
A Volunteer Rostering Problem: Scheduling of moderators to
provide optimal coverage in an on-line chess website

by

MARILIZE VAN BUISBERGEN
27318312

Submitted in partial fulfillment of the requirements for
the degree of

BACHELORS OF INDUSTRIAL ENGINEERING

in the

FACULTY OF ENGINEERING, BUILT ENVIRONMENT AND INFORMATION
TECHNOLOGY

UNIVERSITY OF
PRETORIA

October 2012

Abstract

ChessCube is a global chess website which uses volunteer moderators to monitor chat
rooms and provide assistance to users. The current moderator management approach
used by ChessCube is causing chat rooms to be under-monitored and existing moderators
to be under-utilised.

This project aims to change the way ChessCube manages its moderators by introducing
Operations Research related concepts to the moderator management process to improve
the coverage provided by existing moderators, as well as to determine where and when
additional moderators are needed.

Chapter 1 places the problem into context, describing the purpose of the project and
what problem it aims to address. Deliverables are defined and methods are described
which will be used to achieve the specified deliverables.

In Chapter 2, a detailed literature review is conducted to classify the problem and
find existing solution methods. The chapter concludes that the use of an exact linear
programming (integer) algorithm is most suitable, which will be solved using a free excel-
based solver such as SolverStudio.

Chapter 3 describes the solution design, including the scheduling algorithm’s variables,
constraints and given values.

Chapter 4 explains the model that has been created in SolverStudio as well as its
implementation. It is concluded that the scheduling model that has been created in
SolverStudio can successfully and optimally schedule ChessCube’s moderators, without
requiring ChessCube to purchase any additional software.

Contents

1 Project background 4
1.1 Introduction and Background . 4
1.2 Problem Statement . 5
1.3 Research design . 6
1.4 Research methodology . 7

1.4.1 Tables of website data gathered . 7
1.4.2 A scheduling program . 8
1.4.3 An initial schedule . 8

1.5 Interpretation of collected data . 8

2 Literature review 10
2.1 Problem classification . 10
2.2 Existing approaches . 11

2.2.1 Off-the-shelf solutions . 11
2.2.2 Mathematical modelling: Exact or approximate approach 11
2.2.3 Structured solution approach . 12
2.2.4 Multiple objectives . 13

2.3 Selected approach . 14

3 Solution design 15
3.1 Information about subscripts . 15
3.2 Variables and given values . 16
3.3 Algorithm formulation . 17

4 Design implementation 19
4.1 SolverStudio model . 19
4.2 Model results . 19
4.3 Model result validation . 20
4.4 Findings . 22
4.5 Conclusion and Recommendations . 22

A Moderator, Language and Country sets 25

B Full algorithm 28

C PuLP code 31

1

List of Figures

1.1 The ChessCube logo . 4
1.2 List of chat-rooms . 4
1.3 The moderator badge . 5
1.4 The Icy-screen interface . 7
1.5 The SolverStudio add-in interface . 8
1.6 Number of users on-line for top 3 countries 9
1.7 Users online vs Moderators available . 9

4.1 Instructions page . 19
4.2 Constraint editing page . 20
4.3 Xct table . 20
4.4 Ymct results . 21
4.5 Constraint validation . 21

2

List of Tables

2.1 Complexity growth of polynomial algorithms 11
2.2 Different approaches for medium sized problems 11

3.1 Day corresponding to timeslot ranges . 15

A.1 List for moderators, countries and languages 26
A.2 Continued list for moderators, countries and languages 27

3

Chapter 1

Project background

1.1 Introduction and Background
ChessCube is an on-line chess website founded by Mark Levitt in Cape Town in 2007. It
offers live game-play and chat on-line, as well as the ChessCube Cinema video application
that can be used off-line. The ChessCube logo is shown in Figure 1.1

The ChessCube community has grown a lot over the past few years; according to
the ChessCube Community Manager, it currently has around 32 000 active daily users
worldwide. These users often make use of the 51 country-based chat rooms that are
available in the chat-rooms list (shown in Figure 1.2).

Figure 1.1: The ChessCube logo

To keep chat rooms civil and the content in-line with ChessCube’s Acceptable Use
Policy, ChessCube appoints moderators to monitor room content as well as offer assistance
and advice to users. These moderators are all volunteers, and are usually appointed based
on recommendations from existing moderators.

Moderators can be identified by their moderator badges, as shown in Figure 1.3.

Figure 1.2: List of chat-rooms

4

A moderator can only monitor rooms of countries where at least 1 of the official
languages can be fluently spoken (and typed) by the moderator. When applying to become
a moderator, a user must provide details regarding login times and languages spoken.
While many rooms have shared languages, a moderator is currently only given moderator
privileges for the room(s) he/she is applying for - regardless of what other rooms he/she
is compatible with.

Figure 1.3: The moderator badge

Many problems may occur if the right number of moderators is not appointed to a
room. Too few moderators lead to users acting abusive, questions not being answered
and overall unsatisfied members. On the other hand, too many moderators are often the
cause of users feeling over monitored, leading to arguments and trolling (users targeting
moderators and purposely causing problems). In addition to this, moderators do not
always agree; too many monitoring the same room at one time can cause disagreements
and friction between moderators.

The challenge is to find a way to appoint the right number of moderators, at the right
time, and in the right place.

1.2 Problem Statement
ChessCube currently has 68 moderators who need to be distributed over 51 rooms, which
cater for a total of 56 languages. The way moderators are being managed leaves a lot to be
desired. The following aspects are preventing moderators from being managed optimally:

• The number of users per room is not being tracked, making the number of moderators
needed for specific times uncertain;

• Moderators are not being scheduled based on the times they volunteer for when
applying to become a moderator, making it impossible to know what times additional
moderation is required;

• Moderators are not being utilised fully based on their language capabilities.

The current method of a moderator being recommended for a room (regardless of the
login times) is causing an inflated demand in some rooms. For example, Room 1 may need
additional moderators because there is no moderator on-line between 15:00 and 17:00. A
new moderator is appointed to that room, but is never able to come on-line at those times.
This process repeats itself and results in an over-supply of moderators at a certain time
of day, but a lack of moderators at other times.

5

ChessCube requires a schedule for moderators, allocating them to timeslots and coun-
tries based on their availability, language and other constraints. This scheduling process
needs to be repeated either quarterly or when new moderator applications are received.

ChessCube wants the following rules to be applied in the schedule:

• Timeslots for the schedule will be hourly in GMT+2 (e.g. from 13:00-14:00);

• Moderators specify how many country rooms they are willing to have open in 1
timeslot;

• Moderators specify what times and days they are available;

• Moderators can specify the minimum weekly and maximum daily hours they are
willing to moderate for;

• Moderators can only be appointed to timeslots that they volunteer for;

• Moderators cannot be appointed for more hours per day than the maximum specified;

• A moderator must speak at least 1 of the languages specified per country to be
appointed to a room;

• The community manager can specify the minimum and maximum number of mod-
erators for user ranges;

• Additional (new) moderators must be appointed to timeslots where the mod:user
ratio is not sufficient;

• The community manager can specify the minimum weekly hours moderators must
be appointed for.

The following objectives need to be achieved (in order of importance):

1. Minimise the number of additional (new) moderators;

2. Minimise the difference between a moderator’s specified minimum daily hours and
the actual hours the moderator is appointed for per day (if the appointed hours <
the minimum hours specified);

3. Minimise changes in the schedule times for previously-scheduled moderators.

1.3 Research design
The following will be delivered in this project:

1. Tables of website data gathered;

2. A scheduling program that can be used by the ChessCube Community Manager;

3. An initial schedule showing the appointment of existing moderators to rooms and
timeslots as well as which room/time combinations require additional coverage.

6

1.4 Research methodology
This section will describe how each deliverable mentioned in the research design will be
achieved.

1.4.1 Tables of website data gathered

ChessCube does not currently have any information available regarding user numbers in
each country. This information is needed, and must be observed over a 7 day period for 24
hours daily. To aid in completing this task, a timed-screenshot application can be used.

After reviewing some of the available applications, it has been decided to use Icy
Screen to take hourly screenshots, from which the user numbers will be extracted. Icy
Screen has a 30-day free trial availably, which is sufficient for gathering the initial data.
The Icy Screen interface is shown in Figure 1.4.

Figure 1.4: The Icy-screen interface

Information regarding moderators will be acquired by means of an electronic form
which will be distributed via email. This will provide:

• Language abilities of moderators;

• Hourly availability of moderators;

• Number of rooms a moderator is willing to moderate simultaneously;

• Minimum and maximum hours volunteered for by moderators.

The linguistics of existing country rooms will be researched and the top languages
(covering at least 60% of the population) will be chosen and listed.

The language compatibility data for each moderator and country will be compiled
into tables. These tables will be multiplied using matrix-multiplication to create a table
containing the number of languages from countries CCC that are spoken by moderators MMM .

The hourly user numbers will be combined with the rules for the maximum and
minimum mod:user ratios to find the minimum and maximum number of moderators per
country required for each timeslot.

7

1.4.2 A scheduling program

An Excel based scheduler will be created by using SolverStudio and its built-in Python
linear solver package, which is called PuLP.

SolverStudio is a freeware package and can be downloaded from solverstudio.org, which
will allow the ChessCube Community Manager to reschedule moderators without purchas-
ing additional software. The interface is shown in Figure 1.5.

Figure 1.5: The SolverStudio add-in interface

1.4.3 An initial schedule

The gathered data will be used in the scheduling program to find an initial schedule for the
current ChessCube moderators. This will list the countries each moderator is appointed
to for each timeslot, if any.

1.5 Interpretation of collected data
The data for the language capacities of moderators and the languages spoken per country
gives insight regarding which languages that are common in country rooms are widely
spoken moderators. It was found that almost all of the moderators are able to speak
English, while not many countries will have moderators appointed based on their English
language skills.

Figure 1.6 shows the number of users on-online for the 3 most active country rooms
over the period of 3 days. Philippines (37), India (21) and United States (50) are the most
active based on their average users. However, Philippines and India have an average user
number of more than 19 higher than any other country.

The user trend can be compared based on the country’s GMT timezone. India is at

8

GMT+5.5 and Philippines at GMT+8. This time difference shows clearly when comparing
the user trend of India with the user trend of Philippines.

The timezone for the US (country 50) is significantly different from that of India and
Philippines, ranging from GMT-10 to GMT-5. This may contribute to the different user
trend found for the US.

Figure 1.6: Number of users on-line for top 3 countries

A comparison can also be made between the trend followed by the available number
of moderators and the number of users in country rooms at those times. This is shown in
Figure 1.7.

Figure 1.7: Users online vs Moderators available

9

Chapter 2

Literature review

2.1 Problem classification
By noting the constraints and objectives specified in the problem statement, the scheduling
of volunteer moderators can be viewed broadly as an optimisation problem as it has an
objective, decision variables and constraints [16].

• The main objective: Minimise new moderator appointments (by minimising the
number of room-timeslot combinations that need additional moderators);

• The decision variables: The number of new moderators as well as the schedule of
existing moderators;

• The constraints: Providing sufficient coverage, only appointing moderators to time-
slots for which they have volunteered, language constraints etc.

The problem is most comparable to the standard scheduling problem, which is defined
by Le Pape [7] as a problem that has activities that need to be executed while satisfying
certain time and resource constraints. In literature it can be seen that scheduling problems
often occur in a manufacturing or service environments.

Considering the nature of this project, scheduling of workforce in the service industry is
more applicable. This type of scheduling problem is also referred to as workforce planning
[15] or crew/staff rostering [12, 8].

A scientific approach can be taken to solve optimisation problems by using mathe-
matical models. These models are used to represent the situation and allows for better
understanding of the problem, and better decisions to be made [16]. In mathematical mod-
elling, optimisation problems are categorised based on their decision variables, constraints
and objective functions [4]:

• The decision variables for scheduling moderators are integers, as a moderator must
either be appointed to a timeslot/room (=1), or not (=0). The number of new
moderator appointments must also be an integer value.

• The constraints (as specified in the problem statement) can all be expressed as linear
relationships.

• The problem has 3 objectives.

From this we can classify the scheduling of moderators as a multi-objective, integer, linear
workforce-scheduling problem.

10

2.2 Existing approaches

2.2.1 Off-the-shelf solutions

Scheduling software is one tool to consider when faced with a workforce scheduling prob-
lem. It can be seen in the study done by Campbell [1] that there are many scheduling
software packages available. These range from spreadsheet-based scheduling packages
(for example, those available from shiftschedules.com) to both desktop and online-based
scheduling software.

The scheduling software packages are costly, starting at 39 USD per year for on-line
spreadsheet schedules, and at 450 USD for a desktop-based application.

2.2.2 Mathematical modelling: Exact or approximate approach

The solution approach when using mathematical modelling depends on the problem com-
plexity, which is based on the number of computations needed for the algorithm to converge
to an optimal solution.

Typically a structured solution approach (or algorithm) is used for solving these prob-
lems, but heuristics can be used to find reasonable solutions to problems that are hard to
solve exactly [10], and to allow for faster solving times.

Table 2.1 shows the number of computations required for different polynomial expres-
sions at different values of N. For small to medium polynomial problems, the computational
time is reasonable when using an algorithm or structured solution approach. Polynomial
algorithms with high N values as well as exponential algorithms would require unreason-
ably large solving times. For these problems, the use of heuristics is preferred [16].

Table 2.1: Complexity growth of polynomial algorithms

10 20 50 100

N log(n) 33 86 282 664
N2 100 400 2,500 10,000
N3 1,000 8,000 125,000 1,000,000
N5 100,000 3,200,000 312,500,000 10,000,000,000
N10 10,000,000,000 1.024E+13 9.76563E+16 1E+20

Glover and McMillan [5] classified the different approaches found in literature for
the scheduling of workforce, as shown Table 2.2.

Table 2.2: Different approaches for medium sized problems

Complexity Approach Time periods Extent of use

168 shifts LP 168 None
360 shifts IP and Heuristics 49 Banking
300-400 shifts Network and Heuristics 48 Phone Co
<500 shifts Heuristics 48 Phone Co
<500 shifts LP and Heuristics 96 Phone Co

11

ChessCube moderators are appointed to hourly shifts over a 7 day period. 24 shifts per
day × 7 days per week make it a 168 shift, medium complexity problem. This suggests
that the use of Linear Programming (without heuristics) is most applicable.

Thompson [14] addressed the problem of scheduling homogeneously skilled employees
that are available for limited amounts of time. He compared the use of an improvement
heuristic to different linear programming based procedures when attempting to optimise 80
test problems with different scheduling constraints and requirements. He concluded that
the use of heuristics allows for faster schedule generation, and models based on heuristics
are smaller and cheaper to model.

Schedule generation time is not a concern for ChessCube as the schedule will not be
reviewed often. Also, when the schedule is reviewed, the timely release of the new schedule
is not critical. For this reason and based on the findings from Table 2, the use of heuristics
for scheduling is not investigated further.

2.2.3 Structured solution approach

The nurse rostering problem (NRP) is the most common workforce optimisation problem
addressed in literature. This problem involves a periodic duty roster for staff, which is
subject to a variety of hard and soft constraints [2]. The NRP often makes use of heuristics
to aid in finding a solution.

Chiaramonte [3] shows how an integer programming method can be used for solving the
NRP. The 28-day schedule for 20 nurses, formulated as an IP, included 1120 integer and
560 continuous variables. The objective function shown in (2.1) consists of a preference
term Pij , which indicates the impact of nurse i working on day j. The last term represents
the penalty for a schedule with an on-off-on pattern. XDij is whether nurse i works the
day shift on day j and XNij is whether nurse i works the night shift on day j. The
decision variables (XDij , XNij , dij) are constrained by (2.2) and (2.3).

min[
∑
i∈III

∑
j∈JJJ

(PijXDij + PijXNij) +
∑
i∈III

C1dij] (2.1)

XDij , XNij ∈ {1, 0} ∀ i ∈ III, ∀ j ∈ JJJ (2.2)
dij ≥ 0 ∀ i ∈ III (2.3)

Gordon and Erkut [6] used a linear programming approach to schedule 30 volunteers
over 4 days to 2 locations (gates) for the Edmonton Folk Festival. The problem is addressed
by using 3 different objective functions in order of importance, also known as pre-emptive
optimisation.

The first objective function shown in (2.4) attempts to minimise the number of idle
volunteers in period i. Objective 2 attempts to meet the preferences of volunteers and
is shown in (2.5). The 3rd objective, shown in (2.6), attempts to limit the number of
deviations between shift and gate assignments.

min[
∑
i∈III

yi] (2.4)

max[
∑
i∈III

∑
j∈JJJ

uijxij] (2.5)

min[
∑
i∈III

(ai + bi + ci + di)] (2.6)

12

2.2.4 Multiple objectives

ChessCube’s moderator scheduling problem also has multiple objectives, which can be
combined into 1 objective function by using multiobjective programming. Marler and
Arora [9] discussed the different methods that are used for multiobjective optimisation.

The weighed sum method, described by (2.7) is a widely used method to combine
multiple objectives. However, there are no clear guidelines for selecting the weight values.

U =
k∑

i=1
(wiFi) (2.7)

Stewart [13] discusses the challenges of creating an objective function that combines
multiple objectives. An example problem concerning a nature conservation case with the
objectives shown in (2.8) to (2.11) is used. These objectives can be combined by using the
weighed sum method, resulting in the aggregate objective shown in (2.12):

z1 = 2Y12 + 2Y13 + 3Y22 + 6Y23 + Y32 + 8Y33 (2.8)
z2 = 5Y12 + 3Y22 + 2Y32 (2.9)
z3 = 20Y11 + 15Y21 (2.10)
z4 = 3X11 + 15X21 + 6X31 +X12 + 5X22 + 2X32 (2.11)
Z = w1z1 + w2z2 + w3z3 + w4z4 (2.12)

Stewart [13] found 2 fundamental problems with choosing weight values for the new
objective function. Firstly, when one criterion gains more, the marginal value of further in-
creases is less. Secondly, he found that decision makers only attempt sufficient satisfaction
for starting criteria before attempting to satisfy following criteria. These problems cause
multiobjective problems to be solved with suboptimal solutions, which is why Stewart [13]
views the use of the weight sum method as “highly inadequate and poor OR practice.”

Rardin [11] describes goal programming as the most commonly used technique for
solving multiobjective problems in which the objectives cannot be converted to constraints
or merged by using the weighed sum method. Stewart [13] also supports the use of goal
programming for multiobjective problems.

Goal programming sets an ideal value for each objective, and then attempts to minimise
deviation from these values. (2.13) shows a Multiobjective function with m measures
of performance, which is then converted to a goal-programming form shown in (2.14).
δi > 0 is used to represent underachievement of the specific goal gi. (2.15) shows the new
objective.

n∑
j=1

cijxj ∀i ∈ {1...m} (2.13)

n∑
j=1

cijxj + δi ≥ gi ∀i ∈ {1...m} (2.14)

min
m∑

i=1
δi (2.15)

13

2.3 Selected approach
The problem of scheduling moderators for ChessCube will be solved by using mathematical
programming methods for linear integer problems. An exact solution will be found by using
a structured solution approach (or algorithm). To achieve the different objectives specified
by ChessCube, goal-programming will be used.

ChessCube has chosen not to make use of an off-the-shelf package, as it is too costly.
It is preferred that all software involved in generating the schedule is either free or widely
used (such as MS Office), which would allow ChessCube to create new schedules every
quarter without purchasing any additional software.

14

Chapter 3

Solution design

3.1 Information about subscripts
We denote with TTT = {1, . . . , 168} the set of hourly timeslots. Each timeslot range
represents a certain day, as shown in Table 3.1. Timeslots are in ChessCube’s timezone,
which is GMT+2 (South Africa time).

Table 3.1: Day corresponding to timeslot ranges

t value day

1-24 Monday
25-48 Tuesday
49-72 Wednesday
73-96 Thursday
97-120 Friday
121-144 Saturday
154-168 Sunday

We denote with CCC = {Afghanistan, . . . , V enezuela} the set of countries,
LLL = {Afrikaans, . . . ,Welsh} the set of languages and MMM = {marilize, . . . ,mod68} the
set of moderators as shown in Appendix A, Table A.1 and A2. The real usernames of
other moderators are not provided for privacy reasons.

15

3.2 Variables and given values

Ymct , whether moderator m ∈ MMM is appointed to timeslot t ∈ TTT in country
c ∈ CCC{

1 if appointed
0 if otherwise

CAmc , whether moderator m ∈MMM is appointed to country c ∈ CCC{
1 if appointed
0 if otherwise

TAmt , whether moderator m ∈MMM is appointed in timeslot t ∈ TTT{
1 if appointed
0 if otherwise

Xct , the number of additional moderators required for country c ∈ CCC for
timeslot t ∈ TTT

TSm , difference between requested minimum and actual hours for moderator
m ∈MMM

SCNmt , new appointment of moderator m ∈MMM to timeslot t ∈ TTT{
1 if newly appointed
0 if otherwise

SCUmt , un-appointment of moderator m ∈MMM from timeslot t ∈ TTT{
1 if un-appointed
0 if otherwise

δi , under-performance value of objective i ∈ {1..3}
PAmt , given previous appointment of moderator m ∈MMM for timeslot t ∈ TTT{

1 if appointed
0 if otherwise

OBJ1 , given goal value for the maximum additional moderators that should be
required

OBJ2 , given goal value for the maximum total difference between moderators’
preferred minimum hours and actual appointed hours, when actual hours
are less than the minimum requested.

OBJ3 , given goal value for the maximum number of time appointment changes
between the new and previous schedule.

OBJ4 , given minimum appointment hours per moderator per week.
AVmt , given availability of moderator m ∈MMM at timeslot t ∈ TTT{

1 if available
0 if otherwise

MCSmc , given number of languages from country c ∈ CCC spoken by moderator
m ∈MMM

MNMRct , given minimum moderators required in country c ∈ CCC for timeslot t ∈ TTT
MXMRct , given maximum moderators required in country c ∈ CCC for timeslot t ∈ TTT
MXRm , given maximum rooms required by moderator m ∈MMM
MNHm , given minimum weekly hours requested by moderator m ∈MMM
MXHm , given maximum daily hours required by moderator m ∈MMM

16

3.3 Algorithm formulation
To combine the 3 objectives using a goal-programming approach, each objective must be
transformed into a constraint using an underachievement value, δi.

Objective 1 is to minimise the number of new moderators. This can be expressed as

min v1 =
∑
c∈CCC

∑
t∈TTT

[Xct] (3.1)

which can then be transformed into the linear constraint:∑
c∈CCC

∑
t∈TTT

[Xct]− δ1 ≤ OBJ1 (3.2)

Objective 2, which requires that the difference between weekly appointed hours and
specified minimum hours is minimised, can be expressed as

min v2 =
∑

m∈MMM

TSm (3.3)

which can then be transformed into the linear constraint:∑
m∈MMM

TSm − δ2 ≤ OBJ2 (3.4)

The final objective, which is to minimise schedule changes, is expressed as

min v3 =
∑

m∈MMM

∑
t∈TTT

[SCUmt + SCNmt] (3.5)

which can then be transformed into:∑
m∈MMM

∑
t∈TTT

[SCUmt + SCNmt]− δ3 ≤ OBJ3 (3.6)

The new objective function is a combination of the underachievement values of the
original objectives:

minV = δ1 + δ2 + δ3 (3.7)

To stop moderators from being appointed when they are not available, (3.8) is used.
(3.9) enforces the moderators’ specified maximum daily hours. Language compatibility is
enforced by (3.10) and minimum weekly appointment is applied by (3.11).

AVmt − TAmt ≥ 0 ∀m ∈MMM, ∀t ∈ TTT (3.8)
d+23∑
t=d

[TAmt] ≤MXHm ∀m ∈MMM, ∀d ∈ {1, 25, 49, 73, 97, 121, 145} (3.9)

MCSmc − CAmc ≥ 0 ∀c ∈ CCC,∀m ∈MMM (3.10)∑
t∈TTT

[TAmt] ≥ OBJ4 ∀m ∈MMM (3.11)

The constraints for the room coverage (how many moderators for what numbers of
users) are if-then constraints. These are simplified by using basic Excel formulas to

17

provide the number of moderators needed per timeslot per country. (3.12) ensures that the
minimum mod:user ratio is satisfied, while (3.13) keeps the mod:user ratio from exceeding
the maximum ratio specified.∑

m∈MMM

Ymct +Xct ≥MNMRct ∀c ∈ CCC,∀t ∈ TTT (3.12)

∑
m∈MMM

Ymct +Xct ≤MXMRct ∀c ∈ CCC,∀t ∈ TTT (3.13)

CAmc and TAmt are both binary values that are dependent on Ymct. These relationships
can be expressed by using a linear formulation of if-then-else. CAmc must be 1 if a
moderator m ∈ MMM is appointed to a certain country c ∈ CCC, and 0 if otherwise. This is
enforced by (3.14) and (3.15).

1−
∑
t∈TTT

Ymct ≤ 10000000(1− CAmc) ∀m ∈MMM, ∀c ∈ CCC (3.14)

∑
t∈TTT

Ymct − 1 ≤ 10000000(CAmc)− 1 ∀m ∈MMM, ∀c ∈ CCC (3.15)

TAmt must be 1 if a moderator m ∈MMM is appointed to a certain timeslot t ∈ TTT , and 0
if otherwise. This is enforced by (3.16) and (3.17).

1−
∑
c∈CCC

Ymct ≤ 10000000(1− TAmt) ∀m ∈MMM, ∀t ∈ TTT (3.16)

∑
c∈CCC

Ymct − 1 ≤ 10000000(TAmt)− 1 ∀m ∈MMM, ∀t ∈ TTT (3.17)

The time shortage value for each moderator is described by (3.18), and the number of
positive and negative schedule changes are described by (3.19) and (3.20).∑

t∈TTT

[MNHm − TAmt]− TSm ≤ 0 ∀m ∈MMM (3.18)

PAmt − TAmt − SCUmt − 100000(1− PAmt) ≤ 0 ∀m ∈MMM, ∀t ∈ TTT (3.19)
TAmt − PAmt − SCNmt − 100000(PAmt) ≤ 0 ∀m ∈MMM, ∀t ∈ TTT (3.20)

The maximum number of rooms is enforced by (3.21)

MXRm −
∑
c∈CCC

Ymct ≥ 0 ∀m ∈MMM, ∀t ∈ TTT (3.21)

Values allowed for each variable is defined in (3.22) to (3.29).

δi ≥ 0 ∀i ∈ {1, 2, 3} (3.22)
Xct ≥ 0 and Integer ∀c ∈ CCC,∀t ∈ TTT (3.23)
Ymct = 0 or 1 ∀c ∈ CCC,∀t ∈ TTT ,∀m ∈MMM (3.24)
TAmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (3.25)
CAmc = 0 or 1 ∀m ∈MMM, ∀c ∈ CCC (3.26)
TSm ≥ 0 ∀m ∈MMM (3.27)
SCUmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (3.28)
SCNmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (3.29)

The full linear algorithm can be seen in Appendix B.

18

Chapter 4

Design implementation

4.1 SolverStudio model
A model has been programmed in SolverStudio using the solution design from Chapter
3. The full PuLP code can be seen in Appendix C. The code does not contain the given
data, as this is selected using SolverStudio’s data selection tool.

To run the model the user will require Excel 2007 or 2010, which has the SolverStudio
add-in enabled. Figure 4.1 model’s instruction page, and Figure 4.2 shows the SolverStudio
worksheet in which the Community manager can modify certain constraints.

Figure 4.1: Instructions page

4.2 Model results
After running the solver, the model provides results in both table and list format. The
Xct values are shown in a table, indicating how many additional moderators are required
for each country-timeslot combination. An extract from the initial solution’s Xct table is
shown in Figure 4.3

The Ymct results are shown in the format [moderatorname,timeslot]:[countries], which

19

can then manually be added to a timetable if required. This shows which countries a
moderator is appointed to at a specific timeslot. The values are displayed in the model
output window, as can be seen in Figure 4.4. The first result, for example, is read as:
Marilize is appointed at timeslot 20 in Canada and United Kingdom.

Figure 4.2: Constraint editing page

Figure 4.3: Xct table

4.3 Model result validation
The results of the model are automatically validated by formulas in the constraint valida-
tion worksheet. An extract from the validation spreadsheet is shown in Figure 4.5. The

20

following is checked for validity:

• Whether a moderator is available at the appointed time;

• Whether a moderator speaks at least one of the languages for each country he/she
is appointed to;

• Whether a moderator’s total daily hours is lower or equal to the specified maximum
daily hours;

• Whether a moderator’s total weekly hours is more or equal to the minimum weekly
hours specified by the Community manager

Figure 4.4: Ymct results

Figure 4.5: Constraint validation

21

4.4 Findings
The model has found an initial solution based on the following preferences from the
community manager:

• Acceptable number of additional moderators = 500

• Acceptable number of changes in schedule = 34

• Acceptable difference when appointment hours < requested minimum hours = 68

• Minimum weekly hours per moderator = 1

• 5 or less users in room: 0 or 1 moderator

• 6 to 40 users in room: 1 or 2 moderators

• 41 and more users in room: 1 additional moderator for every additional 20-40 users

From this solution it was found that ChessCube is under-monitored, with over 2500
moderator shortages that have been identified. 13 of the country rooms have shortages
for more than 50 % of the timeslots, while some rooms require more than 1 additional
moderator at specific timeslots.

Bulgaria and Egypt have the highest percentage of timeslots requiring additional mod-
eration; both these countries are only sufficiently monitored for less than 10% of the
timeslots. These 2 rooms should be given priority when the search for new moderators is
initiated.

4.5 Conclusion and Recommendations
The scheduling model that has been created using a free solver add-in is able to satisfy
ChessCube’s requirements. It is easy to install the SolverStudio package and the method
for editing data in the model is simple, as only worksheet cells need to be edited.

The model solution time (within which PuLP finds an optimal solution) is reasonably
low, taking under 10 minutes to solve on a Laptop with 4 Gig RAM and a CPU strength
of 4.5 GHz. The solving time may however vary depending on the preferences specified
by the Community manager.

For the model to be implemented on ChessCube, moderators should re-complete their
moderator information forms and user data should be modified since the data collection
occurred more than 4 months ago. Once the moderator data has been updated, the model
should be re-run and a schedule distributed.

A moderator vacancy position should be created for the appropriate timeslot-country
combinations,and experienced users who are available at these times in the specific coun-
tries should be approached as potential new moderators.

Using the new scheduling method to schedule existing moderators and appoint addi-
tional moderators will improve the moderator situation in ChessCube. Currently there is
no structure to the appointment of moderators, which causes over- and under-monitoring
of rooms. Once the schedule is implemented, mod:user ratios will be kept at an acceptable
level and new moderators will be appointed based on actual (and not perceived) shortages.

22

Bibliography

[1] Campbell, G. Overview of workforce scheduling software. Production and Inventory
Management Journal 45(2) (2009), 7–22.

[2] Cheang, B., Li, H., Lim, A., and Rodriques, B. Nurse rostering problems: a
bibliographic survey. European journal of operational research 151(3) (2003), 447–
460.

[3] Chiaramonte, M. Competitive nurse rostering and rerostering. PhD thesis, Arizona
State University, 2008.

[4] Diwekar, U. Introduction to Applied Optimization. Springer, 2008.

[5] Glover, F., and McMillan, C. The general employee scheduling problem. an
integration of ms and ai. Computers and Operations Research 13(5) (1986), 563–573.

[6] Gordon, L., and Erkut, E. Improving volunteer scheduling for the edmonton folk
festival. Interfaces 34(5) (2004), 367–376.

[7] Le Pape, C. Constraint-based scheduling: A tutorial. Available:
http://www.math.unipd.it/ frossi/cp-school/lepape.pdf, April 2012.

[8] Lezaun, M., Perez, G., and de la Maza, E. Staff rostering for the station
personnel of a railway company. The Journal of the Operational Research Society
61(7) (2010), 1104–1111.

[9] Marler, R., and Arora, J. Survey of multi-objective optimization methods for
engineering. Structural and Multidisciplinary Optimization 26(6) (2004), 369–395.

[10] Murty, G. Optimization models for decision making, volume 1. Online, 2003.

[11] Rardin, R. Optimization in Operations Research. Prentice Hall, 2002.

[12] Sodhi, M., and Norris, S. A flexible, fast, and optimal modeling approach applied
to crew rostering at london underground. Annals of Operations Research 127(1)
(2004), 259–281.

[13] Stewart, T. The essential multiobjectivity of linear programming. ORiON 23(1)
(2007), 1–15.

[14] Thompson, G. Shift scheduling in services when employees have limited availability:
An l.p. approach. Journal of Operations Management 9(3) (1990), 352–370.

[15] Wang, J. A review of operations research applications in workforce planning
and potential modelling of military training. Tech. rep., DSTO Systems Sciences
Laboratory, 2004.

23

[16] Winston, W., and Venkataramanan, M. Introduction to mathematical
programming., 4 ed. Duxbury, 2003.

24

Appendix A

Moderator, Language and
Country sets

25

Table A.1: List for moderators, countries and languages

country moderator language

Afghanistan marilize Afrikaans
Albania mod2 Albanian
Algeria mod3 Arabic
Argentina mod4 Azerbaijani Turkic
Australia mod5 Bahasa Indonesia
Azerbaijan mod6 Bahasa Melayu
Belgium mod7 Bengali
Bosnia and Herzegovina mod8 Bosnian
Brazil mod9 Bulgarian
Bulgaria mod10 Catalan
Canada mod11 Croatian
Chile mod12 Dari/Afghan Persian
Colombia mod13 Dutch (Flemish)
Croatia mod14 English
Egypt mod15 Filipino
France mod16 French
Georgia mod17 Frisian
Germany mod18 Georgian
Greece mod19 German
Hungary mod20 Greek
India mod21 Hebrew
Indonesia mod22 Hindi
Iran mod23 Hungarian
Ireland mod24 Irish
Israel mod25 IsiXhosa
Italy mod26 IsiZulu
Japan mod27 Italian
Latvia mod28 Japanese
Lithuania mod29 Kurdish
Macedonia mod30 Latvian
Malaysia mod31 Lithuanian
Mexico mod32 Macedonian
Montenegro mod33 Magyar (Hungarian)
Netherlands mod34 Marathi

26

Table A.2: Continued list for moderators, countries and languages

country moderator language

Pakistan mod35 Mirandese
Peru mod36 Pashtu
Philippines mod37 Persian
Portugal mod38 Portuguese
Romania mod39 Punjabi
Russia mod40 Quechua
Saudi Arabia mod41 Romanian
Serbia mod42 Russian
Slovenia mod43 Sepedi
South Africa mod44 Serbian
Spain mod45 Serbian/Montenegrin
Suriname mod46 Serbo-Croatian
Sweden mod47 Sindhi
Turkey mod48 Slovenian
United Kingdom mod49 Spanish
United States mod50 Sranang Tongo
Venezuela mod51 Swedish

mod52 Tamil
mod53 Telugu
mod54 Turkic
mod55 Welsh
mod56
mod57
mod58
mod59
mod60
mod61
mod62
mod63
mod64
mod65
mod66
mod67
mod68

27

Appendix B

Full algorithm

28

Ymct , whether moderator m ∈ MMM is appointed to timeslot t ∈ TTT in country
c ∈ CCC{

1 if appointed
0 if otherwise

CAmc , whether moderator m ∈MMM is appointed to country c ∈ CCC{
1 if appointed
0 if otherwise

TAmt , whether moderator m ∈MMM is appointed in timeslot t ∈ TTT{
1 if appointed
0 if otherwise

Xct , the number of additional moderators required for country c ∈ CCC for
timeslot t ∈ TTT

TSm , difference between requested minimum and actual hours for moderator
m ∈MMM

SCNmt , new appointment of moderator m ∈MMM to timeslot t ∈ TTT{
1 if newly appointed
0 if otherwise

SCUmt , un-appointment of moderator m ∈MMM from timeslot t ∈ TTT{
1 if un-appointed
0 if otherwise

δi , under-performance value of objective i ∈ {1..3}
PAmt , given previous appointment of moderator m ∈MMM for timeslot t ∈ TTT{

1 if appointed
0 if otherwise

OBJ1 , given goal value for the maximum additional moderators that should be
required

OBJ2 , given goal value for the maximum total difference between moderators’
preferred minimum hours and actual appointed hours, when actual hours
are less than the minimum requested.

OBJ3 , given goal value for the maximum number of time appointment changes
between the new and previous schedule.

OBJ4 , given minimum appointment hours per moderator per week.
AVmt , given availability of moderator m ∈MMM at timeslot t ∈ TTT{

1 if available
0 if otherwise

MCSmc , given number of languages from country c ∈ CCC spoken by moderator
m ∈MMM

MNMRct , given minimum moderators required in country c ∈ CCC for timeslot t ∈ TTT
MXMRct , given maximum moderators required in country c ∈ CCC for timeslot t ∈ TTT
MXRm , given maximum rooms required by moderator m ∈MMM
MNHm , given minimum weekly hours requested by moderator m ∈MMM
MXHm , given maximum daily hours required by moderator m ∈MMM

29

minV = δ1 + δ2 + δ3 (B.1)

subject to∑
c∈CCC

∑
t∈TTT

[Xct]− δ1 ≤ OBJ1 (B.2)

∑
m∈MMM

TSm − δ2 ≤ OBJ2 (B.3)

∑
m∈MMM

∑
t∈TTT

[SCUmt + SCNmt]− δ3 ≤ OBJ3 (B.4)

AVmt − TAmt ≥ 0 ∀m ∈MMM, ∀t ∈ TTT (B.5)
d+23∑
t=d

[TAmt] ≤MXHm ∀m ∈MMM, ∀d ∈ {1, 25, 49, 73, 97, 121, 145}

(B.6)
MCSmc − CAmc ≥ 0 ∀c ∈ CCC,∀m ∈MMM (B.7)∑
t∈TTT

[TAmt] ≥ OBJ4 ∀m ∈MMM (B.8)

∑
m∈MMM

Ymct +Xct ≥MNMRct ∀c ∈ CCC,∀t ∈ TTT (B.9)

∑
m∈MMM

Ymct +Xct ≤MXMRct ∀c ∈ CCC,∀t ∈ TTT (B.10)

1−
∑
t∈TTT

Ymct ≤ 10000000(1− CAmc) ∀m ∈MMM, ∀c ∈ CCC (B.11)

∑
t∈TTT

Ymct − 1 ≤ 10000000(CAmc)− 1 ∀m ∈MMM, ∀c ∈ CCC (B.12)

1−
∑
c∈CCC

Ymct ≤ 10000000(1− TAmt) ∀m ∈MMM, ∀t ∈ TTT (B.13)

∑
c∈CCC

Ymct − 1 ≤ 10000000(TAmt)− 1 ∀m ∈MMM, ∀t ∈ TTT (B.14)

∑
t∈TTT

[MNHm − TAmt]− TSm ≤ 0 ∀m ∈MMM (B.15)

PAmt − TAmt − SCUmt − 100000(1− PAmt) ≤ 0 ∀m ∈MMM, ∀t ∈ TTT (B.16)
TAmt − PAmt − SCNmt − 100000(PAmt) ≤ 0 ∀m ∈MMM, ∀t ∈ TTT (B.17)
MXRm −

∑
c∈CCC

Ymct ≥ 0 ∀m ∈MMM, ∀t ∈ TTT (B.18)

δi ≥ 0 ∀i ∈ {1, 2, 3} (B.19)
Xct ≥ 0 and Integer ∀c ∈ CCC,∀t ∈ TTT (B.20)
Ymct = 0 or 1 ∀c ∈ CCC,∀t ∈ TTT ,∀m ∈MMM (B.21)
TAmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (B.22)
CAmc = 0 or 1 ∀m ∈MMM, ∀c ∈ CCC (B.23)
TSm ≥ 0 ∀m ∈MMM (B.24)
SCUmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (B.25)
SCNmt = 0 or 1 ∀m ∈MMM, ∀t ∈ TTT (B.26)

30

Appendix C

PuLP code

31

Import PuLP modeller functions

from pulp import *

from collections import defaultdict

Creates the 'prob' variable to contain the problem data

prob = LpProblem("Moderator_Appointment_Problem",LpMinimize)

Creates a list of tuples containing all the possible appointments

mct= [(m,c,t) for m in moderator for c in country for t in timeslot]

Creates a list of tuples containing all the additional moderators

ct= [(c,t) for c in country for t in timeslot]

Creates a list of tuples containing all the language moderator combinations

ml= [(m,l) for l in language for m in moderator]

Creates a list of tuples containing all the country language combinations

cl= [(c,l) for l in language for c in country]

Creates a list of tuples containing all the possible moderator timeslot combinations

mt= [(m,t) for m in moderator for t in timeslot]

Creates a list of tuples containing all the possible moderator timeslot combinations

mc= [(m,c) for m in moderator for c in country]

A dictionary is created to contain the referenced variables

Ymct = LpVariable.dicts("Ymct",(moderator,country,timeslot),cat="Binary")

Xct = LpVariable.dicts("Xct",(country,timeslot), lowBound=0,cat="Integer")

CAmc = LpVariable.dicts("CAmc",(moderator,country),cat="Binary")

TAmt = LpVariable.dicts("TAmt",(moderator,timeslot),cat="Binary")

sigma1 = LpVariable("sigma1", lowBound=0)

sigma2 = LpVariable("sigma2", lowBound=0)

sigma3 = LpVariable("sigma3",lowBound=0)

SCUmt = LpVariable.dicts("SCUmt",(moderator,timeslot), cat="Binary")

SCNmt = LpVariable.dicts("SCNmt",(moderator,timeslot), cat="Binary")

TSm = LpVariable.dicts("TSm",(moderator), lowBound=0)

schedule=defaultdict(list)

#B.1

prob += sigma1+sigma2+sigma3, "Sum_of_objective_underperformance"

#B.11 and B.12

for (m,c) in mc:

 prob += 1-(lpSum([Ymct[m][c][t] for t in timeslot]))<=10000000*(1-CAmc[m][c])

 prob += lpSum([Ymct[m][c][t] for t in timeslot])-1<=10000000*(CAmc[m][c])-1

32

#B.13 and B.14

for (m,t) in mt:

 prob += 1-(lpSum([Ymct[m][c][t] for c in country]))<=10000000*(1-TAmt[m][t])

 prob += lpSum([Ymct[m][c][t] for c in country])-1<=10000000*(TAmt[m][t])-1

#B.2

prob += lpSum([Xct[c][t] for (c,t) in ct]) - sigma1 <=obv[0]

#B.3 and B.15

for m in moderator:

 prob += MNHm[m] - lpSum([TAmt[m][t] for t in timeslot]) - TSm[m] <=0

lpSum([TSm[m] for m in moderator])-sigma2<=obv[2]

#B.4, B.16 and B.17

for (m,t) in mt:

 prob += (PAmt[m,t]-TAmt[m][t]) - SCUmt[m][t] - 100000*(1-PAmt[m,t]) <=0

 prob += (TAmt[m][t]-PAmt[m,t]) - SCNmt[m][t] -100000*(PAmt[m,t])<=0

prob +=lpSum([SCUmt[m][t]+SCNmt[m][t] for (m,t) in mt])-sigma3<=obv[1]

#B.5

for (m,t) in mt:

 prob += AVmt[m,t]-TAmt[m][t]>=0

#B.6

for m in moderator:

 for d in [1,25,49,73,97,121,145]:

 prob += lpSum([TAmt[m][t] for t in range(d,d+24)])<=MXHm[m]

#B.7

for (m,c) in mc:

 prob += MCSmc[m,c]-CAmc[m][c]>=0

#B.18

for (m,t) in mt:

 prob += MXRm[m]-lpSum([Ymct[m][c][t] for c in country])>=0

#B.9 and B.10

for (c,t) in ct:

 prob += lpSum([Ymct[m][c][t] for m in moderator])+Xct[c][t]>=MNMRct[c,t]

 prob += lpSum([Ymct[m][c][t] for m in moderator])+Xct[c][t]<=MXMRct[c,t]

#B.8

for m in moderator:

 lpSum([TAmt[m][t] for t in timeslot])>=obv[3]

33

The problem data is written to an .lp file

prob.writeLP("Moderator_Appointment_Problem.lp")

The problem is solved using PuLP's choice of Solver

prob.solve()

The status of the solution is printed to the screen

print "Status:", LpStatus[prob.status]

Show schedule on screen

for (m,t) in mt:

 timeappointment[m,t]=TAmt[m][t].varValue

for (m,c) in mc:

 countryappointment[m,c]=CAmc[m][c].varValue

for (c,t) in ct:

 newmods[c,t]=Xct[c][t].varValue

for (m,c,t) in mct:

 if Ymct[m][c][t].varValue>0:

 schedule[(m,t)].extend([c])

for (m,t) in mt:

 if len(schedule[(m,t)])>0:

 print (m,t), schedule[(m,t)]

The optimised objective function value is printed to the screen

print "Sum_of_objective_underperformance = ", value(prob.objective)

SolverResult = LpStatus[prob.status]

34

