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Chapter 8 Neural Network Implementation with
Numerical Supervision

8.1. Purpose

This chapter serves to evaluate the feasibility of using neural networks trained with
numerical supervision for damage quantification and qualification on an actual
structure during operation. Industrial structures such as the Majuba Power Station FD
and ID fans cannot be artificially damaged in order to do experimentally supervised
neural network training due to the costs that will be involved in doing so. It would be
ideal if the neural networks could be trained on numerically obtained features in order
to be used on the actual structure, thus performing numerically supervised training.

With this in mind, the aim is to train neural networks solely on features obtained from
FEM calculations using the updated FEM.

8.2. Introduction

Unlike in Chapter 7 where a lot of features were available to choose from, the only
features available for network training are FRF energies and peak shifts obtained from
the FEM. Although it is possible to obtain time signal estimations from the FEM, the
accuracy of these estimations will be very doubtful due to the differences in excitation
between the FaBCoM TeSt during operation and the FEM during testing. The reason
why GMSFs cannot be used directly as features for neural network training, is the
effect of modal density as described in Section 3.5.

In order to be able to use the neural networks trained on numerically obtained features
for damage identification on the FaBCoM TeSt, several issues need to be taken into
account:

e The FEM node or element locations, from which FRFs are to be calculated,
should correspond to the FaBCoM TeSt sensor locations and orientations.

e The FEM result types should correspond to the FaBCoM TeSt measurement
types. In other words, FEM FRFs should be calculated using strain or
acceleration corresponding to the FaBCoM TeSt transducer measurements.

e Normalization of the experimentally obtained features to the numerical ones
will probably be needed due to the differences between the two test
procedures.

e The same frequency resolutions should be used for both numerical and
experimental features.
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8.3. FEM Testing Procedure

Figure 8-1 shows the setup for the FEM FRF calculations with the measurement
locations corresponding to those of the experimental setup as well as the blade
numbers.
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Figure 8-1: FEM Test Setup

The FEM can only be tested for blade root damage increments of 25%. This is due to
the element mesh resolution of the blades as described in Section 2.3. As in Chapter
6, damage was simulated at blade #3 and blade #4. The same procedure was followed
as depicted in Figure 6-3 except for the damage increments being 25% and not 12.5%.
Comparing to Figure 6-1, Figure 8-2 gives the damage cases used for FEM testing.
Damage was simulated in the FEM by deleting appropriate MPCs. This is similar to
the nodal dissociation method used by Smit [45] for crack modelling.

The point of excitation as shown in Figure 8-1 was chosen to be the same as that used
in the EMA for the reason of allowing torsional, sideways and normal excitation of
the structure. A constant excitation force of 1 N was chosen over an excitation
bandwidth of 2000 Hz at 2.5 Hz intervals. Thus a single white noise input force is
simulated corresponding to turbulent forces experienced by operational wind turbines
([2]). In the FaBCoM TeSt however, the force inputs are more complex as they are
distributed forces and comprise of turbulent force inputs as well as rotational
excitation by the electric motor, blade pass frequency excitation and other operational
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Figure 8-2: Damage Cases used in Numerical Testing

excitation forces.  Differences in amplitudes between the FEM FRFs and
experimental ARMAX results are expected as direct result of this. To resolve this
issue, normalization will be used where needed.

8.4. Numerical Feature Extraction

8.4.1. Modal Pérameter Extraction from  Experimental
Measurements

In Section 7.2.2.1, it was decided to make use of ANPSDs and MRFs for modal
parameter extraction instead of ARMAX modelling due to computational costs.
However, ANPSDs and MRFs were found to be much less accurate then ARMAX
models results. Also, once an ARMAX model is estimated for a time signal, it is very
easy to obtain modal frequencies for that model. Smit [45] used 48" order ARMAX
models as he found this to be sufficient for datasets with sampling frequencies of
5120 Hz and a bandwidth of 2000 Hz. As the same experimental setup was used in
this dissertation as in Smit’s, it was decided to use the same order ARMAX models.
The software used to calculate the ARMAX models was the System Identification
Toolbox Version 5 for Matlab.

8.4.2. Peak Frequency Normalization

As described in Section 5.1.2, not all the natural frequencies of the FEM are equal to
that of the FaBCoM TeSt. For this reason, FRF peak normalization in terms of
frequencies needs to be done as shown in Figure 8-3 for EMS #4. For frequency
normalization, use was made of factorisation. The frequency ranges used for FEM
FRF peak identification were chosen to be from 5 Hz below the modal frequencies for
50% damage of blades #3 and #4, and to 5 Hz above the modal frequencies for the
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Peak Frequency Normalization
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Figure 8-3: Peak Frequencies for EMS #4

undamaged case. For experimental peak identification, the top frequency limits were
chosen to be 5 Hz above the experimental modal frequencies for the undamaged case.
The lower ranges were determined by the ranges used in the corresponding FEM in
order to obtain the same number of curve points for the respective experimental and
FEM ranges. To explain this more mathematically, let the FEM FRF peak frequency
range for a specific peak stretch from a lower limit @, to a higher limit w,. If the
frequency range for the corresponding experimental peak stretches from a lower limit
@, to w,, then the limit differences are equal as given by Equation ( 8-1):

@, — @) =W, — 0,
(8-1)

8.4.3. Energy Normalization

As discussed in Section 8.3, differences in amplitudes between the FEM FRFs and
experimental ARMAX results are expected. This is also confirmed in Figure 8-3.
Energy normalization was performed only after peak normalization was performed.

The first step of normalization of numerically obtained features to experimental
features is based on the assumption that for a certain frequency range, the amplitudes
of a numerical FRF will differ to that of the corresponding experimental ARMAX
model FRF amplitudes by a constant over that range. This is graphically
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demonstrated in Figure 8-4 for a range stretching from arbitrary frequency points o,
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Figure 8-4: Frequency Response Function Offset Assumption

To express this mathematically, let H,(w) and H, (@) be an experimental ARMAX

model FRF and a numerical FRF respectively at an arbitrary frequency within a

frequency range stretching from @, to @, , so that

= log(Hz )"‘ €y

Iog(Hl )

:CI
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log[

(8-2)

For n discrete points over this frequency range, the area underneath the curve H, over

the range is given by

log(Hll -H,2

log(HI1 )+ log(H]?' )+ et log(Hln)

(1))

Zn: log

1

i

(8-3)

Equation ( 8-3 ) can also be written for H,.
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Using Equation ( 8-2 ) and assuming ¢, remains constant over the specified range,
Equation ( 8-4 ) is obtained:

S loglH, )=Tlog(H,' -10% - H,? -10% - .- H," -10% )=log(10" -H," -H,* -.... H,")
i=l

=10g(H2I ‘H,” -...-Hz")-z-ncI
26 :%{glog(Hli)—glog(Hziﬂ
(8-4)

The second normalization step used was the simple factorisation of the FRF areas as
given in Equation ( 8-5 ):

(8-5)
The frequency ranges used was chosen to be 10 Hz around each modal frequency

(w,,) for the undamaged case as given in Equation ( 8-6 ):

o =w,-5Hz andw, =w, + 5Hz

(8-6)

To obtain the final normalized energies, these two normalization steps are combined
as given for a frequency range by Equation ( 8-7 ):

Normalized Energy =l n log\H," |+ ne, |+] ¢, x " logHzi
2| & 2 1 2

i=1

(8-7)

With the frequency resolution used (as described in Section 8.3) together with the
frequency range definition given by Equation ( 8-6 ), it means that the number of
discrete points in these ranges, n, will be equal to five.

8.5. Neural Network Training

Several neural networks were trained with different goals in mind namely global
damage quantification, global damage qualification, sensor position identification,
blade #3 damage quantification and blade #4 damage quantification. For each of
these, several networks of different complexities in terms of network architecture
were trained in order to make use of neural network committees as suggested by
Marwala [33]. In this way, the unique characteristics of the different networks were
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combined to yield the best results. The network architectures used in each network
commiittee are listed in Table 8-1.

Table 8-1: Network Committees Network Architectures

Committee Global Blade Damage
Network Number 4 5 6 7
Dimensions 12x1 11x1 10x1 9x1
Layer 1 TSTE TSTE TSTE TSTF

& & |[Layer2 LTE LTF LTF LTF

£ S |Layer3 - - - -

= £ |Layer 4 5 = - -
Committee Multiple Blade Damage
Network Number 1 15 16 1
Dimensions 6x4 12x4 12x6x4 |12x10x4
Layer 1 TSTF ESER TSTF TSTF

& & |Layer2 LTF LTF TSTF __ |ISTF

£ © |Layer3 e : LTF LTF

= = |Layer4 = . . -
Committee Blade Identification
Network Number 2 3 8 9
Dimensions 6x8x1 6x8x4x1 |12x1 10x1
Layer 1 TSTF TSTF T5IF TSTF

& § |Layer2 TSTF _ |TSTF  |LTF LTF

g g Layer 3 LTF TSTF - -

= & |Layer4 - LTF - -
Committee Blade #3 Damage
Network Number 18 19 20 21
Dimensions 12x6x2x1 [12x1 12x6x1 12x6x2x1
Layer 1 TSTF TSTF TSTE TETE

& & [Layer2 TSTF  [LTF TSTF  |TSTF

£ 2 |Layer3 TSTF |- LTF TSTF

& & [Layer4 LTF 3 - LTF
Committee Blade #4 Damage
Network Number 10 12 13 14
Dimensions 12x1 12x6x2x1 |6x6x2x1 |6x8x2x1
Layer 1 TSTF TSTF TSTF TSTFE

& & |Layer2 LTF TSTF __ |TSTF __ |TSTF

£ 2 |Layer3 - TSTF __ |TSTF __ |TSTF

&= & |Layer4 L LTF LTF LTF

Three sets of training data were used, containing the features extracted for all of the
nine damage cases from the FEM strain FRFs of blades #1, #2 and #3 respectively as
well as from the rotational FEM acceleration FRFs at the root of blade #4. Each
dataset consisted of the a total of six features namely the frequency shifts of EMSs #4
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and #6 as well as the energies of EMS #X for both the strain signal from the particular
blade for the training set and the rotational acceleration signal.

8.6. Neural Network Testing

All the network committees were tested using nine additional experimental data sets
for each of testing sets #1, #2 and #3 as listed in Table 8-2. The results yielded are
presented in Figure 8-5 to Figure 8-9 with the damage cases numbered sequentially
according to dataset number. Each testing set number indicates which blade’s strain
signal features were used for that dataset. As in Chapter 7, the results yielded were
averaged to obtain more representative results.

Table 8-2: Training and Testing Sample Numbering

Sample #

Damage Case Testing Set #1 Testing Set #2 Testing Set #3
4a2 1 10 19
4c2 2 11 20
4e2 3 12 21
4a4 4 13 22
4c4 5 14 23
4ed 6 15 24
4a6 7 16 25
4c6 8 17 26
4e6 9 18 27

First, the use of a neural network committee for global damage quantification was
explored. Rather good results are obtained as shown in Figure 8-5. This network
committee is a bit conservative with regards to global blade damage detection when
blade #4 is undamaged, as a higher damage level is detected than what is actually
present. The results are roughly similar for all three training sets.

Networks were then trained for quantifying damage for all four blades
simultaneously. Figure 8-6 shows the network committee results where it can be seen
that very good results are obtained for blade #3 damage detection while less well
results are obtained for blade #4.
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Glebal Damage: Average Results
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Figure 8-5: Global Blade Damage Detection Network Committee Results
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Figure 8-6: Multiple Blade Damage Detection Network Committee Results
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An attempt was made to train networks for determining strain sensor locations. The
results can be seen in Figure 8-7, showing that it was not possible to determine strain
sensor location using the neural networks that were trained for this purpose. This
problem of sensor location can possibly be rectified by training the previous set of
networks using blade numbers relative to sensor position. In other words, instead of
training the networks to quantify damage for a specific blade (in this case blade #3),
the networks may rather be trained to quantify damage on the blade adjacent or
opposite to the blade on which the specific strain sensor is located. As an example the
same network trained to quantify the damage on blade #2 using the strain signal
features of blade #1, may then be used to quantify the damage on blade #3 using the
strain signal features of blade #2. Thus when this network detects damage, it is then
known that the damage must be located on a blade adjacent to the blade on which the
strain sensor is installed.
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Figure 8-7: Blade Identification Network Committee Results

After this, networks were trained for damage detection only on blade #3. From Figure
8-8. it is seen that the network committee yields very good results when blade #3 is
damaged. The network committee is otherwise conservative, detecting damage on
blade #3 when there is none.

Neural networks were also trained for damage detection only on blade #4. The results
of the network committee are shown in Figure 8-9. Relatively good results are
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obtained for an undamaged blade #4 with blade #3 damage below 50%. Blade #3
damage has a large effect on the results at blade #4 damage levels of 25% and below.
Overall, the results are not very accurate but are still indicative of blade #4 damage.
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Figure 8-8: Blade #3 Damage Detection Network Committee Results
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Figure 8-9: Blade #4 Damage Detection Network Committee Results
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8.7. Numerical Methodology Summary

An overview of the numerically supervised neural network damage detection
methodology is shown in Figure 8-10. The methodology phases are similar to that of
the experimental methodology as described in Section 7.6.

FEM Design Numerical Testin Network Trainin Implementation
g > g . g - p

Phase Phase and Testing Phase Phase

Figure 8-10: Numerical Methodology Overview

The design phase of the methodology is shown in Figure 8-11. This includes the
design and validation of the FEM. The design of the FEM tests will correspond to the
way in which measurements are taken on the actual structure as well as operational
conditions. The test phase of the methodology as shown in Figure 8-12, include both
the calculation of the numerical FRFs as well as the calculation of the ARMAX
models of the experimental data used for normalization constants calculations. In this
phase, the necessary modal frequencies are calculated as well.

FEM
Design FEM [ Update FEM [P Validation
via EMA

No
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Design
FEM Tests

v

Numerical

Testing Phase

Figure 8-11: Numerical Methodology Design Phase

In Figure 8-13, the training and testing phase is laid out. In this phase, the frequency
bandwidths are chosen and the feature frequency indexes as well as normalization
constants calculated. After selecting usable features, the networks are trained after
performing PCAs on the data. The final phase is the implementation of the neural
networks. In this phase, only experimental features are used as inputs to the networks
after being normalized.
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Figure 8-12: Numerical Methodology Test Phase
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Figure 8-13: Numerical Methodology Training and Testing Phase
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Figure 8-14: Numerical Methodology Implementation Phase

It 1s very clear that the methodology is much more complicated than that of the one
presented in Section 7.6.

8.8. Conclusion

In this chapter, it was proved that neural networks trained with numerically
supervision can be used to quantify and qualify damage on an actual structure. Use
was made of different neural network committees made up of networks with different
architectural complexities to detect damage on the FaBCoM TeSt.

It was necessary to perform feature normalization mainly as a result of the differences
between the FaBCoM TeSt and FEM in terms of excitation. Normalizing constants
were calculated only once from a single set of experimental features obtained from an
undamaged structure. By using excitation in the FEM that is more representative of
the operational forces experienced by the FaBCoM TeSt, it may be possible to reduce
the extent of normalization needed even further. However, this will be much more
computationally expensive and is rather unnecessary in the light of the ease of
obtaining the normalizing constants.

Good results were yielded for multiple or global blade damage detection and damage
detection on blade #3. Using these two network committees in conjunction with each
other, it will be possible to perform damage quantification and qualification for
multiple blade damage. Damage on blade #4 could not be accurately detected and it
was not possible to determine sensor positions using the committees trained for the
two respective purposes. By changing the training philosophy of the networks in
terms of blade damage quantification of blades relative to sensor position, the latter
issue might be resolved.

Although the aim was to train the networks solely on numerical results, use was still
made of a set of experimental features for calculation of normalization constants.
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However, these normalizing constants only needed to be calculated once using a
single set of experimental features for a healthy structure.
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