calculated by the Kalman filter 

are optimal among any functions of (xpS t_I). Moreover, if ~1 and {Wt,Vt}~_l are 

3 The vector Y =(Y" Y2" .. , Yn ). has a multivariate Gaussian or multivariate normal distribution if 

fy(y) (2n),nI2[rf'12exp[(_-})(Y-llnr'(y 11)] and is written as Y, - N(Il,n)withthemean/l 

an (nxl) vector and the variance-covariance a matrix n of dimension (nxn) which is symmetric and 
positive semidefinite. 
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Gaussian, then the distribution of YI conditional on (xl' SI_I) is Gaussian with mean given 

by (3.23) and variance given by (3.24): 

YI I Xl'SH - N«A'xI + H'~II(_I),(H'Ptit-lH + R»; 

that is 

!ytlXt .9 t - 1 (Y 1 IxI'S (-I) 

H + R 1-112
( 2n)-nI2 IH' P 

tlt-l 
(3.25) 

x exp{-t(Yt A'x( - HI~t1t_I)'(H'PIII_IH + R)-l 

x (Yt - A'xt - H'~tit-l)} for t = 1,2, ... ,T. 

From the above equation, the sample log likelihood can be constructed, namely 

T 

I)og!YtIXt. 9t_l(Yt IxpSt-l). (3.26) 
t=1 

Expression (3.26) can then be maximised numerically with respect to the unknown 

parameters in the matrices F, Q, A, Hand R. Burmeister and Wall (1982) illustrate this 

application. 

To summarise, the state vector ~t and its mean squared error PI are recursively estimated by 

the set of equations (3.17) through (3.20), which also represents the key equations for the 

Kalman filter. ~slv is the forecast of the state vector at time period s, given information 

available at time v. Note that the recursion for P does not depend on the forecasted state 

vector, or on the observed data (Ypxt). 

To implement the Kalman filter, the starting values must be specified and the unknown 

matrices must be replaced by their estimates. By default, a software package like EViews 

obtains starting values by treating these matrices as fixed coefficients and estimating them 

using OLS. 

Once starting values are obtained, the parameters A, H, F, Rand Q are estimated by 

maximising the log likelihood function under the assumption that the distribution of y" 

conditional on xt and past values of (Yt,x1), is multivariate normal (Gaussian). 
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3.4.3 State-space model with stochastically varying coefficients 

In the above discussion, it was assumed that the l!latrices F, Q, A, Hand R were all 

constant. The Kalman filter can also be adapted for more general state-space models in 

which the values of these matrices depend on the exogenous or lagged dependent variables 

included in the vector XI' 

Equations (3.9) and (3.10), i.e. the state-space representation may thus be altered to: 

Yt a(x t) + [H(xt)]'St +wt (3.27) 

(3.28) 

Here F(xJ denotes an (rxr) matrix whose elements are functions of Xl; a(xt ) similarly 

describes an (nxl) vector-valued function and H(xt } an (rxn) matrix-valued function. 

It is assumed that conditional on Xl and on the data observed through date t-l, denoted 

(\ (" , )''" "'[_I == Y(_·I'y t-2 , ... ,y l'X t_I'X 1-2 , ... ,X 1 , the vector (V\+I' w' t )' has the Gaussian 

distribution 

tv + 
1 I x S ] - N([O]' [Q(X t O]J. (3.29)[ W t t' 1-1 0' ° ) R(x

t
) 

Equations (3.27) to (3.29) generalise the earlier framework by allowing for stochastically 

varying parameters, but it is more restrictive in the sense that a Gaussian distribution is 

assumed in (3.29). Hamilton (1994:399-400) explains the role of the Gaussian 

requirement, as set out below. 

Suppose it is taken as given that SI 1St-I - N(~tlt-pPtlt-l)' Assuming as before that x[ 

contains only strictly exogenous variables or lagged values of y, this also describes the 

distribution of St IxI> St_I' It follows from the assumptions in (3.27) to (3.29) that 

(3.30) 
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Conditional on Xt• the terms a(xt), H(xt) and R(xt) can all be treated as deterministic. Thus, 

the formula for the conditional distribution of Gaussian vectors 4 can be used to deduce that 

(3.31) 


where 

~tIt ~tlt-l + {PtIHH(Xt)[[H(xt)]'Ptlt_IH(xt)+R(xt)]-1 x[Yt -a(Xt)-[H(Xl)]'~[ll_J} 
(3.32) 

and 

(3.33) 

It then follows from (3.27) and (3.29) that ~l+l 1St - N(~l+IIt'Pl+ll[)' where 

and 

(3.34) 


(3.35) 


Equations (3.32) through (3.35) are the Kalman filter equations (3.17) to (3.20), with the 

parameter matrices replaced with their time-varying analogs. Thus, as long as the initial 
A 

state ~l is treated as N(~1Io,P1IO)' the Kalman filter iterations proceed as before. The 

obvious generalisation of (3.25) may still be used to calculate the likelihood function. 

The only difference from the constant-parameter case is that the inference (3.32) is a non­

linear function of XI' This means that although (3.32) gives the optimal inference if the 

disturbances and initial state are Gaussian, it cannot be interpreted as the linear projection 

of ~! on Sp with non-Gaussian disturbances. 

3.4.4 The Kalman filter in terms of conventional least squares procedures 

The exposition above is mainly in applied statistical terms. Cuthbertson (1988:234-241) 

presents the econometrics of the Kalman filter using conventional least squares procedures. 

He begins by reinterpreting the familiar problem of estimation subject to linear restrictions 

4 The conditional density of St given yp is found by dividing the joint density by the marginal density 
(Hamilton 1994: 101-102, 399). 
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in terms of a Kalman filter updating equation, utilising the Kalman gain. This is followed 

by a reinterpretation of the Theil-Goldberger pure and mixed estimator as a 'one-shot' 

Kalman filter updating equation combining a priori and sample information. In both of the 

above cases, Cuthbertson reinterprets the standard formulae for the covariance matrix of 

the parameters as Kalman filter variance updating equations. He also concludes by 

presenting the relatively complex case of the state-space form with variable parameters. 

3.5 	 IMPLEMENTATION OF THE LEARNING PROCESS IN A 

MACROECONOMIC MODEL 

The learning process is generally implemented in model context as follows. The model 

essentially contains three blocks of equations, namely: 

i = l. ..n, t = l. .. T 	 (3.36) 

(Y~+I = gk(Yt'X,C,t) k l. ..m 	 (3.37) 

c,t = C,t-I + VI vt - N(O,Q). 	 (3.38) 

Equation (3.37) represents the measurement (or observation) equation(s) of the state-space 

model in Kalman filter terms, while equation (3.38) represents the state (or transition) 

equation(s). 

Assuming that the value of C,I-I is known, the last block of equations for the expected value 

of C,I can be solved, which is simply the Kalman filter prediction equations for c" called the 

state vector. Given c" the second block of equations for the expected value of tYt:1 can be 

solved, and given this, the first block of equations for Yt can finally be solved. 

Q, the covariance matrix of the errors in the equations governing the evolution of the 

parameters (or in Kalman filter terms, the state equation error terms) is given by the 

original estimation and an estimation for Pt - I can be obtained (the uncertainty of the 

parameters or state variables). The Kalman filter prediction equations for P can then be 

used to derive an estimate of t-I Pt' Having solved the complete model for Yt , we can 
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determine the one-step-ahead prediction error, that is the error that occurs between the 

expectation of the vector Yt derived from the learning model and the model's final solution 

for Yt. The one-step-ahead prediction error is a combination of stochastic error terms of 

the measurement and state equations. Given this and the estimate of Pllt-I' the Kalman filter 

updating equations can be used to derive revised estimates of Pt and ~t. The updating is 

done on the basis of the observed errors between the whole model solution and the original 

expectations model forecast. 

The process is then repeated for the next period, starting from the new updated estimates of 

~t to predict ~t+ I' and so on. In this way, the learning model will adjust its own parameters 

to cope with any change in structure or regime of the whole modeL In the forecasting 

period, the final values of the state vector are used, in addition to other exogenous input, to 

solve the model for Yt • 

The underlying assumptions of this process are still quite strong, as agents are still assumed 

to process all available information in an optimal fashion and a substantial degree of 

sophistication on the part of the economic agent is still assumed. The learning model may, 

however, fulfil the criteria for weak rational expectations, since agents are not assumed to 

have full information. They will most likely make mistakes in the short run, but 

systematic errors over an extended period of time are ruled out. 

Considering the model's response to any regime change reveals that the parameters of the 

learning rule respond over time to that change. The behaviour of the parameters of the 

rule, provides an important insight into the form of equilibria which may emerge from the 

system. Marcet and Sargent (1988) summarise the main theoretical results. The concepts 

of learning is characterised as the process of changing the parameters of the rule. If these 

parameters settle down to some fixed level, learning may be regarded as having ceased and 

this is sometimes called an expectational equilibrium (or E-equilibrium). Marcet and 

Sargent demonstrate that this stable condition is also a full rational expectations 

equilibrium. 
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3.6 EMPIRICAL LITERATURE ON THE LEARNING APPROACH 

Although the theoretical literature on learning has grown from the early work of Friedman 

(1975 and 1979), the empirical literature has remained relatively sparse. Two empirical 

implementations of the learning approach in large-scale macro models will be presented as 

representative examples of the application of the Kalman filter to an expectations rule. 

The learning approach to the treatment of expectations was first adopted in the exchange 

rate sector of the London Business School (LBS) model of the UK economy. Hall and 

Garratt (1992b) present an empirical model for the Sterling/Deutchmark real exchange rate 

assigning an important role to exchange rate expectations, which are assumed to be formed 

through a Kalman filter-based learning process. 

The structural form of the exchange rate equation, derived from a capital stock model with 

government intervention is: 

(3.39) 

with 

E( log of the real Sterling/Deutchmark exchange rate 

= real interest rate differential between UK and German short-term 

rates and 

= log of the ratio of exports to imports which is a measure of the real 

trade balance. 

The end result of a search is reported as a restricted form of the above equation, estimated 

by three stage least squares, namely 

E t = 0.0329 + 0.Q75E~+1 + 0.299Et-I + 0.352r( (3.40) 

which, in the long-run, exactly equals uncovered interest rate parity (UIP). 

The time-varying rule for exchange rate expectations is derived from the structural equation 

(op. cit.: 10) by rearranging equation (3.39) to give: 

(3.41) 
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Lagging this equation by one period and using it to substitute out the term in E(, after 

collecting terms, gives: 

E~+I = ~o + (~12 + ~2)Et_1 + ~1~2Et-2 + (~1~3 + ~4)rt-l (3.42) 

The ~ coefficients are combinations of the a coefficients, and the contemporaneous terms 

in the above equation are replaced by assuming partial reduced form equations for rt and T t , 

respectively, as follows: 

r( = C1(L)rt_1+ C2(L)GDPt_1 + C3(L)INFt_1 (3.43) 

Tt = D1(L)T t_1 + D2(L)GDPt_1 + DiL)P0t_l + DiL)E t_1 (3.44) 

where PO is the log of the oil price and INF is the rate of inflation which could include 

both UK and German inflation or the differential and GDP is the log of real GDP. C i and 

Di are polynomial lag operators. 

The terms rt and T t my thus be eliminated and collection of terms yields: 

2 
~o + (~I + ~2 + ~5D4(L»E t _ 1+ ~1~2Et-2 + (~1~2 + ~4 + ~3Cl (L»rt_1 

+ ~1~4rt-2 + (~1~5 + ~6 + ~5Dl (L»Tt _ 1 + ~1~6Tt - 2 + ~3C2 (L)GDPt _ 1 
+ C3(L)INFH + ~5(D2(L)GDPT_l + D3(L)PO t _J· 

(3.45) 

Equation (3.45) is regarded as the basic partial reduced form rule which agents use to form 

their expectations. The above was simplified by dropping any lagged terms greater than t-3 

by introducing a stochastic constant (op. cit.: 11). 

The basic structure was then used in a specification search to produce the following 

equation for expectations formation: 

(3.46) 

Note that all lagged information is dated t -1 when the equation is used to forecast Et + l' i.e. 

the information set does not include current information. The parameters yare restricted 

forms of the ~ coefficients. Hall and Garratt (op. cit.: 11) note that their derivation of the 

expectations equation is by no means exclusive. In principle, formation of expectations 

could be the result of information from anywhere in the model, provided that it is relevant. 
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The time-varying parameters are then assumed to be generated by the following process: 

(3.47) 

Equation (3.46) may be regarded as the standard measurement equation and the set of 

equations (3.47) as the state equations. The model has thus been formulated in state-space 

form and the Kalman filter can be applied to estimate the time-varying parameters 

conditional on the variance of the error terms of (3.46) and the covariance matrix of (3.47), 

which is assumed to be diagonal. The estimation reported (op. cit.: 14-18) suggests that the 

most important determinants of the forward exchange rate are real interest rate differentials 

and the previous period's exchange rate. All parameter values displayed a reasonable 

degree of time variance, with the main movements in the coefficients on the real interest 

rate differential and the ratio of exports to imports for the UK, reflecting a faster rate of 

learning on these variables. 

Another example where the Kalman filter was employed to estimate the time-varying 

parameter rule of expectations is a study conducted by Barrel et ai. (1994: 173). In this 

study, the boundedly rational learning approach was applied to wage behaviour in three 

countries, namely the UK, France and Italy. A time-varying parameter model for 

forecasting prices was first estimated. This defined the information set of the economic 

agents. The expectations rule together with the structural equations in which the 

expectations are embedded were then incorporated into the global econometric model 

(GEM), developed by the National Institute of Economic and Social Research (NIESR) in 

the UK and jointly maintained by the Institute and the London Business School. 

Barrel et ai. (op. cit.: 174) in deriving the time-varying rule for price expectations, noted 

that by definition, it did not follow from a tightly formulated theory. The selection was 

however also not completely ad hoc and variables were selected to capture important 

endogenous linkages operating in the model. 

The dependent variable for the price expectations equation in each of the three countries is 

the change in the log of consumer price inflation one period ahead. The information set 

includes the change of the log of the home country inflation, lagged by one or two periods, 
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a short-term interest rate lagged by one period, the change of the log of capacity utilisation, 

lagged by one period, and the change of the log of the relevant spot nominal exchange rate, 

with respect to the Deutschmark. The only exception is France, where German inflation 

was also included. 

Barrel et ai. (op. cit.: 175) first report an OLS estimation of the expectations rule, proving 

that in all three cases price expectations are autoregressive with lagged home country 

inflation the most important variable. The other variables are for the most part 

insignificant but are retained for the reason that they might play an important role in 

capturing endogenous linkages in the model. The estimates of time-varying parameters 

reported demonstrate a reasonable degree of variation over the period. The 

hyperparameters associated with the autoregressive terms imply that learning will occur 

rapidly with respect to changes in these variables and, by contrast, learning with respect to 

the other variables will be slow. 

Finally, Barrel et ai. (op. cit.: 183) report on the outcomes of a set of simulations where the 

learning mechanism is in operation. These are then compared with those under rational 

expectations and a fixed parameter adaptive expectations mechanism. The simulations are 

the realignment of the franc, lira and pound within the ERM, and an oil price shock. The 

authors conclude from the results of these simulations that filter-based learning models 

caused prices to rise more sharply than they do under model-consistent or strongly rational 

expectations. This suggests that policy analysis within models relying only on model­

consistent expectations, can be seriously misleading. 

3.7 CONCLUSION 

In this chapter, the theoretical development on the formation of expectations by economic 

agents was surveyed, starting with the adaptive expectations hypothesis, rational 

expectations (also called model-consistent expectations), and, most recently, boundedly 

rational learning. Practical problems with the implementation of the adaptive expectations 

hypothesis and the rational expectations hypothesis in large-scale macro models have been 

highlighted. The proce~s of learning has been proposed as an alternative where the 
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possibility that economic agents can make consistent prediction errors, even in the very 

long run, is ruled out. Boundedly rational learning seems to be an appealing alternative; 

full information on the part of the economic agent is not required, but it is accepted that the 

intelligent agent, knowing the structure of the expectations model, will assimilate new 

information as time progresses and adjust the parameters of the model accordingly. 

An exposition of the state-space representation of a system and the Kalman filter as time­

varying parameter estimation technique were presented. A brief account of a number of 

international studies in this regard concludes this chapter. Chapter 5 describes the 

application of the Kalman filter to a price expectations rule for expectations formation by 

South African consumers, as well as the incorporation of the price expectations variable 

into a set of behavioural equations. 
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3.4.2 Estimation by the Kalman filter 

Given observations (Yl'xt) for t = 1,2, ... ,T, one of the ultimate objectives is to estimate the 

unknown parameters in the system based on these observations. The parameters to estimate 

would include the matrices A, H, F, R, and Q, and the state vector ~t of which inferences 

need to be made. The Kalman filter is a recursive algorithm for sequentially updating the 

state vector given past information. More technically, it is an algorithm for calculating 

linear least squares forecasts of the state vector on the basis of data observed up to date t, 

~t+llt == E(~t+l I St)' 

where 

() (" '" , )' (3.14)"t == Yt'Yt~I'···'Yl,Xt,Xt~I,···,Xl 

and E(~[+l I St) denotes the linear projections of ~t+l on St and a constant. The Kalman 

filter calculates these forecasts recursively, generating ~llo, ~211'··· '~T IT-l in succession. 

Associated with each of these forecasts is a mean squared error (MSE) matrix, represented 

by the following (rxr) matrix: 
, , 

Pt+11t = E[(~t+l - ~t+llt)(~t+l - ~t+llt)']· (3.15) 

, 
The recursion would begin with ~llo' which denotes a forecast of ~l based on no 

observations of y or x. This is just the unconditional mean of ~l' 

with associated MSE (variance of ~l)' 

(3.16) 

Then, iteration on the following set of equations takes place: 

~tlt = ~tlt~l + PtIt-1H(H'Ptlt~IH + Rr1(Yt - A'xt - H'~tlt~l) (3.17) 

(3. 18) 

and 

(3.19) 

for t= 1,2, ... ,T. (3.20) 
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Substituting (3.17) into (3.18), 
. 

A'xI - H'~tll_I)' (3.21) 

The coefficient matrix in (3.21) is known as the gain matrix and is denoted K1: 

Kr == FPt1t _1 + FPtlt_\H(H'PtHH + Rri. (3.22) 

For a derivation of these equations, see Hamilton (1994:379-380). Equations (3.17) and 

(3.18) may be called the updating equations and the value of ~t+llt denotes the best forecast 

of ~t+1 based on a constant and a linear trend function of (Yt,yt-l""'Yl'Xp Xt-2 , ... x\). The 

matrix Ptlt +1 gives the MSE of this forecast. 

The forecast OfYt+l is then given by 

(3.25) 


with the associated MSE 

(3.26) 


What still remains outstanding in the exposition above, is the estimation of the unknown 

parameter matrices F, Q, A, Hand R, which are determined through maximum likelihood 

estimation of these parameters. The Kalman filter was motivated in the above discussion in 

terms of linear projections. The forecasts ~tlt-I and Ylit-I are thus optimal within the set of 

forecasts that are linear in (Xt'St_I)' where SI_I == (y't-I ,y't-2 , ... ,y\ ,X\_l ,X't-2 , ... ,X'I )'. 

If the initial state ~I and the innovations {wt'V[}~_1 are multivariate Gaussian3
, then the 

stronger claim can be made that the forecasts ~tlt-l and Ytit-! calculated by the Kalman filter 

are optimal among any functions of (xpS t_I). Moreover, if ~1 and {Wt,Vt}~_l are 

3 The vector Y =(Y" Y2" .. , Yn ). has a multivariate Gaussian or multivariate normal distribution if 

fy(y) (2n),nI2[rf'12exp[(_-})(Y-llnr'(y 11)] and is written as Y, - N(Il,n)withthemean/l 

an (nxl) vector and the variance-covariance a matrix n of dimension (nxn) which is symmetric and 
positive semidefinite. 
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Gaussian, then the distribution of YI conditional on (xl' SI_I) is Gaussian with mean given 

by (3.23) and variance given by (3.24): 

YI I Xl'SH - N«A'xI + H'~II(_I),(H'Ptit-lH + R»; 

that is 

!ytlXt .9 t - 1 (Y 1 IxI'S (-I) 

H + R 1-112
( 2n)-nI2 IH' P 

tlt-l 
(3.25) 

x exp{-t(Yt A'x( - HI~t1t_I)'(H'PIII_IH + R)-l 

x (Yt - A'xt - H'~tit-l)} for t = 1,2, ... ,T. 

From the above equation, the sample log likelihood can be constructed, namely 

T 

I)og!YtIXt. 9t_l(Yt IxpSt-l). (3.26) 
t=1 

Expression (3.26) can then be maximised numerically with respect to the unknown 

parameters in the matrices F, Q, A, Hand R. Burmeister and Wall (1982) illustrate this 

application. 

To summarise, the state vector ~t and its mean squared error PI are recursively estimated by 

the set of equations (3.17) through (3.20), which also represents the key equations for the 

Kalman filter. ~slv is the forecast of the state vector at time period s, given information 

available at time v. Note that the recursion for P does not depend on the forecasted state 

vector, or on the observed data (Ypxt). 

To implement the Kalman filter, the starting values must be specified and the unknown 

matrices must be replaced by their estimates. By default, a software package like EViews 

obtains starting values by treating these matrices as fixed coefficients and estimating them 

using OLS. 

Once starting values are obtained, the parameters A, H, F, Rand Q are estimated by 

maximising the log likelihood function under the assumption that the distribution of y" 

conditional on xt and past values of (Yt,x1), is multivariate normal (Gaussian). 
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3.4.3 State-space model with stochastically varying coefficients 

In the above discussion, it was assumed that the l!latrices F, Q, A, Hand R were all 

constant. The Kalman filter can also be adapted for more general state-space models in 

which the values of these matrices depend on the exogenous or lagged dependent variables 

included in the vector XI' 

Equations (3.9) and (3.10), i.e. the state-space representation may thus be altered to: 

Yt a(x t) + [H(xt)]'St +wt (3.27) 

(3.28) 

Here F(xJ denotes an (rxr) matrix whose elements are functions of Xl; a(xt ) similarly 

describes an (nxl) vector-valued function and H(xt } an (rxn) matrix-valued function. 

It is assumed that conditional on Xl and on the data observed through date t-l, denoted 

(\ (" , )''" "'[_I == Y(_·I'y t-2 , ... ,y l'X t_I'X 1-2 , ... ,X 1 , the vector (V\+I' w' t )' has the Gaussian 

distribution 

tv + 
1 I x S ] - N([O]' [Q(X t O]J. (3.29)[ W t t' 1-1 0' ° ) R(x

t
) 

Equations (3.27) to (3.29) generalise the earlier framework by allowing for stochastically 

varying parameters, but it is more restrictive in the sense that a Gaussian distribution is 

assumed in (3.29). Hamilton (1994:399-400) explains the role of the Gaussian 

requirement, as set out below. 

Suppose it is taken as given that SI 1St-I - N(~tlt-pPtlt-l)' Assuming as before that x[ 

contains only strictly exogenous variables or lagged values of y, this also describes the 

distribution of St IxI> St_I' It follows from the assumptions in (3.27) to (3.29) that 

(3.30) 
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Conditional on Xt• the terms a(xt), H(xt) and R(xt) can all be treated as deterministic. Thus, 

the formula for the conditional distribution of Gaussian vectors 4 can be used to deduce that 

(3.31) 


where 

~tIt ~tlt-l + {PtIHH(Xt)[[H(xt)]'Ptlt_IH(xt)+R(xt)]-1 x[Yt -a(Xt)-[H(Xl)]'~[ll_J} 
(3.32) 

and 

(3.33) 

It then follows from (3.27) and (3.29) that ~l+l 1St - N(~l+IIt'Pl+ll[)' where 

and 

(3.34) 


(3.35) 


Equations (3.32) through (3.35) are the Kalman filter equations (3.17) to (3.20), with the 

parameter matrices replaced with their time-varying analogs. Thus, as long as the initial 
A 

state ~l is treated as N(~1Io,P1IO)' the Kalman filter iterations proceed as before. The 

obvious generalisation of (3.25) may still be used to calculate the likelihood function. 

The only difference from the constant-parameter case is that the inference (3.32) is a non­

linear function of XI' This means that although (3.32) gives the optimal inference if the 

disturbances and initial state are Gaussian, it cannot be interpreted as the linear projection 

of ~! on Sp with non-Gaussian disturbances. 

3.4.4 The Kalman filter in terms of conventional least squares procedures 

The exposition above is mainly in applied statistical terms. Cuthbertson (1988:234-241) 

presents the econometrics of the Kalman filter using conventional least squares procedures. 

He begins by reinterpreting the familiar problem of estimation subject to linear restrictions 

4 The conditional density of St given yp is found by dividing the joint density by the marginal density 
(Hamilton 1994: 101-102, 399). 

 
 
 



45 


in terms of a Kalman filter updating equation, utilising the Kalman gain. This is followed 

by a reinterpretation of the Theil-Goldberger pure and mixed estimator as a 'one-shot' 

Kalman filter updating equation combining a priori and sample information. In both of the 

above cases, Cuthbertson reinterprets the standard formulae for the covariance matrix of 

the parameters as Kalman filter variance updating equations. He also concludes by 

presenting the relatively complex case of the state-space form with variable parameters. 

3.5 	 IMPLEMENTATION OF THE LEARNING PROCESS IN A 

MACROECONOMIC MODEL 

The learning process is generally implemented in model context as follows. The model 

essentially contains three blocks of equations, namely: 

i = l. ..n, t = l. .. T 	 (3.36) 

(Y~+I = gk(Yt'X,C,t) k l. ..m 	 (3.37) 

c,t = C,t-I + VI vt - N(O,Q). 	 (3.38) 

Equation (3.37) represents the measurement (or observation) equation(s) of the state-space 

model in Kalman filter terms, while equation (3.38) represents the state (or transition) 

equation(s). 

Assuming that the value of C,I-I is known, the last block of equations for the expected value 

of C,I can be solved, which is simply the Kalman filter prediction equations for c" called the 

state vector. Given c" the second block of equations for the expected value of tYt:1 can be 

solved, and given this, the first block of equations for Yt can finally be solved. 

Q, the covariance matrix of the errors in the equations governing the evolution of the 

parameters (or in Kalman filter terms, the state equation error terms) is given by the 

original estimation and an estimation for Pt - I can be obtained (the uncertainty of the 

parameters or state variables). The Kalman filter prediction equations for P can then be 

used to derive an estimate of t-I Pt' Having solved the complete model for Yt , we can 
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determine the one-step-ahead prediction error, that is the error that occurs between the 

expectation of the vector Yt derived from the learning model and the model's final solution 

for Yt. The one-step-ahead prediction error is a combination of stochastic error terms of 

the measurement and state equations. Given this and the estimate of Pllt-I' the Kalman filter 

updating equations can be used to derive revised estimates of Pt and ~t. The updating is 

done on the basis of the observed errors between the whole model solution and the original 

expectations model forecast. 

The process is then repeated for the next period, starting from the new updated estimates of 

~t to predict ~t+ I' and so on. In this way, the learning model will adjust its own parameters 

to cope with any change in structure or regime of the whole modeL In the forecasting 

period, the final values of the state vector are used, in addition to other exogenous input, to 

solve the model for Yt • 

The underlying assumptions of this process are still quite strong, as agents are still assumed 

to process all available information in an optimal fashion and a substantial degree of 

sophistication on the part of the economic agent is still assumed. The learning model may, 

however, fulfil the criteria for weak rational expectations, since agents are not assumed to 

have full information. They will most likely make mistakes in the short run, but 

systematic errors over an extended period of time are ruled out. 

Considering the model's response to any regime change reveals that the parameters of the 

learning rule respond over time to that change. The behaviour of the parameters of the 

rule, provides an important insight into the form of equilibria which may emerge from the 

system. Marcet and Sargent (1988) summarise the main theoretical results. The concepts 

of learning is characterised as the process of changing the parameters of the rule. If these 

parameters settle down to some fixed level, learning may be regarded as having ceased and 

this is sometimes called an expectational equilibrium (or E-equilibrium). Marcet and 

Sargent demonstrate that this stable condition is also a full rational expectations 

equilibrium. 
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3.6 EMPIRICAL LITERATURE ON THE LEARNING APPROACH 

Although the theoretical literature on learning has grown from the early work of Friedman 

(1975 and 1979), the empirical literature has remained relatively sparse. Two empirical 

implementations of the learning approach in large-scale macro models will be presented as 

representative examples of the application of the Kalman filter to an expectations rule. 

The learning approach to the treatment of expectations was first adopted in the exchange 

rate sector of the London Business School (LBS) model of the UK economy. Hall and 

Garratt (1992b) present an empirical model for the Sterling/Deutchmark real exchange rate 

assigning an important role to exchange rate expectations, which are assumed to be formed 

through a Kalman filter-based learning process. 

The structural form of the exchange rate equation, derived from a capital stock model with 

government intervention is: 

(3.39) 

with 

E( log of the real Sterling/Deutchmark exchange rate 

= real interest rate differential between UK and German short-term 

rates and 

= log of the ratio of exports to imports which is a measure of the real 

trade balance. 

The end result of a search is reported as a restricted form of the above equation, estimated 

by three stage least squares, namely 

E t = 0.0329 + 0.Q75E~+1 + 0.299Et-I + 0.352r( (3.40) 

which, in the long-run, exactly equals uncovered interest rate parity (UIP). 

The time-varying rule for exchange rate expectations is derived from the structural equation 

(op. cit.: 10) by rearranging equation (3.39) to give: 

(3.41) 
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Lagging this equation by one period and using it to substitute out the term in E(, after 

collecting terms, gives: 

E~+I = ~o + (~12 + ~2)Et_1 + ~1~2Et-2 + (~1~3 + ~4)rt-l (3.42) 

The ~ coefficients are combinations of the a coefficients, and the contemporaneous terms 

in the above equation are replaced by assuming partial reduced form equations for rt and T t , 

respectively, as follows: 

r( = C1(L)rt_1+ C2(L)GDPt_1 + C3(L)INFt_1 (3.43) 

Tt = D1(L)T t_1 + D2(L)GDPt_1 + DiL)P0t_l + DiL)E t_1 (3.44) 

where PO is the log of the oil price and INF is the rate of inflation which could include 

both UK and German inflation or the differential and GDP is the log of real GDP. C i and 

Di are polynomial lag operators. 

The terms rt and T t my thus be eliminated and collection of terms yields: 

2 
~o + (~I + ~2 + ~5D4(L»E t _ 1+ ~1~2Et-2 + (~1~2 + ~4 + ~3Cl (L»rt_1 

+ ~1~4rt-2 + (~1~5 + ~6 + ~5Dl (L»Tt _ 1 + ~1~6Tt - 2 + ~3C2 (L)GDPt _ 1 
+ C3(L)INFH + ~5(D2(L)GDPT_l + D3(L)PO t _J· 

(3.45) 

Equation (3.45) is regarded as the basic partial reduced form rule which agents use to form 

their expectations. The above was simplified by dropping any lagged terms greater than t-3 

by introducing a stochastic constant (op. cit.: 11). 

The basic structure was then used in a specification search to produce the following 

equation for expectations formation: 

(3.46) 

Note that all lagged information is dated t -1 when the equation is used to forecast Et + l' i.e. 

the information set does not include current information. The parameters yare restricted 

forms of the ~ coefficients. Hall and Garratt (op. cit.: 11) note that their derivation of the 

expectations equation is by no means exclusive. In principle, formation of expectations 

could be the result of information from anywhere in the model, provided that it is relevant. 
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The time-varying parameters are then assumed to be generated by the following process: 

(3.47) 

Equation (3.46) may be regarded as the standard measurement equation and the set of 

equations (3.47) as the state equations. The model has thus been formulated in state-space 

form and the Kalman filter can be applied to estimate the time-varying parameters 

conditional on the variance of the error terms of (3.46) and the covariance matrix of (3.47), 

which is assumed to be diagonal. The estimation reported (op. cit.: 14-18) suggests that the 

most important determinants of the forward exchange rate are real interest rate differentials 

and the previous period's exchange rate. All parameter values displayed a reasonable 

degree of time variance, with the main movements in the coefficients on the real interest 

rate differential and the ratio of exports to imports for the UK, reflecting a faster rate of 

learning on these variables. 

Another example where the Kalman filter was employed to estimate the time-varying 

parameter rule of expectations is a study conducted by Barrel et ai. (1994: 173). In this 

study, the boundedly rational learning approach was applied to wage behaviour in three 

countries, namely the UK, France and Italy. A time-varying parameter model for 

forecasting prices was first estimated. This defined the information set of the economic 

agents. The expectations rule together with the structural equations in which the 

expectations are embedded were then incorporated into the global econometric model 

(GEM), developed by the National Institute of Economic and Social Research (NIESR) in 

the UK and jointly maintained by the Institute and the London Business School. 

Barrel et ai. (op. cit.: 174) in deriving the time-varying rule for price expectations, noted 

that by definition, it did not follow from a tightly formulated theory. The selection was 

however also not completely ad hoc and variables were selected to capture important 

endogenous linkages operating in the model. 

The dependent variable for the price expectations equation in each of the three countries is 

the change in the log of consumer price inflation one period ahead. The information set 

includes the change of the log of the home country inflation, lagged by one or two periods, 
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a short-term interest rate lagged by one period, the change of the log of capacity utilisation, 

lagged by one period, and the change of the log of the relevant spot nominal exchange rate, 

with respect to the Deutschmark. The only exception is France, where German inflation 

was also included. 

Barrel et ai. (op. cit.: 175) first report an OLS estimation of the expectations rule, proving 

that in all three cases price expectations are autoregressive with lagged home country 

inflation the most important variable. The other variables are for the most part 

insignificant but are retained for the reason that they might play an important role in 

capturing endogenous linkages in the model. The estimates of time-varying parameters 

reported demonstrate a reasonable degree of variation over the period. The 

hyperparameters associated with the autoregressive terms imply that learning will occur 

rapidly with respect to changes in these variables and, by contrast, learning with respect to 

the other variables will be slow. 

Finally, Barrel et ai. (op. cit.: 183) report on the outcomes of a set of simulations where the 

learning mechanism is in operation. These are then compared with those under rational 

expectations and a fixed parameter adaptive expectations mechanism. The simulations are 

the realignment of the franc, lira and pound within the ERM, and an oil price shock. The 

authors conclude from the results of these simulations that filter-based learning models 

caused prices to rise more sharply than they do under model-consistent or strongly rational 

expectations. This suggests that policy analysis within models relying only on model­

consistent expectations, can be seriously misleading. 

3.7 CONCLUSION 

In this chapter, the theoretical development on the formation of expectations by economic 

agents was surveyed, starting with the adaptive expectations hypothesis, rational 

expectations (also called model-consistent expectations), and, most recently, boundedly 

rational learning. Practical problems with the implementation of the adaptive expectations 

hypothesis and the rational expectations hypothesis in large-scale macro models have been 

highlighted. The proce~s of learning has been proposed as an alternative where the 
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possibility that economic agents can make consistent prediction errors, even in the very 

long run, is ruled out. Boundedly rational learning seems to be an appealing alternative; 

full information on the part of the economic agent is not required, but it is accepted that the 

intelligent agent, knowing the structure of the expectations model, will assimilate new 

information as time progresses and adjust the parameters of the model accordingly. 

An exposition of the state-space representation of a system and the Kalman filter as time­

varying parameter estimation technique were presented. A brief account of a number of 

international studies in this regard concludes this chapter. Chapter 5 describes the 

application of the Kalman filter to a price expectations rule for expectations formation by 

South African consumers, as well as the incorporation of the price expectations variable 

into a set of behavioural equations. 

 
 
 


