EXPRESSION OF THE H-SUBUNIT AND L-SUBUNIT OF FERRITIN IN BONE MARROW MACROPHAGES AND CELLS OF THE ERYTHRON DURING CHRONIC IMMUNE STIMULATION

Volume 1

ALIDA MARIA KOORTS

Submitted in fulfillment of the requirements for the degree Philosophiae Doctor Physiology in the Faculty of Health Sciences, University of Pretoria, South Africa

May 2009

© University of Pretoria
ACKNOWLEDGEMENTS

The following people have contributed significantly to the completion of this thesis. I express my sincere thanks to every single one of them.

Prof M Viljoen for her important role as my supervisor. Professor, thank you for your guidance and support over all the years,

Dr Peter Levay for his tireless efforts in evaluating and enrolling each of the Kalafong patients, for obtaining the specimens from these patients and for assisting with the clinical aspects of this work,

Alan Hall for sectioning of all embedded bone marrow tissue with painstaking care,

Chris van der Merwe for the development of all the beautiful electron micrographs,

Dr Piet Becker for all the complex statistical analyses and the hunting stories,

the staff of the Orthopaedics Department, Steve Biko Hospital (formerly Pretoria Academic Hospital) for kindly obtaining the bone marrow during hip replacement procedures,

Prof DH van Papendorp for the opportunity to complete this study in the Department of Physiology,

the Postgraduate Mentor Bursary Programme for their financial support and

lastly, but surely not the least, the Skye Foundation for their generous financial support and continuous interest in my work.
ABSTRACT
Ferritin is the major protein responsible for the sequestration, storage and release of intracellular iron. The ferritin protein shell exists as heteropolymers of various combinations of two types of subunits, the H-subunit and L-subunit, a phenomenon that gives rise to the existence of isoferritins. As the roles of the H-subunit and L-subunit differ in the mineralization process, the subunit composition of ferritin will influence the metabolic properties of the assembled ferritin molecules.

The primary aim of the present study was to quantitatively measure the expression of the H-subunit and L-subunit of ferritin in bone marrow macrophages and cells of the erythron in patients with chronic T-helper cell type-1 immune stimulation. A second aim was to investigate the possible role that the expression of the H-subunit and L-subunit of ferritin may have in the establishment and maintenance of an iron transfer block.

The study subjects included 48 patients with chronic diseases from the Department of Internal Medicine, Kalafong Hospital and 10 patients with osteoarthritis, scheduled for hip replacement at the Department of Orthopaedics, Pretoria Academic Hospital. Bone marrow and blood samples were collected from each patient. The expression of the H-subunit and L-subunit of ferritin in bone marrow macrophages and cells of the erythron was quantitatively evaluated by post-embedding immunolocalisation with immunogold transmission electron microscopy.

The patients were subdivided into groups with a predominantly T-helper cell type-1 immune reaction (pro-inflammatory) and normal immune status on the basis of C-reactive protein, neopterin and cytokines (INF-γ, TNF-α, IL-1β, IL-6, IL-12, IL-2, IL-8, GM-CSF, IL-4, IL-5, TGF-β and IL-10).

The study showed
• up-regulation of the H-subunit of ferritin in the bone marrow macrophage in patients with chronic T-helper cell type-1 immune stimulation
• no effects for chronic T-helper cell type-1 immune stimulation on the expression of the L-subunit of ferritin in the bone marrow macrophage
• no effects for chronic T-helper cell type-1 immune stimulation on the expression of either the H-subunit or L-subunit of ferritin in cells of the bone marrow erythron
• a 70% prevalence of iron transfer block in patients with chronic T-helper cell type-1 immune stimulation
• up-regulation of the H-subunit of ferritin in the bone marrow macrophage in osteoarthritis patients who had normal T-helper cell type-1 immune activity, but significantly increased TGF-β levels
• up-regulation of the H-subunit of ferritin in the patients with iron transfer block
• iron availability loses its primary role in the establishment of the circulating red blood profile in conditions with chronic pro-inflammatory activity
• indications that the H-subunit and L-subunit of ferritin may play a role in the iron availability for red blood cell haemoglobin production
• various correlations in the osteoarthritis patients between the H-subunit and L-subunit of ferritin and different cytokines

Key words
ferritin, isoferritins, H-subunit, L-subunit, iron, chronic immune stimulation
TABLE OF CONTENTS

CHAPTER 1

INTRODUCTION

1) Body iron content and distribution
2) Ferritin and ferritin isoforms: Structure-function relationships, synthesis, degradation and secretion

- 2.1) Structure of ferritin
- 2.1.1) Structure of the ferritin protein shell
- 2.1.1.1) Intra-subunit and inter-subunit amino acid side-chain interactions of the ferritin protein shell
- 2.1.1.2) Channels present in the ferritin protein shell
- 2.1.1.3) The ferroxidase catalytic center of the H-subunit of the ferritin protein shell
- 2.1.1.4) The nucleation site of the L-subunit on the inner iron/protein interface of the ferritin protein shell
- 2.1.2) The iron mineral
- 2.2) Mechanism of iron sequestration and release: The role of the ferritin protein shell in iron mineralization and demineralization
- 2.2.1) Oxidation of ferritin
- 2.2.1.1) Oxidation of Fe$^{2+}$ by the ferroxidase center of the H-subunit
- 2.2.1.2) Oxidation of Fe$^{2+}$ on the surface of the growing iron core
- 2.2.2) Hydrolysis and nucleation of the formed Fe$^{3+}$-compound
- 2.2.3) Different iron oxidation kinetics and the formation of different reaction products by the ferroxidase center oxidation of iron and oxidation of iron on the mineral surface
- 2.2.4) Migration of iron between ferritin molecules
2.2.5) Non-specific Fe$^{3+}$-compound hydrolysis on the outer surface of the ferritin protein shell

2.2.6) The cooperative roles of the H-subunit and L-subunit of the ferritin protein shell in iron mineralization

2.2.7) The release of iron from ferritin

2.3) Isoferritins

2.3.1) Different H-subunit/L-subunit compositions of the ferritin protein shell

2.4) The synthesis of ferritin

2.4.1) Assembly of ferritin from the pool of available H- and L-subunits

2.4.2) Regulation of the expression of the H-subunit and L-subunit genes of ferritin

2.4.3) The gene sequences of the H-subunit and L-subunit of ferritin

2.4.4) Translational regulation of the H-subunit and L-subunit mRNA expression via metabolically available iron

2.4.5) Translational regulation of H-subunit and L-subunit expression irrespective of metabolically available iron

2.5) The degradation of ferritin

2.5.1) The formation of haemosiderin from ferritin

2.5.2) The increased susceptibility of H-subunit rich ferritins to degradation

2.5.3) The reticuloendothelial cell and haemosiderin formation

2.6) Ferritin in cellular organelles

2.6.1) Nuclear ferritin

2.6.2) Mitochondrial ferritin

2.7) Extracellular ferritin

2.7.1) The internalization of ferritin by cells
2.7.2) Other functions of ferritin

2.8) In conclusion

2.9) Figure 1: Heuristic presentation of intracellular ferritin metabolism

3) Ferritin and ferritin isoforms:

Protection against uncontrolled cellular proliferation, oxidative damage and inflammatory processes

3.1) Ferritin and the differential expression of the H- and L-subunits of ferritin during uncontrolled cellular proliferation

3.1.1) Cellular proliferation, ferritin subunits and cancer

3.1.2) Cellular differentiation

3.1.3) Programmed cell death (apoptosis)

3.2) The expression of the H- and L-subunits of ferritin in diseases and toxicities associated with an increase in reactive oxygen species (ROS) generation

3.2.1) Oxidative stress and neurodegenerative diseases

3.2.2) Oxidative stress and vascular disorders

3.2.3) UV-induced oxidative damage

3.3) The expression of ferritin and the differential expression of the H- and L-subunits of ferritin in inflammatory conditions

3.3.1) The macrophage, iron metabolism and ferritin in inflammatory conditions

3.3.2) Increased ferritin expression as a result of cytokine activation

3.4) Table 1: The effects of cytokines on the expression of H-subunits and L-subunits of ferritin

3.5) In conclusion

4) Aim of the study

5) References
CHAPTER 2 page 100
MATERIALS AND METHODS page 100

1) Funding page 100
2) Investigators page 100
3) Patients page 101
4) Determinations of the study page 101
5) Samples obtained from patients page 102
6) Materials and methods page 103

6.1) Ultrastructural immunolocalisation of the H-subunit and L-subunit of ferritin in bone marrow macrophages and cells of the erythron page 103

 6.1.1) Fixation of core bone marrow tissue page 103

 6.1.2) Immunolabelling of the H-subunit and L-subunit of ferritin page 105

 6.1.3) Ultrastructural characteristics of bone marrow macrophages and cells of the erythron page 107

 6.1.4) Quantification of the immunolabelling of the H-subunit and L-subunit of ferritin page 112

6.2) Serum iron markers page 113

 6.2.1) Serum iron page 113

 6.2.2) Serum transferrin page 113

 6.2.3) Transferrin saturation page 114

 6.2.4) Serum ferritin page 114

6.2.5) Soluble transferrin receptor page 114

6.3) Red blood cell characteristics page 115

 6.3.1) Red blood cell count page 115

 6.3.2) Haemoglobin concentration page 116

 6.3.3) Haematocrit (Hct) page 116

 6.3.4) Mean corpuscular volume (MCV) page 116
6.3.5) Mean corpuscular haemoglobin (MCH)

6.3.6) Mean corpuscular haemoglobin concentration (MCHC)

6.3.7) Red blood cell distribution width (RDW)

6.3.8) Reticulocyte production index (RPI)

6.4) Prussian blue iron stain of bone marrow aspirate and core bone marrow biopsy

6.4.1) HCl-ferrocyanide iron stain of bone marrow aspirate smears

6.4.2) HCl-ferrocyanide iron stain of core bone marrow LR White plastic sections

6.5) Cytokines Il-1β, Il-2, Il-4, Il-5, Il-6, Il-8, Il-10, Il-12, TNF-α, TGF-β1, INF-γ and GM-CSF

6.5.1) Il-8, Il-1β, Il-6, Il-10, TNF-α and Il-12p70

6.5.2) Il-2, Il-4, Il-5, Il-10, TNF-α and IFN-γ

6.5.3) Transforming growth factor β1 (TGF-β1)

6.5.4) Granulocyte macrophage colony stimulating factor (GM-CSF)

6.6) Neopterin

6.7) C-reactive protein (CRP)

6.8) Pro-hepcidin and caeruloplasmin

6.8.1) Pro-hepcidin

6.8.2) Caeruloplasmin

7) Statistical analysis

8) Study design

9) References

CHAPTER 3

RESULTS

1) Determinations of the study
2) Results of the study

2.1) Expression of the H-subunit and L-subunit of ferritin in bone marrow macrophages and cells of the erythron

2.2) Serum iron markers for the Kalafong patient group and osteoarthritis patient group

2.3) Red blood production for the Kalafong patient group and osteoarthritis patient group

2.4) Cytokines, C-reactive protein, neopterin, pro-hepcidin and caeruloplasmin

3) Statistical analysis of the study

4) Bar diagrams for variables for the different subdivisions

5) Correlations in the different subgroups of the Kalafong patients and the group of osteoarthritis patients

5.1) Correlations in the group of Kalafong patients with normal C-reactive protein

5.2) Correlations in the group of Kalafong patients with normal neopterin

5.3) Correlations in the group of Kalafong patients with no iron transfer block

5.4) Correlations in the group of Kalafong patients with high C-reactive protein

5.5) Correlations in the group of Kalafong patients with high neopterin

5.6) Correlations in the group of Kalafong patients with iron transfer block

5.7) Correlations in the group of osteoarthritis patients
CHAPTER 4

DISCUSSION

1) INTRODUCTION

page 204

2) EXPERIMENTAL GROUPS

page 206

3) AIM OF THE STUDY

page 206

4) SUBDIVISION OF THE PATIENTS ACCORDING TO THEIR IMMUNE STATUS

page 207

4.1) C-reactive protein as an indicator of immune stimulation

page 207

4.2) Neopterin as an indicator of immune stimulation

page 209

5) THE CYTOKINE RESPONSE OF PATIENTS WITH ELEVATED C-REACTIVE PROTEIN AND PATIENTS WITH ELEVATED NEOPTERIN

page 212

5.1) Background

page 212

5.2) Cytokine profiles of the Kalafong and osteoarthritis patients

page 216

5.2.1) Cytokine levels in patients with elevated C-reactive protein, patients with normal C-reactive protein and osteoarthritis patients

page 216

Pro-inflammatory cytokines

page 216

T-helper cell type-2 cytokines

page 220

In summary on the cytokine profiles of the C-reactive protein subdivision

page 222

5.2.2) Cytokine levels in patients with elevated neopterin, patients with normal neopterin and osteoarthritis patients

page 223

Pro-inflammatory cytokines

page 223

T-helper cell type-2 cytokines

page 227

In summary on the cytokine profiles of the neopterin subdivision

page 228

5.2.3) Osteoarthritis patients

page 229

In summary on the cytokine profiles of the osteoarthritis patients

page 231
6) EXPRESSION OF THE H-SUBUNIT AND L-SUBUNIT OF FERRITIN IN THE BONE MARROW MACROPHAGE AND CELLS OF THE ERYTHRON IN PATIENTS WITH A PRO-INFLAMMATORY IMMUNE STATUS COMPARED TO PATIENTS WITH NO PRONOUNCED IMMUNE ACTIVATION

6.1) H-subunit and L-subunit expression in the macrophage in the Kalafong patients with a pro-inflammatory immune status

6.2) H-subunit and L-subunit expression in cells of the erythron in the Kalafong patients with a pro-inflammatory immune status

6.3) Discussion of the expression of the H-subunit and L-subunit of ferritin in patients with a pro-inflammatory immune status

6.4) H-subunit and L-subunit expression in the macrophage and cells of the erythron in the osteoarthritis patients

Osteoarthritis patients and the subdivision according to C-reactive protein

Osteoarthritis patients and the subdivision according to neopterin

In summary on the osteoarthritis patients

6.5) Discussion of the expression of the H-subunit and L-subunit of ferritin in osteoarthritis patients

7) PREVALENCE OF THE IRON TRANSFER BLOCK IN PATIENTS WITH A PRO-INFLAMMATORY IMMUNE STATUS COMPARED TO PATIENTS WITH NO PRONOUNCED IMMUNE ACTIVATION

7.1) Iron transfer block

7.2) Diagnosis of iron transfer block

7.3) Iron status of the C-reactive protein and neopterin subdivisions
7.3.1) Body iron stores as evaluated by Prussian blue iron stains of the bone marrow
aspirates and cores of the C-reactive protein and neopterin subdivisions

page 253

7.3.2) Serum iron markers and determination of the iron status of the C-reactive protein
and neopterin subdivisions

Soluble transferrin receptor in anaemia of chronic disease and iron deficiency
anaemia

page 257

7.3.3) Red blood cell indices of the C-reactive protein and neopterin subdivisions

page 259

7.3.4) Prevalence of iron transfer block in patients with a pro-inflammatory immune
status

In summary on the iron status of the groups of Kalafong patients with a pro-
inflammatory immune status and the groups of Kalafong patients with no
pronounced immune activation

page 264

7.4) Loss of the relationship between storage iron, bio-available iron and red blood cell
production in patients with a pro-inflammatory, T-helper cell type-1 immune
response

page 266

7.5) Possible role of the anti-inflammatory cytokine, transforming growth factor-β, in
resolving the iron transfer block

page 269

7.6) Relationship between storage iron, bio-available iron, expression of the H-subunit
and L-subunit of ferritin and red blood cell production in the group of Kalafong
patients with normal neopterin

page 269

7.7) Relationship between the H-subunit/L-subunit ratio in cells of the erythron and
the mean corpuscular volume in the group of Kalafong patients with normal
neopterin

page 271
7.8) Relationship between the H-subunit of ferritin in the cells of the erythron and the mean corpuscular haemoglobin concentration in the group of Kalafong patients with elevated C-reactive protein

7.9) Pro-hepcidin and caeruloplasmin levels for the C-reactive protein and neopterin subdivisions

8) EXPRESSION OF THE H-SUBUNIT AND L-SUBUNIT OF FERRITIN IN A GROUP OF KALAFONG PATIENTS WITH IRON TRANSFER BLOCK COMPARED TO A GROUP OF KALAFONG PATIENTS WITH NO IRON TRANSFER BLOCK

8.1) Iron status of the iron transfer block subdivision of the Kalafong patients

8.1.1) Body iron stores as evaluated by Prussian blue iron stains of the bone marrow aspirates and cores of the iron transfer block subdivision of the Kalafong patients

8.1.2) Serum iron markers and determination of the iron status of the iron transfer block subdivision of the Kalafong patients

8.1.3) Red blood cell indices of the iron transfer block subdivision of the Kalafong patients

8.2) Loss of the relationship between storage iron, bio-available iron and red blood cell production in the group of Kalafong patients with an iron transfer block

8.3) Expression of the H-subunit and L-subunit of ferritin in macrophages and cells of the erythron in the group of Kalafong patients with an iron transfer block compared to the group of Kalafong patients with no iron transfer block
8.4) Relationship between the H-subunit/L-subunit ratio in cells of the erythron and the mean corpuscular volume and the mean corpuscular haemoglobin in the group of Kalafong patients with an iron transfer block

8.5) Relationship between the L-subunit of ferritin in cells of the erythron and the mean corpuscular volume and the mean corpuscular haemoglobin in the group of Kalafong patients with an iron transfer block

8.6) Relationship between the soluble transferrin receptor and the red blood cell distribution width in the group of Kalafong patients with an iron transfer block

8.7) Cytokine levels of the iron transfer block subdivision of the Kalafong patients

8.8) Pro-hepcidin and caeruloplasmin levels for the iron transfer block subdivision

8.9) In summary on the expression of the H-subunit and L-subunit of ferritin in the iron transfer block subdivision of the Kalafong patients

9) INCREASE IN THE EXPRESSION OF THE H-SUBUNIT OF FERRITIN IN THE MACROPHAGES OF OSTEOARTHRITIS PATIENTS AND IMPLICATIONS

9.1) Iron status of the osteoarthritis patients

9.1.1) Body iron stores as evaluated by Prussian blue iron stains of the bone marrow cores of the osteoarthritis patients

9.1.2) Serum iron markers and determination of the iron status of the osteoarthritis patients

 In summary on the serum iron markers of the osteoarthritis patients

9.1.3) Red blood cell indices of the osteoarthritis patients
In summary on the red blood cell indices of the osteoarthritis patients

9.1.4) Iron status of the osteoarthritis patients

9.2) Relationship between storage iron, bio-available iron, expression of the H-subunit and L-subunit of ferritin and red blood cell production in osteoarthritis patients

9.3) Possible role for the anti-inflammatory cytokine, transforming growth factor-β, in resolving the iron transfer block in osteoarthritis patients

9.4) Cytokines and the expression of the H-subunit and L-subunit of ferritin in osteoarthritis patients

9.5) Pro-hepcidin and caeruloplasmin levels for the osteoarthritis patients

9.6) In summary on the osteoarthritis patients

10) References
CHAPTER 3

Figure 1a – 1c. Differences in expression of the H-subunit of ferritin in the macrophage for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 148

Figure 2a – 2c. Differences in expression of the L-subunit of ferritin in the macrophage for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 149

Figure 3a – 3c. Differences in H-subunit/L-subunit ratio in the macrophage for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 150

Figure 4a – 4c. Differences in expression of the H-subunit of ferritin in cells of the erythron for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 151

Figure 5a – 5c. Differences in expression of the L-subunit of ferritin in cells of the erythron for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 152

Figure 6a – 6c. Differences in H-subunit/L-subunit ratio in cells of the erythron for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 153

Figure 7a – 7c. Differences in serum iron for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 154

Figure 8a – 8c. Differences in transferrin for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 155

Figure 9a – 9c. Differences in transferrin saturation for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 156

Figure 10a – 10c. Differences in serum ferritin for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
page 157
Figure 11a – 11c. Differences in soluble transferrin receptor for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 12a – 12c. Differences in transferrin/log ferritin ratio for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 13a – 13c. Differences in soluble transferrin receptor/log ferritin ratio for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 14a – 14c. Differences in red blood cell count for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 15a – 15c. Differences in mean corpuscular volume for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 16a – 16c. Differences in mean corpuscular haemoglobin for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 17a – 17c. Differences in mean corpuscular haemoglobin concentration for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 18a – 18c. Differences in red blood cell distribution width for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 19a – 19c. Differences in reticulocyte production index for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 20a – 20c. Differences in neopterin for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 21a – 21c. Differences in C-reactive protein for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 22a – 22c. Differences in interferon-γ for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision
Figure 23a – 23c. Differences in tumor necrosis factor-α for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 24a – 24c. Differences in interleukin-1β for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 25a – 25c. Differences in interleukin-6 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 26a – 26c. Differences in interleukin-12 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 27a – 27c. Differences in interleukin-2 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 28a – 28c. Differences in interleukin-8 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 29a – 29c. Differences in granulocyte macrophage colony stimulating factor for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 30a – 30c. Differences in interleukin-4 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 31a – 31c. Differences in interleukin-5 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 32a – 32c. Differences in transforming growth factor-β for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 33a – 33c. Differences in interleukin-10 for the C-reactive protein subdivision, the neopterin subdivision and the iron transfer block subdivision

Figure 1 – 17. Correlations in the group of Kalafong patients with normal C-reactive protein

Figure 1 – 24. Correlations in the group of Kalafong patients with normal neopterin
Figure 1 – 14. Correlations in the group of Kalafong patients with no iron transfer block

Figure 1 – 4. Correlations in the group of Kalafong patients with high C-reactive protein

Figure 1. Correlations in the group of Kalafong patients with high neopterin

Figure 1 – 7. Correlations in the group of Kalafong patients with iron transfer block

Figure 1 – 14. Correlations in the group of osteoarthritis patients

LIST OF TABLES

CHAPTER 1

Table 1. The effects of cytokines on the expression of H-subunits and L-subunits of ferritin

CHAPTER 3

Table 1. Demographics of the patients from the Department of Internal Medicine, Kalafong Hospital (patients 1-48) and the Department of Orthopaedics, Pretoria Academic Hospital (patients 1-10)

Table 2. Diagnosis and HIV status of the patients from the Department of Internal Medicine, Kalafong Hospital

Table 3. Expression of the H-subunit and L-subunit of ferritin in the bone marrow macrophage and cells of the erythron for the Kalafong patient group (patients 1-48) and the osteoarthritis patient group (patients 1-10)

Table 4. Serum iron markers and red blood cell production for the Kalafong patient group (patients 1-48) and the osteoarthritis patient group (patients 1-10)

Table 5. Humoral factors for the Kalafong patient group (patients 1-48) and the osteoarthritis patient group (patients 1-10)
Table 6. Descriptive statistics and statistical evaluation of expression of the H-subunit and L-subunit of ferritin, serum iron markers, red blood cell production, pro-hepcidin and caeruloplasmin for the C-reactive protein subdivision of the Kalafong patients and the osteoarthritis patients

Table 7. Descriptive statistics and statistical evaluation of expression of the H-subunit and L-subunit of ferritin, serum iron markers, red blood cell production, pro-hepcidin and caeruloplasmin for the neopterin subdivision of the Kalafong patients and the osteoarthritis patients

Table 8. Descriptive statistics and statistical evaluation of expression of the H-subunit and L-subunit of ferritin, serum iron markers, red blood cell production, pro-hepcidin and caeruloplasmin for the iron transfer block subdivision of the Kalafong patients and the osteoarthritis patients

Table 9. Descriptive statistics and statistical evaluation of all cytokines for the C-reactive protein subdivision of the Kalafong patients and the osteoarthritis patients

Table 10. Descriptive statistics and statistical evaluation of all cytokines for the neopterin subdivision of the Kalafong patients and the osteoarthritis patients

Table 11. Descriptive statistics and statistical evaluation of all cytokines for the iron transfer block subdivision of the Kalafong patients and the osteoarthritis patients
TABLE OF CONTENTS

CHAPTER 6
ELECTRON MICROGRAPHS AND RAW DATA OF IMMUNOLABELLING OF H-SUBUNIT AND L-SUBUNIT OF FERRITIN, PHOTOGRAPHS OF THE PRUSSIAN BLUE IRON STAINS AND THE PRESENCE OR ABSENCE OF AN IRON TRANSFER BLOCK

1) Electron micrographs of the immunolabelling of the H-subunit and L-subunit of ferritin
 page 1

2) Photographs of the Prussian blue iron stains for the bone marrow aspirates and cores
 page 1

3) Evaluation of the presence or absence of an iron transfer block
 page 164
 3.1) Prussian blue iron stains of bone marrow aspirates and core bone marrow biopsies
 page 164
 3.1.1) Comparison of stainable iron in a bone marrow aspirate smear and a bone marrow core section
 page 165
 3.2) Presence or absence of an iron transfer block
 page 166
 3.2.1) Reference ranges for the determination of the iron status of the Kalafong patient group and osteoarthritis patient group
 page 167
 3.2.1.1) Serum iron markers
 page 167
 3.2.1.2) Red blood cell production
 page 167
 3.2.2) The haematology reports on the bone marrow aspirates, serum iron markers, red blood cell production and the presence or absence of an iron transfer block for the Kalafong patient group and osteoarthritis patient group
 page 168
CHAPTER 7

THEORETICAL BACKGROUND AND EXPERIMENTAL EVALUATION OF THE TECHNIQUE FOR ULTRASTRUCTURAL IMMUNOLOCALISATION OF THE H-SUBUNIT AND L-SUBUNIT OF FERRITIN

1) Introduction page 261

2) Theoretical background of the technique for the immunolocalisation of the H-subunit and L-subunit of ferritin page 262

2.1) Preservation of bone marrow tissue and protein for immunolocalisation page 262

2.2) Ultrastructural immunolocalisation of antigens page 263

2.3) Steps in preservation of the tissue and antigen for post-embedding immunolabelling page 264

2.3.1) Fixation page 265

2.3.2) Dehydration page 266

2.3.3) Embedding page 267

2.3.4) Curing of the resin (polymer cross-linking) page 268

2.4) Surface relief upon sectioning and exposure of the antigen page 270

2.5) Antibody penetration of sections page 271

2.6) Post-embedding procedures for increasing antigen availability page 272

2.6.1) Etching of epoxy sections and removal of osmium tetroxide page 272

2.6.2) Etching of LR White sections page 275

2.6.3) Non-specific labelling on etched sections page 276
2.6.4) Antigen retrieval from formaldehyde-fixed tissue

2.6.5) Antigen retrieval with proteolytic enzymes

2.6.6) Combination of etching and formaldehyde-fixed antigen retrieval

2.7) Immunolabelling of the H-subunit and L-subunit of ferritin

2.7.1) Characteristics of the H-subunit and L-subunit monoclonal antibodies

2.7.2) Secondary antibody gold-conjugate

2.7.3) Non-specific binding of antibodies to the section

3) Experimental evaluation of the ultrastructural immunolocalisation technique for the H-subunit and L-subunit of ferritin

3.1) The affinity of the H-subunit and L-subunit monoclonal antibodies for their respective recombinant H-ferritin and L-ferritin proteins

3.2) The cross-reactivity of the H-subunit monoclonal antibody toward the recombinant L-ferritin protein and the cross-reactivity of the L-subunit monoclonal antibody toward the recombinant H-ferritin protein

3.3) The effect of fixation and dehydration on H-subunit and L-subunit monoclonal antibody binding to their respective recombinant H-ferritin and L-ferritin proteins

3.4) Fixation of the core bone marrow tissue

3.5) Outline of the method for the ultrastructural immunolocalisation of the H-subunit and the L-subunit of ferritin

3.6) Non-specific binding of the gold-conjugate secondary antibody

3.7) Non-specific binding of the primary monoclonal antibodies to the resin

3.8) Investigation of the effect of the antigen retrieval procedures on non-specific binding to the resin of the monoclonal antibodies
3.9) Investigation of the effect of different antigen retrieval procedures on immunolabelling

3.10) Specific immunolabelling of the monoclonal antibodies

3.11) Antigen retrieval with sodium ethoxide

3.12) Investigation of the effect of different polymerisation procedures on immunolabelling

3.13) The achievement of satisfactory immunolabelling

3.14) Discussion

3.15) Final method for the ultrastructural immunolabelling of the H-subunit and L-subunit of ferritin

4) References

LIST OF FIGURES

CHAPTER 6

Figures 1 – 48 a, b and c. Photographs for the Prussian blue iron stains of the bone marrow aspirates for the Kalafong patients

Figures 1 – 55 d, e and f. Photographs for the Prussian blue iron stains of the bone marrow cores for the Kalafong and osteoarthritis patients

Figures 1 – 55 g, h, i, j, k and l. Electron micrographs for the immunolabelling of the H-subunit and L-subunit of ferritin for the Kalafong and osteoarthritis patients

CHAPTER 7

Figure 1. The absorbances obtained for the H-subunit monoclonal antibody (green) and the L-subunit monoclonal antibody (pink) at different concentrations for their respective recombinant proteins
Figure 2. The absorbances obtained for the affinity of the H-subunit and L-subunit monoclonal antibodies to their respective recombinant proteins and the cross-reactivities of the H-subunit and L-subunit monoclonal antibodies

Figure 3. The percentage of the optimal signal obtained for the binding of the H-subunit and L-subunit monoclonal antibodies to their respective recombinant proteins after different treatments

Figure 4 – 7 a, b, c, d, e and f. Electron micrographs of the immunolabelling of the H-subunit and L-subunit of ferritin

LIST OF TABLES

CHAPTER 6

Table 1. The count/µm² for the immunolabelling of the H-subunit and L-subunit of ferritin in the different cell types for the Kalafong patients (patients 1-48) and the osteoarthritis patients (patients 1001-1010)

CHAPTER 7

Table 1. The absorbances obtained for the affinity ELISA for the H-subunit and L-subunit monoclonal antibodies at different concentrations for their respective recombinant proteins

Table 2. The absorbances obtained for the affinity of the H-subunit and L-subunit monoclonal antibodies to their respective recombinant proteins and the cross-reactivities of the H-subunit and L-subunit monoclonal antibodies

Table 3. The percentage of the optimal signal obtained for the binding of the H-subunit and L-subunit monoclonal antibodies to their respective recombinant proteins after different treatments