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Abstract—In this paper, a first order MODIS time series
simulator, which uses a Colored Simple Harmonic Oscillator, is
proposed. The simulated data can be used to augment data sets so
that data intensive classification and change detection algorithms
can be applied without enlarging the available ground truth data
sets. The simulator’s validity is tested by simulating data sets of
natural vegetation and human settlement areas and comparing it
to the ground truth data in the Gauteng province located in South
Africa. The difference found between the real and simulated
data sets, which is reported in the experiments is negligent. The
simulated and real world data sets are compared by using a wide
selection of class and pixel metrics. In particular the average
temporal Hellinger distance between the real and simulated data
sets is 0.2364 and 0.2269 for the vegetation and settlement class
respectively, while the average parameter Hellinger distance is
0.1835 and 0.2554 respectively.

I. INTRODUCTION

S IMULATED data sets are used for algorithm development,
testing and validation as well as for optimizing instrument

specifications. Clearly simulated data is a valuable tool and can
be used in the remote sensing field [1], [2].

Most remote sensing simulators use biophysical deductive
models to simulate the reflectance of a specific land cover
type [2], [3]. Inductive simulators can be used to complement
deductive simulators. An inductive simulator does not require
biophysical parameters, but rather attempts to fit an appropriate
inductive mathematical model to the observed data directly.
An example of such an application for an inductive simulator
with respect to a deductive simulator is to simulate (forecast)
a time-series of Leaf Area Index (LAI) [4], which in turn is
used by a deductive simulator like PROSAIL [3].

In most cases the inductive models are used as a noise
reduction tool to extract phenological markers from remotely
sensed time series [5]. The Simple Harmonic Oscillator (SHO)
model is an example of an inductive model [6], given by

A sin(2πfst+ φ) + C. (1)
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Many other models have been proposed as an improvement to
the SHO model [4], [5], [7]–[10]. In particular, Carrão et al.
[5] modeled Moderate Resolution Imaging Spectroradiometer
(MODIS) time series with a harmonic non-linear solution of
a chaotic attractor. Kleynhans et al. [9] modeled Normalized
Difference Vegetation Index (NDVI) time series with a triply
modulated cosine function. Jönsson et al. [7] modeled vege-
tation index time series using asymmetric Gaussian functions,
while Zhang et al. [8] used piecewise-defined local double
logistic functions.

The objective of this paper is to use a parsimonious
inductive model to simulate multispectral time series with
an inherent correlation structure. By extending the CSHO
proposed by Grobler et al. [10], a simulator that can augment
data sets for data intensive classification and change detection
algorithms is developed [11], [12]. The paper presents its
findings by simulating time-series in the Gauteng province
located in South Africa. In selective cases, statistical inductive
models similar to the CSHO have been used to forecast a
single time series [4]. The complex issue of incorporating
multispectral correlation into a simulator was not addressed
in [4]. Generating multispectral time series using the CSHO
model required the addressing of a few complex issues.
The proposed simulator incorporates the average class noise
correlation between the different spectral bands and reproduces
class specific spectral behavior by enforcing the statistical
restrictions imposed by the different model parameters of each
spectral band on each other. The SHO was selected as the noise
free model, since the model proved sufficient in replicating
the statistical characteristics of the data sets and as such it
was deemed unnecessary to use the more complex non-linear
models for multi-year fitting. The improvement in accuracy
using a non-linear model is small and costly for a multi-
year time series containing inter-annual variation with a strong
sinusoidal component.

To accomplish efficient time series analysis and simulator
validation, a long reliable high temporal remote sensing time
series was needed and the MCD43A4 MODIS product was
identified as a viable candidate and consists of Bidirectional
Reflectance Distribution Function (BRDF) corrected land sur-
face reflectance (8 day composite, 500m resolution) time
series. MODIS data, when compared to Advanced Very High
Resolution Radiometer (AVHRR) data, exhibits enhanced
spectral and radiometric resolution, wide geographical cov-
erage and improved atmospheric corrections, while preserving
the same temporal resolution [13].
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II. DATA DESCRIPTION

The ground truth time series data is extracted from the 8-
day composite MODIS MCD43A4 BRDF corrected 500 m
land surface reflectance product corresponding to a total area
of approximately 230 km2 of the Gauteng province located
in South Africa.1 The temporal acquisition rate of MODIS
MCD43A4 roughly translates to 45 observations per year. The
most prevailing form of land cover change in South Africa
is settlement expansion. Two classes of land cover type are
considered: natural vegetation and settlements, denoted by v
and s. The focus of this paper will be on simulating settlement
and vegetation pixels, since settlement expansion is a relevant
problem in South Africa. The ground truth dataset denoted by
R, consists of 925 MODIS pixels and was picked by means of
(human) visual interpretation of two high resolution Système
Probatoire d’Observation de la Terre (SPOT) images from
the year 2000 and 2008 respectively. We selected MODIS
pixels that, according to the SPOT images, did not change
and had the appropriate percentage land cover type in a
MODIS pixel at SPOT resolution. In this study the settlements
class contains pixels consisting of about 50% buildings, and
50% vegetation, whereas the vegetation class contains pixels
with more than 90% vegetation. Each MODIS pixel contains
eight time series (seven MODIS land bands, and Normalized
Difference Vegetation Index) with I = 368 observations
(extracted between 2000 and 2008). The NDVI time series was
computed using the first two spectral land bands. The dataset
R is divided into the two classes: settlements (333 pixels) and
natural vegetation (592 pixels).

III. SIMULATOR

A. Colored Simple Harmonic Oscillator

Let xc(t) = {xbc(t)}b∈{1···7} denote a MODIS pixel at time
t with assigned class label c ∈ C, where xbc(t) denotes the bth

spectral band’s reflectance at time t. The c is omitted if the
class of the MODIS pixel is unknown. Each observed signal
belonging to the same class is a sample path of a stochastic
process Xb

c (t). Each MODIS class c is therefore modeled
as a set of stochastic processes Xc(t) = {Xb

c (t)}b∈{1···7}.
Since Xb

c (t) is a stochastic process we can assign an analytic
expression (if such an expression exists) to each sample path
(MODIS pixel) xbc(t;θ

b
c) of Xb

c (t), where θbc is a set of random
values with a joint probability density function.

The proposed analytic expression for each MODIS pixel in
each band (sample path) is given by

xbc(t;θ
b
c) = sbc(t; {Abc, φbc, Cbc}) + ηbc(t; {µbc, λbc, σbc}), (2)

where sbc(t; {Abc, φbc, Cbc}) is the SHO model given in (1) with
period Ts = 1

fs
= 45.

The noise process ηbc(t; {µbc, λbc, σbc}) is an Ornstein-
Uhlenbeck process that satisfies the stochastic differential
equation

dηbc(t) = λbc(µ
b
c − ηbc(t))dt+ σbcdW (t). (3)

1The MODIS MCD43A4 product can be downloaded from
http://modis.gsfc.nasa.gov/data/.

Here µbc ∈ R is the long-term mean of the process, λbc > 0 is
the rate of mean reversion, σbc > 0 is the volatility or average
magnitude, per square-root time, of the random fluctuations,
and W (t) is a standard Brownian motion on t ∈ [0,∞),
implying that dW (t) ∼ N (0,

√
dt).

One should, for each class and band, expect µbc to be
insignificant relative to Cbc , as µbc = 0 if the parameter Cbc
is estimated without error. For convenience θbc will sometimes
be omitted from xbc(t;θ

b
c).

The distribution of θbc is determined by the parameter set
{Abc, φbc, Cbc , λbc, σbc} and it follows that θc = {θbc}b∈{1···7} =
{Abc, φbc, Cbc , λbc, σbc}b∈{1···7} = {θ1, · · · , θ35} with a proba-
bility density function denoted by fc(θc). When NDVI is
included in the parameter set the notation θ̃c will be used.
The same convention applies for X̃c(t) and x̃c(t). NDVI is
excluded when constructing the probability density function
fc(θc), since NDVI must be constructed from band 1 and 2.
NDVI is included in the similarity metrics as the real and
simulated data sets must be compared as a whole. NDVI is
always constructed from band 1 and 2 and is never simulated
directly.

The ensemble mean for X̃c(t) is defined as

yc(t) = {E [Xb
c (t)]}b∈{1···7,NDVI} (4)

and the autocorrelation of x̃c(t) is defined as R̃c(τ) =
{Rbc(τ)}b∈{1···7,NDVI}, where

Rbc(τ) =
(xbc(t)− E[xbc(t)])(x

b
c(t+ τ)− E[xbc(t)])

var(xbc(t))
. (5)

The estimation procedure of the parameters of xc(t) are
discussed in detail in [10]. The estimated parameters are
denoted by θ̂c.

B. Parameter Probability Density Function

All the estimated parameters (of all pixels in a specific class)
are represented with the vector Θc = {Θ1,Θ2, · · · ,Θ35},
where Θi is a random variable and θi is a realization of it.
The joint density of Θc is assumed to be Gaussian distributed
and expressed with

fc(θc) =
1√

(2π)|θc||Σ|
exp

[
−1

2
(θc−µ)Σ−1(θc−µ)

]
. (6)

In equation (6), µ = E[Θc] and Σ is the covariance matrix
with elements Σn,m = E[(Θn−µΘn)(Θm−µΘm)], ∀m,n ∈
{1, · · · , |θc|}.

C. Parameter and Noise correlation

The parameter correlation matrix P c
p has elements Pn,m =

E[(Θn−µΘn )(Θm−µΘm )]
σΘnσΘm

, ∀m,n ∈ {1, · · · , |θc|}. The parame-
ter correlation matrix P c

p is used to get an indication of the
dependence between the model parameters of each class and
is used to model class specific spectral behavior.

In addition to P c
p, the noise correlation P c

η is measured
between the different MODIS bands. To determine the noise
correlation, dW b(t) from (3) needs to be estimated, since
dW b(t) induces the random behavior in the noise. To estimate
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dW b(t), ηb(t) is discretized with timesteps of length ∆t. An
exact formula that holds for ∆t = 1 is [10]

ηb[i] = e−ληb[i−1]+(1−e−λb)µb+σb
√

(1− e−2λb)

2λb
∆W b[i],

(7)
where ∆W b[i] ∼ N (0, 1) and is equal to ∆W b[i] = W b[i]−
W b[i− 1].

By making ∆W b[i] the subject of (7), it can be used to es-
timate (or approximate) the independent, normally distributed
innovation terms for each timestep of each MODIS band.
This, in turn, allows the computation of the correlation matrix
P c
η of the innovation terms across the spectral bands with

Pn,m =
E[(Ωn−µΩn )(Ωm−µΩm )]

σΩnσΩm
, ∀m,n ∈ {1, · · · , 7}, where

Ωn is the random variable with realizations ∆Wn and n refers
to the MODIS band.

D. Generating correlated innovations

The independent, correlated innovations are generated by
following the approach presented in [14]. Let us therefore
consider d independent standard (i.e. unit variance) white noise
processes ∆W

1
, . . . ,∆W

d
each of length I , where I is the

amount of observations one wants to simulate. Let furthermore
a (deterministic and constant) matrix

δ =


δ11 δ12 · · · δ1d

δ21 δ22 · · · δ2d
...

...
. . .

...
δ71 δ72 · · · δ7d

 (8)

be given, and consider the 7-dimensional processes ∆W c,
defined by

∆W c = δ∆W , (9)

where
∆W c = [∆W 1

c · · ·∆W 7
c ]T . (10)

Let us now assume that the rows of δ have unit length, i.e.

‖δi#‖2 = 1, i = 1, . . . , 7. (11)

Then each of the components ∆W 1
c , · · · ,∆W 7

c separately
are also standard (i.e. unit variance) white noise processes,
with instantaneous correlation given by

P c
η = δδ∗. (12)

Given a positive definite correlation matrix P c
η we can

obtain δ by using Cholesky factorization, such that (11) is
automatically satisfied.

E. Simulation and Validation

The simulator is validated by using class and pixel metrics.
The class metrics are used to determine whether the simulated
data set have the same statistical attributes as the original
data set and are important, since class attributes are used by
classifiers to distinguish between classes [10], [15]. The pixel
metrics in contrast are used to verify that the simulator can
also reproduce any given pixel accurately by comparing every

real world pixel to its simulated counterpart. The construction
procedures of the simulated data sets on which the two types
of metrics are applied differs and are illustrated in Figure 1.

The steps required to generate the data set S on which the
class metrics is applied are summarized below:

i. Estimate the parameters of Rc (all the pixels in R belong-
ing to class c) [10].

ii. Select a random 50% of the estimated parameters to
construct P c

p. The pixels associated with the selected
parameters form the training set. The remaining pixels
in Rc belong to the validation set.

iii. Create fc(θc) from P c
p (actually the parameter covariance

matrix is used) using (6) and draw N × θc from it.
iv. Calculate s(t) with (1), by using the harmonic parameters

of step i.
v. Determine the residual by subtracting s(t) from x(t).

vi. Compute P c
η from the residual, by using the same training

set as in step ii and (7).
vii. Calculate N time series of correlated increments ∆W c

using P c
η , (9) and (12).

viii. Generate correlated noise by using the noise parameters
of θc (drawn in step iii), ∆W c[i] and (7).

ix. Create the simulated harmonic component by using the
harmonic parameters of θc and (1).

x. Add the correlated noise to the harmonic component.
xi. Generate NDVI from the simulated data by using band 1

and 2.
The pixel metrics simulated data set S is constructed by

using a different approach. The symbol S is used in both
scenarios as to avoid further clutter in the next sections. The
steps required to generate the data set S on which the pixel
metrics are applied are summarized below:

I-III. Follow steps i, iv and v of the class generation algorithm.
IV. Execute step vi of the class generation algorithm, but use

all of the pixels in Rc.
V. Perform step vii of the class generation algorithm, but

generate |Rc| time series instead of N .
VI. Generate correlated noise by using the estimated noise

parameters derived in step i instead of the noise param-
eters of θc.

VII. Add the correlated noise to the harmonic signal generated
in step ii.

VIII. Generate NDVI from the simulated data by using band 1
and 2.

IV. RESULTS AND DISCUSSION

Random split cross validation was performed to create 50
different class metric simulated data sets, with N = 1000.
There was no cross validation used for the pixel metrics,
since all the pixels in Rc were used. For the pixel metrics
50 independent experiments were also conducted. The class
and pixel metrics were then applied on each experiment to
produce the results in Table I.

A. Discussion on Metric Selection

The metrics in this section are based on the metrics proposed
in [16]. Two underlying metrics are used, namely sum of
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xc(t)× |Rc|
Parameter
Estimation

θ̂c × |Rc|
Parameter
Correlation

P c
p Parameter

Density fc(θc)

{λ̂c, σ̂c} × |Rc|

-

+

Noise
Correlation

White
Increments

P c
η ∆W c Ornstein-

Uhlenbeck

{λc,σc} ×N

+ + +

+

S Pixel S Class

θc ×N

×|Rc|
×N

×|Rc|

s(t)

×
N s(t)

NDVI NDVI

×|Rc| or N

×|Rc| or N

50%

100% or 50%

(i) (ii)

(iv)

(iii)

(v)

(vi) (vii) (viii)

(ix)

(x)

(xi)

(I)

(II)

(III)

(IV) (V) (VI)

(VII)

(VIII)

Fig. 1: Flow diagram illustrating how S is generated. When
there are two possibilities at a block, the first option relates to
the generation of the pixel set S, while the second option is
used to create the class set S. The capital roman numerals are
the steps needed to create the pixel set S, while the small letter
roman numerals are the steps required to create the class set S.
Furthermore s(t) = {sb(t)}b∈{1···7}, σc = {σbc}b∈{1···7} and
λc = {λbc}b∈{1···7}, while λ̂c and σ̂c are defined similarly.

squared error (SSE) and Hellinger distance (except for the
power spectral density metric that measures power). In both
cases a value close to zero indicates good similarity. When
“Hellinger” is not part of the metric name it indicates that the
SSE was used as the base metric. As the results in Table I
are close to zero, the results validate our simulator for the
current data sets. Each metric was chosen to verify that the
simulator reproduces three important characteristics, namely
temporal dynamics, spectral behavior and accurate noise.

1) Temporal Dynamics: There are two types of tempo-
ral dynamics to account for, namely intra and inter annual
variation. The main reason for intra annual variation is due
to seasonality, which is caused by a wide range of factors
including plant phenology. The underlying noise free SHO
tries to model the average seasonal behavior and has a period
of one year. Inter annual variation can be caused by many
factors including drought and floods. Since the CSHO is
a cyclo-stationary stochastic process it can not model inter
annual variation precisely, but it can represent the average
behavior of multiple years by reducing the remaining harmonic
information in the residual to two average parameters, namely
λbc and σbc . If the time-series being modeled does not con-
tain major trends, then the CSHO is an accurate first order
approximation of the time-series. The yearly ensemble mean
metric is a first order statistic and is used to verify that the
average seasonal behavior is replicated correctly. The average
temporal Hellinger distance is probably the most important
metric from the perspective of [11], [12] as it measures the
difference between the first order statistical description of the
CSHO and the true data set. The autocorrelation metric is a
second order statistic which measures whether the CSHO also
models the temporal behavior of any given pixel properly.

2) Spectral Behavior: The paper presents an approach for
simulating the spectral behavior of a specific class. We know
that each class will have a unique spectral signature within a

certain allowable margin of variation. The proposed simulator
encapsulates and models the spectral signature for each class
by using (6). Equation (6) enforces the class specific statistical
restrictions imposed by the different model parameters of each
spectral band on each other. The parameter correlation metric
measures how effective the simulator is in reproducing spectral
dependence, while the average parameter Hellinger distance
measures how trustworthy the joint Gaussian assumption of
fc(θ̃c) is.

Furthermore the model also enforces noise correlation by
using the approach presented in Sections III-C and III-D.
The noise correlation metric measures how duly the noise
correlation is modeled. In Fig. 2 the noise and parameter
correlation matrices for the vegetation class are shown.
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(a) Parameter correlation matrix for the
vegetation class.
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(b) Noise correlation matrix for the
vegetation class.

Fig. 2: Parameter and noise correlation matrices for the vege-
tation class

3) Accurate Noise: A widely used assumption for remotely
sensed time series noise is that it is white [5], [9] if all in-
formation carrying frequency components have been extracted
[4]. The different power spectral density metric values reveal
whether a white or colored assumption is more appropriate
when using an SHO as underlying noise model. Table I
indicate that a colored noise model is more appropriate than
assuming white noise. This is as expected, since only the
mean and seasonal harmonic components were extracted via
the SHO. The average noise increment Hellinger distance
determines whether the noise increments of each pixel are
similar to the increments of the Ornstein-Uhlenbeck process.

B. Class Metrics

1) Yearly Ensemble Mean:
The equation for the yearly ensemble mean can be found in
Table I where ˜̄yc(t) is the yearly ensemble mean of c and
is estimated by taking the average at each temporal step of
MCD43A4 over all pixels and then over all years (see Table
I). To determine the sum of squared error (SSE) of each time
step in the year we need to divide the metric in Table I by 45.
The settlement class has a slightly higher variance due to the
fewer samples that are available for the settlement class.

2) Average Parameter Hellinger Distance:
The equation for the average parameter Hellinger distance

can be found in Table I, where fc(θk) is the marginal prob-
ability density function of fc(θ̃c) and HD(fRcc (θk), fSc (θk))
represents the Hellinger distance between fRcc (θk) and fSc (θi).
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3) Noise and Parameter Correlation metrics: The equations
for the noise and Parameter Correlation metrics are given in
Table I. The noise correlation metric needs to be divided by
8×8 (NDVI was added for completeness), while the parameter
correlation metric needs to be divided by 40×40 to determine
the average SSE.

4) Average Temporal Hellinger distance: The equation for
the average temporal Hellinger distance can be found in Table
I, where fxbc(t) is the probability density function in band b at
time step t, with b ∈ {1, · · · , 7,NDVI}.

C. Pixel Metrics

1) Autocorrelation: The equation for autocorrelation metric
can be found in Table I. To determine the average SSE per
lag value we need to divide the autocorrelation metric by 368
(amount of observations).

2) Average Noise increment Hellinger distance: The equa-
tion for the average noise increment Hellinger distance can be
found in Table I, where fRc(p)

∆ηb
is the density function of the

noise increments ηb[t + 1] − ηb[t] for pixel p in data set Rc,
with b ∈ {1, · · · , 7,NDVI}.

3) Power Spectral Density:
The equation for the power can be found in Table I, where
D
Rηc (p)
b (f) is the power spectral density of the estimated noise

of pixel p in data set Rc in band b, with b ∈ {1, · · · , 7,NDVI}.
The same metric can be applied on Sη and W η , where W η

is the white noise model of Rηc .

TABLE I: Difference metrics between R and S (50 experi-
ments). The v index stands for vegetation, while the s index
stands for settlement. There is no standard deviation for the
Power in Rηc as the entire set was used (and no artificial noise
was added).

Metric
Equation

E[Metric]
σMetric

v s
Ensemble Mean∫ I

0 ‖˜̄y
Rc
c (t)−˜̄ySc (t)‖22dt

56.7015
9.5969

59.0293
31.6211

Parameter Hellinger Distance
1

|θ̃c|
∑|θ̃c|
k=1

HD(f
Rc
c (θk),fSc (θk))

0.1835
0.0065

0.2554
0.0087

Parameter Correlation
‖P̃ cpRc

−P̃
c
pS
‖22

18.3972
2.4220

32.0627
5.3703

Noise Correlation
‖P̃ cηRc

−P̃
c
ηS
‖22

0.0354
0.0074

0.0666
0.0136

Temporal Hellinger Distance
1
8

∑8
b=1

1
I

∫ I
0 HD(f

Rc
xbc(t)

,fS
xbc(t)

) dt

0.2364
0.0030

0.2269
0.0111

Autocorrelation
1

|Rc|
∑|Rc|
p=1

∫ I
0 ‖R̃

Rc(p)
c (τ)−R̃

S(p)
c (τ)‖22 dτ

31.0636
0.3421

34.3365
0.4536

Noise Hellinger Distance
1
8

∑8
b=1

1
|Rc|

∑|Rc|
p=1 HD(f

Rc(p)

∆ηb
,f
S(p)

∆ηb
)

0.1675
0.0003

0.1755
0.0003

Power inRηc
1
8

∑8
b=1

1
|Rc|

∑|Rc|
p=1

∫ 0.1
0 D

R
η
c (p)

b
(f) df

92.7649
−

38.3202
−

Power in Sη 94.6893
0.5608

45.9516
0.2873

Power in W η 22.9837
0.0797

11.7950
0.0472

V. CONCLUSION

The paper presented a simulator able to artificially generate
MODIS MCD43A4 time series, and explained the need and
justification for its development. The model presented in [10]
was used as the core of the simulator. To test the validity

of the simulator a test case was employed, where vegetation
and settlement data were simulated for the Gauteng province
located in South Africa. The simulated data was then compared
to the real world data set R. It was shown using different
simulated data sets that the differences between the real
and simulated data sets are small and stable validating the
simulator for the test case used in this paper.
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