

THE OPTIMUM COMMUNICATIONS

ARCHITECTURE FOR DEEP LEVEL GOLD

MINING

by

Mark Henry Bruce Miller

Submitted in partial fulfilment of the requirements for the degree Master of Engineering (Electrical)

in the

Faculty of Engineering UNIVERSITY OF PRETORIA

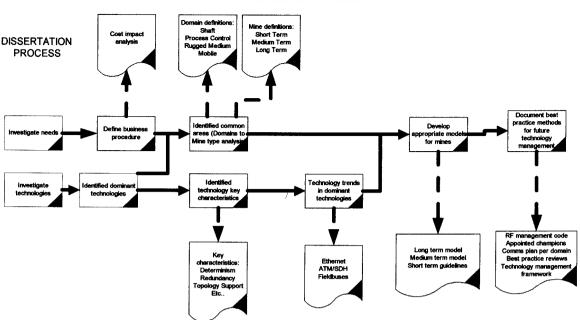
March 2000

© University of Pretoria

SYNOPSIS

"THE OPTIMUM COMMUNICATIONS ARCHITECTURE FOR DEEP LEVEL GOLD MINING" BY: Mark Henry Bruce Miller* SUPERVISORS: Prof. G. Hancke*, Prof. M.W. Pretorius** * Dept. of Electrical and Electronic Engineering. ** Dept. of Engineering and Technology Management. UNIVERSITY OF PRETORIA: Faculty of Engineering DEGREE: Master of Engineering (Electrical) March 2000

KEYWORDS: Communications, Mining, Information-Technology (IT), Fieldbus, LAN, Video, Data, Radio, Control, Technology Management, Technology Framework,


If systems for multi media communication are implemented haphazardly in a business then one can end up with a 'patchwork' of communication systems, difficult and expensive to maintain and expand. The objective of the dissertation was to develop the vision or generic models for future communication systems in deep level gold mines, and to identify and define the more important engineering and technology practices necessary for the implementation of this vision.

APPROACH

The approach taken is best summarised by the flowchart below where the needs of the business were analysed and applicable technologies available investigated. These combined led to the concept of 'domains' which was developed and defined in order to rationalise the number of communication systems required.

Technology trends were investigated further and finally appropriate models were developed for classified types of mines. Additionally the more important practices and measures were also defined.

RESULTS

The cost of communication systems was found to be significant and appropriate engineering is required to reduce the total cost of ownership. The profit opportunity enabled through communication systems is also enormous, and therefore 'downtime' is of major significance.

This emphasised the need for generic design guideline models, and the development of critical measures or practices to be adhered to within the business.

Three classes of mines ('Long', 'Medium' and 'Short Term') were identified in preparation for the technology models, primarily differentiated on the basis of automation requirements, expected life, and how much of the envisaged communications infrastructure was already in place. Four communications domains were identified as necessary for the 'Medium Term' mines, but with the possibility of reducing this for the 'Long Term' mines.

Models were developed for use as a guideline or vision for the long and medium term mines, and a set of criteria developed for the use as a guideline for technology choice of short term mines.

A number of measures were identified as necessary for the optimum management of communication system type issues and are listed as follows:

• Firstly the systems must be documented as they are, and planned with future need in mind.

- In the radio domain a 'Code of Practice Guideline' was developed primarily to control frequency spectrum use and critical aspect to radio systems
- The concept of 'Best Practice Reviews' was developed and implemented in order to maximise the benefits available with the professional resources deployed in the business units, and to recognise the dynamic and sometimes volatile nature of the technologies dealt with in the communications field. This is intended to be used, together with the proposed tailored project management process, as a solution for comprehensive 'Communication Systems Life Cycle Management'.

CONCLUSIONS

It is believed that if the mines use these models as a guideline for the choice and engineering of their future communications systems, together with the methods developed during the dissertation, then the optimum benefit available from communications technology will be obtained

ACKNOWLEDGEMENTS

This is to acknowledge and thank the following people for their assistance and contributions in the writing of this dissertation.
Professor Gerhard Hancke, my study leader, for his overall guidance and assistance. Especially with the "Africon 99" conference and journal paper aspects to this dissertation.
Professor Tinus Pretorius, for his guidance in the technology management aspects of the dissertation.
Your assistance is warmly appreciated.

CONTENTS

SYNOPSIS	I
ACKNOWLEDGEMENTS	IV
1 INTRODUCTION	1
2 BACKGROUND	3
2.1 An Overview of Literature and Work Done	3
3 NEEDS ANALYSIS	5
3.1 Macro Process Description	5
3.2 Micro Process Description	7
3.2.1 Rock Breaking	7
3.2.2 Horizontal Transport3.2.3 Vertical Transport	9 12
3.3 Communication Domains Defined	12
3.3.1 Shaft Barrel	12
3.3.2 Process Control Domain	13
3.3.3 Remote Production and Environmental Monitoring	14
3.3.4 Mobile Communications Domain	14
3.4 Specific Need Areas	15
3.4.1 Video	15
3.4.2 Voice 3.4.3 Data	16 16
4 ENGINEERING MANAGEMENT ISSUES	18 18
4.1 Return on Investment Evaluation	18
4.1.1 Total Cost of Ownership4.1.2 Benefits Analysis	18 19
4.1.3 Factors Affecting Cost of Ownership	20
4.1.4 Factors Affecting Benefit Delivery	21
4.2 Project Management of Communications System Projects	22
4.2.1 Needs Determination	23
4.2.2 Conceptual Design	23
4.2.3 Technology Forecast Review	23
4.2.4 Master Plan Fit4.2.5 Tender Specification and Adjudication	23 23
4.2.5 Tender Specification and Adjudication4.2.6 Installation and Commissioning	23 24
4.2.7 System Handover	24
4.3 Technology Management Strategy for Anglogold Communication	24
4.3.1 Existing Problems	24
4.3.2 Communications Plans for Domains – the Key	25
4.3.3 CIC Best Practice reviews	25
4.4 Communication System Life Cycle Management	26
5 TECHNOLOGY ANALYSIS	28
5.1 Review of Automation Approach Trends Internationally	28
5.2 Key Characteristics of Market Technologies	30
5.2.1 Determinism	30
5.2.2 Redundancy 5.2.3 Pondwidth	30
5.2.3 Bandwidth	30

Page (v)-

5.2.4 Supported Mediums	31
5.2.5 Multi-Media Communications	31
5.2.6 Topology Allowed	31
5.2.7 Interoperability	31
5.3 Emerging Standards 5.3.1 Ethernet and TCP/IP	33 33
5.3.2 Hi-Speed Broadband Networks	34
5.3.3 Fieldbus	34
5.3.3.1 Fieldbus Foundation (FFB)	39
5.3.3.2 Profibus PA	40
5.4 Technology Forecasting	40
5.4.1 Factors Influencing System Life	40 42
5.4.2 Technology Trend Curves for Broadband Networks5.4.3 Technology Trend Curves for Fieldbus Networks	42
5.4.4 Conference on Converging and Emerging Technologies for	-
Communications	48
5.5 Interface of Process Control to IT environment	49
5.6 Video Quality Aspects	49
6 RADIO COVERAGE ASPECTS	52
6.1 Bandwidth and Baud Rates	52
6.2 RF Coverage Model	53
6.2.1 RF Coverage Modelling Summary	53
6.2.2 Model Input Data	54
6.2.3 Modelling Method	56
6.2.4 Results of the Modelling6.2.5 Discussion of Results	60 63
	64
6.3 RF Topology6.4 RF LAN Considerations	64
7 ASSEMBLING AND MANAGING THE ARCHITECTURE	65
7.1 Model for Long Term Shafts	65
7.2 Model for Medium Term Shafts	67
7.3 Model for Short Term Shafts	68
7.4 Controls for Emergent Systems	69 69
A. 1. Radio Frequency Spectrum ManagementA. 2. Technology Watch Framework	69
8 CONCLUSIONS	72
8.1 Benefits and Needs Analysis	72
8.2 Technology Analysis	72
8.3 Implementation	73
8.4 Summary	74
REFERENCES	76
GLOSSARY OF TERMS	79
APPENDICES	82
A. 1. FDDI, SDH AND ATM TECHNICAL INFORMATION	82 82
A.1.1 FDDI, SDII AND ATM TECHNICAL INFORMATION A.1.1 FDDI	
A.1.1 FDDI A.1.1.1 SDH (Synchronous Digital Hierarchy)	82 82
(1.1.1.1 SDIT (Synchronous Dignal Hierarchy)	02 Dece (vi)

Page (vi)-

A.1.1.2 ATM	83
A. 2. OVERVIEW OF IEEE 802 STANDARDS	85
A.2.1 IEEE802.3 CMSA/CD Ethernet	85
A.2.1.1 Basic Concepts	86
A.2.1.2 Architectural Perspectives	86
A.2.2 Fast Ethernet	86
A.2.3 IEEE802.11 Wireless LAN	87
A. 3. PROFIBUS TECHNICAL DETAIL	89
A.3.1 The Standard	89
A.3.2 Interoperability Certification	91
A.3.3 LAN Architecture	92
A.3.4 Physical Layer (OSI model)	93
A.3.5 Transmission Specifications Summary	94
A.3.6 Bus Access Protocol	95
A. 4. FIELDBUS FOUNDATION TECHNICAL DETAIL	96
A.4.1 Correlation with the Seven Layer OSI model	97
A.4.2 Frame Usage and Encoding	97
A.4.3 Current Status of the Standardisation Process	100
A. 5. RADIO FREQUENCY CODE OF PRACTICE GUIDELI	
ANGLOGOLD	101
A.5.1 Definitions	101
A.5.2 Scope	101
A.5.3 Related Standards	101
A.5.4 Reserved Frequencies	101
A.5.5 Critical Measures	102
A.5.6 Prerequisite Standards	102
A.5.7 Preferred Standards	103
A.5.8 Implementation and Controls	103
A. 6. CONFERENCE ON "EMERGING AND CONV TECHNOLOGIES AND STANDARDS FOR INDUSTRIAL COMMUNICA	/ERGING ATIONS"104
A.6.1 Agenda	104
A.6.2 Summary of Debate	107
A. 7. COST AND BENEFIT ANALYSIS	108
A. 8. SUMMARY STANDPOINT ON AUTOMATION APPROA	CH FOR
ANGLOGOLD OPERATIONS	112 III IOK
A.8.1 Background	112
A.8.2 Conclusions Drawn	112
A.8.3 Automation Drivers	113
A.8.4 Methodology of Introducing Automation	113
A.8.5 Communications Backbones	115