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Abstract
In this work, three numerical methods have been used to solve the one-dimensional advection-diffusion
equation with constant coefficients. This partial differential equation is dissipative but not dispersive.
We consider the Lax-Wendroff scheme which is explicit, the Crank-Nicolson scheme which is implicit
as well as a Non-Standard Finite Difference scheme [14]. We solve a 1-D numerical experiment with
specified initial and boundary conditions, for which the exact solution is known using all these three
schemes using some different values for the space and time step sizes denoted by h and k respectively
for which the Reynolds number is 2 or 4. Some errors are computed namely, the error rate with respect
to the L1 norm, dispersion and dissipation errors. We have both dissipative and dispersive errors and
this indicates that the methods generate artificial dispersion though the partial differential considered
is not dispersive. It is seen that the Lax-Wendroff and NSFD are quite good methods to approximate
the 1-D advection-diffusion equation at some values of k and h. Two optimisation techniques are then
implemented to find the optimal values of k when h = 0.02 for the Lax-Wendroff and NSFD schemes
and this is validated by numerical experiments.

1 Introduction

The significant applications of advection-diffusion equation lie in fluid dynamics [13], heat transfer [12]
and mass transfer [9]. The 3-D advection-diffusion equation is given by

∂u

∂t
+A

∂u

∂x
+B

∂u

∂y
+ C

∂u

∂z
= α

(∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
. (1)

The coefficient of diffusivity is denoted by α and is computed as α =
CT

p Dp
, where p, Dp and CT de-

note the pressure, specific heat of the fluid at constant pressure and thermal conductivity respectively.
Also A, B, C are the velocity components of the fluid in the directions of x, y and z respectively.

Eq. (1) is also referred to as the convection-diffusion equation. The three terms A
∂u

∂x
, B

∂u

∂y
and

C
∂u

∂z
are called the advective or convective terms and the terms α

∂2u

∂x2
, α

∂2u

∂y2
and α

∂2u

∂z2
are called

the diffusive or viscous terms.
In this paper, we consider the one-dimensional convection-diffusion equation given by

∂u

∂t
+ a

∂u

∂x
= α

∂2u

∂x2
, (2)

with a = 1, α = 0.01, 0 ≤ x ≤ 1 and 0 < t ≤ T .
We denote the spatial and temporal step sizes by h and k respectively. The cfl number, c is computed

as
a k

h
and the parameter, s is obtained as

αk

h2
.

The initial condition is u(x, 0) = f(x), and boundary conditions are

u(0, t) = g0(t), 0 < t ≤ T,
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u(1, t) = g1(t), 0 < t ≤ T,

where f , g0 and g1 are known functions.

There has been little progress in obtaining analytical solution to the 1-D advection-diffusion equa-
tion when initial and boundary conditions are complicated, even with α and a being constant [7]. This
is the reason why numerical solution of Eq.(2) is important.

The paper is organised as follows. In section 2, we study the damping and dispersive characteris-
tics of some numerical methods for the 1-D advection diffusion equation. In section 3, we show how
to quantify the errors from the numerical results into dissipation and dispersion errors by using a
technique devised by Takacs [20]. In section 4, we describe the numerical experiment that we have
considered and show how to choose the parameters k and h to run the numerical experiments. Sections
5 and 6 describe some explicit and implicit methods, and we study their dissipative and dispersive
properties. Also, we tabulate the errors when the methods are used to solve the numerical experiment
described in section 6. In section 7, we present a Non-Standard Finite Difference (NSFD) scheme and
analyse its spectral properties and also use it to solve the numerical experiment. In section 8, we find
the optimal value of k when h = 0.02 for the Lax-Wendroff and NSFD schemes and validate these
using the numerical experiment. Section 9 highlights the salient features of the paper.

2 Dissipative and Dispersive Characteristics of numerical methods

Dissipation is defined as the constant decrease with time of the amplitude of plane waves as they
propagate in time. If the modulus of the amplification factor, denoted by AFM is equal to one, a
disturbance neither grows nor damps [8]. The modulus of the amplification factor is also a measure
of the stability of a scheme. If this value is greater than one, this creates instability while damping is
present whenever the value is less then one [17]. When the modulus of the amplification factor exceeds
one, this indicates an unstable mode [4].
Since our partial differential equation is ut + a ux = α uxx, we will have dissipation and this is caused
because of the term uxx and such dissipation is called implicit dissipation. We can also have artificial
dissipation which is caused due to the numerical method.

We let the amplification factor of the scheme approximating Eq. (2) be

ξ = ξ1 + I ξ2. (3)

Then the modulus of the amplification factor, denoted by AFM is computed as |ξ|. We now show
how the relative phase error (RPE) of a given numerical scheme approximating Eq. (2) is obtained.
A perturbation for u is obtained by substituting u by exp(I (w1 t−θx)) where t and x represents time
and space respectively, θ is the wavenumber and w1 is the dispersion relation [18].
We then obtain

I w1 − aθI + αθ2 = 0, (4)

where I =
√
−1, with on simplification gives

w1 = a θ + αθ2I. (5)
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Hence, the dispersion relation is given by

w1 = a θ + αθ2 I. (6)

The exact phase velocity is computed as
ℜ(w1)

θ
which simplifies as θ. We next obtain the numerical

phase velocity.
From Eq. (3), we have ξ = ξ1 + I ξ2. We can express ξ as exp(−bk) [18] where b is the exponential
growth rate.
Therefore, we have exp(−bk) = ξ1 + I ξ2 which implies

b =
1

k
log

(ξ1 − I ξ2
ξ21 + ξ22

)
. (7)

The numerical phase velocity is computed as
ℑ(b)
θ

and is equal to

− 1

k θ
tan−1

(ξ2
ξ1

)
. (8)

The phase angle, w is computed as w = θh where θ is the wavenumber and h is the spatial step.
The relative phase error (RPE) is a measure of the dispersive character of a scheme. This quantity is
a ratio and measures the velocity of the computed waves to that of the physical waves. Hence, we have

RPE = − 1

k θa
tan−1

(ℑ(ξ)
ℜ(ξ)

)
. (9)

Since w = θh and c =
a k

h
, we can express Eq. (9) as

RPE = − 1

c w
tan−1

(ℑ(ξ)
ℜ(ξ)

)
. (10)

If the RPE is greater than one, the computed waves appear to move faster than the physical waves
[11] thus causing phase lead. A ratio less than one implies that the computed waves will move slower
than the physical waves, causing phase lag.

3 Quantification of errors from numerical results [20, 1, 2]

In this section, we describe how Takacs [20] quantifies errors from numerical results into dispersion
and dissipation errors.
The Total Mean Square Error is calculated as

1

N

N∑
i=1

(ui − vi)
2

where, ui represents the analytical solution and vi, the numerical (discrete) solution at a given grid
point, i.
The Total Mean Square Error can be expressed as

1

N

N∑
i=1

(ui − vi)
2 =

1

N

N∑
i=1

(ui)
2 +

1

N

N∑
i=1

(vi)
2 − 2

N

N∑
i=1

ui vi. (11)
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Next,

1

N

N∑
i=1

(ui − ui)
2 =

1

N

N∑
i=1

(
(ui)

2 − 2ui ui + (ui)
2
)

(12)

and

1

N

N∑
i=1

(vi − vi)
2 =

1

N

N∑
i=1

(
(vi)

2 − 2vi vi + (vi)
2
)
. (13)

The Total Mean Square Error can be further expressed as

1

N

N∑
i=1

(ui − ui)
2 +

1

N

N∑
i=1

(vi − vi)
2 +

2

N

N∑
i=1

ui ui +
2

N

N∑
i=1

vi vi

− 1

N

N∑
i=1

(ui)
2 − 1

N

N∑
i=1

(vi)
2 − 2

N

N∑
i=1

ui vi. (14)

The expression in (14) can be rewritten as

σ2(u) + σ2(v) + 2 (ū)2 + 2 (v̄)2 − (ū)2 − (v̄)2 − 2

N

N∑
i=1

ui vi, (15)

where σ2(u) and σ2(v) denote the variance of u and v respectively, ū and v̄ denote the mean values of
u and v respectively.

Thus, the Total Mean Square Error is given by

σ2(u) + σ2(v) +
(
(ū)2 − 2 ūv̄ + (v̄)2

)
+

(
2 ūv̄ − 2

N

N∑
i=1

ui vi

)
(16)

which on further simplification yields

σ2(u) + σ2(v) + (ū− v̄)2 − 2
( 1

N

N∑
i=1

ui vi − ui vi

)
. (17)

Thus, we have

1

N

N∑
i=1

(ui − vi)
2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 Cov(u, v). (18)

But, the correlation coefficient, ρ is given by
Cov(u, v)

σ(u) σ(v)
. Hence, the Total Mean Square Error can be

written as

1

N

N∑
i=1

(ui − vi)
2 = σ2(u) + σ2(v) + (ū− v̄)2 − 2 ρ σ(u) σ(v), (19)

which simplifies to

1

N

N∑
i=1

(ui − vi)
2 = (σ(u)− σ(v))2 + (ū− v̄)2 + 2 (1− ρ) σ(u) σ(v). (20)

On putting ρ = 1, we get 2 (1−ρ) σ(u) σ(v) = 0. Thus, we define (2 (1−ρ)σ(u) σ(v)) as the dispersion
error as correlation coefficient in statistics is analogous with phase lag or phase lead in Computational
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Fluid Dynamics.
Consequently, (σ(u)− σ(u))2 + (ū− v̄)2 measures the dissipation error.

We also obtain values of the error rate with respect to the L1 norm which is calculated as

Enum =
1

N

N∑
i=1

|ui − vi|, (21)

where ui and vi are the computed and exact values respectively and N is the number of spatial grid
points.

4 Choice of the parameters h and k

We refer to [7] where three explicit methods are used to solve the partial differential equation

ut + 0.8 ux = 0.008 uxx, (22)

where

u(x, t = 0) = exp
(
− (x− 2)2

8

)
, (23)

g0(t) =

√
20

20 + t
exp

[
− (5 + 4t)2

10 (t+ 20)

]
, (24)

and

g1(t) =

√
20

20 + t
exp

[
− 2 (5 + 2t)2

5 (t+ 20)

]
. (25)

Tests were carried out for three values of the cell Reynolds number, R∆ =
c

s
, namely R∆ = 2, 4, 8 [7].

Since c =
0.8 k

h
and s =

0.008 k

h2
, we can express R∆ in terms of h, in that case we have R∆ = 100 h.

Thus, for R∆ = 2, 4, 8, the corresponding values of h are 0.02, 0.04 and 0.08 respectively.

Since c =
0.8 k

h
and h = 0.02, 0.04, 0.08, we have the following relationships between c and k namely

c = 40 k, c = 20 k and c = 10 k.
Then three values of c were chosen as 0.16, 0.32 and 0.64 and then the corresponding values of k
determined as 0.004, 0.008, 0.016, 0.032, 0.064. For these values of k, the number of time-steps, M

are calculated as M =
1

k
and hence, M take the following values namely 250, 125, 62.5, 31.25 and

16.625 respectively. However, we note that M can only be an integer. Hence, an improvement can be
made when choosing c and k while keeping R∆ = 2, 4, 8 and h = 0.02, 0.04, 0.08.

We next refer to [16] where both explicit and implicit methods were used for numerical solution
of the one-dimensional advection-diffusion equation in a region bounded by 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1
[9], with a = 1, α = 0.01 and with the following initial and boundary conditions:

u(x, 0) = exp
(
− (x+ 0.5)2

0.00125

)
, (26)

u(0, t) =
0.025√

0.000625 + 0.02 t
exp

(
− (0.5− t)2

(0.00125 + 0.04t)

)
, (27)
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u(1, t) =
0.025√

0.000625 + 0.02 t
exp

(
− (1.5− t)2

(0.00125 + 0.04t)

)
. (28)

The exact solution is given by

u(x, t) =
0.025√

0.000625 + 0.02 t
exp

(
− (x+ 0.5− t)2

(0.00125 + 0.04t)

)
. (29)

The values of h and k used were 0.02 and 0.004 respectively for all the numerical methods consid-
ered in [16].

In our work, we use we consider both implicit and explicit schemes to solve

ut + 1.0 ux = 0.01 uxx,

subject to boundary conditions given by (26), (27) and (28).
We consider two values for R∆, say, 2 and 4. Thus, we have R∆ = 100 h as a = 1 and α = 0.01. For

R∆ = 2 and 4, we have h = 0.02 and 0.04 respectively. Hence, c =
k

0.02
and c =

k

0.04
and therefore

we have c = 50 k and c = 25 k.

We consider the case when c = 50 k. If we choose c = 0.25, 0.50 and 1.0, then the values taken
by k are 0.01, 0.02 and 0.04 respectively.
Next we consider, c = 25 k. If we choose, c = 0.25, 0.5 and 1.0, we have k = 0.01, 0.02 and 0.04
respectively.
Hence, for h = 0.02, the values taken by k are 0.005, 0.01 and 0.02. For h = 0.04, k can take the
values 0.01, 0.02 and 0.04. Some of these possibilities might give rise to an unstable scheme and must
be ignored.
However, for implicit methods, all the 6 combinations of k and h are possible and we can also consider
the case when c = 2.0 instead of only the three cases, namely, c = 0.25, 0.5 and 1.0.

5 Construction of explicit and implicit finite difference methods

We can approximate
∂u

∂x
as

(1− γ) (uni − uni−1) + γ(uni+1 − uni )

h
, (30)

or,
(1− γ) (un+1

i − un+1
i−1 ) + γ(un+1

i+1 − un+1
i )

h
. (31)

Hence, an approximation for
∂u

∂x
is

(1− ϕ)
[(1− γ) (uni − uni−1) + γ(uni+1 − uni )

h

]
+ ϕ

[(1− γ) (un+1
i − un+1

i−1 + γ(un+1
i+1 − un+1

i )

h

]
, (32)

where h represents the spatial step size, ϕ and γ are the temporal and spatial weighting factors re-
spectively.
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An approximation for
∂2u

∂x2
is

uni+1 − 2 uni + uni−1

h2
, (33)

or

un+1
i+1 − 2 un+1

i + un+1
i−1

h2
. (34)

Hence, a discretization for
∂2u

∂x2
is

(1− ϕ)
[uni+1 − 2 uni + uni−1

h2

]
+ ϕ

[un+1
i+1 − 2 un+1

i + un+1
i−1

h2

]
. (35)

On plugging approximations for
∂u

∂x
and

∂2u

∂x2
as given by (32) and (35) into Eq. (2), we obtain a

family of explicit and implicit numerical schemes given by

un+1
i =

1

A0

(
A1 uni−1 +A2 uni +A3 uni+1 +A4 un+1

i−1 +A5 un+1
i+1

)
, (36)

where,

A0 = 1− ϕ[c (2γ − 1)− 2s],

A1 = (ϕ− 1) [c (γ − 1)− s],

A2 = 1 + (ϕ− 1) [c(1− 2 γ) + 2s],

A3 = (1− ϕ) [s− c γ],

A4 = ϕ[s+ c (1− γ)],

and

A5 = ϕ[s− γc],

where c =
a k

h
and s =

α k

h2
.

6 Standard Schemes

6.1 Lax-Wendroff scheme

The Lax-Wendroff scheme is given by

un+1
i =

1

2
(2s+ c+ c2) uni−1 + (1− 2s− c2) uni +

1

2
(2s− c+ c2) uni+1, (37)

and is obtained on replacing ϕ by zero and γ by
1− c

2
, in Eq. (36).

The modified equation is given by [6]

ut + a ux − αuxx +
1

6
a h2 (1− c2 − 6 s) uxxx + ... = 0, (38)

and this indicates that the leading error terms are dispersive in nature.
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The amplification factor and the relative phase error are obtained as

ξ = 1 + (2s+ c2) (cos(w)− 1)− I c sin(w), (39)

and

RPE =
1

cw
tan−1

( c sin(w)

1 + (2s+ c2) (cos(w)− 1)

)
. (40)

Plots of the AFM and RPE, both versus the phase angle, w for four combinations of values of k
and h are shown in Figs. (1(a)) and (1(b)). The combination k = 0.01, h = 0.04 is the least dissipative
one. The scheme is not dispersive when k = 0.01, h = 0.04. Phase lag behaviour is observed when
k = 0.005, h = 0.02 and k = 0.01, h = 0.02. Phase lead phenomenon occurs when k = 0.02 and
h = 0.04.

We tabulate the errors in Table (1) for the four combination of values of h and k. The errors are
least when k = 0.005 and h = 0.02 and greatest when k = 0.01 and h = 0.04.
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Figure 1: Plot of AFM and RPE vs phase angle for the Lax-Wendroff scheme
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Figure 2: Comparison of numerical results with exact results using Lax-Wendroff scheme at some
values of k and h.

Table 1: Errors for Lax-Wendroff scheme

k h cfl Enum max |ue − uc| Error at (0.5, 1.0) Diss. Error Disp. Error

0.005 0.02 0.25 1.8166× 10−4 5.8157× 10−4 1.6348× 10−4 6.3582× 10−9 5.4502× 10−8

0.01 0.02 0.50 7.3296× 10−4 0.0024 1.6348× 10−4 9.1960× 10−8 8.9741× 10−7

0.01 0.04 0.25 0.0021 0.0065 0.0011 9.1500× 10−7 7.1622× 10−6

0.02 0.04 0.50 1.2252× 10−4 3.7946× 10−4 3.7946× 10−4 4.0896× 10−9 2.4477× 10−8

6.2 Crank-Nicolson scheme

The Crank-Nicolson method is obtained if we plug γ = 1/2 and ϕ = 1/2 into Eq. (36). A single
expression for the scheme is

un+1
i =

1

4 (1 + s)

(
(c+ 2s) un+1

i−1 − (c− 2s) un+1
i+1 + (c+ 2s) uni−1 − (c− 2s) uni+1 + (4− 4s) uni

)
. (41)

The modified equation is given by

ut + a ux − α uxx +
1

12
ah2 (2 + c2) uxxx + ... = 0, (42)

and this indicates that the leading error terms are dispersive in nature.

The amplification factor is given by

ξ =
(B2 D2 − C2

2

B2
2 + C2

2

)
− I

(B2C2 + C2D2

B2
2 + C2

2

)
, (43)

and the RPE is computed as

1

cw
tan−1

(B2C2 + C2D2

B2D2 − C2
2

)
, (44)
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where B2 = 1 + s− s cos(w), C2 = 2c sin(w) and D2 = 4 + 4s cos(w)− 4s.

The scheme is unconditionally stable. We next plot the variation of the AFM vs phase angle for
some values of k and h in Fig. (3(a)) and (3(b)). Plots of the RPE vs phase angle are depicted in
Figs. (4(a)) and (4(b)).
In the case of Crank-Nicolson, the scheme is less dissipative at h = 0.04 as compared to h = 0.02 for
all the four values of k namely; 0.005, 0.01, 0.02 and 0.04. The combination h = 0.04, k = 0.005 is the
least dissipative one. Based on Fig. (4(b)), we can observe that dispersion character is slightly affected
by the value of k used when h = 0.04. However, if we choose h = 0.02, the dispersion character is
much affected by the value of k. In general for h = 0.02, the case k = 0.02 is in general the least
dispersive one.
We tabulate the errors for the eight combinations of h and k in Table (2) and we observe that the
errors are least when k = 0.005 and h = 0.02.

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase angle

A
FM

 

 
k = 0.005
k = 0.01
k = 0.02
k = 0.04

(a) h = 0.02

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Phase angle

A
FM

 

 

k = 0.005
k = 0.01
k = 0.02
k = 0.04

(b) h = 0.04

Figure 3: Plot of AFM vs phase angle for the Crank-Nicolson scheme.
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Figure 4: Plot of RPE vs phase angle for the Crank-Nicolson scheme.
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Figure 5: Comparison of numerical results with exact results using Crank-Nicolson scheme at some
values of k and h.

7 Non-Standard Finite Difference Scheme

In this section, we describe how a non-standard finite difference scheme (NSFD) is constructed [15]
for the 1-D convection-diffusion equation.
The equation ut + ux = α uxx has three sub-equations [14] which are given by

ut + ux = 0, (45)

ux = α uxx, (46)
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Table 2: Errors for Crank-Nicolson scheme

k h cfl Enum max |ue − uc| Error at (0.5, 1.0) Diss. error Disp. Error

0.005 0.02 0.25 9.9859× 10−4 0.0032 7.3954× 10−4 1.4704× 10−7 1.6929× 10−6

0.01 0.02 0.50 0.0011 0.0035 7.3475× 10−4 1.6161× 10−7 2.0307× 10−6

0.02 0.02 1.0 0.0015 0.0046 7.4486× 10−4 2.2664× 10−7 3.7049× 10−6

0.04 0.02 2.0 0.0029 0.0092 0.0013 5.9447× 10−7 1.5389× 10−5

0.005 0.04 0.125 0.0037 0.0114 0.0020 2.2440× 10−6 2.3758× 10−5

0.01 0.04 0.25 0.0038 0.0116 0.0020 2.2981× 10−6 2.4852× 10−5

0.02 0.04 0.5 0.0042 0.0126 0.0021 2.5212× 10−6 2.9471× 10−5

0.04 0.04 1.0 0.0055 0.0162 0.0028 3.5178× 10−6 5.1581× 10−5

ut = α uxx. (47)

Eqs. (45) and (46) have known exact finite difference scheme which are

un+1
i − uni

k
+

uni − uni−1

h
= 0, (48)

with k = h and

ui − ui−1

h
= α

(ui+1 − 2 ui + ui−1

αh(exp(h/α)− 1)

)
, (49)

respectively.

A finite difference scheme that englobes the features of the two equations namely (45) and (46) is

un+1
i − uni

k
+

uni − uni−1

h
= α

(uni+1 − 2uni + uni−1

αh(exp(h/α)− 1)

)
. (50)

On rearranging the terms in (50), we get the NSFD method which is [14, 15]

un+1
i = β uni+1 + (1− α1 − 2β1) u

n
i + (α1 + β1) u

n
i−1, (51)

where

α1 =
k

h
, (52)

and

β1 =
α1

exp(h/α)− 1
. (53)

The square of the modulus of the amplification factor is given by

|ξ|2 =
(
(1− α1 − 2β1) + (α1 + 2 β1) cos(w)

)2
+ (α1 sin(w))

2. (54)
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For stability, 0 < |ξ| ≤ 1 and this implies that 0 < |ξ|2 ≤ 1. We now obtain the region of stability
by using the approach used by Hindmarch et. al. [10] and Sousa [19].
We consider the case when w = π. The square of the modulus of the amplification factor is given by

|ξ|2 = (1− 2 α1 − 4 β1)
2. (55)

We thus need,

(1− 2 α1 − 4 β1)
2 ≤ 1, (56)

which implies that

|1− 2 α1 − 4 β1| ≤ 1. (57)

Thus, for stability, we have the following inequality

−1 ≤ 1− 2 α1 − 4 β1 ≤ 1, (58)

which simplifies to

0 ≤ α1 + 2 β1 ≤ 1. (59)

Since α1 and β1 are positive, α1+2 β1 ≥ 0 is the trivial inequality. Hence, we consider the inequality

α1 + 2 β1 ≤ 1. (60)

Since, α1 =
k

h
and β1 =

α1

exp(h/α)− 1
, we have

k

h
+

2 k

h
(
exp(h/α)− 1

) ≤ 1. (61)

For stability, we need the following condition

k ≤
(exp(h/α)− 1

exp(h/α) + 1

)
h. (62)

We next consider the case when w → 0. When w → 0, cos(w) ≈ 1− 1

2
w2 and sin(w) ≈ w.

Thus, (54) reduces to

|ξ|2 ≈ 1 + (−2 β1 + α2
1 − α1) w

2. (63)

We thus require

−2 β1 + α2
1 − α1 ≤ 0. (64)

Using (52) and (53), (64) becomes

−2k h+ k (k − h) (exp(h/α)− 1)

h2 (exp(h/α)− 1)
≤ 0. (65)

From (65), we deduce −2 k h+ (k2 − k h) (exp(h/α)− 1) ≤ 0, which on expansion and simplification
gives (exp(h/α)− 1) (k − h) ≤ 0.
Since exp(h/α)− 1 ≥ 0, therefore,

k ≤ h. (66)

13



Combining (62) and (66), we obtain (62) and therefore the region of stability is decribed by

k ≤ exp(h/α)− 1

exp(h/α) + 1
h. (67)

Case 1:
If h = 0.02, using (62), we have k ≤ 0.01523. Hence, for h = 0.02 and c = 0.25, we have k = 0.005.
Also, for h = 0.02 and c = 0.5, we have k = 0.010. However, if h = 0.02 and c = 1.0, we have k = 0.020
but this combination will give rise to an unstable method.

Case 2:
When h = 0.04, we require k ≤ 0.0386 for stability. Therefore, for h = 0.04, we consider k = 0.01 and
0.02.

Plots of the AFM and RPE versus phase angle are shown in Figs. (6(a)) and (6(b)) respectively.
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Figure 6: Plot of AFM and RPE, vs phase angle

The NSFD scheme considered is an explicit one and we have four combinations of k and h namely;
(i) k = 0.005, h = 0.02
(ii) k = 0.01, h = 0.02.
(iii) k = 0.01, h = 0.04.
(iv) k = 0.02, h = 0.04.

The scheme is least dissipative when k = 0.01, h = 0.04 and k = 0.005, h = 0.02. The scheme
is least dispersive when k = 0.02, h = 0.04. The scheme experience both phase lead and phase lag
behaviour, depending on the values of k and h.

The modified equation is given by

ut + ux +
1

2
h
(
ac− 1− 1

exp(h/α)− 1

)
uxx +

1

6
h2 (1− c2 − 6s) uxxx + ... = 0, (68)

and this indicates that the leading error terms are dissipative. We tabulate the errors in Table (3)
and we observe that the errors are least when k = 0.005 and h = 0.02 and greatest when k = 0.02 and
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h = 0.04.
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Figure 7: Comparison of numerical results with exact results using NSFD scheme at some values of k
and h.

Table 3: Errors for NSFD scheme

k h cfl Enum max|ue − uc| Error at (0.5, 1.0) Diss. Error Disp. Error

0.005 0.02 0.25 8.7288× 10−4 0.0026 0.0026 8.0435× 10−7 5.5063× 10−7

0.01 0.02 0.50 0.0028 0.0085 -0.0084 8.3500× 10−6 5.8963× 10−6

0.01 0.04 0.25 0.0068 0.0194 0.0192 4.8616× 10−5 3.2639× 10−5

0.02 0.04 0.50 0.0010 0.0032 0.0032 8.7192× 10−7 1.0934× 10−6

Based on Tables (1), (2) and (3), we can see that the Lax-Wendroff and the NSFD schemes are
most effective when k = 0.005 and h = 0.02. The errors are smaller for the Lax-Wendroff as compared
to NSFD scheme when k = 0.005 and h = 0.02.

8 Optimising parameters in the Lax-Wendroff and NSFD scheme

Our aim in this section is to compute an optimal value of k for a given value of h, say h = 0.02.
By optimal, we mean a value which reduces the errors. Since the partial differential equation con-
sidered is slightly dissipative and not dispersive, we aim to minimize the dispersion error of the scheme.

8.1 Proposed techniques of optimisation

Tam and Webb [21], Bogey and Bailly [5] among others have implemented techniques which enable
coefficients to be determined in numerical schemes specifically designed for Computational Aeroacous-
tics. We develop these techniques into respective equivalent forms to determine the optimal value of
k for the NSFD scheme [3].
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We now describe briefly how Tam and Webb [21], Bogey and Bailly [5] define their measures and
consequently their technique of optimisation in Computational Aeroacoustics.
The Dispersion-Relation-Preserving (DRP) scheme was designed so that the dispersion relation of the
finite difference scheme is formally the same as that of the original partial differential equations. The
integrated error is defined as

E =

∫ η

−η
|θ∗h− θh|2 d(θh),

where the quantities θ∗h and θh represent the numerical and exact wavenumbers respectively. The
dispersion error and dissipation error are calculated as |ℜ(θ∗h)− θh| and |Im(θ∗h)| respectively.

Tam and Shen [22] set η as 1.1 and optimise the coefficients in the numerical scheme such that
the integrated error is minimised.
Bogey and Bailly [5] minimise the relative difference between the exact wavenumber, θh and the
effective/numerical wavenumber, θ∗h and define their integrated errors as

E =

∫ (θh)h

(θh)l

|θ∗h− θh|
θh

d(θh), (69)

or

E =

∫ ln (θh)h

ln (θh)l

|θ∗h− θh| d(ln (θh)). (70)

In Computational Fluid Dynamics for a particular method under consideration, the dispersion
error is calculated as

|1−RPE|.

We have modified the measures used by Tam and Webb, Bogey and Bailly in a Computational Aeroa-
coustics framework to suit them in a Computational Fluid Dynamics framework [3] such that the
optimal parameter can be obtained. Thus, we define the following integrals: Integrated Error from
Tam and Webb, (IETAM), Integrated Error from Bogey and Bailly ((IEBOGEY) as follows:

IETAM =

∫ w1

0
|1−RPE|2 dw, (71)

IEBOGEY =

∫ w1

0
|1−RPE| dw, (72)

8.2 Optimisation procedure

Lax-Wendroff
We consider the Lax-Wendroff scheme given by Eq. (37), with h = 0.02. The amplification factor of
the resulting method is

ξLW = 1− 50 k − 2500 k2 + (50 k + 2500 k2) cos(w)− 50 k sin(w) I, (73)

and thefore the RPE is computed as

RPELW =
0.02

k w
tan−1

(ℑ(ξLW )

ℜ(ξLW )

)
. (74)

A plot of the exact RPE vs w ∈ [0, π] is shown in Fig. (8) and we do not have phase wrapping
phenomenon. We propose two measures, one adapted from Tam and Webb [21] and the other from
Bogey and Bailly [5].
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We compute the following

IETAM =

∫ 1.1

0
(RPELW − 1)2 dw, (75)

and

IEBOGEY =

∫ 1.1

0
|RPELW − 1| dw. (76)

We plot the integrated errors vs k and obtain the optimal value of k. We can also use the function
NLPSolve from Maple to determine the value of k which minimise each of these two integrals. In the
case of IETAM, we obtain,

k = 0.00615029705055891978

while in the case of IEBOGEY, we are out with

k = 0.006112886302132816582.

We next validate whether this value of k computed does indeed minimise the errors by performing the
numerical experiment using Lax-Wendroff with h = 0.02 at some different values of k ∈ (0, 0.01236)
and then compare the errors. The errors are tabulated in Table (4) and we can see that indeed for
k = 1/164 ≈ 0.00601, all the five types of errors are least.

Figure 8: Plot of RPE vs k vs w for the Lax-Wendroff scheme at h = 0.02.
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(a) IETAM (b) IEBOGEY

Figure 9: Plots of IETAM vs k and EBOGEY vs k for the Lax-Wendroff scheme when h = 0.02.

Table 4: Errors for the Lax-Wendroff scheme for h = 0.02

k Enum max|ue − uc| Error at (0.5, 1.0) Diss. Error Disp. Error

0.001 8.2049× 10−4 0.0026 6.3090× 10−4 1.0506× 10−7 1.1375× 10−6

0.002 6.6803× 10−4 0.0021 5.1728× 10−4 7.1763× 10−8 7.5203× 10−7

1/333 5.1018× 10−4 0.0016 4.0089× 10−4 4.3376× 10−8 4.3728× 10−7

0.004 3.4840× 10−4 0.0011 2.8318× 10−4 2.1247× 10−8 2.0307× 10−7

0.005 1.8166× 10−4 5.8157× 10−4 1.6348× 10−4 6.3582× 10−9 5.4502× 10−8

1/164 1.3952× 10−5 4.3926× 10−5 3.0697× 10−5 1.1388× 10−11 3.6197× 10−10

1/143 1.6764× 10−4 5.3721× 10−4 −7.8352× 10−5 3.8582× 10−9 4.7968× 10−8

1/125 3.5162× 10−4 0.0011 −2.0134× 10−4 1.9362× 10−8 2.0827× 10−7

1/111 5.4133× 10−4 0.0017 −3.2451× 10−4 4.8426× 10−8 4.9113× 10−7

0.01 0.0011 0.0035 −6.5674× 10−4 2.1234× 10−7 1.9665× 10−6

NSFD
We consider the NSFD scheme given by Eq. (7(a)), with h = 0.02. The amplification factor of the
resulting method is

ξNSFD = 1 + 65.65176427 k (cos(w)− 1)− 50 (k sin(w)) I, (77)

and thefore the RPE is computed as

RPENSFD =
1

α1 w
tan−1

(ℑ(ξNSFD)

ℜ(ξNSFD)

)
, (78)

18



where α1 =
k

h
.

A plot of the exact RPE vs e ∈ [0, π] is shown in Fig. (10) and we do not have phase wrapping
phenomenon. We propose two measures, one adapted from Tam and Webb [21] and the other from
Bogey and Bailly [5].
We compute the following

IETAM =

∫ 1.1

0
(RPENSFD − 1)2 dw, (79)

and

IEBOGEY =

∫ 1.1

0
|RPENSFD − 1| dw. (80)

We plot the integrated errors vs k and obtain the optimal value of k. We can also use the function
NLPSolve from Maple to determine the value of k which minimise each of these two integrals. In the
case of IETAM, we obtain,

k = 0.00611388415557632438

while in the case of IEBOGEY, we are out with

k = 0.00611348537281972832.

We next validate whether this value of k computed does indeed minimise the errors by performing
the numerical axperiment using NSFD with h = 0.02 at some different values of k ∈ (0, 0.01523)
and then compare the errors. The errors are tabulated in Table (5) and we can see that indeed for
k = 1/164 ≈ 0.00601, all the five types of errors are least.

Figure 10: Plot of RPE vs k vs w for the NSFD scheme at h = 0.02.

19



(a) IETAM (b) IEBOGEY

Figure 11: Plots of IETAM vs k and EBOGEY vs k

Table 5: Errors for NSFD scheme for h = 0.02

k Enum max|ue − uc| Error at (0.5, 1.0) Diss. Error Disp. Error

0.001 0.0035 0.0100 0.0100 1.2802× 10−5 8.0987× 10−6

0.002 0.0028 0.0083 0.0083 8.6039× 10−6 5.5211× 10−6

1/333 0.0022 0.0064 0.0064 5.1527× 10−6 3.3593× 10−6

0.004 0.0015 0.0045 0.0045 2.5390× 10−6 1.6870× 10−6

0.005 8.7288× 10−4 0.0026 0.0026 8.0435× 10−7 5.5063× 10−7

1/164 1.1717× 10−4 3.5591× 10−4 3.4999× 10−4 1.2220× 10−8 1.2981× 10−8

1/143 5.2775× 10−4 0.001578 -0.001536 3.0107× 10−7 1.9762× 10−7

1/125 0.00126 0.003795 -0.00373 1.7163× 10−6 1.1639× 10−6

1/111 0.00201955 0.00610955 -0.0060209 4.3904× 10−6 3.0429× 10−6

0.01 0.002783 0.008479 -0.0083559 8.3500× 10−6 5.8963× 10−6
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9 Conclusion

In this paper, three numerical methods have been used to solve a 1-D advection-diffusion equation
with specified initial and boundary conditions. Both explicit and implicit finite difference methods as
well as a non-standard finite difference scheme have been used. The results are much affected by the
choice of k and h. In general, we observe that the Lax-Wendroff scheme is the most efficient method
followed by the Non-Standard Finite Difference scheme. We perform two optimisation procedures by
computing the optimal values of k when h = 0.02 for the Lax-Wendroff and NSFD schemes. We
observe that when k ≈ 0.006, the errors are reduced further for both methods.
This work can be extended to the case when α is large. Also, we can consider numerical solution of
1-D non-linear as well as 2-D linear and 2-D non-linear convection-diffusion problems and we can use
appropriate optimisation techniques to choose parameters h and k for minimal numerical dispersion
and numerical dissipation.

Nomenclature
I =

√
(−1)

k: time step
h: spatial step
n: time level
a: advection velocity
c: cfl/Courant number

c =
ak

h

s =
αk

h2
w: phase angle in 1-D
w = θh
RPE: relative phase error per unit time step
AF : amplification factor
AFM = |AF |
Diss. Error:Dissipation Error
Disp. Error:Dispersion Error
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