

Synthesis and structure of

modified thiophene biscarbene complexes

by

Nina Alletta van Jaarsveld

Submitted in partial fulfillment of the requirements of the degree

Magister Scientia

In the Faculty of Natural-and Agricultural Science

University of Pretoria Pretoria

November 2009

Supervisor: Professor Simon Lotz

© University of Pretoria

Declaration

The syntheses and characterizations outlined in this dissertation were carried out at the Department of Chemistry, University of Pretoria between the periods of January 2009 to January 2010 under the supervision of Prof. Simon Lotz. Crystal structure determinations (data collection and structure refinements) were performed by Mr. D.C. Liles at the same institute. I hereby declare that the dissertation was my own, independent work and has not been previously submitted for examination or a degree at another tertiary institute.

rsveld

Nina A. van Jaarsveld

1st day of February 2010

Acknowledgements

Jy is nooit te oud om iets nuuts te leer nie Ma

Dis 'n loopbaan nie 'n renbaan nie Pa

> Relax, jy gaan dit maak Liza

My sussie swot chemie, wil jy die lab sien? Louise a.k.a (Peanut)

> *Maar baby!* Marius

Moet ek vir jou koffie maak? Mia

Ek het 'n meeting, dans, reaksie, huis, kerk, draf, etc., maar waarmee kan ek help? Belinda

> Complètement fou fou Auralie

Het jy geweet jy kan dit doen? (alles het so baie gehelp) Elize

> Koffie? Lunch? Wyn? (Dankie tog 'n breek) Daniela

> > WAT MAAK JY!!!!!!!!
> > Proffie

TABLE OF CONTENT

LIST OF COMPLEXES

TYPE A: DINUCLEAR METAL BISCARBENE COMPLEXES

TYPE B: MONONUCLEAR METAL BISCARBENE COMPLEXES

LIST OF ABBREVIATIONS

ABSTRACT

CHAPTER 1: INTRODUCTION AND THEORY 1

Organometallic chemistry of divalent carbon complexes		
General Introduction	1	
History	4	
Carbene carbons and carbene complexes	9	
Fischer carbene complexes	13	
SYNTHESIS	13	
CHARACTERISTICS: ELECTRONIC STRUCTURE	18	
STRUCTURE	21	
STABILITY AND REACTIVITY	24	
APPLICATION	32	
CHARACTERIZATION	36	
Thiophene and thiophene derivatives	37	

VI

VIII

IX

VI VII

GENERAL	37
Synthesis	38
CHARACTERISTICS: ELECTRONIC STRUCTURE	39
STRUCTURE	43
REACTIVITY AND STABILITY	46
APPLICATION	48
Aims of this study	49

CHAPTER 2: DINUCLEAR BISCARBENE COMPLEXES	53	
---	----	--

Synthesis and spectroscopic characterization		
Introduction	53	
General	53	
Synthesis	58	
Synthesis of A6 Synthesis of A1-5	58 61	
Characterization	65	
¹ H – NMR SPECTROSCOPY	65	
Elucidation of A6 Elucidation of A1-5	65 67	
$^{13}C - NMR$ SPECTROSCOPY	76	
Elucidation of A6 Elucidation of A1-5 Assignments of A5 and A6	76 79 83	
X-RAY DIFFRACTION	85	
Selected data of A6 Packing	85 92	

CHAPTER 3: MONONUCLEAR BISCARBENE COMPLEXES 94

Synthesis and characterization

Introduction	94
Synthesis	98
Synthesis of B1 Synthesis of B4 Synthesis of B2, B3, B6 and B7 Synthesis of B5	100 102 104 108
Characterization	109
¹ H-NMR SPECTROSCOPY	109
Elucidation of B1-4 Elucidation of B5 Elucidation of B4 Elucidation of byproducts formed for there reaction synthesis of B4 Elucidation of B6 and B7 Elucidation of byproducts from the reaction synthesis of B7	109 113 114 115 117 120
¹³ C-NMR SPECTROSCOPY	124
Elucidation of B1-4 Elucidation of B5 Elucidation of test reaction with 2,3,4,5-tetrabromothiophene Elucidation of B6 and B7 Elucidation of byproducts from the reaction synthesis of B7	124 128 129 131 132
IR-Spectroscopy	133
Assignments of B1-3 and B6 and B7	133
UV SPECTRA	135
Assignments of B1 and B2, and B6 and B7	135
MASS SPECTROMETRY	139
Mass data of B2, B4 and B7	139
X-RAY DIFFRACTION	140
Selected data of B1-3 Selected data of B5 Selected data of B7 Packing	145 148 150 153

CHAPTER 4: EXPERIMENTAL	159
	100

Syntheses and separations

159

Standard operational procedures	
Characterization techniques	160
NUCLEAR MAGNETIC RESONANCE SPECTRA	160
INFRARED SPECTROSCOPY	160
ULTRAVIOLET SPECTROSCOPY	160
X-RAY CRYSTALLOGRAPHY	161
MASS SPECTROMETRY	161
COMPUTATIONAL CHEMISTRY	161
SYNTHESIS AND PURIFICATION OF STARTING MATERIALS	162

Synthesis	162

SYNTHESIS OF DINUCLEAR BISCARBENE COMPLEXES (A1-5)	162
Method	162
Separation	164
SYNTHESIS OF DINUCLEAR BISCARBENE COMPLEXES (A6)	165
Method	165
Separation	166
SYNTHESIS OF MONONUCLEAR BISCARBENE COMPLEX (B1)	166
Method	166
Separation	167
SYNTHESIS OF MONONUCLEAR BISCARBENE COMPLEXES (B1-3 AND B6-7)	167
Method	168
Reagent quantities	168
Separation	169
SYNTHESIS OF MONONUCLEAR BISCARBENE COMPLEX (B4)	170
Method	170
Separation	171
SYNTHESIS OF MONONUCLEAR BISCARBENE COMPLEX (B5)	171
Method	171
Separation	172

CHAPTER 5: SUMMARY

173

CHAPTER 6: APPENDICES	179
Supporting information	179
X-RAY DIFFRACTION DATA	179

LIST OF COMPLEXES

Type A: DINUCLEAR METAL BISCARBENE COMPLEXES

Ψ(CO)₅

OEt

Ψ(CO)₅

A2:

A4:

A5:

EtO

Ċr(CO)₃

A6:

Type B: MONONUCLEAR METAL BISCARBENE COMPLEXES

B1:

B3:

OEt

CO

-CO

CΟ

B4:

B2:

B6:

B5:

ΟĖt

B7:

LIST OF ABBREVIATIONS

Å	:	angstrom	m (IR)		medium
Ac	:	acetyl	m (NMR)		multiplet
ADC	:	acyclic diamino Carbene	Me		methyl
Bu	:	butyl	MLCT		metal ligand charge
BuLi	:	<i>n-</i> butyllithium	INIEG I	•	transfer
BTP	:	bithiophene	nha		nitrobenzylalcohol
br	:	broad	NHC		N-heterocyclic carbene
CBC	:	covalent bond	no		not observed
		classification	n ⁿ		hapticity
Ср	:	η^5 -C ₅ H ₅	NMR		nuclear magnetic
Cp*	:	ŋ⁵ -C₅H₄Me		•	resonance
δ	:	chemical shift	Tf		triflate
d	:	doublet	Ph		phenyl
DCM	:	dichloromethane	PPh		triphenyl phosphine
dd	:	doublet of doublets	a		quartet
DEE	:	diethyl ether	OTP	:	quaterthiophene
Et	:	ethyl	RT	:	room temperature
HETCOR	:	heteronuclear correlation	s (IR)	:	singlet
HOMO	:	highest occupied	s (NMR)	:	strong
		molecular orbital	t	:	triplet
IR	:	infrared spectroscopy	THP/thp	:	thiophene
I	:	intensity	THF/thf	:	tetrahvdrofuran
J	:	coupling constant (Hz)	TMEDA:	:	N.N.N.N-tetramethyl
λ	:	Wavelength			ethylenediamine
LCD	:	liquid crystal display	URO	:	urotropin
LDA	:	lithium diisopropylamine	UV	:	ultraviolet
LUMO	:	lowest unoccupied	VE	:	valence electron
		molecular orbital	vs	:	very strong
					, 0

:

W

weak

ABSTRACT

Investigation of thiophene as spacer ligand to afford mono and dinuclear biscarbene complexes was undertaken. Three different methods resulted in the selective activation of thiophene positions after deprotonation by BuLi.

Using the thienyl derivative, quaterthiophene (QTP), linked at the two and five position allowed for the successful lithiation of the two and five position of the outermost thienyls without the use TMEDA as with thiophene. The synthesis of $[Cr(CO)_5{C(OEt)2,5-C_{16}H_8S_4C(OEt)}Cr(CO)_5]$ was afforded by addition of chromium hexacarbonyl and subsequent alkylation with $[Et_3O][BF_4]$. Localization of the conjugated π -electronic path on the thienyl spacer determined by X-ray diffraction studies was supplemented with computational studies and showed no communication between the metal fragments exist *via* the thiophene chain.

Similar activation to QTP was observed with the electron withdrawing influence of the metal fragment on $Cr(\eta^5-C_4H_4S)(CO)_3$ that permit for dilithiation on the 2 and 5 position to synthesize the carbene analogues $[ML_n\{C(OEt)\eta^5-2,5-C_4H_2SC(OEt)\}ML_n(Cr(CO)_3]$ where $ML_n = Cr(CO)_5$, $Mo(CO)_5$, $MnCp(CO)_2$ and $Re_2(CO)_9$. NMR spectroscopic techniques were used for identification and showed that the carbene metal ligands have restricted movement resulting in signal duplication.

Selective replacement of thiophene hydrogens with bromine atoms and subsequent lithiumhalogen exchange to utilize specific thiophene protons. Lithiation of 3-bromothiophene at cold temperatures and formation of the metal acylate allowed for the second lithiation at the 2 position of thiophene to form the carbene chelate, $[Cr{C(OEt)2,3-C_4H_2SC(OEt)}(CO)_4]$. Correspondingly the formation of $[Cr{C(OEt)\eta^5-2,3-C_4H_2SC(OEt)}(CO)_4(Cr(CO)_3)]$ was afforded by using the same procedure on chromium η^5 -(3-bromothiophene) tricarbonyl precursor.

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

The range of carbene chelates that could be synthesized warranted further investigation to advance the field in the study of these carbene complexes. For the first time it could be shown that it was possible to decorate all carbon atoms in a heteroarene with Fischer carbene ligands. Utilizing 2,3,4,5-tetrabromothiophene and lithium-halogen exchange methodology resulted in the synthesis of tetracarbene chelate complexes, [2,3,4,5-C₄S{C(OEt)}₄{Cr(CO)₄}₂] and $[2,3,4,5-C_4S{C(OEt)}_4{W(CO)}_4]_2]$. The reaction also afforded the respective monocarbene chelates, $[M_{C(OEt)2,3-C_4H_2SC'(OEt)}(CO)_4]$, M= Cr and W. The syntheses were accomplished by sequential lithium-halogen exchange of the 2 and 5 positions followed by metal acylate formation and ring closure by a further lithium-halogen exchange of remaining bromine atoms. The stability of $[2,3,4,5-C_4S{C(OEt)}_4{Mo(CO)}_4]_2$ did not allow for isolation but carbene monochelate analogue, $Mo{C(OEt)2,3-C_4H_2SC(OEt)}(CO)_4],$ was fullv the characterised. Spectroscopic analysis indicated the difference in electronic environment of the respective carbene ligands and four distinct carbonyl vibrations and electron transitions were Mass spectral data designated sequential carbonyl loss of molecular ions for observed. representative compounds. The X-ray diffraction studies confirmed molecular structure and showed incomplete hydrolysis of lithium atoms present. The monochelate, $[\dot{M}_0{C(OEt)2,3-C_4H_2SC(OEt)}(CO)_4]$ and $[\dot{W}{C(OEt)2,3-C_4H_2SC(OEt)}(CO)_4]$ packed in a gridlike structure and the tetracarbene complex and aminolysis product showed more disorder. Partial aminolysis of [Cr{C(OEt)2,3-C4H2SC(OEt)}(CO)4] showed the relative stability of the ethoxy substituents. The resonance stabilised ethoxy group was retained in a stepwise aminolysis to form $[Cr{C(OEt)2,3-C_4H_2SC(NH_2)}(CO)_4]$. This behaviour was unique in carbene chemistry. Further reaction with ammonia resulted in decomposition due to the weakening of the metal carbon bonds in the chelate ring, resulting in the formation of $[Cr(CO)_4(NH_3)_2]$.