

Molecular epidemiology and diagnosis of SAT-type foot-and-mouth disease in

southern Africa

By

Armanda Duarte Slager-Bastos

Submitted in partial fulfilment of the requirements for the degree of Philosophiae Doctor in the Faculty of Biological and Agricultural Sciences University of Pretoria

March, 2001

© University of Pretoria

ACKNOWLEDGEMENTS

I wish to express my sincere thanks and appreciation to:

Prof. L.H. Nel and Dr. G.R. Thomson for their guidance

Dr. C de W van Vuuren for his encouragement and support when this project was initiated

Trudi van Rensburg and Per Kryger for review of the thesis and for helpful advice and discussions

Jan Esterhuysen and Nigel Ferris for providing valuable information from their virus isolation records

The staff of Block G, ARC-OVI, Exotic Diseases Division for technical assistance, in particular Karin Boshoff, Brenda Botha, and Erika Kirkbride

The staff of the Office of the State Veterinarian, Skukuza, Kruger National Park for sample collection, data exchange, field assistance and hospitality: Drs. R. Bengis, D. Keet and At Dekker

Martijn, my family, friends and colleagues for their interest, encouragement and support

I also wish to thank the following institutions for providing financial support:

The Agricultural Research Council (ARC)

The University of Pretoria

The Federation of European Microbiological Societies (FEMS)

Molecular epidemiology and diagnosis of SAT-type foot-and-mouth disease in southern Africa

By

Armanda Duarte Slager-Bastos

Supervisor	Prof. L.H. Nel Department of Microbiology and Plant Pathology University of Pretoria
Co-supervisor	Dr. G.R. Thomson ARC-Onderstepoort Veterinary Institute
Degree	PhD

Summary

Foot-and-mouth disease (FMD) is an economically devastating picornaviral disease affecting over 40 species of cloven-hoofed animals. The virus occurs as seven immunologically distinct serotypes which are characterized by high levels of intra- and intertypic variation. The three South African Territories (SAT) serotypes 1-3 are endemic to sub-Saharan Africa, a region where the epidemiology of the disease is particularly complex due to the presence of six of the seven serotypes, the role of wildlife in virus maintenance and the apparently higher levels of variation in the endemic serotypes. These factors make it imperative to establish methods suited to elucidating the regional epidemiology. One of the integral parts of this process is the genetic characterization of regionally representative viruses in order to assess the variation in the field and to clarify the role of wildlife. Nucleotide sequence data and methods suited to studying the SAT-types are however limited. A first priority was therefore to establish a PCR-based nucleotide sequencing technique targeting the highly immunogenic and phylogenetically informative 1D genome region encoding the VP1 protein. The screening of multiple serotypes and subtypes prevalent on the African continent confirmed that this method was robust and wellsuited to molecular epidemiological studies in the southern Africa region. The method was first applied in the characterization of FMD virus recovered from the reproductive tract of free-living

African buffalo in the Kruger National Park. Nucleotide sequencing assisted in authentication of the results and indicated that carrier status was likely, but it was not possible to unequivocally demonstrate persistent infection of FMDV. In a separate study, the role of impala antelope (Aepyceros melampus) in the epidemiology of the disease in South Africa was assessed. Genetic characterization of impala and African buffalo (Syncerus caffer) viruses collected over an eleven year period confirmed that inter-species transmission occurred on several occasions and that virus can persist in impala populations for more than 12 months. Inter-species transmission and investigation of the possible mechanisms facilitating virus transmission from persistently infected buffalo focussed on the Kruger National Park in South Africa. In order to ensure regional relevance the study was broadened to incorporate buffalo populations throughout southern Africa. Viruses of the three SAT-types recovered from diverse African buffalo populations were therefore characterized. The results reveal that independently evolving viral lineages occur in distinct geographical regions for each of the SAT-types examined and that the levels of intratypic variation are in the order of 52 - 55 % on nucleotide level across the genome region characterized. Given the strict locality-specific grouping of buffalo viruses the likely usefulness of this database for tracing the origin and course of contemporary and historical SATtype outbreaks was investigated. Molecular epidemiological studies conclusively show that buffalo are indeed the ultimate source of infection for susceptible cloven-hoofed animals occurring in close proximity, that interspecies transmission occurs between cattle and antelope and that trans-boundary transmission of virus remains a threat to disease security in southern African countries.

SCIENTIFIC PRESENTATION OF RESULTS

Scientific publications emanating directly from this thesis

- 1. **Bastos, A.D.S**, 1998. Detection and characterization of foot-and-mouth disease virus in sub-Saharan Africa. *Onderstepoort Journal of Veterinary Research* **65**: 37-47
- Bastos, A.D.S, Bertschinger, H.J., Cordel, C., van Vuuren, C. de W.J., Keet, D., Bengis, R.G., Grobler, D.G. & Thomson, G.R. 1999. The possibility of sexual transmission of foot-and-mouth disease from African buffalo to cattle. *Veterinary Record* 145: 77-79.
- 3. **Bastos, A.D.S.**, Boshoff, C.I., Keet, D.F., Bengis, R.G. & Thomson, G.R., 2000. Natural transmission of foot-and-mouth disease virus between African buffalo (*Syncerus caffer*) and impala (*Aepyceros melampus*) in the Kruger National Park, South Africa. *Epidemiology and Infection* **124**: 591-598.
- Bastos, A.D.S, Haydon, D.T., Forsberg, R., Knowles, N.J., Anderson, E.C., Bengis, R.G., Nel, L.H. & Thomson, G.R., 2001. Genetic heterogeneity of SAT-1 type foot-andmouth disease viruses in southern Africa. *Archives of Virology (In press)*

Scientific publications incorporating data from this thesis

- 1. Keet, D.F., Hunter, P., Bengis, R.G., **Bastos, A.** & Thomson, G.R., 1996. The 1992 footand-mouth disease epizootic in the Kruger National Park. *Journal of the SA Veteterinary Association* **67**: 83-87
- Haydon, D.T., Bastos, A.D., Knowles, N.J. & Samuel, A.R., 2001. Evidence for positive selection in foot-and-mouth disease virus capsid genes from field isolates. *Genetics* 157: 7-15
- 3. Vosloo, W., **Bastos, A.D.**, Michel, A. & Thomson, G.R. 2001. Tracing movement of African buffalo in southern Africa. *O.I.E. Scientific and Technical Review*, **20** (*In press*)

Publication of results in conference proceedings / as un-refereed papers

- 1. Hunter, P., **Bastos, A.D**.*, Esterhuysen, J.J. & van Vuuren, C. de W.J., 1996. Appropriate foot-and-mouth disease vaccines for southern Africa. *All Africa Conference on Animal Agriculture, Pretoria, South Africa*, **2.2.7**: 1-4
- 2. **Bastos, A.D.**, 1997. Detection and characterization of foot-and-mouth disease virus in southern Africa. *African Virology Association Newsletter*. **1**: 7
- 3. Klemp, E., **Bastos, A.S.**, Vosloo, W., Krige, J. & Thomson, G.R.*, 1998. South Africa: Coping with disease emergencies. *FAO/IAEA/OUA/SADC Subregional workshop on: Emergency preparedness against rinderpest and other trans-boundary animal diseases in southern Africa, Harare, Zimbabwe*: 1-6
- 3. Thomson, G.R.*, **Bastos, A.S.** & Penrith, M.L., 1998. Proposal for a regional commission for the control of foot-and-mouth disease and other trans-boundary diseases. *FAO/IAEA/OUA/SADC Subregional workshop on: Emergency preparedness against rinderpest and other trans-boundary animal diseases in southern Africa, Harare, Zimbabwe*: 1-9
- 5. Thomson, G.R., Vosloo, W.* & **Bastos, A.D.S.**, 2000. Foot-and-mouth disease in southern Africa: Re-evaluation of the approach to control. *Proceedings of the 11th symposium on diagnosis and control of transboundary infectious diseases in southern Africa, Utrecht, The Netherlands*: 7-11
- 6. **Bastos, A.D.S.*** & Sangare, O. 2001. Geographic distribution of SAT-2 type foot-andmouth disease virus genotypes in Africa. *Proceedings of the southern African Society for Veterinary Epidemiology and Preventive Medicine, 10-11 May, Onderstepoort, South Africa*: 20-26.

Presentation of results at international scientific meetings

- Bastos, A.D.* & Thomson, G.R.. 1995. Genetic variation of SAT-2 isolates of foot-andmouth disease virus: Implications for phylogenetic reconstruction. *Vth International Congress on the Impact of Viral Diseases on the Developing World, Johannesburg, South Africa* - Talk
- 2. Hunter, P., **Bastos, A.D.***, Esterhuysen, J.J. & van Vuuren, C. de W.J.. 1996. Appropriate foot-and-mouth disease vaccines for southern Africa. *All Africa Conference on Animal Agriculture, Pretoria, South Africa* - Talk

- 3. **Bastos, A.D.S.***, Bertschinger, H., Cordel, C., Keet, D., Bengis, R. & Thomson, G.R. . 1998. The possibility of sexual transmission of foot-and-mouth disease from African buffalo to cattle. *Xth Meeting of the European Study Group on the Molecular Biology of Picornaviruses, Jena, Germany* - Talk & Poster
- 4. **Bastos, A.D.S.***, Boshoff, C.I., Esterhuysen, J.J., Anderson, E. & Thomson, G.R. 1998. Topotype variation in SAT1 foot-and-mouth disease viruses in Zimbabwe. *Xth Meeting of the European Study Group on the Molecular Biology of Picornaviruses, Jena, Germany* - Poster
- 5. **Bastos, A.D.S.***, Esterhuysen, J.J., Forsberg, R., Bengis, R.G., Anderson, E.C. & Thomson, G.R. 1998. VP1 gene variation of SAT 1 type foot-and-mouth disease virus in southern Africa. *Xth Meeting of the European Study Group on the Molecular Biology of Picornaviruses, Jena, Germany* Poster
- 6. Vosloo, W.*, **Bastos, A.D.S.** & Knowles, N.J.. 1998. Phylogenetic analysis of historical foot-and-mouth disease virus isolates obtained from southern Africa between 1948 and 1989. *Xth Meeting of the European Study Group on the Molecular Biology of Picornaviruses, Jena, Germany* Poster

Presentation of results at national scientific meetings

- 1. **Bastos, A.D.*** & Esterhuysen, J.J.. 1996. Molecular Epidemiology of foot-and-mouth disease virus in southern Africa. *Ninth biennial congress of the South African Society for Microbiology, Pretoria, South Africa* Talk
- 2. **Bastos, A.D.*** 1996. Development of a serotype-specific PCR for diagnosis of foot-andmouth disease virus in southern Africa. *Ninth biennial congress of the South African Society for Microbiology, Pretoria, South Africa* - Poster
- 3. **Bastos, A.D.S.***, Esterhuysen, J.J., Boshoff, C.I., Nel, L. & Thomson, G.R.. 1998. The use of VP1 gene sequences for studying the epidemiology of foot-and-mouth disease virus in southern Africa. *Congress of the South African Society of Biochemistry and Molecular Biology, Potchefstroom, South Africa* Talk
- 4. **Bastos, A.D.S.*** 1998. Improved detection of all seven serotypes of foot-and-mouth disease virus by nested PCR. *Congress of the South African Society of Biochemistry and Molecular Biology, Potchefstroom, South Africa* Poster

* Indicates presenting author

TABLE OF CONTENTS

Page
ii
iii
v
vii
xi
xiii
XV

CHAPTER 1: Literature Review

1.1	Introduction	1	
1.2	Picornavirus Taxonomy	1	
	1.2.1 Picornavirus genera	2	
	1.2.2 Picornavirus morphology	4	
	1.2.3 Picornavirus genome organization and protein processing	5	
1.3	Foot-and-mouth disease virus	5	
	1.3.1 FMDV genome organization	6	
	1.3.2 Proteolytic processing of FMDV	7	
	1.3.3 FMDV morphology	8	
	1.3.4 FMDV receptor binding	9	
1.4	Genetic variation		
	1.4.1 Mutation	9	
	1.4.2 Selection	10	
	1.4.3 Recombination	10	
1.5	Antigenic variation	11	
	1.5.1 Neutralizing sites of FMDV	12	
1.6	Geographical distribution of FMDV	14	
	1.6.1 Serotype distribution in Africa	15	
	1.6.2 Foot-and-mouth disease in southern Africa	15	
1.7	FMD in wildlife in southern Africa		
	1.7.1 FMD in buffalo	19	
	1.7.2 FMD in impala	20	
	1.7.3 FMD in other antelope species	21	
	1.7.4 FMD in Suidae	21	
	1.7.5 FMD in elephant	21	
1.8	FMD as a zoonosis	22	

		Page
1.9	The role of carriers in the epidemiology of FMD	23
	1.9.1 Persistence in vitro	23
	1.9.2 Persistence <i>in vivo</i>	24
	1.9.3 Possible modes of transmission of FMDV from carrier animals	24
1.10	Characterization of field strains of FMDV	25
1.11	Objectives of this study	

		elopment of a PCR-based method for the detection and f foot-and-mouth disease virus in southern Africa	28
2.1	Introduction		29
2.2	Materials an	d Methods	31
	2.2.1	Virus strains and cell cultures	31
	2.2.2	RNA extraction and cDNA synthesis	31
	2.2.3	PCR amplification and purification	31
	2.2.4	Nucleotide sequencing	31
	2.2.5	Phylogenetic analysis	33
2.3	Results		34
	2.3.1	Primer-pair recognition of FMDV serotypes	34
	2.3.2	Primer optimization and testing	36
	2.3.3	Confirmation of specificity	37
	2.3.4	PCR sensitivity determinations	39
	2.3.5	Comparison of direct RNA sequencing and PCR sequencing	39
	2.3.6	Phylogenetic relationships and intratypic variation	40
2.4	Discussion		43

CHAPTER 3: Investigating the possibility of sexual transmission of foot-and-mouth disease in African buffalo (*Syncerus caffer*)

3.1	Introduction	47
3.2	Materials and Methods 4.2.1 Sample collection	49
	4.2.2 Serology, virus isolation and PCR detection of FMDV in clinical specimens4.2.3 VP1 gene characterization	49 49
3.3	Results	49

46

	221	Some logical status of huffele	Page
	3.3.1 3.3.2	Serological status of buffalo Virus isolation and genetic characterization of the VP1 gene	49 50
3.4	Discu	ssion	53
virus	betwee	4: Evidence of natural transmission of foot-and-mouth disease n African buffalo (<i>Syncerus caffer</i>) and impala antelope	55
(Aepy	ceros m	nelampus)	
4.1	Introd	luction	56
4.2	Mater	ials and Methods	57
	4.2.1	Viruses used in this study	57
	4.2.2	Genetic characterization of viruses	61
4.3	Result	ts	61
	4.3.1	Genetic relationships of impala viruses	61
	4.3.2	Genetic relationships of buffalo viruses	63
	4.3.3	Inter-species relationships of impala and buffalo viruses	63
4.4	Discu	ssion	64
СНА	PTER 5	5: Phylogeographic distribution of SAT-type foot-and-mouth	
disea	se virus	in African buffalo populations in southern Africa	67
5.1	Introd	luction	68
5.2	Mater	ials and Methods	71
	5.2.1	Study area	71
	5.2.2	Viruses used in this study	71
	5.2.3	RNA extraction, cDNA synthesis and PCR purification	71
	5.2.4	PCR purification and nucleotide sequencing	71
	5.2.5	Genomic region used in this study	72
	5.2.6	Analyses of the partial VP1 gene sequencing data	72
	5.2.7	Amino acid variability and secondary structure prediction	72
5.3	Result		76
	5.3.1	Phylogeographic distribution of SAT-1 buffalo viruses	76
	5.3.2	Phylogeographic distribution of SAT-2 buffalo viruses	76
	5.3.3	Phylogeographic distribution of SAT-3 buffalo viruses	77
	5.3.4	Phylogeographic comparison of the three SAT-type viruses in southern Africa	
	5.3.5	Structurally and immunologically important amino acid sites in SAT-1 viruses	84

5.3.6 Structurally and immunologically important amino acid sites in SAT-2 viruses 85

	5.3.7 5.3.8	Structurally and immunologically important amino acid sites in SAT-3 viruses Distribution of hypervariable regions in the C-terminus half of the VP1 protein	
5.4	Discus	sion	95
epizoo	tics in s	: Tracing the origin and course of foot-and-mouth disease southern Africa	99
6.1	Introdu	action	100

6.1	Introd	uction	100
	6.1.1	Outbreaks in South Africa in 2000	102
		6.1.1.1 SAT-1 in the FMD-control area	102
		6.1.1.2 Type O in KwaZulu-Natal	102
		6.1.1.3 SAT-1 outside the FMD-control area, Mpumulanga Province	102
	6.1.2	FMD in Namibia in 2000	103
	6.1.3	FMD in Zambia in 2000	103
	6.1.4	FMD in Zambia in 1999	104
	6.1.5	FMD in Zimbabwe in 1999	104
	6.1.6	FMD in South Africa in 1998	105
	6.1.7	FMD in Zimbabwe in 1997	105
6.2	Materials and Methods		106
	6.2.1	SAT-1 viruses used in this study	106
	6.2.2	SAT-2 viruses used in this study	106
	6.2.3	SAT-3 viruses used in this study	106
	6.2.4	Genetic characterization and analysis	106
6.3	Result	S	110
	6.3.1	Genetic relationships of SAT-1 viruses in southern Africa (1948-2000)	111
	6.3.2.	Genetic relationships of SAT-2 viruses in southern Africa (1948-2000)	113
		6.3.2.1 VP1 Gene relationships of SAT-2 viruses in southern Africa	115
		6.3.2.2 VP1 gene relationships of SAT-2 viruses in eastern Africa 115	
	6.3.3.	1	116
	6.3.4	Overall levels of genetic variation in the C-terminal half of the VP1 gene	118
6.4	Discu	ssion	118

CHAPTER 7: Concluding remarks and future prospects

REFERENCES

х

121

128

LIST OF FIGURES

Fig. 1.1	Diagram of a typical picornavirus icosahedral capsid	p. 4
Fig. 1.2	Picornavirus genome organization	p. 5
Fig. 1.3	Distribution of FMDV serotypes in Africa	p. 17
Fig 2.1	VP1 gene amplification strategy	p. 33
Fig. 2.2	Comparison of amplification results obtained with published VP1 gene-targeting primers and replicase gene-targeting primers, with geographically divergent SAT-2 type field strains	p. 35
Fig. 2.3	Agarose gel depicting amplification of all seven FMDV serotypes with the VP1Ub and P1 primer set	p. 35
Fig. 2.4	Autoradiogram depicting differences in nucleotide sequencing results obtained with direct RNA sequencing versus PCR sequencing	p. 40
Fig. 2.5	Neighbor-joining tree depicting phylogenetic relationships of southern African FMDV serotypes, based on partial amino acid sequences of the VP1 protein	p. 41
Fig 3.1	SAT-3 neighbor-joining tree depicting VP1 gene relationships of recent buffalo isolates (1990-1997) from the Kruger National Park	p. 52
Fig. 4.1	Geographical origin of impala viruses isolated between 1985 and 1995	p. 59
Fig. 4.2	Geographical origin and distribution of SAT-2 type buffalo viruses	p. 60
Fig. 4.3	Neighbor-joining tree depicting VP1 gene relationships of buffalo and impala viruses from the Kruger National Park (1985-1996)	p. 62
Fig. 5.1	Neighbor-joining tree based on 396 nt of the VP1 protein (amino acid positions 90-221) depicting SAT-1 buffalo virus relationships in southern Africa	p. 78
Fig. 5.2	Map of southern Africa game parks indicating the geographical distribution of SAT-1 buffalo virus genotypes	p. 79
Fig. 5.3	Neighbor-joining tree based on 384 nt of the VP1 protein (amino acid positions 89-216) depicting SAT-2 buffalo virus relationships in southern Africa	p. 80
Fig. 5.4	Map of southern Africa game parks indicating the geographical distribution of	

	SAT-2 buffalo virus genotypes	p. 81
Fig. 5.5	Neighbor-joining tree based on 390 nt of the VP1 protein (amino acid positions 88-217) depicting SAT-3 buffalo virus relationships in southern Africa	p. 82
Fig. 5.6	Map of southern Africa game parks indicating the geographical distribution of SAT-3 buffalo virus genotypes	p. 83
Fig. 5.7	Amino acid sequence alignment of the C-terminus half of the VP1 gene of 30 SAT-1 type FMD viruses of African buffalo from southern Africa	p. 87
Fig. 5.8	Amino acid sequence alignment of the C-terminus half of the VP1 gene of 30 SAT-2 type FMD viruses of African buffalo from southern Africa	p. 89
Fig. 5.9 An	nino acid sequence alignment of the C-terminus half of the VP1 gene of 30 SAT-3 type FMD viruses of African buffalo from southern Africa	p. 91
Fig. 5.10	Amino acid sequence alignment of the C-terminus half of the VP1 gene of SAT types 1-3 with serotypes A, O and C	P. 93
Fig. 6.1	Neighbor-joining tree depicting VP1 gene relationships of SAT-1 viruses (1948-2000) recovered from African buffalo, impala, kudu and cattle	p. 112
Fig. 6.2	Neighbor-joining tree depicting VP1 gene relationships of SAT-2 viruses (1948-2000) from buffalo, cattle and impala	p. 114
Fig. 6.3	Neighbor-joining tree depicting genetic relationships of buffalo and outbreak strains of SAT-3 type FMDV	p. 117

LIST OF TABLES

TABLE 1.1	Summary of the assigned <i>picornaviridae</i> genera and their species composition	p. 3
TABLE 1.2	Summary of immunogenic sites identified on the surface-exposed structural protein genes of different foot-and-mouth disease virus types	p. 13
TABLE 1.3	Number of FMD outbreaks reported yearly to the OIE by African countries (1996-1999)	p. 18
TABLE 2.1	Summary of PCR primers used in this study	p. 32
TABLE 2.2	Summary of PCR results obtained with published and novel primer pairs	p. 36
TABLE 2.3	Relative recognition of published and modified VP1 gene amplification primers for the endemic SAT-types and for all seven FMDV serotypes	p. 38
TABLE 2.4	Details of the 15 isolates for which sequencing data was generated for phylogenetic inference purposes	p. 42
TABLE 3.1	Summary of some persistently infected livestock and wildlife species	p. 47
TABLE 3.2	Serum antibody titres (expressed as the reciprocal log value) of KNP buffalo bulls sampled in May 1997	p. 50
TABLE 3.3	Virus isolation and nucleotide sequencing results of SAT-3 type foot-and-mouth disease virus obtained from buffalo bulls sampled in the Kruger National Park	p. 51
TABLE 4.1	List of SAT-2 viruses of buffalo and impala origin (1985-1996) originating from the Kruger National Park	p. 58
TABLE 5.1	Summary of SAT-type viruses isolated from African buffalo in the Kruger National Park (1986-1996)	p. 70
TABLE 5.2	Species and geographical origin of 30 SAT-1 type viruses from African buffalo populations in southern Africa (1985-1998)	p. 73
TABLE 5.2	Species and geographical origin of 30 SAT-2 type viruses from African buffalo populations in southern Africa (1988-1998)	p. 74
TABLE 5.4	Species and geographical origin of 30 SAT-3 type viruses from African buffalo populations in southern Africa (1988-1998)	p. 75
TABLE 5.5	Comparison of the three SAT-type viruses of the African buffalo (Syncerus	

	caffer) maintenance host in southern Africa	p. 84
TABLE 5.6	Comparison of partial VP1 gene sequences of the three SAT-types in southern Africa: Location and length of hypervariable regions with respect to the RGD motif and immunogenic sites	p. 94
TABLE 5.7	Summary of the phylogeographic distribution of SAT-type virus genotypes in southern Africa as determined by partial VP1 gene sequence analysis	р. 95
TABLE 6.1	Summary of FMD outbreaks in livestock in southern African countries prior to 2000	p. 101
TABLE 6.2	Summary of previously uncharacterized SAT-1 viruses used in this study	p. 107
TABLE 6.3	Summary of previously uncharacterized SAT-1 viruses used in this study	p. 109
TABLE 6.4	Summary of previously uncharacterized SAT-1 viruses used in this study	p. 110
TABLE 6.5	Genetic variation in C-terminal VP1 gene sequences of SAT-type viruses of diverse species and geographical origin	p. 118

LIST OF ABBREVIATIONS

aa	amino acid
ANG	Angola
BEC	Becuanaland
BOT	Botswana
BUN	Burundi
BVI	Botswana Vaccine Institute
bp	base pairs
CD	Corridor disease
CPE	cytopathic effect
ERI	Eritrea
FMD	foot-and-mouth disease virus
ICTV	International Committee for the Taxonomy of Viruses
KEN	Kenya
KNP	Kruger National Park
MAL	Malawi
MOZ	Mozambique
NAM	Namibia
NCR	non-coding region
nt	nucleotide
OIE	Office International des Epizooties
OP	oesophageo-pharyngeal
OVI	Onderstepoort Veterinary Institute
PAL	Phalaborwa
PCR	polymerase chain reaction
PFU	plaque forming units
p.i.	post-infection
POT	Potgietersrus
RHO	Rhodesia
RWA	Rwanda
SAR	South African Republic
SAT	South African Territories
SAU	Saudi Arabia
SWA	South West Africa
SWL	Swaziland
TAN	Tanzania
TB	tuberculosis
UGA	Uganda
VP	Virus protein
WRL	World Reference Laboratory
ZAI	Zaire
ZAM	Zambia
ZIM	Zimbabwe