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Synopsis 

Proportional, Integral and Derivative feedback control (PID) is a mature 

technology responsible for the majority of automated decision making in the 

process industry. Despite the high reliance on this technology, low levels of 

maintenance and performance measurement are the norm in the process 

industry. 

Several analysis techniques exist for identifying oscillation, and then highlighting 

the root cause of the problem. Several time and frequency domain statistical 

techniques, as well as wavelet analysis are used to diagnose loop performance. 

In this study, 127 different control loops are analysed, and in depth 

troubleshooting is performed on a selection of 18 different control loops. 

The performance of flow loop F1035 is tracked through a number of different 

analysis techniques, highlighting the pitfalls of using only a single analysis 

technique. Lower order statistics and minimum variance performance analysis 

show that the loop is performing well. Plotting the PV-OP relationship suggests 

non-linear tendencies on F1035, and this is corroborated using high order 

statistical analysis (bicoherence). Non-linear loop behaviour is often as a result of 

a slip stick cycle, a sign that valve maintenance may be required. Frequency 

(power spectrum) analysis shows a 43 minute dominant oscillation, suggesting a 

low frequency disturbance affecting loop performance. 

Process units are typically exposed to cyclic behaviour occurring at several 

different frequencies, each having a different effect on the control of the process. 

By using a frequency based approach based on sinusoidal basis functions (ie 

Fourier analysis), these different frequencies get aggregated. This smudging of 

specific frequency information makes it difficult to pin-point the root cause, and 

makes the grouping of common oscillations difficult. In order to address the 

above issue, F1035 is analysed using othornormal wavelet basis functions. The 

results show that the period of oscillation is affected between day and night, with 

roughly a 2 minute oscillation prevalent at mid night, compared to a 100 minute 
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oscillation at mid day. Obviously the 12 hour day-night swing is also prevalent. 

This information is unique to this approach. Ways of visualising changes in 

oscillatory behaviour using the wavelet analysis are also presented.  

Technical analysis of controller performance is only a small subsection of the 

issues that need to be considered when implementing a loop monitoring and 

maintenance solution. Issues such as connectivity, configuration, analysis, 

reporting and auditing are key in designing a workable maintenance environment 

for PID loop maintenance.  

Several packages are available commercially to assist industry in performing 

loop maintenance. When evaluating which package is best suited to a specific 

requirement, it is important to consider several different issues. The different 

audiences with a vested interest in loop performance require special attention in 

terms of reporting requirements. Visualisation of results is often more important 

than the physical measure of performance. Finally, the ability of a company to 

benchmark itself against current best practices and performance is often 

perceived as a major advantage. 

The results presented and discussed were generated using real industrial data. 

Information regarding suggested best practice when evaluating commercially 

available products is based largely on the author’s personal experience in the 

large scale industrial installation of such a monitoring solution. 
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Nomenclature List 

δ - impulse signal 

ΗT – Hilbert space 

a - wavelet scaling factor 

a(t) – white noise signal 

ARMA – autoregressive moving average 

b – wavelet translation factor 

C – complex numbers 

Ci – ith order cumulant 

CLP – closed loop potential 

cn – fourier transform coefficients 

d – process input/disturbance variable 

D(z-1) – discrete disturbance transfer function 

δ(t) – impulse function 

δ(w) – fourier transform of δ(t) 

E – expectation 

e(t) – process error 

en – Fourier modes 

F(t) – fourier transform of t 

f(t) – period function 

^

Tf (w) – fourier transform of f 

^

Tf (w, t) – windowed fourier transform of f 
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f~ (w) – wavelet transform of f 

g(u) – windowing function 

j – resolution counter 

K(z-1) – discrete PID controller transfer function 

Kc – controller gain 

Kp – process gain 

Mi – ith order moment 

MSE – mean square error 

MV – minimum variance 

P(z-1) – discrete process transfer function 

PCA – principle component analysis 

pe(k) – first order decay pattern 

PID – proportional, integral, derivative 

Pj – approximation operator 

Qj – detail operator 

R – real numbers 

ruy – cross correlation function of input/output 

Ti – controller integral time 

Ts – sampling interval (s) 

u – process input/manipulated variable 

v(t) – unmeasured disturbance 

Wi- normalised eigen vector 

wn – frequency function 

X(f) – fast fourier transform of f 
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ysp – process setpoint/desired value 

yt – process output 

Z – square matrix of correlation coefficients 

ZT – transform of Z matrix 

λ – first order decay pole 

µi – time series model coefficients 

µy – mean of input signal 

σ2
a – white noise signal variance 

σ2
MV – minimum variance 

σ2
y – actual process variance 

τ – process time constant 

ψi– autoregressive moving average model coefficient 

ψ - mother wavelet 

║ - Norm 

Ω - width of frequency band 

 Mapping 
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1  Introduction 

Basic control loops, based on PID technology, ultimately carry out most business 

decisions made in the chemical industry. Despite the integral role these 

controllers play in the production process, between 66% (Miller & Desborough, 

2001) and 80% (Hugo, A.J, 2002) of all controllers in industry perform 

ineffectively.  

Compounding this poor performance is the fact that most control engineers 

responsible for maintaining the basic control layer do not have the necessary 

tools at their disposal (Desborough, Nordh & Miller, 2001). The problem is thus 

two fold:  

1. The performance of industrial processes is currently sub-optimal due to 

poorly performing basic controllers. 

2. Control engineers often have no tools to measure the basic controller 

performance. 

In a typical chemical process, the control engineer is responsible for hundreds or 

even thousands of individual controllers. This makes the unique analysis for each 

controller impossible. 

Contrasted to this is the increasing acceptance that it is vital to process 

performance and profitability that control assets be monitored and maintained as 

vigorously as other plant assets. (Shah, Patwardhan, & Huang, 2001; 

Ingimundarson, 2001) 

The objective is to evaluate predominately, but not confined too, closed loop 

monitoring techniques. The techniques that were evaluated are able to analyse 

large volumes of data.  

Several different root causes exist for poor controller performance. Differentiating 

between hardware (valve stiction, design, process changes etc.) and software 

(control philosophy, tuning, algorithms etc.) and then in turn each of the sub-
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elements, is an important step in troubleshooting controller performance. 

(Gustafsson, & Graebe, 1998) 

The purpose is to review the measures that currently exist to determine how 

effectively poor performance can be diagnosed. In addition, a new way to 

visualise and troubleshoot oscillations within control loops is presented. The 

method is based on the use of orthonormal wavelet basis functions.  

The study is based on controller monitoring theory available in literature, results 

obtained from monitoring a petrochemical process, as well as the industrial 

experience of the author with available commercial products. 

 

In order to clearly show the advantage presented by wavelet analysis, an 

extensive, though not exhaustive, review of existing closed loop performance 

measures is presented in Chapter 2. In this chapter several frequency (Fourier) 

based methods are used which forms the basis of the introduction to Wavelet 

decomposion, presented in Chapter 3. 

A brief outline of the Methodology followed is presented in Chapter 4. The theory 

presented in both Chapter 2 and Chapter 3 was extensively applied to industrial 

data, and the results of this work is shown in Chapter 5.  

A wide range of different examples are presented, and these are discussed at 

length in Chapter 6. The examples chosen are specifically designed to highlight 

the advantages and draw backs inherent in each of the individual measures. A 

discussion of industrial monitoring is also presented. 

Finally, the conclusions and recommendation based on the above research are 

presented in Chapter 7. 
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2  Closed loop performance monitoring 

2.1 Introduction 

Many of the techniques used in quantifying performance make use of process 

models. For the purpose of this discussion, all methods will be discussed in 

terms of linear discrete time transfer function models (Luyben, 1989):  

)()()1()()1( tvtdzDtukzzPty +−+−−=   (2. 1) 

where y is the process output, u is the manipulated input, d is the disturbance, v 

accounts for the additive effect of noise and unmeasured disturbances. P(z-1) 

and D(z-1) are discrete transfer functions for the manipulated input and 

disturbance respectively. 

Continuing along the same lines, it is possible to describe the feedback 

controller: 

)()()(
)()()( 1

tytyte
tezKtu

SP −=
= −

     (2. 2) 

Figure 2.1 shows the block diagram for the process. 

 

Figure 2- 1: Process block diagram (Stephanopouos, 1984: 570) 

-1

K(z -1 ) 

D(z-1)

P(z-1)
∑ ∑y sp(t) y(t)u (t)

d(t) 

v(t)∑

1 
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From the above, it is possible to derive the closed loop output error: 

)()(1
)()()()(

)( 11

1

−−

−

+
−−

=
zKzP

tvtdzDty
te sp

    (2. 3) 

The dynamic response trend for e(t) can be solved using an Autoregressive 

Moving Average (ARMA) model of the form (Ljung, 2002) 

)()...1()( 11
2

1
1 tazzzte n

−−− ++++= ψψψ   (2. 4) 

The moving average coefficients ψi are determined only from the combined effect 

of the open loop dynamics of the measured disturbances, d(t), the noise and 

unmeasured disturbances, v(t) and the set point changes, ySP(t). 

2.2 Minimum-variance  

The development of the minimum variance (MV) index by Harris is often 

considered the start of feedback controller monitoring. This index or benchmark 

is based on a comparison between the actual performance of a controller and 

that of a theoretical MV controller.  

A MV controller generates a controller output that will minimise the error between 

the set point and the output n controller executions in the future (where n is the 

number of controller executions within the dead time) (Tham, 1999).  

In order for this controller to exist, we require a perfect model of the process, as 

well as a perfect model of the disturbance. Thus, one sample time after the 

process dead time, the controller error will be zero (except for the measurement 

noise) (Harris, Seppala & Desborough, 1989). 

The performance index a.k.a the closed loop potential (CLP) is obtained by 

taking the ratio of the minimum achievable variance (σmv
2) to that of the actual 

controller variance (σy
2). 

2

2

y

mvCLP
σ
σ

=       (2. 5) 
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The above measure was first introduced by DeVries and Wu (1978), and is 

known as the Closed-Loop Potential (CLP). When the CLP is 1 the best 

achievable feedback control is being applied relative to both the process and the 

disturbance characteristics. When the CLP is equal to 0 there is effectively no 

control driving the error to zero. By evaluating the CLP in combination with the 

actual variation in the process it is possible to ascertain whether changes need to 

be made to the controller (CLP close to 0 but σy
2  high), or to the source of the 

variability (CLP close to 1 but σy
2  high). 

In order to calculate the CLP the individual variances are required. The actual 

process variance , σy
2, is easily obtained from process data.  

As mentioned, in order to design, and thus calculate the variance of a MV 

controller, one requires a perfect process and perfect disturbance model. Neither 

of these are readily available. However, it is possible to determine the closed 

loop response of a MV controller given only the dead time of the process, and the 

closed loop data. 

The MV is estimated by fitting a time series model of the form of equation 2.4 to 

the closed loop error e(t), given that n is equal to the number of sampling 

intervals within the dead time. Thus  

211
2

1
1

2 )...1( anMV zzz σψψψσ −−− ++++=   (2. 6) 

where the variance σa
2 is obtained from the variance in the disturbance, and the 

coefficients ψi. 

Assumed in equation 2.6 is that the mean of the measured disturbance is 0. 

Thus, effectively the input vector is a representation of zero mean noise, with a 

variation of σa
2. Equation 2.6 gives an indication of how well the perfect controller 

could reject the noise, given the inherent process dead time. 

The crux of the Harris approach is that a model of the process is not required. 

The reasoning is that since the controller cannot affect the system output before 

the process dead time has elapsed, the first n-1 coefficients of the impulse 

response of the closed loop transfer function must be equal to the first n-1 
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coefficients of the disturbance or the noise model. This means that the 

performance of a controller can be determined using only knowledge of the dead 

time of the system. This property is known as the invariance property. 

2.3 Modified minimum variance  

2.3.1 Requirement 

Before discussing modified MV techniques, it is necessary to understand the 

requirement for such measures. There are a number of inherent limitations to the 

MV measure (Horch, 1998). 

1. The MV technique is only appropriate if the major dynamic in the system is 

dead time, ie the process is dead time dominant. 

2. There is no way to achieve MV control except through the application of 

MV controllers. If the actual variance is close or equal to the MV, then the 

implemented controller is in effect a MV controller. 

3. When the controller structure is pre determined, as with PID controllers, 

the comparison to a MV controller may be harsh. It is only appropriate to 

use MV benchmarking if the PID controller approximates the MV 

controller, ie when: 

• There is negligible dead time, for example flow loops 

• The process order is low 

• The unmeasured disturbances are stationary. 

Approximately 20% of all PID control loops in the refining industry fall into this 

category (Qin, 1998). 

4. If variability is intentionally allowed in a controller, MV comparisons will be 

meaningless. 

The above set of limitations immediately eliminate the applicability of the MV 

index to any process that has: 
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• Any multivariable interactions 

• Process non-linearities 

• Physical process input/output constraints 

2.3.2 Closed-loop pole modification 

This method is derived specifically for processes where the system dead time is 

very short. In these cases there may be other process limitations which have a 

larger influence on the achievable performance.  

By taking performance limitations due to non-minimum phase zero’s and non-

stable poles into account, it is possible to modify the Harris index to make a more 

accurate performance assessment. (Tyler and Morari, 1995) However, a major 

limitation exists in that this approach requires the user to identify the unstable 

poles and zeros. 

A more useful approach would be to modify the index, but to make use of only 

the measured output and the process dead time, as in the original MV index. The 

difference is introduced in that not all the closed loop poles are assumed to be at 

the origin, as in MV control. Rather, one additional pole is introduced. This 

modified index is by necessity always greater than the Harris MV index. 

It can be shown (Harris, 1998) that the placement of the additional pole is 

obtained by lagging the time series in equation 2.6. Thus: 

( )[ ] )(.....1)...1()( 22111
2

1
1 tdzzzzzzty ininn

nn
−−−−−−−−− +++++++++= µµµψψψψ (2. 7) 

where µi gives the time series coefficients for the closed loop pole. 

This modified index has the property of being larger, ie indication of more 

sluggish control, the further we place the additional pole from the origin. 

Intuitively this makes sense, since the location of a pole should make the 

achievable control worse. This achievability is then taken into account by the new 

measure. 
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The major limitation with this modified index is process knowledge. In order to 

sensibly place the additional closed loop pole, one requires knowledge of the 

slowest process time constant. Generally, there is the feeling that knowledge of 

the dominant time constant is not more difficult to obtain than an accurate 

indication of the dead time, and as such should not be dramatically more difficult 

to implement. 

Once the dominant time constant is known, the pole is placed so as to indicate to 

what degree the process should be speeded up by control, ie if the process 

should be speeded up 3 times, the pole would be 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

≥ τµ
ST

e
3

. 

2.4 Auto correlation  

The auto correlation test is based on one of the properties of minimum variance. 

Since the auto correlations of the sampled errors are zero for all lags greater 

than the period of dead time (for minimum variance controllers), a comparison to 

minimum variance based on this condition is possible. (Harris, 1989; Huang et. 

al., 2000) 

As with the basic minimum variance testing, the rating of output error based on 

this “harsh” minimum variance technique is often not practical. In order to make 

the result more representative, a different autocorrelation pattern can be used to 

represent the condition of minimum variance. Consider the case where a first 

order decay of output is acceptable. 

⎟
⎠
⎞

⎜
⎝
⎛ −=

−
= −

τ
λ

λ
T

a
z

e tt

exp

1
1

1

     (2. 8) 

The autocorrelation pattern can then be given as  

k
e kp λ=)(      (2. 9) 
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The values of pe(k) can then be compared to the autocorrelation coefficients. 

(Kozub, 1996) 

2.5 Filtering and Correlation analysis  

In the previous sections outlining the measure of minimum variance benchmarks, 

very little detail about the actual calculation was presented. In this section, an 

algorithm outlining an efficiency algorithm for the calculation of the minimum 

variance performance benchmark is given (Huang and Shah, 1999). 

Equation 2.6 shows the minimum variance performance of the process. This can 

also be termed the invariant portion of the output variance, since the controller 

has had no effect on the process before the number of time steps of the dead 

time have elapsed. 

In order to calculate the minimum variance, equation 2.6, it is necessary to relate 

the process variation to the minimum variance, which is in turn directly 

determined by the input variance. As mentioned, the input variation is assumed 

to be white noise excitation, with zero mean. 

By manipulating the equation relating output process variation to input variation, 

equation 2.4, and using the definition of closed loop potential, equation 2.5, it is 

possible to show that, 

TZZCLP ≡     (2. 10) 

where Z is the vector of the cross-correlation coefficients between the input and 

output vectors for lags 0 to n-1 (where n is the number of intervals of dead time). 

In solving the above it is an obvious requirement to find an input vector that 

meets the requirements of a whitened noise sequence. This signal can also be 

termed the “innovation sequence”, and several procedures for obtaining this 

sequence exist. The procedures make use of time series modelling, and 

depending on the data, either an autoregressive (AR) or an autoregressive 

moving average (ARMA) model can be picked. The final test of model 

acceptance becomes an analysis of the “whiteness” of the residuals. 
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2.6 Nonlinear techniques  

Minimum variance based techniques/indices are based on the assumption that 

the system is linear. For systems where this assumption approaches reality, the 

diagnosis of performance given by minimum variance type techniques is good. 

However, when systems have substantial process nonlinearities, the accuracy of 

the indication rapidly decays. (Horch, 1998) 

While most processes approach linearity around the operating point (hence the 

suitability of PID control algorithms), one form of nonlinearity is commonly 

encountered in industry. 

2.6.1 Slip-stick cycling 

Nonlinearity arises because of the saturation of the actuator due to static friction, 

commonly called stiction. The static friction in the valve needs to be overcome by 

the force exerted by the actuator. The actuator force continues to increase until 

the friction exerted by the linkage, positioner and valve body are overcome. This 

increase in force occurs with no change in the valve position. When the energy 

exerted exceeds the friction forces, the valve slips to a new position, the move 

being disproportionately large due to the continued feedback action. 

 Figure 2.2 shows the effect of this slip/stick cycle. 
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Figure 2- 2: Schematic of idealised slip-stick cycle  

 

A detailed description of the effect of friction in valves can be found in (Hägglund, 

1995) 

In figure 2.2, the control algorithm was assumed to be PI control. The step in the 

output signal (u(t)) is due to the proportional action (Kc) of the controller. The 

period of idealised oscillation can be calculated to be, 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−= 114

cp
iosc KK

TT     (2. 11) 

where Ti and K are the integral time and the process/controller gains. The control 

signal u(t) will become triangular, ie the step will disappear, when the process y(t) 

shows a first order decay rather than the rectangular process response shown 

above. 
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2.6.2 Normality index - histograms 

By plotting the histogram of a batch of data, it is possible to visually inspect the 

Gaussianity of the data. This gives an indication of whether the data is normally 

distributed, and gives information about whether the system is linear or not. 

By normalising the data, (normalise the error rather than an absolute value), it is 

possible to automate the evaluation of the normality of the data. The following 

algorithm is suggested: 

1. Calculate the mean (µ) and the standard deviation (σ) from the collected 

error vector. 

2. Calculate the distribution of the error, and save the frequency of the error 

versus the bins. 

3. Calculate the normal distribution f(x) characterised by the same 

information determined for the system, ie µ and σ. Minimise the sum of 

squared errors between function f(x) and the histogram, using a single 

multiplier K. 

4. Based on the difference between the Gaussian curve and the histogram, 

use one of the following 2 measures to determine the normality of the 

data: 

• Calculate the mean squared error of the cumulative sum of the 

histogram and the Gaussian curve. If MSE > 0.01, flag 

oscillatory data. 

• If %10
ˆ
>

−

data

data

σ
µµ

 then flag data as oscillatory. This 

calculation effectively calculates the goodness of fit between the 

histogram and the Gaussian curve. 

By making use of this algorithm, it is possible to detect skewed or poorly shaped 

distributions. This check allows an easy detection of oscillation. However, to 

make the distinction between oscillation due to disturbances or due to 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoonneess,,  MM  ((22000066))    



 25

nonlinearity is difficult. It is normally accepted that a histogram with two maxima 

(due to the rectangular oscillation of the output) is a sign of stiction. However, this 

is not always the case, and can be confused with certain instances of tight 

tuning, where two maxima are also present in the histogram (as will be 

demonstrated later). 

2.6.3 Cross correlation  

The cross correlation method is a simple way of diagnosing the source of 

oscillation in control loops. The method is based on the following observations: 

• When the input signal, u(t), and the output signal, y(t), are oscillating, then 

the cross correlation function is also periodic. 

• When stiction is prevalent in a control valve, the input and output signals 

are shifted by π/2, relative to each other. This results in a cross correlation 

function that is odd. 

• When the input and output signals are oscillating 180° (π) out of phase, 

then the source of the oscillation can be shown to be disturbance based. 

This will result in a cross correlation function that is even. 

• If the control loop is unstable, and oscillates with a constant amplitude due 

to input saturation, then the cross correlation function can also be shown 

to be even. 
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Figure 2- 3: Cross correlation function between input u(t) and output y(t). Left: odd 
function (stiction oscillation), Right: even function (external oscillation) 

 

The cross correlation function ruy(τ) for signals u(t) and y(t) is defined as, 

( ) ∫
−

+
∞→

=
T

T
uy dttytu

TT
r )()(

2
1lim

ττ    (2. 12) 

The assumptions for the calculation of the cross correlation function are: 

• The gain between the input signal u(t) and the output signal y(t) is positive. 

If the gain is actually negative, then the function needs to be inverted. 

However, this will have no bearing on whether the function ruy(τ) is odd or 

even. 

• The data is pre treated such that the signals are stationary and of zero 

mean. 

The calculation of the cross correlation function ruy(τ) from equation 2.12 is easily 

done. More challenging is the automation of whether the function is odd or even, 

the criterion used for the determination of the source of the oscillation. The 

following algorithm is proposed for this determination: 

1. Calculate ruy(τ) 

2. Calculate τr the first zero crossing for positive lags 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoonneess,,  MM  ((22000066))    



 27

3. Calculate -τl the first zero crossing for negative lags 

4. Calculate r0 the value of ruy(τ) at lag 0 

5. Calculate rmax the maximum value of ruy(τ) in [-τl, τr] 

6. Calculate 
rl

rl

ττ
ττ

τ
+
−

=∆  

7. Calculate 
max0

max0

rr
rr

Q
+
−

=∆  

8. The aim is to determine the degree of phase shift. Allow a 

deadband of π/6. Thus, interpret a phase shift 262
πππ

=±  and 

πππ =±
6  

Figure 2.4 shows the points as defined in the above calculations: 

 

Figure 2- 4: Schematic of cross correlation calculation points 

Thus, if we can graphically represent the decision criterion for whether a control 

loop has stiction or not. Figure 2.5 shows this representation. 
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Figure 2- 5: Graphic of decision criterion 

Notice that a safety band of π/6 is placed between decisions. This is a grey area 

where the decision is unclear. It may be interpreted as an unusual problem area, 

where sensor faults may be the root cause of oscillation. 

A similar technique based on the analysis of distinct peaks in the histogram of 

the dataset, and using segmentation and change detection can also be used. 

(Stenman, Forsman & Gustafsson, 2004) 

2.7 Statistics 

2.7.1 Lower order statistics 

Most engineers are familiar and comfortable with lower order statistical 

measures. Lower order statistics refers to measures such as: 

• Mean 

• Variance 

• Autocorrelation 

• Power spectrum 

These are examples of first and second order statistical tools, and are often a 

good first indication of loop performance.  

The magnitude of the mean of the error function between the output signal y(t) 

and the setpoint ysp(t) can be an indication of skewness in the data set. 

Second order statistics (eg variance) is only applicable as a diagnosis tool when 

the process is linear, and the distribution thus Gaussian. Once again, the 

magnitude of the variance is a good indication of the size of the oscillation 

present in the control loop. 
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2.7.2 Higher order statistics (HOS)  

First and second order statistics are only sufficient when processes are linear 

and Gaussian, ie the process can be described by a linear transfer function. 

However, as mentioned previously, there are many cases where the process 

deviates from Guassianity, and then exhibits nonlinearities. These types of 

processes can be conveniently studied using HOS (Choudhury, Shah & 

Thornhill, 2002). 

The central moment of a variable is defined as: 

n

x
xEM

n

t

i
t

i
i

∑
=

−
=−= 1

)(
)(

µ
µ    (2. 13) 

Thus, the second moment is equal to the variance of the data set, normalised by 

n rather than n-1, where n is the number of data points in the series. Higher order 

moments give information about skewness (3rd order) and sensitivity to outliers 

(4th order, kurtosis). The skewness of a Gaussian distribution is 0, and the 

kurtosis of a Gaussian distribution is 3. 

In some instances, it is useful to make use of cumulants rather than moments. 

Cumulants are directly related to moments: 

)ln( ii MC =      (2. 14) 

Cumulants have excellent noise suppressing properties, making them a useful 

indication of the variability inherent in the data. The following relationships hold: 
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  (2. 15) 
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2.8 Frequency analysis 

While much information can be gleaned from the time domain study of process 

data, many useful measures require transformation to the frequency domain. The 

frequency domain data exposes periodicities in the signal which can aid in the 

understanding of the source of oscillation (Shah, Patwardhan & Huang, 2001).  

2.8.1 Power spectrum 

The power spectrum is a representation of the second order moment in the 

frequency domain (Choudhury, Shah & Thornhill, 2002). The power spectrum 

can be calculated by taking the Fourier Transform of the signal. The fast Fourier 

transform is calculated using: 

N
i

N

nf
N

N

n

ew

Where

wnxfX

π2

)1)(1(

1
)()(

−

−−

−

=

= ∑

   (2. 16) 

Using this method, it is possible to determine the power of the signal at various 

frequencies, thereby determining the dominant oscillation periods. 

2.8.2 Bicoherence  

The bispectrum is the frequency domain equivalent of the third order cumulant. It 

is defined as: 

)]()()([),( 212121 ffXfXfXEffB +≡   (2. 17) 

where X(f) is the Fourier transform of the data series. In order to more easily 

interpret results (ie ensuring that results are normalised and independent of 

signal strength), a bicoherence is defined based on 2.16: 

]([])()([
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),( 2

21
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2
21
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ffBE
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+
=   (2. 18) 
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The bicoherence function is bounded between 0 and 1. It can be shown that the 

bicoherence for a linear system is constant. Thus, if the bicoherence is plotted 

against f1 and f2 in three dimensional space, a linear system approximates a 

plane, where the surface has features where the system displays nonlinearities. 

(Choudhury, Shah & Thornhill, 2002) 

2.8.3 Common oscillation detection  

The power spectrum has been shown to be a useful measure for dominant 

frequencies. However, in evaluating large numbers of signals, an automated 

method of detecting the common oscillations is required. The following method 

allows this detection by making use of principal component analysis (PCA). By 

taking the Fourier decompositions for several data sets, one defines a matrix: 

⎟
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where N is the number of frequency channels and m is the number of signals 

being evaluated. Pi(fj) gives the power of the ith signal at the jth frequency channel 

(Thornhill, Shah & Huang, 2001). A PCA decomposition of A allows the 

reconstruction of the matrix as a sum over m orthonormal basis functions w’1 to 

w’m. This yields,  
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The w’I vectors are normalised eigenvectors of the m by m matrix A’A. The order 

is determined by the magnitude of the eigenvalues of A’A. The magnitude of the 

eigenvalue compared to the sum of all the eigenvalues gives an indication of the 

total spectral variation captured by that eigenvector. 

In order to graphically represent the data captured in this manner, it is useful to 

truncate the decomposition to the first three principal components. This can be 
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validated by determining the magnitude of the next principle component in the 

series. A good rule of thumb is to accept the truncation if the next component 

represents less than 5% of the sum of eigenvalues (this approach is 

demonstrated in the results section).  
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It is then possible to represent the spectrum in A graphically. The ith vector maps 

to a point having the coordinates ti,1 , ti,2 and ti,3 in a three dimensional space. 

This plot is known as a scores plot. 

2.9 Input – Output pattern recognition 

The plot of the process variable or output y(t) versus the process demand or 

input u(t) gives useful information about the linearity of the system. Sharp turn-

around points at the extremities of the plot show clear signs of stiction in the 

data. A perfectly linear relationship between the PV and OP is the control 

engineers dream, but is not the norm, especially in older industrial installations.  

Another way of interpreting the pattern produced is to evaluate the one on one 

relationship/repeatability. The process variable should always have a single – 

unique value for each input. Due to process disturbances and other external 

influences, this is almost always impossible (changes in upstream pressure affect 

valve opening to get constant flow). However, patterns approaching such a 

deterministic relationship indicate a low probability of valve problems. 

Unusual shapes are often encountered, indicating unknown sources of process 

nonlinearity.  
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2.10 PID-achievable performance 

Roughly 97% of all regulatory or basic control in the chemical industry is done by 

PID feedback controllers. (Desborough & Miller, 2001) As such, a measure of 

“best possible” PID performance is very useful. By solving the following, 

22 min yPID σσ =      (2. 22) 

where, 
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Thus the minimum achievable PID variance can be calculated by estimating the 

closed loop transfer function based on a PID controller. This transfer function 

should relate the process output (y) to the noise or disturbance (w). 

Unfortunately, this process is difficult to implement since the open process model 

is often not known (Qin, S. J., 1998). As such, this measure cannot be 

automated. 

A different approach, based on the comparison between a user specified desired 

benchmark and actual loop performance, is presented by Huang, et al., 1998. 

2.11 Open loop benchmark 

This metric is not always available in an industrial application, but does provide 

excellent insight into the real improvement made by a controller. The open loop 

variance in a process should be a bound never exceeded with control. However, 

some studies have found that up to 75% of controllers lead to an increase in the 

process variance when compared to the open loop variance. Thus, when the 
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opportunity does arise to obtain open loop variance information, this information 

can be very useful (VanDoren, 1999). 

While not entirely an open looping procedure, it is also possible to improve the 

analysis of the robustness and performance of the controller by means of 

injecting an excitation signal (Wan & Huang, 2002). 

2.12 Interventions 

Measurement of the interventions for a given control loop is a non-technical 

measure of performance. If regular interventions by the process personnel is 

required, it is an indication that there may be a problem with the loop. 

Interventions can be measured either by having the loop in the incorrect mode, or 

by the number of set point movements that are required. In configuring a system 

to correctly measure interventions, the effort must be expended to correctly 

define “normal operation” mode. 

Interventions cannot be used as an exact measure, but the decrease in the 

number of interventions may seem to be an improvement in “customer 

satisfaction” with the operation of the controls. 
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3  Wavelet Analysis 

Most published material on wavelets introduce Fourier analysis as a basis from 

which to approach the subject (Mitsiti, et al: 1996, Carrier & Stephanopoulos, 

1998). Often, once this basis has been discussed, the author continues onto 

wavelets and the Fourier analogy is left hanging. Fourier analysis is more than 

just a basis from which to start discussing wavelets. It forms the essence of what 

wavelets analysis is, and all through the discussion on wavelets, a firm grasp of 

the theory of Fourier analysis is necessary. 

3.1 Fourier Analysis 

Let ΗT be a set of functions f: R  C, where the functions are periodic with period 

T. These functions satisfy equation 3-1 (Kaiser, 1994). 
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22 )(      3. 1 

ΗT is the Hilbert space under the inner product defined by equation 3.2 
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By considering the functions in equation 3.3, we can see that they are T-periodic, 

and thus a part of ΗT.  

n
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n ≡== ,)( 2int/2 ππ
   3. 3 

Let f be a function, f ε ΗT, which can be expressed as a linear combination of 

en’s. Then equation 3.4 and 3.5 hold (Kaiser, 1994). 
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Equation 3.4 is called the Fourier series of f, and cn are the Fourier coefficients of 

f. f(t) represents a periodic signal, and equation 3.4 gives the decomposition of f. 

This decomposition is a linear combination of modes en, with frequencies wn. 

Thus, if one is able to identify which frequencies in the decomposition are most 

desirable, one can reconstruct the signal from the decomposition, but without the 

unnecessary frequencies. This means that one can either remove undesirable 

noise, or increase the effect of desirable frequencies so that the reconstructed 

signal appears to be stronger in the frequency region of most concern (Kaiser, 

1994). 

Thus, by applying the Fourier transform, we move the signal information from the 

time to the frequency domain. The inverse Fourier transform moves from 

frequency back to time. 

It is possible to show that <en, f> = en*f. Thus 3.4 and 3.5 can be simplified to 

equation 3.6. 
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Rather that continue to function with a discrete summable definition of the Fourier 

transform, we define the continuous or Fourier integral transform. This form is 

given in equation 3.7. 
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In order to transform or reconstruct from this frequency decomposition, one 

requires the inverse Fourier transform. This is given in equation 3.8. 
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3.1.1 Windowed Fourier transform (WFT) 

While the Fourier transform serves as a useful tool, it is severely limited. Most 

signals are not by nature periodic. This means that the direct application of the 

Fourier transform is meaningless. By integrating over all time, the decomposition 

would contain the total amplitude of all wn’s, over the entire duration of the signal, 

while, for the purpose of analysis, the distribution of the amplitudes is of vital 

importance (Kaiser, 1994). 

In describing the workings of the WFT, it is useful to use the analogy of the ear. 

In order for the ear to process sounds, the signal passing to the ear needs to the 

analysed in the time and frequency domain simultaneously. In order to better 

define this analysis, the following assumptions are made. 

The ear can only analyse sounds that have already happened, ie can only 

analyse f(u), for u ≤ t. In addition, it is reasonable to assume that the ear has a 

finite memory, ie it only processes sounds that have taken place in a finite time 

period. Thus it only analyses f(u), for u ≥ t – T. 

Thus, the WFT, 
^

Tf (w, t), can only depend on the outputs, f(u), in the time interval 

t – T ≤ u ≤ t. 

In order to localise the signal f(u) on this time interval, it is necessary to introduce 

a weighting function g(u). g(u) localises the signal in time, and supp g(u) ⊂ [-T, 

0]. 

It is now possible to define a localised version of f, where ft ⊂ [t-T, t], and is 

dependent only on f(u), t – T ≤ u ≤ t. Equation 3.9 formally defines ft. 

)()( uftugft −≡      3. 9 
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Based on 3.9, the definition of the WFT ( ),(~ twf ) is given by equation 3.10 
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By combining 3.9 and 3.10, it is possible to arrive at the formal definition of the 

WFT, 3.11. 
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 3. 11 

g(u) is an element of L2(R). )( tug −  is the complement of f(u) within ft(u).  

In order to simplify the definition presented in equation 3.11, we introduce an 

operator form of the weighting function g(u). 

Let gw,t be defined by equation 3.12. 

)(2
, tugeg iwu
tw −≡ π      3. 12 

Since gw,t  ≡  g , gw,t is also an element of L2(R). Now it is possible to 

express the definition of the WFT, presented in equation 3.11, as the inner 

product (convolution) of gw,t and f. Thus, equation 3.13 can be used as an 

expression of the WFT. 

fgfgtwf twtw *,),(~
,, ≡=     3. 13 

In the above discussion we have dealt with the WFT from the viewpoint of the 

time domain. This has shown that it is possible to localise the signals frequency 

content near the time t. It is possible to adopt the same argument from the 

viewpoint of the frequency domain. 

This is done in equation 3. 14. Note that the time variable u has been replaced by 

a frequency variable v, and that the time window g(u - t) has been replaced by 

the frequency window ĝ  (v – w). 
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What equation 3.14 effectively means is the following. If one starts with a signal 

f(v) and localises it near a frequency w, using the weighting function ĝ  (v-w), 

then the WFT gives a local time-frequency analysis of f. This is provided that the 

windowing function g is reasonably well localised in time and frequency. This is 

to say that ĝ  (v) is small outside a small frequency band, and g(t) is small 

outside a small time interval. 

Thus the WFT of a function f yields a simultaneous localisation in time and 

frequency (Kaiser, 1994). 

3.1.2 Uncertainty 

Since the measurement of an instantaneous frequency is an invalid concept (by 

it’s very definition), some uncertainty about the localisation of the signal in time 

and frequency must exist (Kaizer, 1994). This can be quantified by the 

Heizenburg uncertainty principle which states: Since sharp localisations in time 

and frequency are mutually exclusive, the precise measurement of time and 

frequency must be fundamentally incompatible. Thus, if g(t) is small outside a 

time interval T, and g(v) is small outside a frequency band of width Ω, then the 

inequality of ΩT > c must hold. The precise value of c is dependent on the size of 

Ω and T (Kaiser, 1994).  

Thus, effectively the product of the uncertainty about the time measurement with 

the uncertainty of the frequency measurement, must be greater than a certain 

constant. 

This can be better described as follows. By observing a signal over an extended 

period of time, the better the knowledge and accuracy about the signal’s 

frequency becomes. However, due to the increased time interval over which the 

signal was observed, there is less precise time information. Thus, by improving 
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the knowledge of the frequency content of the signal, one sacrifices time 

localisation. 

This is exactly what the WFT does. By observing a signal f(t) over the window 

g (u-t), the value of t is no longer sharp. Rather, a unique t has been replaced by 

a interval of [t-T, t], with supp g ⊂ [-T, 0]. In addition, the frequency w is no longer 

sharp, but rather a band determined by ĝ (v-w). 

Thus, in effect, the WFT compromises between the time and frequency 

resolution to arrive at a better global understanding of the characteristics of the 

signal. 

3.2 Why the Wavelet (Mathematically) 

Consider a highly localised impulse, δ(t). This function is the limit of spikes of 

ever increasing frequency and sharpness. Equation 3.15 shows the 

mathematical relationship for δ(t). 
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By applying the normal Fourier transform to δ(t), one arrives at the set of 

equations 3.16. 
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This is the extreme case of the uncertainty principle. Since δ is sharp, T  0. 

Thus the Fourier transform must have width Ω  ∞. Then, in order to obtain a 

spike with T ≈ ε, we must have exponentials in the frequency band 1/ε. Thus, the 

narrower the spike δ becomes, the more high frequency exponentials are 

required in the construction of δ. To obtain the sharpness required, more 
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exponentials are needed to cancel the oscillations before and after the desired 

spike. 

Thus, using the normal Fourier transform to construct δ, one effectively attempts 

to compose local variations in time, using non-local exponentials. 

By developing the WFT, this problem is partially dealt with. By superimposing gw,t 

and using a coefficient function ),(~ twf , one can reconstruct the signal f. gw,t can 

be seen as different ‘notes’ within f. Thus, when defining a sharp spike δ, with 

width << T, where T is the width of gw,t, one needs to rely on the constructive and 

destructive interference of many different notes. Similarly, when constructing a 

signal with the width of gw,t << width of δ, one needs to rely on the constructive 

interference of many notes.  

It may be questioned how this is different to the case of relying on the sum of 

many different exponentials, in the case of the ordinary Fourier transform. Since 

the WFT introduces a scale into the analysis of the signal, this interference is 

limited to the width of the window, g. This reduces the interaction required to 

achieve the required signal. 

Both the ordinary Fourier transform, and the WFT, are cumbersome when trying 

to achieve a simultaneous time frequency localisation (indeed, it is impossible to 

achieve a dual localisation using the ordinary Fourier transform, and the single 

window width of the WFT, makes the analysis of events of different widths 

tedious.). Wavelet analysis provides the ideal analysis method to deal with this 

problem of resolution and localisation. 

3.3 Why the Wavelet? (Motivational) 

Firstly, the idea of a basis of a vector space needs to be reviewed. The basis of a 

vector space is the set of linearly independent vectors having the property that 

every vector in the space is a linear combination of all these vectors (O’Neil. 

1995: 311).  
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The advantage of representing a function in terms of a basis set is that the 

desired information contained in a complex function can be more easily detected, 

extracted, or manipulated. 

The Fourier transform is a method that makes use of a frequency-localised basis. 

The Fourier transform uses the sinusoid as a basis, each frequency being 

detailed by a sinusoid of different period. Since this basis is localised in 

frequency and is global in time, one looses all localisation of events in the time 

domain. This means that any non-stationary feature of a signal will not be 

captured. A good example of this is a burst of high frequency information. 

The windowed Fourier transform attempts to deal with this by using a sliding 

window over time. Thus it decreases the periods over which there is a loss of 

locality. However, due to the uncertainty principle outlined above, this introduces 

a problem of its own. The window needs to be sufficiently long to contain enough 

information to obtain a reasonable frequency resolution. However, the window 

needs to be as short as possible to get a sharp time locality. Since the two 

concepts are mutually exclusive, a compromise must be reached. 

Wavelets can be viewed as an extension to the Fourier transform. Their power 

lies in their ability to address the problems of a non-stationary signal by 

performing a local analysis. 

3.4 What is a Wavelet? 

A wavelet, as shown in figure 3.1, is a waveform of limited duration with a mean 

of zero. This can be compared to the basis of the Fourier transform, the sine 

wave, which is not limited in time, ie stretches from negative to positive infinity. 
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Figure 3.1: Comparison between wavelet and Fourier sine basis (Misiti et al, 1996) 

The reason for the original choice of representation for the Fourier transform may 

be questioned. Most engineers are more familiar with the use of the sine and 

cosine forms of the Fourier transform. However, the transition into the wavelet 

transform is more easily accomplished once comfortable with the form given in 

equation 3.14. 

Equation 3.17 gives the definition of the wavelet transform which is analogous to 

the Fourier transform in equation 3.14. 
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Both the Fourier function in equation 3.14 and the wavelet function in equation 

3.17 use a family of functions indexed by two labels, gw,t(s) = eiwsg(s-t) and 

ψa,b(s)=|a|-1/2ψ((s-b)/a). The functions ψa,b(s) are known as wavelets, with ψ often 

being called the mother wavelet. In this wavelet function, a is known as the 

scaling parameter. As a changes the wavelet function covers different 

frequencies. A high absolute value of a corresponds to a very coarse scale 

evaluating low frequencies, while a finer scale (low a) gives a high frequency 

coverage. The parameter a is also sometimes known as the dilation operator. 

The b parameter is the translation factor. It allows the user of the wavelets to 

move the time localisation centre. 

The main difference between the wavelet and the WFT is the shape of the 

analysing window. The functions gw,t(S) all consist of the same envelope function 

g, translated to the correct point in time. Irrespective of the frequency being 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoonneess,,  MM  ((22000066))    



 44

analysed, the window retains the same width. The wavelet function ψa,b(s) is 

sharply in contrast to this with the time window being adapted to take the 

frequency into account. At high frequencies the windowing parameter is very 

small, allowing narrow windows capturing high frequency events. At low 

frequencies the window is much broader (Carrier & Stephanopoulos, 1998). 

There exist many different types of wavelet transform, but all start from the basic 

formula given in equation 3.17. This equation is the continuous wavelet 

transform, and in equation 3.18, the discrete form of the equation (with counters 

m and n) can be seen. 
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The difference between the discrete and continuous form of the wavelet 

transform lies in the way the scaling and translating coefficients a and b change. 

In the continuous case, the parameters change continuously. This creates a 

huge set of data, often with unnecessary redundancy (the difference between 

two adjacent dilations or translations is likely to be virtually nil). Therefore, the 

discrete transform which allows us to do calculations only at a predetermined 

subset of dilations and positions is computationally more efficient. 

3.5 Approximations and Details 

In this section the method for the construction of an orthonormal basis of 

wavelets is introduced, as well as how this basis can be used in the 

multiresolution analysis of a signal. An orthonormal basis is chosen in order to 

avoid any redundancy due to the wavelet decomposition. 

 

Firstly it is necessary to recognise what the wavelet transform is doing. The 

signal is taken and decomposed into a detail and an approximation, at a certain 

resolution. This means that the signal is being decomposed into the limit of the 
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approximations at different resolutions (Dauberchies, 1988). The detail at each 

resolution is given by the difference between the approximation at the current 

resolution, and the approximation at the previous resolution (Mallat, 1989). This 

concept is illustrated in figure 3.2. 

 

 

 

 
 

 

Figure 3.2: Decomposition tree (Strang, 1989) 

 

In the decomposition tree shown in figure 3.2, let Pj be the operator that 

approximates the signal at a resolution j, while Qj is the operator that gives the 

detail at that resolution. These operators have the following properties (Mallat, 

1989): 

• They are linear. Thus if the approximation is equal to P1f, where f is the 

function denoting the signal, taking the approximation again at that same 

resolution will not alter the approximation. This means that the dot product 

P1•P1=P1. 

• Of all the approximations that have been calculated, the approximation Pjf 

most closely resembles the signal function f, at the resolution j. 

• The approximation of a signal at a coarser resolution contains all the 

information necessary to calculate the smaller/subsequent approximation. 

• The approximation Pjf of a signal f is of the length 2-j, when using the Haar 

wavelet (The Haar wavelet is the simplest family of mother wavelets. It is a 

second order orthonormal wavelet). However, if using a wavelet of higher 

      P1       Pj 

P0f    P1f  …. Pjf 

 Q1     Qj 

   Q1f      Qjf 
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order, the size of the approximation decreases in size faster than a factor 

of 2. 

• In computing the approximation of f at resolution j, some information about 

the function is lost. 

 

In order to implement the multiresolution analysis, using the operators P and Q 

mentioned above, one first needs to construct the signal function, f, from the data 

sequence that is measured. This is done using equation 3.19. 
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 3. 19 

 

The operators P and Q can be implemented as simple filters. P is the low pass 

filter matrix, which yields the approximation of the original function f, while Q is 

the high pass filter matrix, giving the detail of the function (Strang, 1989) 
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4  Methodology 

In the results section (next chapter), the techniques that have been introduced 

over the course of the last 2 chapters are further examined. In order to highlight 

advantages and shortfalls in the different techniques, extensive evaluation was 

performed on industrial data. 

127 Control loops were chosen for evaluation. The loops represent a fairly large 

industrial production unit. Since the settling times of different types of control 

loops are dramatically different, ie flow and pressure loops tend to be tuned very 

quickly, while temperature loops are slower and could have significant derivative 

action involved, loops of all the major types were selected. The 127 loops were 

broken down into: 

• 21 flow 

• 62 level 

• 34 pressure 

• 10 temperature 

The loops were all sampled for 24 hours, at a sampling rate of 5 seconds. 5 

seconds was a practical consideration based on: 

• DCS information and historian constraints 

• Keeping the total data set manageable (total data set was 60Mb) 

• High enough to capture significant dynamics 

For each of the control loops, the PV, SP, OP and MODE of the loop was 

collected. This data was imported into a structured array in Matlab. 

 

Each of the algorithms presented in the previous 2 chapters were further 

developed and coded into individual Matlab scripts. Since the main purpose of 
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the dissertation is to identify and discuss results, not much attention was given to 

the development of the user interface with the scripts. 

As mentioned, the data was structured within the Matlab environment. This made 

it possible to automatically differentiate between different loops, and between 

different loop vectors (namely PV, OP etc) 

Pictorial results make up the bulk of the information presented, and were 

captured as static screenshots. Where tabular information was required, results 

were exported to Excel and manipulated before importing the static table into this 

document. 
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5  Results 

Rather than concentrate on the diagnostic information of a single loop, several 

examples of indicative performance will be discussed. In this chapter, each of the 

techniques discussed in the previous sections will be investigated. This will be 

done by presenting the results generated by applying the techniques to several 

industrial examples. 

5.1 Lower order statistics 

Table 4.1 shows a typical example of an analysis of variance of 4 control loops. 

Data for each loop’s measured or controlled variable (PV), set point (SP) and 

manipulated variable (OP) is shown. 

 

Table 4- 1: Loop statistics 

 

 

By analysing the total package of information, it is fairly easy to ascertain where it 

is necessary to expend additional effort in troubleshooting. F1002 has a relatively 

high standard deviation (close to 20%), and from the skewness and kurtosis data 

it is obvious that the loop is non-normal (a skewness of 0 and kurtosis of 3 
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represents a perfect Gaussian distribution). However, the extreme range over 

which the PV moved, as well as the range of the OP, suggests that there was a 

very large process upset somewhere in the data-analysed. This is confirmed in 

figure 4-1, which is a plot of the PV, SP, OP and error data for F1002. 

 

 

Figure 4- 1: F1002 data 

 

Figure 4-1 also highlights one of the major flaws in using only statistical results 

for performance analysis. Apart form the upset which occurred, where the SP 

was moved to 0, there was one other SP move. Since the change in operating 

point dominates the statistics (standard deviation, skewness and kurtosis), it is 

impossible to draw a reliable conclusion from this information. By evaluating the 

OP information, specifically the average, one draws the conclusion that the final 

control element (in this case a valve), is operating fairly high, but is not really a 

case for concern. Other than investigating the reason for the process upset, one 

is unlikely to investigate the performance of this control loop based on the 

statistical data. One way of countering some of the miss-representation created 

by these changes in the operating region, is to evaluate the statistics of the error, 

ie the difference between the SP and the PV. Table 4-2 gives this information for 

loop F1002. 
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Table 4- 2: F1002 error statistics 

 

 

F1035 is an example of the statistics of a well performing loop. The standard 

deviation is extremely low (less than 5%). This is typical of a well performing flow 

loop. The information about the normality of the error would only be a concern 

should the variability in the loop increase. It is obvious from the results that there 

have been no changes made to the SP of this control loop. 

P2107 is obviously not a normally performing pressure control loop. The variation 

of the OP is zero, and the analysis of the SP and PV is almost identical. This is 

one of the features present in most modern DCS/SCADA systems. In order to 

prevent an upset when a loop is switched from manual to auto, one of the options 

is for the SP to track the PV when the loop is in manual.  

A further anomaly is the very low value of the OP. If the SP had remained 

constant, this may have been an indication of an over or under-pressure 

controller. In this case, this pressure controller is only used during startup, and 

remains closed on manual during normal operations. 

L2051B is a condenser level controller. Since the duty, and thus the column’s 

operation, is affected by variations, this controller has been configured to keep 

the level as close to set point as possible. The very low standard deviation 

suggests that this is exactly what has been achieved. The large variability in the 

OP is an indication of how hard the controller needs to work in order to achieve 

this tight control. The skewness and kurtosis information is a further indication of 

a well designed and configured controller, indicating almost perfect normality. 

5.2 Minimum variance 

The minimum variance performance, or the closed loop potential of a controller, 

can be a good indication of the performance of a control loop. However, often 
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this measure can be a double edged sword, giving unnecessarily harsh 

indications of the controller performance. Table 4-3 shows the minimum variance 

measures for the control loops analysed in the previous section. Results are 

generated using a sample size of 17 000 data points, collected at 5 second 

intervals. 

 

Table 4- 3: CLP for loops 

 

 

The performance of F1002 appears excellent from the statistical information, as 

well as from the visual inspection in figure 4-1. However, the CLP over the entire 

period shows that there is room for improvement. This highlights the very 

unforgiving nature of the minimum variance performance measures. Minimum 

variance is often not a requirement for excellent process control. On the other 

hand, the performance of F1035 is excellent, both from a statistical analysis and 

from the minimum variance performance anlaysis.  

The extremely low score of P2107 is in line with expectation. The analysis 

technique used to determine the CLP apportions variability in the process to 

either the performance of the controller, or to the process. Since there is no 

control action being introduced in P2107, the variability in the output signal is 

totally unaffected by the controller. 

Evaluating level loops using a minimum variance procedure should be 

undertaken with care. Many level loops are designed to buffer process 

disturbances, and thus are far from minimum variance. L2051B is designed to 

give tight level control, and this is reflected in the relatively high CLP. 
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From figure 4-1, it is clear that F1002 experienced a large change in operating 

region during this sample period. It is interesting to compare the performance 

during this upset, and this can be achieved by windowing the data into 1000 data 

point samples (thus there are 17 periods). Figure 4-2 shows the performance of 

F1002 over the entire period. 

 

Figure 4- 2: Windowed CLP for F1002 

In figure 4-2 it is clear that during the process disturbance, the CLP drops from 

the average around 0.3, down to 0.16. Unless rejecting SP changes of this 

magnitude is an important design consideration for this loop (in this case it is 

not), this performance decrease would not be a problem. 

 

Figure 4-3 shows the same windowed approach applied to the F1035. 
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Figure 4- 3: Windowed CLP for F1035 

 

F1035 has a much higher average CLP, and there is thus less room for 

improvement. However, by evaluating the CLP over time, it is obvious that there 

is an external cycle being introduced. F1035 tends to perform better during 

certain portions of the total sample. Thus, if the variability that was quantified in 

the previous section was deemed excessive, effort should be expended on 

attempting to remove this external negative influence. 

One of the major draw-backs of minimum variance based performance measures 

is the requirement for knowledge of the dead time present in the loop. For the 

purposes of this analysis, the following dead times were assumed. 

• Flow loops – 5 seconds 

• Pressure loops – 20 seconds 

• Level loops – 1 minute 

• Temperature loops – 1 minute 

The choice of dead times for the flow loops was limited by the collection 

frequency possible using the data collection method decided upon. Data was 
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collected from the historian, and due to control and collection network bandwidth 

limitations, it was not possible to collect all the data used in the evaluation at an 

infinitely high collection frequency. 

5.3 PV-OP pattern recognition 

Plotting the process variable versus the process input is an easy way to visually 

troubleshoot problematic control loops. Specifically, the pattern gives insight into 

the linearity of the control relationship. If there are non-linearities, specifically due 

to stiction, these can be easily identified. Several examples have been presented 

to show different insights that can be gained from this analysis. The following 

control loops were analysed: 

• F1035 (F1) 

• F1024 (F2) 

• F1081 (F3) 

• L1064 (L1) 

• L2051 (L2) 

• P1067 (P1)

 

Figure 4-4 shows the PV versus OP plot for F1. 

 

 

Figure 4- 4: PV-OP pattern for control loop F1 
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As will be shown in later examples, F1 has several irregularities in the period of 

data analysed. However, figure 4-4 is clipped to show the appropriate period 

where valve non-linearity dominates the output signal. The sharp patterns at the 

extremities, accompanying the valve reversals, show the tell tale signs of valve 

stiction. It would be suggested that before more effort is put into removing 

oscillations in this control loop, the valve be overhauled to correct the mechanical 

effects on the process. 

 

Figure 4-5 shows the PV versus OP plot for F2. 

 

 

Figure 4- 5: PV-OP pattern for control loop F2 

 

The pattern shown in figure 4-5 is unlikely to cause further investigation. F2 has a 

broad operating region. This is caused by a cascade master that is continuously 

shifting the setpoint for this control loop. However, despite the broad operating 

region, F2 reacts linearly and predictably. There is no indication that there is 

valve problems, or other non-linearities in this control loop. 
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Figure 4-6 shows a combined process plot and PV-OP pattern for F3. 

 

Figure 4- 6: General information for control loop F3 
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From figure 4-6, it is clear that there are several different operating “zones” in 

which F3 operated over this time period. In order to better analyse the specific 

non-linearity that may be present in the loop, the longest operating period 

(around 15% valve output) was further investigated. This information is shown in 

figure 4-7. 

 

Figure 4- 7: Zoomed PV-OP pattern for control loop F3 

 

While there is some indication of sharp edges at the extremities of the operating 

region, the information presented is inconclusive. Based on this information 

alone, it is unlikely that the control engineer would advise a valve replacement. 

 

Figure 4-8 shows the PV versus OP plot for L1. 
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Figure 4- 8: PV-OP pattern for control loop L1 

 

As a general rule, level loops are much harder to identify patterns indicating 

valve related non-linearities. Even though figure 4-8 does show a distributed 

pattern, the edges of the control region are regular and smooth. Thus based on 

figure 4-8, no action would be recommended. 

 

Figure 4-9 shows the PV versus OP for L2. 
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Figure 4- 9: PV-OP pattern for control loop L2 

 

From figure 4-9 it is clear that there is an uncannily linear relationship between 

PV and OP. In this case, the tuning method that has been applied to L2 is the 

actual cause, rather than a perfect valve. There is no true error feedback into this 

control loop. Rather, an explicit PV-OP mapping has been used to implement the 

control. This is in effect a normal proportion only controller. Since there is no 

error based feedback, and the PV determines the OP explicitly on each 

execution cycle, figure 4-9 actually shows no useful information about the 

controller performance. 

 

Figure 4-10 shows the PV versus OP plot for P1. 

 

Figure 4- 10: PV-OP pattern for control loop P1 

 

This pattern tells us nothing of the non-linearity in the control loop. However, 

notice the broad range on the OP, with the almost negligible move in the PV. P1 

is an example where the control valve has been sized to minimise the pressure 

drop, and in so doing, has left almost no control. The only thing really keeping 
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this control valve close to setpoint is the stable operations up and down stream. 

This control loop would be incapable of handling major process upsets. 

5.4 Histograms and normality 

Histograms are a graphical method for analysing how linear the performance of 

the control algorithm is. PID is obviously a linear control technique, but since the 

process and the final control element may not be, the response to linear outputs 

may be poorly suited to controlling the system well. Once again, 3 different 

control loops are chosen to highlight the interpretation and use of histograms. 

• F2081 

• F2024 

• F1038 

Figure 4-11 shows the histogram of a well performing control loop, F2081. 

 

 

Figure 4- 11: Histogram of errors for F2081 

 

It is clear that the error is normally distributed around zero. The average error is 

zero (5 significant figures). It is also clear that the error is tightly distributed 

around the mean, graphically indicating a low standard deviation. 
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Using the approach outlined in earlier sections, it is possible to determine the 

degree of normality. Using the equation, %10
ˆ
>

−

data

data

σ
µµ

, one finds the degree 

of normality to be unacceptably high (21.68%). 

Since the spread of error is even more tightly spread around the mean than 

would be expected from the Gaussian curve (see figure 4-11), one is unlikely to 

give this loop much attention just based on the normality investigation. 

 

Figure 4-12shows the error distribution and gaussian curve for controller F1038.  

 

 

Figure 4- 12: Histogram of errors for F1038 

 

It is immediately clear that there is a major non-linearity present in this control 

loop. The pattern present in figure 4-12 is typically caused by a slip-stick cycle in 

the control valve. The error is distributed around a zero error mean, with 2 

excessive peaks either side of the mean. 

Using the same equation presented above, the non-normality of F1038 is lower 

than F2081, but still significant (14.69%).  

The approach that would be taken when encountering a problem with non-

linearity, such as F1038, differs depending mainly on the following factors: 
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• Actual variability resulting from non-linearity or slip-stick cycle. If the 

influence of the variability is insignificant, no action will be taken. 

• Criticality of the control loop. Control loops with significant slip-stick may 

have a rapid decay of control performance over the short term. This 

diagnosis would definitely feed into the work scheduled for the next plant 

maintenance cycle. In the case of extremely sensitive/critical control 

valves, operations may decide to schedule maintenance more 

aggressively to prevent possible production, quality or safety incidents. 

• Ease of repair. Critical control loops may have by-passes installed that 

allow the control valve to be overhauled without requiring production loss. 

This is the ideal scenario for the maintenance personnel responsible for 

the performance of this loop. 

 

Figure 4-13 shows the error distribution and gaussian curve for controller F2024. 

 

 

Figure 4- 13: Histogram of errors for F2024 

 

F2024 would not be flagged attention based on the non-linearity result of this test 

(1.7%). The broad distribution gives an indication of a relatively high standard 

deviation. Table 4-4 gives the performance statistics of F2024, and immediately 

places everything in perspective.  
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Table 4- 4: Performance statistics of F2024 

 

While the standard deviation is relatively high for a flow controller (6% of mean), 

the CLP is high. This indicates there may be little room for improvement in this 

control loop. 

5.5 Cross Correlation 

As was the case with histograms, cross correlations are a technique for 

highlighting non-linearity in a control loop. The technique specifically identifies 

patterns prevalent in the closed loop data of loops suffering slip-stick cycle. 5 

control loops will be used to highlight the usefulness of cross correlation analysis. 

The following control loops were chosen: 

• L1030 

• F1021 

• F1038 

• F2024 

• L1043 

∆T and ∆Q tests were introduced in Chapter 2. These tests were applied to each 

of the loops investigated. Table 4-5 shows these results. 

 

Table 4- 5: Selected test results 
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From all the loops analysed, the ∆Q test is much more critical of loop non-

linearities. Of the 127 loops analysed, 16 loops were determined to have stiction 

related non-linearity. Of these, the ∆Q test failed to identify 4, while the ∆T test 

failed to identify 8. As is highlighted in the following detailed discussions, the flag 

raised by the tests is only an indication. The test should be viewed in conjunction 

with other loop analyses. 

 

The cross correlation curves were obtained using 5 second process data 

(roughly 17 000 data points). Each curve has been zoomed into to show a 

representative portion of the correlation information. In each case, the x-axis 

represents the number of positive/negative lags, and the y-axis the magnitude of 

the correlation coefficient. 

 

Figure 4-14 shows the information for control loop L1030. 

 

Figure 4- 14: Cross correlation for L1030 

 

The cross correlation information for L1030 is an almost perfectly even function. 

Both tests confirm that the loop has negligible non-linearity. Figure 4-14 does 

indicate that the cross correlation coefficient does not decay immediately beyond 
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the initial highly correlated information. There appears to be a persistent swing in 

the correlation information that only gradually disappears. By investigating the 

process data for L1030, shown in figure 4-15, the persistent oscillation is easily 

observed.  

 

 

Figure 4- 15: PV versus SP for L1030 

 

The perfectly even nature of this oscillation suggests that this loop is too 

aggressively tuned. 

Figure 4-16 shows the correlation information for F1021. 
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Figure 4- 16: Cross correlation curve for F1021 

 

From this figure the even nature of the oscillation interpreted by the ∆Q and ∆T 

tests can be confirmed. In contrast to L1030, the oscillations for F1021 decays 

rapidly either side of zero lag. The lack of oscillatory information in this loop is 

confirmed by evaluating the statistical and time plot information (not shown). 

 

Figure 4-17 shows the cross correlation information for F1038.  

 

Figure 4- 17: Cross correlation curve for F1038 
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From table 4-5 it is clear that while the ∆Q and ∆T tests do not point directly to a 

process non-linearity, there is some doubt in the interpretation of the ∆Q test 

information. In figure 4-12 the histogram of F1038’s error was shown. This 

indicated a high probability of valve induced non-linearity, based on the 

pattern/distribution of the error around the mean.  

This highlights the danger in using limited diagnostic information when attempting 

to isolate the cause of process variability. Loop F1038 requires further 

investigation in order to determine the cause of the oscillation. 

 

Figure 4-18 shows the cross correlation information for loop F2024. 

 

Figure 4- 18: Cross correlation curve for F2024 

This loop is an example of conflicting information between the two tests. Based 

on this test method, it is not possible to draw a confident conclusion that F2024 

has stiction induced oscillation. Using the histogram method, there is no 

indication of non-linearity either (not shown). 

 

Figure 4-19 shows the cross correlation curve for the final loop, L1043. 
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Figure 4- 19: Cross correlation curve for L1043 

This loop was specifically chosen to highlight another one of the pitfalls of 

evaluating mathematical interpretations without human intelligence to prevent 

incorrect conclusions from being drawn. L1043 is indicated as having a non-

linearity by the ∆Q test, and is a suspect in the ∆T test. Both indicate there is a 

possible valve induced non-linearity present. 

 

Figure 4-20 shows the Gaussian distribution of the error around the mean. 

 

 

Figure 4- 20: Gaussian distribution of L1043 
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This distribution graph also shows the presence of an unusual distribution of 

error around the mean.  

In the case of L1043, a unique implementation of a proportional only controller 

has been utilised. At every execution, the SP is written equal to the PV, and an 

externally normalised OP – PV mapping is used to control the level. This has 

produced the unusual distribution seen in figure 4-20, and interpreted by the 

cross-correlation analysis as a valve induced non-linearity. 

5.6 Frequency analysis 

5.6.1 Autocorrelation analysis 

While autocorrelation analysis does not really reflect a frequency based 

technique (there is no transformation of the time data into the frequency domain), 

the natural ability to generate information about the response patterns and 

dominant oscillations in the data, means that this grouping makes sense. 

One of the beauties of using the autocorrelation analysis technique is the intuitive 

interpretation of the visual data generated. The following 3 control loops were 

evaluated: 

• F2002 

• L1025 

• P1001 
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Intuitively, a control engineer wishes to see a control action forcing zero error 

after a set period of time. In the case of flow loops, this is often as quickly as 

possible. Autocorrelation analysis is an easy way of visualising how quickly a 

control loop is forced to zero error. 

The autocorrelation of F2002 is shown in figure 4-21. 

 

Figure 4- 21: Autocorrelation of F2002 

From this analysis it is clear that F2002 has been tuned to aggressively remove 

any disturbances that enter the system. However, due to the aggressive nature 

of the tuning, there is over shoot and gradual decay of error over time. Figure 4-

21 is a good example of quarter amplitude damping (Ziegler Nicols tuning), which 

is often too aggressive on the initial proportional action. 

 

L1025 has a totally different problem that can be diagnosed using the 

autocorrelation approach. The autocorrelation function is plotted in figure 4-22. 
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Figure 4- 22: Autocorrelation of L1025 

 

L1025 has a regular periodic error. Industrial processes, specifically disturbances 

to those processes, are very rarely regular. Normally regular patterns are 

introduced through incorrect control strategies, either in the loops being 

analysed, or upstream from that control loop. The correct approach to tuning 

level loops is the topic of several papers. Often the tried and tested method of 

simple proportion only control tuning is rejected in order to ensure some SP 

tracking. While this is often necessary, it can lead to the over-aggressive integral 

tuning seen in L1025. A rule of thumb solution to solving this error would be to 

increase the integral time up to the period of the oscillation. The initial rise time 

(time taken to initially eliminate error) is more than acceptable. If less aggressive 

action can be tolerated, the proportional action could also be decreased. 

Figure 4-23 shows the autocorrelation of P1001. 
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Figure 4- 23: Autocorrelation of P1001 

The autocorrelation of P1001 shows an extremely slow settling time (the x-axis is 

in multiples of sample size, and in this case the rise time is roughly 6 hours). This 

could be due to extremely ineffectual control action (CLP = 0.09). This also 

highlights the need to evaluate pieces of control diagnostics as a package. 

Figure 4-24 shows the time plot for P1001. 

 

Figure 4- 24: Timed data for P1001 

It is clear that P1001 PV never reaches the SP. The reason for this is that P1001 

is an over-pressure controller. The OP is also zero over the entire period (not 
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shown). Thus the diagnosis of P1001 could more easily be achieved by simply 

evaluating the figure 4-24. 

5.6.2 Power spectrum analysis 

The power spectrum analysis is a useful technique to determine if there is 

significantly more power at a certain frequency region than at others. Common 

peaks in the power spectrum of different control loops may indicate a common 

cause. In interpreting the following results, note the choice of seconds as the x-

axis, rather than Hz. The following 3 control loops have been chosen to indicate 

the interpretation of the power spectrum: 

• F1020 

• F1035 

• L2036 

 

Figure 4-25 shows the power spectrum for control loop F1020. 

 

Figure 4- 25: Power spectrum analysis for control loop F1020 

 

From this analysis it is clear there is a steady decay of power in this signal from 

high to low frequency. There is negligible low frequency information, showing that 
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this control loop is effective in removing long term oscillations from this loop. The 

power spectrum analysis does not add any additional value in troubleshooting 

this loop, other than to confirm that there is no excursions in the frequency 

domain. 

 

Figure 4-26 shows the power spectrum of F1035. 

 

Figure 4- 26: Power spectrum analysis for control loop F1035 

 

The left hand portion of figure 4-26 is very similar to that shown for F1020 in 

figure 4-25. However, it is clear there is a significant disturbance at lower 

frequencies. In this case, the frequency information is at 43 minutes. 

The PID tuning constants typically used for flow control are designed to remove 

high frequency information, and are not well suited to removing longer sustained 

oscillations. Further analysis of F1035 showed extremely aggressive integral 

tuning. As mentioned earlier, integral action can be used to damp lower 

frequency oscillations. Slowing down the integral action in F1035 would be a 

sensible next step, based on the power spectrum analysis. 
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Figure 4-27 shows the power spectrum for L2026. 

 

Figure 4- 27: Power spectrum analysis for control loop L2026 

 

As with power spectra shown in figure 4-25 and figure 4-26, the high frequency 

portion decays fairly rapidly. However, L2026 has an interesting double peak in 

the frequency information. The first peak occurs at 26 minutes. Level loops can 

be designed to assist in removing higher frequency oscillations, and there-by 

stabilising down-stream processes. 26 minute oscillations would be long enough 

to be difficult to remove with normal, quick PID tuning constants (typical in most 

flow and pressure loops). However, by allowing the level to move, it is possible to 

allow the liquid capacity to damp these oscillations. 

The second peak is at roughly 2 hours (133 minutes). Sustained oscillations of 

such a low frequency are extremely difficult to remove. The residence time in 

most drums (L2026 is an example), do not have the capacity to remove 

oscillations at such low frequency (obviously depending on how violent the 

oscillation is). Addressing such low frequency oscillation would need to be done 

in the upstream culprit.  
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The most prevalent low frequency disturbance in chemical industries is the day 

night swing. While none of the control loops analysed in this section showed 

signs of a 12 hour swing, temperature and pressure loops are susceptible to this 

swing. 

5.6.3 Common oscillation detection 

When monitoring hundreds, or even thousands of different control loops, it is 

impossible to pickup loop interactions without some assistance. Using this 

technique of common oscillation detection, it is possible to graphically view 

where groupings of control loops appear to have common behaviour. 

 

Figure 4-28 shows all the loops available in the data set used for the purpose of 

this report. 127 loops in total are represented. Each axis represents one principle 

component. 

 

 

Figure 4- 28: Three dimensional common oscillation plot 

 

In figure 4-28, pressure control loop P1042 is highlighted. Unfortunately the 

grouping and identification process is manual. Another problem with the above 
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graphic is that since the dominant frequencies are so different between the 

different loops, the resolution is poor. In figure 4-28 the majority of visible control 

loops are pressures and levels.  

By grouping loops by control type, ie flow, pressure, temperature and level it is 

possible to get more resolution. This is done in figure 4-29. 

 

 

Figure 4- 29: Flow loops three dimensional common oscillation detection 

 

The selected flow loop has an obvious common pattern with the loop just left in 

the diagram, which is the identical flow loop on the sister plant. Since both have 

identical tuning, and the plant has a common feed, this is not unexpected. Once 

again there is a cluster of loops – zooming into these yields figure 4-30. 
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Figure 4- 30: Zoomed three dimentional analysis 

Figure 4-30 yields several useful groupings. F2020, F2021 and F2002 are all 

related flow loops on the plant, and are tightly clustered. The relationship 

between F1035 and F1081 is also clear. 
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5.6.4 Bicoherence 

Bochoherence analysis is a high order frequency based technique which is 

useful for highlighting instances of process non-linearity. By evaluating the 

correlation between offset frequency decompositions of the error signal, it is 

possible to determine where areas of high interaction lie. If the control loop is 

performing perfectly there should be no interaction between different frequencies, 

and any off diagonal correlation would be a sign of some form of process non-

linearity. The following control loops are analysed: 

• F1021 

• F1035 

 

Figure 4-31 shows the bicoherence contour for F1021. 

 

Figure 4- 31: Bicoherence for control loop F1021 

 

It is clear from this figure that there is almost no information contained by 

evaluating the interactions in the frequency domain. Using other analyses it is 

possible to show that F1021 is an excellently performing flow loop, with no signs 

of stiction, and close to minimum variance performance. 
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Figure 4-32 shows the bicoherence contour map for F1035. 

 

 

Figure 4- 32: Bicoherence for control loop F1035 

 

From previous analysis (as well as that contained in the section dealing with 

Wavelet analysis) it is clear F1035 has unusual patterns. The bicoherence shows 

clear indications of non-linearity in the process. Unfortunately, without further or 

supporting analysis, there is no way of determining the source of this non-

linearity. 

 

5.6.5 Wavelets 

While it is possible to dedicate much more to the use of wavelets, only a few 

examples will be presented. Since the use of the wavelet is not dissimilar to other 

frequency analysis techniques, it makes sense to group this discussion along 

with the other frequency techniques. 
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Only 1 loop is analysed, namely F1035. This loop was chosen due to clear 

frequency and time based information. Figure 4-34 shows the normal trend of 

process information for F1035. 

 

 

Figure 4- 33: Time information for control loop F1035: PV, SP and OP information 

 

From figure 4-34 it is clear that there was a major change around sunset. The 

normal frequency based techniques cannot isolate an event such as the one 

presented above. When analysing the power spectrum, shown in figure 4-26, it 

was clear that there was high frequency content, but it was not discrete. The 

lower frequency oscillation, shown on the left hand side of both graphs in figure 

4-33, was identified. 

Dealing with localised frequency domain phenomenon is exactly what wavelet 

analysis is designed to handle. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoonneess,,  MM  ((22000066))    



 83

 

Figure 4- 34: Full wavelet decomposition for the F1035 error signal 

 

The wavelet decomposition shown in figure 4-35 was compiled using a 

Daubechies 4th order mother wavelet. The method used is exactly the one 

introduced earlier. Each level is a subsequent detail obtained from the 

decomposition. As such, level 1 shows the ‘highest frequency’ information, and 

the colours show the level of ‘information’ contained at that time, for that 

frequency.  

From figure 4-35 it is clear that the first portion of the time window analysed 

contains mainly information in the level 8, 9 and 10 region. In order to show more 

clearly, only level 10 is used. Figure 4-36 shows the approximation and detail for 

level 10 versus the entire time span. 
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Figure 4- 35: Level 10 of control loop F1035 wavelet decomposition 

From figure 4-36 it is clear that the information content, especially contained in 

the detail (d10) is richest over the first part of the time series. Notice also that the 

approximation at level 10 (a10) which has had the detail present in level 9’s 

approximation removed, contains almost no information.  
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Figure 4- 36: Signal estimation of F1035 using detail at level 10 of the wavelet 
decomposition 

 

Figure 4-37 compares this lower frequency information in the level 9 

approximation and level 10 detail, with the original signal. 

From figure 4-37 it is possible to identify that the information captured over this 

period represents the majority of the information contained in the signal. 

It is possible to find the relationship between the level and the frequency. It must 

be stressed that this is an approximation. The results were generated, and are 

shown in table 4-6. 
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Table 4- 6: Pseudo-frequencies translation for wavelet decompositions for Daubechies 4th 
order mother wavelet 

 

 

In figure 4-26, F1035 was identified to have a dominant oscillation of 43 minutes. 

While the resolution using the wavelet analysis (in terms of exactly identifying a 

precise frequency) is not very high, this analysis does show that during the initial 

stages of the time frame analysed there was indeed a low frequency disturbance. 

Using the Fourier transform approach of power spectral analysis, the absence of 

this low frequency information during the later parts of the signal, blur the results. 

From the wavelet analysis the true oscillation period appears slower – between 

60 and 120 minutes (ie between approximations level 9 and level 10) rather than 

43. This is confirmed by visual inspection of the signal (4 swings in 4500 

samples, 5 seconds per sample) giving a period of oscillation of 94 minutes. 

 

The same analysis can then be performed to identify in more detail the cause of 

oscillation in the centre portion of the time signal in figure 4-34. From figure 4-35 

it is clear that the dominant information is in levels 4 and 5. The view shown in 

figure 4-36 is repeated in figure 4-38, with focus on the approximation and details 

relevant for levels 4 and 5. 

UUnniivveerrssiittyy  ooff  PPrreettoorriiaa  eettdd  ––  JJoonneess,,  MM  ((22000066))    



 87

 

Figure 4- 37: Analysis of higher frequency oscillations in levels 4 and 5 of wavelet 
decomposition for control loop F1035 

Since this information dominates the signal space, it is not necessary to zoom 

further into the data. A wealth of information is available from this analysis. 

During the transitions between high and acceptable variability – day night 

transition, there is a shift in the content of the frequency information. This is also 

clear in the cyclic pattern present in coefficient information in figure 4-35. 

From the analysis in figure 4-38 it is possible to identify that the levels between 4 

and 10 are contain most information in the transition periods (late evening and 

early morning). Level 4 oscillations are prevalent in the evenings, and level 10 

oscillations during the day.  
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From table 4-6 we can determine there is a steady shortening of prevalent 

oscillation from 100 minutes at mid day, to about 5 or 10 minutes at sun set, 

down to less than 2 minutes during the course of the night. At sun rise the period 

of oscillation starts increasing again. 
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6  Discussion 

The previous section presented the results of a detailed study of a number of 

problematic and well performing loops, using varied techniques to highlight the 

way various techniques can be used to troubleshoot controller induced process 

oscillation.  

6.1 Results 

In each of the subsections highlighting the use of different techniques, a detailed 

discussion of interpretation was given. In total, 127 control loops were analysed. 

Detailed analysis was performed on loops showing interesting characteristics, 

and 18 different control loops were analysed in detail.  

The loops chosen for detailed analysis were selected to show specific behaviour 

or results within a given analysis method. Of these 18 loops, F1035 was used 

repeatedly to show examples of how analysis points to poor performance.  

The lower order statistical information showed signs of non-linearity, but the 

absolute standard deviation of the flow was low. There were no set point moves, 

so it is not possible to see how well the loop responds to set point activity, but the 

disturbance rejection is good. 

From a minimum variance perspective, F1035 also performs well. This is 

indicative of how close to best achievable performance F1035 gets. 

The PV-OP plot investigation seemed to indicate a squarish pattern. This is 

typical of a loop with some degree of stiction induced non-linearity. 

The power spectrum investigation showed a prevalent oscillation at a period of 

43 minutes. The conclusion was that even though the performance of the loop is 

excellent, PID tuning is not well suited to removing slower oscillations.  

The bicoherence investigation (higher order statistics), indicated clear non-linear 

behaviour in the control loop. However, it is not possible to diagnose the source 

simply using this one measure.  
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Finally, the wavelet investigation showed a very interesting pattern. During the 

day, the control loop performs optimally in terms of classic PID (some indication 

of very low frequency oscillation). During the night, higher frequency cyclic 

information is prevalent. 

The above discussion is indicative of how important a total analysis of a control 

loop is, using all the information and methods at the control engineer’s disposal. 

Using only a single method may lead one to conclude that the loop is in dire need 

of attention. All investigation into the non-linearity of the loop indicated the need 

for action, yet a simple statistical break-down shoed that the actual variability in 

the control loop was low. Minimum variance confirmed limited room for 

improvement. 

6.2 Industrial requirements 

Following on from the previous section, and the call for a holistic evaluation of 

loop performance, the requirements of an industrial base-layer performance 

monitoring system is presented. This discussion aims to expand on the practical 

issues involved in obtaining, interpreting and acting on the results and 

conclusions that can be drawn from the technical results obtained from a 

monitoring solution. 

Most maintenance groups are structured to allow the maximisation of asset 

utilisation within their area of focus. This is even more prevalent amongst groups 

affecting the control, and thus the stability, of a production facility. The Strategic 

Asset Management Group (SAMI), suggest that five stages of operation mastery 

must be obtained prior to maximum asset utilisation. Figure 5.1 shows a 

diagrammatic summary of the SAMI thinking. 
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Figure 5- 1: SAMI process 

Another view on obtaining operational excellence is a process know as DMAIC 

(Define, Measure, Analyse, Improve and Control). The basis of this improvement 

process is that if there is no measurement, there can be no improvement, and no 

control of the work environment. 

By evaluating this statement, it becomes clear that all industrial sites which do 

not monitor the performance of their control layer, are pre-stage 1 in the SAMI 

triangle.  

By simply introducing a measurement system, ie a purely technical solution, it 

may be possible to start performing some stage 1 functions, but the progression 

through organisation excellence, engineered reliability to operational excellence 

will not be supported by a measurement tool alone.  

As such, any industrial solution should enable: 
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1. Making the highest value decisions (based on the intelligence built into the 

solution). This should be enabled by the thinking and business processes 

that are built into the monitor. 

2. Executing the highest value decisions (based on the work flow that 

accompanies the solution). In other words, how does the monitoring tool 

assist in structuring the business to optimally realise benefit. 

Based on these requirements, any monitoring solution (Harris, T. J. & Seppala, 

C. T., 2001) should perform strongly in the following areas: 

1. Connectivity 

2. Configuration 

3. Analysis 

4. Reporting (Shook, D. et al, 2002) 

5. Auditing and work flow structure 

Each of these areas of solution performance are handled separately below. 

6.2.1 Connectivity 

Any monitoring system requires data upon which to perform analysis. Most 

vendors should be capable of connecting to almost any control system, or to any 

historian. However, the ability to collect data is only one of the issues to be 

considered. The following questions can help guide the decision when evaluating 

different monitoring systems: 

• What is the method of data collection?  

• Does the collection of data have an impact on the performance of the 

actual control system? It is important to note what level of performance 

impact is acceptable, and ensure this is never exceeded (ie, does the 

collection of data impact available bandwidth on the control network, 

there-by decreasing controller schematic update periods from 1 second to 
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2 seconds). Does the monitoring system provide a method of protection 

against such network overloading? 

• What is the impact of the monitoring system on the historian? Some 

systems collected data via an existing data collection system such as a 

historian, and can negatively affect the performance of such systems. 

• Is it possible to collect high frequency data, and is this required in order to 

achieve acceptable performance? 

• What is the integrity or the fidelity of the data collected using the method 

required by the system? What is the requirement of the monitoring system 

for high fidelity data, and how are errors or irregularities in the data 

handled? Is the collection system prone to failures in the network, data 

lagging, or filtering? 

• Does the system provide continuous monitoring of the system 

performance? It is important to note the advantages and disadvantages, 

and the impact this could have on the business processes. If system audit 

are performed adhoc, this dramatically reduces the data and 

computational intensity of the solution. Personnel may not be in a position 

to deal with data collected at a higher frequency than that set for the 

audits. Balanced against this is the ability to monitor the performance of 

the control system during upset conditions. 
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6.2.2 Configuration 

This section deals with the configuration and setup of the monitoring system. 

Many of the issues affect how the system will be maintained, and may affect the 

way in which maintenance is performed on specific loops. 

• Is it possible to configure the monitoring system, and request specific 

information, from a central point? Is this important for the business? Many 

plants operate with several control rooms, and there may be a need to 

configure the monitoring system from a central point. 

• How does the system direct maintenance attention to the most critical 

loops? Maintenance effort should be directed on a balance of performance 

and criticality. An example would be, How does the monitoring system 

ensure that maintenance effort is not expended on a poorly performing 

level controller that determines the flow of waste material to a drain? 

• How does the system capture and highlight the interaction between 

different loops within the system? A common control setup is to have 

temperature control in a distillation column cascaded to a steam flow 

controllers. When this cascade (slave master) configuration is broken, 

there is effectively no temperature control, even though the temperature 

controller calculates required moves. How does the system handle these 

kinds of interactions (slave/master, feedforward)? 

• How easy and intuitive is the use of the engineering front end? What 

additional calculation/diagnostic facilities are provided and do these 

provide a differentiating factor when evaluating system performance? This 

set of questions is largely to do with the aesthetics and usability of the 

system. 

• Does the configuration of the system lend itself to easy use by the 

intended users? The configuration complexity that is sustainable may be 

different if the end user is a panel operator than a post graduate 

process/chemical/control engineer (Shook, D. et al, 2002). 
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6.2.3 Analysis 

While it is clear that data analysis and measurement methods are not a 

differentiating factor, basic checks for completeness should be conducted. In 

addition, the presentation and the work flow associated with analysis can present 

a clear business advantage. The possibility for development within the analysis 

environment can also no be discounted, though progress in this area is more 

likely to come from an academic source than from industry. The following points 

about analysis should be evaluated: 

• Which of the known measures are used in the performance measurement 

system? The list of measures presented in the literature survey can form a 

basis for compiling such a list. 

• What is the intended audience of the measurement results? Within an 

industrial environment several different audiences have different 

information requirements. Basic control maintenance often forms the 

exclusive maintenance domain of personnel without a formal qualification 

in process control theory. As such, detailed and un-interpreted data may 

be overwhelming, or even unintelligible. Conversely, highly interpreted 

data may frustrate expert users. It is critical that the output of data analysis 

be matched to the intended audience. 

• Is the plant interaction and loop design incorporated in the analysis? This 

is a similar question to that was posed in the previous section about 

configuration. The focus here is about algorithm and calculation specific 

techniques tailored to different control loop designs (gap controllers, gain 

scheduling). 

• What new/solution unique measures are made use of? This is more 

prevalent where data is being interpreted to some degree. Pattern 

recognition, system identification and advanced time series analysis are 

currently intensely focused on in academia, and will increasingly filter 

down into industrial applications. 
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• What is the scope for implementing custom calculations? Control 

problems often don’t have single solutions, and since the requirements for 

a certain control response may be unique, there is often a requirement for 

unique monitoring techniques. 

• How much maintenance, in terms of process information, is required to 

keep the analysis accurate? Can the solution gather loop specific data 

automatically (controller mode, algorithm etc)? This touches on the give 

and take nature of the solution. Advantages can be gained by 

incorporating the controller structure into a monitoring package, but this 

must be balanced against the need to maintain changes when 

maintenance is done to the plant. 

•  Is the analysis robust enough to deal with standard control 

configurations? This deals with issues such as APC handles within the 

base layer. The set point of an APC application is regularly changed. This 

may interfere with standard analysis techniques, and should not 

necessarily be flagged as poor performance. In addition, poorly performing 

APC variables should be highlighted. 

• Is it possible to customise analysis and benchmarking on a loop per loop 

basis? The occasion does arise where it is useful to benchmark the 

performance of a loop. If certain performance measures do not apply, then 

the specific loop potential should be considered. Non-linear process may 

be an example where this benchmarking is critical. Controller tuning is 

determined as a compromise between performance and robustness. 

While the potential may exist to improve control in the current operating 

region, once the operating region changes, the effect on plant 

performance may be negative. 

6.2.4 Reporting 

Irrespective the design considerations regarding the prime users of a monitoring 

system, several parties have a vested interest in the performance of the basic 
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control layer (Shook, D. et al, 2002). This section deals with the reporting 

capabilities of the monitoring system. The following reporting issues should be 

investigated: 

• What technology (software) is used to present the results, and what 

platform (hardware) is required to accommodate that presentation? Once 

again there is no single perfect approach when choosing a reporting 

environment. Advanced visualisation and intelligent reporting can best be 

implemented in a custom environment. This requires local databases and 

has a maintenance and platform implication. In addition to the hardware 

requirements to run custom reporting, upgrades and additional 

calculations my not be explicitly handled. The flip side to custom reporting 

is using a flexible web-type front end. Advanced visualisation and custom 

reports are sacrificed for a more flexible reporting engine. 

• Manufacturing companies normally have a significant investment in data 

management, both in the production (Manufacturing Execution Systems) 

and the business (Enterprise Resource System) environments. These 

data management systems form an important starting point when deciding 

on the best technology. Does the reporting environment allow easy 

integration into the existing data management systems.  

• How does the grouping and drill down functionality of the reporting work? 

Plants and maintenance environments are structured according to 

function. Does the monitoring solution mirror the company structure? 

• Does the information at each level of detail make sense? The information 

critical to the instrumentation maintenance foreman is totally different from 

that of the CEO of the company. Both may be interested in certain 

information, and the level of interpretation needs to be geared to their 

function. The maintenance personnel working the coal front and using the 

detailed reporting should also not be neglected. 
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• Are interactions and priorities carried through each level of detail? While 

prioritisation within different value chains and functional areas is critical, 

there may be instances when it is useful to view relative performance 

across functional areas. The drill down functionality within the solution, 

from a high level alert to the detailed problem analysis should be intuitive. 

• Is the information displayed in a manner that allows for visual trend 

spotting and analysis? Is the visualisation technique effective and 

innovative? When presented with tabular data the human eye is at it’s 

least effective for making conclusions and suggesting action. The naturally 

ability of the human brain for trend spotting should be exploited wherever 

possible. 

6.2.5 Auditing and work flow structure 

The above sections have dealt with how problems are measured, identified and 

then reported. In order to ensure there is continuous improvement of controller 

performance, work should be regularly audited. The following auditing and work 

flow pointers should be investigated: 

• Does the system allow adhoc auditing of work recently performed? It is 

often difficult to judge the success of a maintenance action in the couple of 

hours spent executing the work on the plant. The ability to monitor the 

success of maintenance effort immediately after execution is important. 

• How is performance information archived and compared to the current 

performance? Long term improvement needs to be measured, but data 

storage and detailed information/reports should be managed sensibly to 

keep infrastructure requirements reasonable. What level of performance 

information is available for what length of time, and how easily can 

summaries be extracted from the system? 

• Does the vendor have a suggested work flow structure to accompany the 

solution? When first starting to monitor and improve basic controller 

performance, most companies are not structure and geared to deal with 
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the new information. Suggestions about how to structure, staff, train and 

deploy new personnel can be critical. 

• Is it possible to benchmark plant controller performance against other 

players in the industry. Keeping track of the differences between current 

performance, best in class and best achievable performance, gives an 

accurate indication about how effectively the solution has been deployed. 
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7  Conclusions 

Several different analysis techniques were explained and practically 

demonstrated. From the results and discussions, it is clear that there are 

advantages to several of the techniques presented. Each piece of analytical data 

presents a complementary piece of information with which the trouble-shooter 

can analyse the problem.  

 

Several examples of unusual or difficult to troubleshoot examples were chosen 

and examined using different techniques. 

 

In the case of flow F1002, first glance statistics indicated that there was high 

variability, and potentially high non-linearity. All this indicated a loop in strong 

need of maintenance.  

The CLP of the process was analysed, and indicated that there was significant 

room for improvement, specifically in a well designed control loop. However, by 

examining the process over the entire time period, and investigating the range of 

the SP and OP, it was clear that there had been an abnormal situation in the 

middle of the data set. The possibility of removing this type of information by 

means of well designed filters exists, but was not investigated. 

Plotting the CLP over time (in this case achieved by windowing the time data) 

highlighted the areas of poorer performance. This is recommended as a standard 

procedure for maintenance personnel. By tracking performance information over 

a significant period of time, clear abnormal situations can often be identified. This 

will prevent incorrect system changes that are based on erroneous information 

provided by aggregation over unstable conditions. 

 

Flow loop F1038 shows significant probability of sticition (or other non-linearity) 

when examining the histogram of the process error. However, when performing 
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the both cross-correlation tests, the information is much less damning. This 

contradictory information is indicative of the uncertainty inherent in the 

measurements. 

 

Contrasted to F1038 is flow loop F2024, where the histogram is almost perfectly 

normal and the cross-correlation test seems to indicate that there may be cause 

of stiction investigation. Further analysis shows high process variability, 

especially for a flow loop. However, when the above is read in conjunction with 

the CLP information, it is clear that the loop is performing close to minimum 

variance, and that the opportunity for improvement is likely to be small. If the 

technical staff had acted on any of the information without considering all the 

facts, an incorrect conclusion was likely. 

 

Pressure controller P1001 is just one example about the difficulty of applying 

standard techniques to the process industry, where unique setups and special 

control strategies abound. P1001 is an over pressure controller, and when 

analysed using standard techniques shows signs of sluggish control, high non-

linearity and incorrectly sized valves. However, this controller is designed never 

to reach SP under normal process conditions, and clearly needs to be monitored 

differently. 

L2051 and L1043 are 2 level controllers which are also configured unusually, and 

where the standard techniques fell flat. L2051 is a proportional only action 

controller, which has no feedback action. As such, the explicit OP-PV mapping 

leaves analysis of errors meaningless since there is no input from error into the 

control algorithm. L1043 has an external control algorithm which sets the SP 

equal to the PV on every execution cycle, and controls the OP remotely. This 

makes traditional analysis very difficult. 
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Flow controller F1035 was used as an example through most of the 

measurements, due to its unique type of problem. Firstly the statistics showed 

that the loop was performing fairly well. However, analysis of the non-linearity 

showed uncertainty as to the perfect performance of the control loop. Based only 

on this information, the technical staff would have left the loop unattended. 

The bicoherence technique makes use of higher level statistics on frequency 

based information, and this technique indicated significant levels of non-linearity 

within the process information.  

Applying a power spectrum decomposition on the frequency domain information, 

yielded results that showed a dominant oscillation at 43 minutes. However, this 

was contrary to the visual inspection, which indicated a much lower frequency 

disturbance. 

In order to provide further insight into the performance of this control loop, a 

novel wavelet based technique was applied. The error signal of F1035 was 

decomposed into the various wavelet basis functions, and these were firstly 

visually displayed. This allowed the trouble-shooter to easily determine the 

interaction between the time of day and the frequency of the oscillation. By 

further investigating the nature of the oscillation, by interpreting the detail and 

approximation information at each decomposition level, it was possible to 

determine that the dominant low frequency disturbance was between 60 and 120 

minutes. This was confirmed by visual inspection (ie 93 minutes). 

What the standard visual inspection, statistics and frequency domain techniques 

failed to highlight was the presence of a high frequency disturbance during the 

evenings. While PID control is ill suited to removing slow continuous oscillations, 

it should remove higher frequency disturbances. The wavelet decompositions 

clearly showed that the performance during the evenings could be improved. 

 

The comparison between the wavelet decomposition and the normal frequency 

based techniques highlights a major shortcoming in attempting to group common 
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oscillations within processing plants. Most plant information is likely to be 

dominated by day-night cycles, as well as other repetitive, and time-localised, 

disturbances. Since the translation to the frequency domain disregards all time 

based information, the frequency decomposition is in effect an aggregation of 

performance information. This makes the grouping, and thereby the isolation of 

the source of oscillation, very difficult. 

 

The examples discussed above, as well as those that only appeared in the 

discussion section, highlight several important characteristic of closed loop 

performance management: 

• Each closed loop performance technique provides a portion of unique 

information – a partial view of the whole truth. 

• Unusual performance problems may be characterised by conflicting 

results. 

• The aggregation of results can lead to erroneous conclusions. Firstly, in 

the example of interpreting the CLP, and secondly from the use of non-

localised frequency based techniques. 

 

It is clear that by analysing several different closed loop performance measures, 

one is able to arrive at a better picture of the true performance, provided that the 

analysis is interpreted by a knowledgeable specialist.  

 

Several best practices for the choice of a performance framework were 

suggested. Along with the conclusion of multiple techniques to arrive at a true 

conclusion, comes the burden of interpreting the results from these techniques. 

Many of the measures presented as part of this study require some level of 

control theory in order to interpret.  
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Therefore, when purchasing or developing a closed loop performance 

measurement environment, the key question needs to be the skill level of the 

audience. Combined with this are the considerations of data collection, business 

processes, data visualisation and work flow. All are important points to consider 

when purchasing or developing a monitoring package. The most successful 

implementations of these techniques will always be found in combination with 

sound technical and process knowledge. Both are key to interpreting the results 

presented by the monitoring system. Without this human intellectual property 

combining with the intelligence captured in the system, maintenance cannot 

occur. Either in isolation are not totally effective. 
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