
A Tabu Search Metaheuristic Algorithm for the
Multiple Depot Vehicle Routing Problem with

Time Windows

by

Jonathan Abrie de Freitas

29089655

Submitted in partial ful�lment of the requirements for the degree of

Bachelors of Industrial and Systems Engineering

in the

Faculty of Engineering, Built Environment and Information

Technology

University of Pretoria

October 2012

Executive Summary

The problems encountered by courier companies in directing their �eets
along road networks to visit customers, which are geographically distributed,
are common problems which are encountered frequently. These problems are by
no means isolated to courier companies. Any set of vehicles which is involved in
delivery, collection or a combination of both delivery and collection encounter a
variation of the vehicle routing problem (VRP). Several variations of the vehicle
routing problem exist. The algorithmic solutions to the individual variants of
the vehicle routing problem seek to optimise the routes assigned to a �eet of
vehicles in visiting an array of nodes (which represent points of delivery or col-
lection or from another perspective, a set of customers). The optimal solution
of a VRP instance is the shortest, quickest or cheapest set of routes assigned
to a �eet of vehicles which satis�es all customer demand without contravening
any of the instance-speci�c constraints. The vehicle routing problem has been
identi�ed as an non-determinant polynomial-time (NP) hard problem. This
classi�cation gives an indication of the computational complexity of the prob-
lem. Problems of this class require an inordinate amount of time to be solved
to optimality for large problem instances. To overcome such obstacles, heuristic
and metaheuristic search algorithms are often utilised to arrive at near-optimal
or satisfactory solutions in less time.

Contents

1 Introduction 6

1.1 Problem Statement . 6
1.2 Potential Solution Strategies . 7
1.3 Solution Strategy . 7
1.4 Project Scope . 8

1.4.1 Input . 9
1.4.2 Output . 9
1.4.3 Dataset Interfaces . 10

1.5 Case Study . 10
1.6 Considerations . 12
1.7 Document Structure . 12

2 Literature Review 13

2.1 Introduction . 13
2.2 Problem Variants . 14

2.2.1 Capacitated Vehicle Routing Problem 15
2.2.2 Vehicle Routing Problem with Time Windows 15
2.2.3 Vehicle Routing Problem with Backhauls 15
2.2.4 Vehicle Routing Problem with Pickup and Delivery 16
2.2.5 Multiple Depot Vehicle Routing Problem 16
2.2.6 Applications . 17

2.3 Metaheuristics . 18
2.3.1 Simulated Annealing . 19
2.3.2 Tabu Search . 20
2.3.3 Ant Colony Optimisation 20
2.3.4 Application . 21

2.4 Conclusion . 22

3 Model Formulation 23

3.1 The Problem . 23
3.1.1 Problem Characteristics 23
3.1.2 Mathematical Model . 24

3.2 Solution Algorithm . 27
3.2.1 Important Concepts . 27

1

3.2.2 Initial Solution Algorithm 28
3.2.3 Tabu Search Algorithm 29

3.3 Veri�cation . 31
3.3.1 Solomon's VRPTW Benchmarking Problems 31
3.3.2 Convergence and Repeatability of the Solution Algorithm 31

3.4 Conclusion . 32

4 Implementation 39

4.1 Introduction . 39
4.2 Parameter Tuning . 39

4.2.1 Design of Experiments . 40
4.2.2 Screening Experiment . 40

4.3 Case Study Problem . 41
4.4 Conclusion . 42

5 Re�ection 50

References 51

Glossary 52

Acronyms 53

2

List of Figures

1.1 IDEF∅ diagram depicting dataset interfaces 10

3.1 Convergence of the solution algorithm 38

4.1 Screening experiment results and normal probability plot 44
4.2 Time slice one internode distance matrix 44
4.3 Time slice one internode travel-time matrix 45
4.4 Time slice two internode distance matrix 45
4.5 Time slice two internode travel-time matrix 46
4.6 Customer geographical locations 46
4.7 Tour one . 48
4.8 Tour two . 49

3

List of Tables

3.1 Solomon's VRPTW benchmarking problems 37
3.2 Algorithm repeatability . 37

4.1 Case study problem customer data 43
4.2 Case study problem vehicle data 43
4.3 Case study problem results . 47

4

List of Algorithms

1 Generate Initial Solution . 32
2 Tabu Search . 33
3 Identify Feasible Moves . 34
4 Attempt to Exchange Nodes . 35
5 Identify Best Move . 35
6 Exchange Vehicle . 36

5

Chapter 1

Introduction

1.1 Problem Statement

Ine�cient vehicle �eets abound. In making several deliveries to customers which
are displaced from one another, the most e�cient path to be followed cannot be
intuitively identi�ed. This is especially true when the number of deliveries to be
made is large. In identifying the best route to be followed by a single delivery
vehicle, many questions will have to be answered. These questions include:

• In what order should the deliveries be made?

• Which routes should be taken from one delivery point to the next?

This problem has been identi�ed as the travelling salesman problem (TSP). For
small problem instances of the travelling salesman problem, it may be possible
to intuitively identify the best route to be followed. As the size of a problem
instance increases, one's intuition is likely to fail to identify the best route to be
taken. When the number of deliveries to be made is large enough to require more
than one vehicle to make deliveries, the complexity of the problem increases.
The problem of segmenting the delivery load between the vehicles must also be
considered. Partitioning the set of deliveries so that each vehicle can deliver
to a subset is the additional step required. The questions which will have to
be answered for this extended problem, the vehicle routing problem (VRP),
include:

• How should the deliveries be divided between the vehicles of the �eet?

• In what order should the deliveries assigned to each vehicle be made?

• Which routes should be taken by each vehicle from one delivery point to
the next?

The likelihood of identifying the most e�cient delivery division, delivery sched-
ule and routes to be taken using only one's intuition is small. This is part of the

6

reason why ine�cient vehicle �eets abound. Another contributing factor is the
exorbitant price of the software which is used to solve problems such as these.
A cheaper software solution may give the managers of more vehicle �eets the
opportunity to improve the e�ciency of their �eets.

1.2 Potential Solution Strategies

In the establishment of the problem, in the problem statement, the problem has
been identi�ed as the VRP. The VRP is an example of a combinatorial opti-
misation problem. An array of potential solution strategies is available to solve
problems within this class. The potential solution strategies at hand include ex-
act methods, heuristic algorithms and metaheuristic algorithms. The VRP has
been classi�ed as an NP-hard problem. Winston and Venkataramanan [2003]
note that NP-hard problems cannot be solved e�ciently to optimality. At-
tempting to do so would require an inordinate amount of time. Therefore using
approximating methods, such as heuristic methods and metaheuristic methods,
for such problems is a required compromise. Metaheuristics generally produce
better quality solutions than those produced by heuristic methods. Strangely
enough, metaheuristics achieve this with their ability to accept degrading moves
within the solution space of a problem instance. This ability allows metaheuris-
tic algorithms to escape local optima within the search space of a problem
instance. Metaheuristics have become the solution strategy of choice for many
NP-hard combinatorial optimisation problems, including the VRP, because they
produce high-quality solutions in an e�cient manner.

1.3 Solution Strategy

In order to solve VRP instances which di�er with respect to magnitude and
details, metaheuristics are the most suitable solution strategy. Metaheuristic
algorithms which have been designed to solve VRP instances require vehicle
data, customer data and road network data as input. These algorithms make
use of the data to identify a satisfactory solution. Most algorithms make use
of a single set of internode travel-time and distance matrices. Such a strategy
does not consider the variation in travel time caused by tra�c. A preferred
strategy, which considers the e�ect of tra�c on travel time, utilises a set of
time slices to model the di�erence in travel time brought about by tra�c. Each
time slice represents a period of similar travel time which is conveyed by its
associated travel-time matrix. The strategy adopted for this project utilises a
metaheuristic algorithm which receives the internode travel-time and distance
matrices associated with each time slice within a set of time slices.

7

1.4 Project Scope

This project is a manifestation of the endeavour to curtail the ine�ciency of
vehicle �eets. The deliverable of this project is a programmed metaheuris-
tic search algorithm to optimise a subset of vehicle routing problems. This
algorithm will need to interface with AfriGIS data. AfriGIS is the geographi-
cal information and telecommunications solution company which has sponsored
this project. The algorithm will receive distance and travel-time matrices for
each time slice. These matrices are generated by a routing algorithm which
interfaces with datasets containing customer and depot locations as well as the
street network surrounding these nodes. Interfacing with this routing algorithm
will allow for the distance and travel-time matrices to be communicated to the
metaheuristic algorithm. The speci�c type of vehicle routing problem which the
algorithm must be capable of solving includes the following factors:

• A single time window for each customer visit.

• Multiple vehicles.

• Multiple customer vertices (as many as 200).

• Delivery demand (in volume, weight or number of units) associated with
each customer.

• One or multiple depots.

• Service time, which represents the o�-loading time, associated with each
customer.

• Capacity (in volume, weight or number of units) of each vehicle must be
speci�ed and heterogeneous vehicle capacity is assumed.

• The inclusion of time-dependent travelling times, along the arcs or edges
of the road network, which will be dependent upon the time of day.

• Each customer must be served by one vehicle exactly once.

It is important to note that the travel times will be modelled as a function of
the time and day. For instance, travelling a particular route during the week
will most probably result in a travel time which di�ers considerably from the
same route's weekend travelling time. The model will consider the varying travel
times associated with the road network. Travelling times will be based upon
historic tra�c trends for a set of time slices, each of which consists of one or
several hours with similar tra�c conditions. Real-time tra�c data will not be
considered. All orders must be requested before the commencement of the day
and thus a dynamic response model is not part of the scope of this project. It is
assumed that each customer can be served by a single vehicle. This implies that
the demand associated with each customer is at most equivalent to the capacity
of an available vehicle.

8

1.4.1 Input

The algorithm will require the following as input:

• The time window associated with each delivery.

• The demand (in volume, weight or number of units) associated with each
delivery.

• The service time associated with each delivery.

• The opening and closing time of the depot(s).

• The capacity (in volume, weight or number of units) of each vehicle.

• The fuel type of each vehicle (petrol or diesel).

• The fuel tank capacity of each vehicle (in litres of fuel).

• The starting and ending depot of each vehicle.

• Internode distance and travel-time matrices (one for each time slice).

1.4.2 Output

The output which the algorithm must generate includes:

• The customers (deliveries) assigned to each of the utilised vehicles in the
scheduled order of delivery.

• The estimated time of arrival of each utilised vehicle at each of the cus-
tomers assigned to it.

9

1.4.3 Dataset Interfaces

The IDEF∅ diagram below depicts the dataset interfaces and algorithm func-
tions on a high level. The metaheuristic algorithm will utilise the output of an
existing routing algorithm. The routing algorithm receives customer and depot
locations and a set of time slices as input. The output of the routing algorithm
is in the form of internode distance and travel-time matrices. A set of intern-
ode distance and travel-time matrices is generated for each time slice. It is the
responsibility of the existing routing algorithm to interface with the datasets
containing the customer and road network data. The internode distance and
travel-time matrices are then utilised by the metaheuristic search algorithm in
its search of the solution space of a problem instance.

Figure 1.1: IDEF∅ diagram depicting dataset interfaces

1.5 Case Study

The following case study is an example of the sort of problem which the vehicle
routing algorithm must be capable of solving. A case study similar to this one
is presented and solved in Chapter 4.

Crema Press, a supplier of co�ee and co�ee-related products, makes use of
its own �eet of vehicles to deliver to its clients. The outlets of the individual
clients of Crema Press have di�erent operating hours. Some clients also require
deliveries to be made during time windows. The �eet of delivery vehicles is
divided between three depots. The three depots are situated in Erasmusrand,

10

Bryanston and May�eld. The �eet of delivery vehicles is made up of 20 vehicles.
The 20 vehicles are divided between the three depots as follows: six vehicles are
based at the Erasmusrand depot, seven vehicles are based at the Bryanston
depot and the remaining seven vehicles are based at the May�eld depot.The
�eet is heterogeneous in terms of loading capacity. Vehicle loading capacity is
measured in volume, weight or number of units. The Crema Press depots open
at 5:00 on each morning during the week and close at 17:00. The depots are
not operational over weekends. Several orders must be delivered each day. The
number of orders to be delivered on a given day can easily be in excess of one
hundred orders. This is especially true for days just prior to and just after week-
ends. Orders which will be delivered on a given day must be placed by 15:00
on the preceding day. This is to accommodate the administration and planning
required for the delivery of each order.

Crema Press has identi�ed travel cost as a cost component which must be im-
proved. Optimising their vehicle routing and scheduling may well provide the
increased travel e�ciency which is desired. This vehicle routing and scheduling
can be modelled as a combinatorial optimisation problem. A class of problems
which de�nitely encompass the one described above are the vehicle routing prob-
lems. Some important characteristics of the problem described above are listed
below:

• Heterogeneous vehicle �eet (in terms of loading capacity).

• Time windows for delivery.

• Multiple depots.

• Vehicles may have di�erent departure and arrival depots.

• Vehicle loading capacity may not be exceeded at any point in time (no
vehicle may be assigned to more customers than its loading capacity can
accommodate).

• A particular client's order may not be divided between more than one
delivery vehicle.

The speci�c vehicle routing problem variant which most resembles the problem
described above is the multiple depot vehicle routing problem with time windows
and a heterogeneous �eet. The objective of Crema Press is to incur the least
possible travelling expense in delivering all orders. Travel expense is a weighted
function of travel distance and travel time. Travel time or travel distance can
be used to approximate travel expense. Therefore, in modelling this problem,
minimising travel time, travel distance or a weighted combination of the two
measures can meet the objective of Crema Press. In estimating travel time,
tra�c trends should be approximated. A simple method of estimating tra�c
trends involves estimating the time-dependent travel time along potential routes.
This involves dividing the working day (that part of the day in which Crema

11

Press executes its business activities) into several time slices. This must be done
so that the travel time along a route for a given time slice is approximately
homogeneous. The implementation of time-dependent travel times takes tra�c
conditions into consideration. The use of as few as three to �ve time slices can
divide the operational day into slices of di�erent tra�c activity and yield more
accurate estimations of travel time.

1.6 Considerations

The vehicle routing algorithm to be developed must be capable of accommodat-
ing input which varies in its details and size. Therefore the algorithm must be
in a generic form which will enable it to process di�erent sets of input.

1.7 Document Structure

Chapter one includes the de�nition of the problem statement and the project
deliverables. Chapter two provides a review of literature related to the vehicle
routing problem and its solution strategies. Chapter three o�ers the formulation
of the problem's mathematical model, the presentation of the solution algorithm
and a selection of the veri�cation activities undertaken. Chapter four considers
the implementation of the metaheuristic algorithm, o�ers a discussion on pa-
rameter tuning and presents a case study problem and the solution identi�ed
by the metaheuristic algorithm.

12

Chapter 2

Literature Review

2.1 Introduction

The vehicle routing problem involves assigning a �eet of vehicles to a set of
orders, which constitute geographically distributed points of collection or deliv-
ery, in the most cost-e�cient way which conforms to the de�ned constraints.
Mathematical models have been developed to represent the various forms of the
vehicle routing problem. A model which represents the general vehicle rout-
ing problem follows [Joubert, 2003]. A set of K identical vehicles, each with
capacity p, is available for the purposes of making deliveries to N customers.
Customer i ∈ I = {1, . . . , N} has a known demand of quantity qi. A vehicle's
capacity may not be exceeded by the sum of the demand of the customers to
which the vehicle must deliver. tij represents the travel time between nodes i
and j where i, j ∈ {1, 2, . . . , N}. cij represents the cost associated with travel-
ling on the arc between nodes i and j where i, j ∈ {1, 2, . . . , N}. dij represents
the travel distance of the arc between nodes i and j where i, j ∈ {1, 2, . . . , N}.

xijk =


1 if vehicle k={1,. . . ,K} travels from node i to node j

with i,j={1,2,. . . ,N | i 6= j}

0 otherwise

minz =

N∑
i=0

N∑
j=0;j 6=i

K∑
k=1

cijxijk (2.1)

13

subject to:

N∑
j=1

x0jk =

N∑
j=1

xj0k = 1 ∀k = {1, 2, . . . ,K} (2.2)

N∑
j=1

K∑
k=1

x0jk ≤ K (2.3)

N∑
i=1;i 6=j

K∑
k=1

xijk = 1 ∀j ∈ {1, 2, . . . , N} (2.4)

N∑
j=1;j 6=i

K∑
k=1

xijk = 1 ∀i ∈ {1, 2, . . . , N} (2.5)

N∑
i=1

qi

N∑
j=0;j 6=i

xijk ≤ p ∀k ∈ {1, 2, . . . ,K} (2.6)

xijk ∈ {0, 1} (2.7)

The objective function of the model strives to minimise the cost associated with
satisfying all customer demand. cij in (2.1) may be replaced with tij to minimise
the total travel time or with dij to minimise the total travel distance associated
with satisfying all customer demand. (2.2) ensures that all routes start and
end at the depot (node 0). (2.3) disallows exceeding the maximum number of
vehicles/routes. (2.4) and (2.5) ensure that each customer node is visited only
once. (2.6) ensures that the capacity of each vehicle is not exceeded by the
demand of the customers which it services.

2.2 Problem Variants

Several forms of the vehicle routing problem exist. Toth and Vigo [2002] note
that important variants of the vehicle routing problem include the capacitated
vehicle routing problem (CVRP), the capacitated and distance-constrained vehi-
cle routing problem (DCVRP), the vehicle routing problem with time windows
(vehicle routing problem with time windows (VRPTW)), the vehicle routing
problem with backhauls (VRPB) and the vehicle routing problem with pickup
and delivery (VRPPD). Various combinations of these form yet more hybrid
vehicle routing problem variants such as the vehicle routing problem with back-
hauls and time windows (VRPBTW) and the vehicle routing problem with
pickup, delivery and time windows (VRPPDTW). The multiple depot vehicle
routing problem (MDVRP) is yet another noteworthy problem variant. These
forms di�er in terms of their simplifying assumptions and model structures.
Several variants of the vehicle routing problem are discussed brie�y below.

14

2.2.1 Capacitated Vehicle Routing Problem

In the capacitated vehicle routing problem (CVRP), Toth and Vigo [2002] note
that the demand and deliveries which correspond to customers are deterministic,
known in advance and may not be divided/shared. The homogeneous �eet of
vehicles is based at one central depot and a capacity constraint is imposed upon
all of the vehicles. The objective is to minimise the total cost to serve all of the
customers. The cost may be viewed as a weighted function of the number of
routes and their length or travel time.

2.2.2 Vehicle Routing Problem with Time Windows

Toth and Vigo [2002] note that the vehicle routing problem with time win-
dows (VRPTW) is an extension of the CVRP in which capacity constraints are
imposed and a time interval [ai, bi] of service opportunity for each customer
i ∈ {1, . . . , N} is applied. This time interval of service opportunity is known as
a time window. The time instant in which the vehicles depart from the depot,
a service time si for each customer i ∈ {1, . . . , N} and the travel time tij for
each arc (i, j) joining the set of customer nodes i, j ∈ {1, . . . , N} are important
elements within the VRPTW. The service of each customer must commence
within the applicable time window and the vehicle must remain at a customer
node for si time instants. The time at which the vehicles depart from the depot
is de�ned as time 0. The VRPTW involves �nding a collection of exactly K
circuits with the lowest cost such that the following constraints are conformed
to.

• Each circuit visits the depot vertex.

• Each customer vertex is visited by exactly one circuit.

• The sum of the demands of the vertices visited by a circuit does not exceed
the capacity of the vehicle.

• The service of each customer i commences within the time window [ai, bi]
and the vehicle remains at each customer vertex for si time instants.

2.2.3 Vehicle Routing Problem with Backhauls

Toth and Vigo [2002] note that the vehicle routing problem with backhauls
(VRPB) involves two subsets of customers: linehaul customers and backhaul
customers. Linehaul customers require a quantity of product to be delivered
while backhaul customers require a quantity of product to be picked up. di
is the nonnegative demand to be delivered or picked up at customer i and a
�ctitious demand d0 is associated with the depot vertex. The VRPB involves
�nding the least-cost collection of exactly K circuits such that the following
constraints are conformed to.

• Each circuit visits the depot vertex.

15

• Each customer vertex is visited by exactly one circuit.

• The total demands of the linehaul and backhaul customers on each circuit,
separately, do not exceed the capacity of the vehicles.

• For all circuits involving both linehaul and backhaul customers, all linehaul
customers precede backhaul customers.

2.2.4 Vehicle Routing Problem with Pickup and Delivery

The vehicle routing problem with pickup and delivery (VRPPD) associates two
quantities with each customer i, di and pi , which represent the demand of
homogeneous commodities to be delivered and picked up respectively. With
each customer i there are two associated vertices: an origin vertex of delivery
demand, Oi, and a destination vertex of pickup demand, Di. It is assumed that
at each customer location, delivery is executed prior to pickup. The load of a
particular vehicle, at a given point in time, is de�ned as its initial load, less
the sum of all demands already delivered, plus the sum of all demands already
picked up. The VRPPD involves �nding the least-cost collection of exactly K
circuits such that the following constraints are conformed to.

• Each circuit visits the depot vertex.

• Each customer vertex is visited by exactly one circuit.

• The load of the vehicle, at all times, must be positive and may not exceed
its capacity.

• For each customer i, the customer Oi, when di�erent from the depot, must
be visited in the same circuit and before customer i.

• For each customer i, the customer Di, when di�erent from the depot, must
be visited in the same circuit and after customer i.

2.2.5 Multiple Depot Vehicle Routing Problem

The multiple depot vehicle routing problem (MDVRP) is the extension of the
vehicle routing problem in which the vehicles of the �eet may be initially located
at di�erent depots. The constraint which requires each vehicle to start and end
at the same depot is often imposed. The less frequently encountered variant
of the problem in which vehicles may initially depart from and �nally arrive
at di�erent depots is applicable to some multiple depot vehicle routing problem
instances. Set partitioning of customers is often utilised in multiple depot vehicle
routing problems.

16

2.2.6 Applications

The constraints used to distinguish the variants of the vehicle routing problem
can signi�cantly impact the problem's solution. For instance, Rizzoli et al. [2007]
have included an interesting �gure in their journal article which illustrates the
inversely proportional relationship between the number of tours required and
the width of time windows in the VRPTW. For a particular VRPTW problem
instance, when the time window width is 10 minutes over 85 tours are required.
The same problem instance requires less than 55 tours when the time window
is 120 minutes.

According to Rizzoli et al. [2007], the objective of supply chain systems is
to distribute goods across the logistics network in the most cost e�cient man-
ner. As a result, algorithms which endeavour to solve vehicle routing problems
tend to minimise measures which increase cost such as time spent or distance
travelled. Due to the fact that the vehicle routing problem is a complex combina-
torial problem, the di�culty of �nding an exact solution increases with the size
of the problem. The solution space of an NP-hard problem increases at a rate
in excess of a polynomial rate as the number of customers or vertices increases.
Even small instances of some of the models which make use of simplifying as-
sumptions require metaheuristic methods to be solved in a reasonable amount
of time. Many of the VRP models encountered in literature are deterministic in
nature. Such a simplifying assumption yields models which are signi�cantly less
complex than their probabilistic counterparts. This may facilitate the solution
of such models but such assumptions do impair the accuracy with which the
models re�ect the real problem at hand. Nonetheless, reasonably large complex
dynamic vehicle routing problem models have been solved satisfactorily (not to
optimality) within very acceptable amounts of time. One such model has been
presented by Goel and Gruhn [2005]. This model incorporates a diversity of
practical complexities such as time window restrictions, a heterogeneous vehi-
cle �eet with di�erent travel times, travel costs and capacity, multi-dimensional
capacity constraints, order/vehicle compatibility constraints, orders with mul-
tiple pickup, delivery and service locations, di�erent start and end locations for
vehicles, route restrictions associated to orders and vehicles, and drivers' work-
ing hours. The algorithm incorporated Large neighbourhood Search, which is
capable of handling the complexities of the model, and Goel and Gruhn note
that their computational experiments performed well for instances with hun-
dreds of vehicles and several hundreds of transportation requests with response
times frequently less than a second. This illustrates that yielding satisfactory
solutions to NP-hard problems is achievable.

Rizzoli et al. [2007] comment on the application of a time-dependent vehicle
routing problem with time windows. In this model, the travel time along the
arcs is dependent upon the time of day. It is assumed that during the day,
there are some distinctive time slices in which the travel times are similar. It
is assumed that the working day can be divided into l time slices, where the

17

element tij(l) represents the travel time from node i to node j during time slice
l. l ∈ Tl where Tl is the set of time slices into which the working horizon is split.
The objective is to minimise the total travel time. The particular problem
instance discussed by Rizzoli et al. [2007], which involves 30 customers, has
been solved using an ant colony optimisation metaheuristic algorithm. Another
approach of modelling non-deterministic travel times involves using stochastic
travelling times with known probability distributions. Such an approach has
been demonstrated by Ta³ et al. [2012].

2.3 Metaheuristics

Several methods have been used to solve the various variants of the vehicle
routing problem. These methods include heuristic methods and metaheuristic
methods. Metaheuristic methods di�er from heuristic methods in that meta-
heuristic methods include a mechanism which will allow non-improving solutions
to be accepted. The mechanism used to accept non-improving solutions di�ers
between most metaheuristic types but serves the same purpose. The purpose
of this mechanism is to enable a more extensive search of the solution space.
This mechanism has been aptly named the diversi�cation mechanism. Heuristic
methods do not incorporate diversi�cation mechanisms. Heuristic methods have
been frequently used on classical vehicle routing problem variants. According
to Gendreau et al. [2007], heuristic methods were used frequently in the past
to solve complex combinatorial optimisation problems. The classical variants
of the vehicle routing problem often involve sets of simplifying assumptions.
Heuristic methods have been successful with small and intermediate instances
of the problem. According to Gendreau et al. [2007], since the development of
metaheuristics by Glover in 1986, metaheuristic methods have largely replaced
heuristic methods in the �eld of complex combinatorial optimisation. Larger
instances of the vehicle routing problem often require metaheuristic methods to
yield acceptable, yet suboptimal, solutions within a reasonable amount of time.
For large instances of the problem involving practical complexities (fewer simpli-
fying assumptions), metaheuristic methods must be recruited to yield acceptable
solutions within a reasonable amount of time. Several types of metaheuristic
search algorithms exist. Popular metaheuristic search algorithms include:

• Tabu search

• Simulated annealing

• Ant colony optimisation

• Genetic algorithm

• Greedy randomised adaptive search procedure (GRASP)

• Variable neighbourhood search (VNS)

• Neural networks

18

• Particle swarm optimisation

Metaheuristic algorithms have become the solution strategy of choice for
VRPs. Tabu search and ant colony optimisation methods have shown some
notable success with certain variants of the vehicle routing problem. Hybrid
metaheuristic search algorithms have also been developed and successfully ap-
plied to VRPs.

A common process is followed by the di�erent types of metaheuristic algo-
rithms [Joubert, 2006]. Metaheuristic algorithms include three components:
an initialisation mechanism, a diversi�cation mechanism and an intensi�cation
mechanism. Initialisation is the process of �nding an initial solution. Simple
heuristics are often utilised to generate initial solutions. Diversi�cation involves
an extensive search of the solution space. Intensi�cation involves searching
promising areas of the solution space more thoroughly. Another component
which is common to the di�erent types of metaheuristic algorithms is some
stopping criterion which terminates the algorithm.

Metaheuristic search methods often emulate processes found in nature, bio-
logical processes or physical processes. Neural networks mimics the behaviour
of neurons in the brain to infer previous experiences in the decision-making
process [Winston and Venkataramanan, 2003]. Genetic algorithms emulate evo-
lution by incorporating processes which simulate reproduction, mutation and
natural selection. Simulated annealing, Tabu search and ant colony optimisa-
tion are discussed brie�y below.

2.3.1 Simulated Annealing

Simulated annealing (SA) is a Monte Carlo approach developed by Metropo-
lis et al. (1953) (cited in Winston and Venkataramanan [2003]) that could be
used to simulate the behaviour of atoms in achieving thermal equilibrium at
a given temperature. In assuming the goal is to �nd a minimum energy-level
con�guration, a randomly generated perturbation of the structure of a current
atomic con�guration (energy state E0) is applied. A perturbation applied to the
structure results in a new energy state Ei. If a perturbation results in a lower
energy at state i (Ei < E0), the process is repeated using the new energy state.
Where a higher energy state results (Ei > E0), its acceptance is based upon a
certain probability. It is this ability to accept a non-improving structure which
enables the technique to leave local optima. Simulated annealing emulates the
physical process of aggregating particles in a system as it is cooled. The energy
exchange is simulated by changing from one neighbourhood solution to another.
Boltzman's equation is used in deciding whether a change in state is accepted.
For the Simulated Annealing algorithm, the melting temperature is called the
initial temperature and the steps in decreasing the temperature are collectively

19

known as the cooling schedule. The initial state is any initial solution. Temper-
ature is used as a control parameter in deciding whether suboptimal solutions
are accepted during the solution space search. The probability of accepting a
suboptimal solution is calculated using e(∆C/T), where T is the temperature
and ∆C = (best objective function value − current objective function value) is
the change in the value of the objective function. It is important to note that
in a minimisation problem, ∆C < 0 and that as the value of T decreases, the
probability of accepting a non-improving move decreases exponentially.

2.3.2 Tabu Search

Winston and Venkataramanan [2003] note that Tabu search makes use of both
short- and long- term memory to forbid certain moves in the solution space of
a problem. Short-term memory forbids cycling around a local neighbourhood
in the solution space and it allows the search to move away from local optima.
Long-term memory allows promising neighbourhoods to be searched thoroughly.
Tabu search is a memory-based algorithm which has a lot in common with the
rules applied by humans in daily decision making. Important components of a
Tabu search algorithm are short-term memory Tabu rules and list size, long-
term memory Tabu rules and list size, Tabu tenure, candidate list of moves,
aspiration criteria, intensi�cation, diversi�cation and strategic oscillation. The
short-term memory list size determines the number of forbidden moves in the
Tabu list. Similarly, the long-term memory list size determines the number of
forbidden moves in its Tabu list. The Tabu rules determine the members of the
Tabu lists. Aspiration criteria measure the quality of a move in solution space
and provide a mechanism to override Tabu lists. The candidate list o�ers moves
which the algorithm may evaluate in its search. Intensi�cation is associated
with long-term memory and it promotes the searching of promising regions.
An intensi�cation strategy can include an elite list of candidates representing
attractive regions. Diversi�cation allows searching of less attractive regions and
avoids cycling in attractive neighbourhoods by allowing unattractive moves in
the short-term memory. Strategic oscillations involve executing intensi�cation
and diversi�cation strategies in an alternating fashion around a target boundary.

2.3.3 Ant Colony Optimisation

Rizzoli et al. [2007] note that ant colony optimisation mimics the way in which
foraging ants communicate, using pheromone trails, the shortest path to food
sources. Ants lay pheromone trails, in varying quantities, as they move. When
such a trail is encountered by an ant, it may choose to follow it (highly probable)
and in turn strengthen it with its own pheromone. A positive feedback loop
results from the collective behaviour of the ants. The more a particular trail
has been reinforced by pheromones, the more attractive it becomes to ants.
The main elements of these algorithms are arti�cial ants, which are simple
computational agents that individually and iteratively construct solutions to
the problem. In the case of the vehicle routing problem, the problem has been

20

modelled as a graph. Ants explore the graph by visiting nodes, which are
connected by edges, in their pursuit of �nding a solution. A solution is an
ordered sequence of nodes. A dynamic memory structure which mimics the
pheromone trail concept supplies information about the quality of previously
obtained results and guides the search. Intermediate partial problem solutions

are viewed as states. At every iteration k, each ant moves from state x
(i)
k to x

(j)
k+1

and in turn extends the partial solution from node i to j. The algorithm can be
organised into two main stages: the construction of a solution and the update
of the pheromone trail. Each ant constructs a solution. In a given state, each
ant determines a set of feasible expansions from it. The move selected by each
ant is made by taking the following values into account. ηij , the attractiveness
of the move as calculated by some heuristic (a priori desirability of the move).
τij , the pheromone trail level, which indicates how useful this move has been
in the past (a posteriori desirability of the move). An ant considers these two
values in making a move from node i to j according to the following probability:

pij =

{
[τij]

α[ηij]
β∑

h∈Ω[τih]α[ηih]β
if j ∈ Ω

0 otherwise

where Ω is the set of nodes which can be visited from i. α and β weigh the in�u-
ence of trails and attractiveness. Pheromone trails are updated upon reaching
solutions. Initially, all pheromone trails are evaporated to forget bad solutions.
The ants then deposit pheromone on the arcs which form part of their solutions.

2.3.4 Application

An example of a successful practical application of a metaheuristic algorithm to
a vehicle routing problem which involves time windows (VRPTW) is discussed
by Rizzoli et al. [2007]. This problem also incorporated a �eet of heteroge-
neous vehicles. The application involved the use of an ant colony optimisation
metaheuristic to facilitate the planning of the distribution of palletised goods
to over 600 stores distributed across Switzerland. Prior to the experimenta-
tion with the algorithm for planning purposes, human planners would devise
distribution routing plans. The results of the experimentation indicated the
superior planning capability of the metaheuristic for complex distribution prob-
lems. The time required for the algorithm to generate a feasible solution was
just �ve minutes. The human planners required three hours to plan a feasible
solution for the same problem. The metaheuristic found a solution to a par-
ticular problem instance which utilised, on average, 87.35% of vehicle loading
capacity and required 1807 tours with a total distance travelled amounting to
143983 km. The human planners' solution utilised, on average, 76.91% of vehicle
loading capacity, required 2056 tours with a total distance travelled of 147271
km. Both of these solutions for the particular problem instance are capable
of delivering all of the orders associated with the problem instance. However,
the solution proposed by the metaheuristic algorithm is considerably more e�-
cient. This example demonstrates the value of metaheuristic algorithms in the

21

planning of complex distribution activities. The potential savings which can be
realised when making use of metaheuristic algorithms for routing problems are
signi�cant.

2.4 Conclusion

This chapter provides a de�nition of the vehicle routing problem and intro-
duces several of its variants. Metaheuristic methods are introduced and various
types of metaheuristic algorithms are brie�y described. This chapter includes
descriptions of practical applications of metaheuristic algorithms to various ve-
hicle routing problems.

Since a generic vehicle routing algorithm is required, the vehicle routing prob-
lem type which is most representative of the problems which will be solved using
the algorithm must be identi�ed. The algorithm is intended to receive, as input,
problems with as many as twenty vehicles. The algorithm must accommodate
time windows, multiple depots and a �eet of vehicles with heterogeneous capac-
ity. The vehicle routing problem upon which the algorithm should be based is
the multiple depot vehicle routing problem with time windows (multiple depot
vehicle routing problem with time windows (MDVRPTW)). The consulted lit-
erature promotes the use of a Tabu search algorithm to solve vehicle routing
problems with time windows.

22

Chapter 3

Model Formulation

In this chapter, the speci�c type of vehicle routing problem which the solu-
tion algorithm is designed to solve is de�ned. The formulation of the solution
algorithm is also presented. Some analyses of the performance of the solution al-
gorithm appear towards the end of this chapter. Finally, the solution algorithm
is tested on several benchmark problems as part of the veri�cation process.

3.1 The Problem

The problem is described and its characteristics are stated in the Project Scope
section in Chapter 1. This section o�ers a review of the problem characteristics
and the mathematical formulation of the problem's model.

3.1.1 Problem Characteristics

As elaborated upon in Chapter 1, the ine�ciency of delivery vehicle �eets is a
concern. In order to improve the e�ciency of delivery vehicle �eets, an a�ord-
able metaheuristic vehicle routing problem algorithm has been identi�ed as the
preferable solution method. A generic metaheuristic algorithm which can ac-
commodate a broad spectrum of vehicle routing problem instances is required.
In order to accommodate a broad spectrum of vehicle routing problem instances,
the characteristics which are common to many vehicle routing problem instances
must be identi�ed. These characteristics must heavily in�uence the structure of
the problem's model. The characteristics which are representative of the sort of
problem which will be solved by the metaheuristic algorithm follow:

• Time windows for each customer visit.

• Multiple vehicles.

• Multiple customers.

23

• Delivery demand (in volume, weight or units) associated with each cus-
tomer.

• One or multiple depots (in the event of multiple depots, vehicles may end
at a depot which di�ers from their starting depot).

• Service time, which represents the o�-loading time, associated with each
customer.

• Capacity (volume, weight or units) of each vehicle must be speci�ed: het-
erogeneous vehicle capacity is assumed but the metaheuristic algorithm
must be capable of solving problems with homogeneous vehicle capacity.

• The inclusion of time-dependent travelling times, along the arcs or edges
of the road network, which are dependent upon the time of day.

• Each customer should be served by one vehicle exactly once.

From these problem characteristics, it is clear that the metaheuristic algorithm
must possess a considerable measure of �exibility in terms of the problem factors
which it must be capable of accommodating.The spectrum of problem instances
which the metaheuristic algorithm is expected to solve can di�er in several ways:

• Problem instance size: the number of customers and vehicles.

• Problem type: single depot or multiple depot; heterogeneous vehicle ca-
pacity or homogeneous vehicle capacity.

• Restrictiveness: accommodating or limiting time windows and constraints.

3.1.2 Mathematical Model

The mathematical model used to represent the described problem follows.

Set de�nitions:

Ī , the set of all customers and depots

Q̄ , the set of all depots, where Q̄ ⊂ Ī
Q̄c , the complement of Q̄ which includes only customers and none of the depots, Q̄c ⊂ Ī
K̄ , the set of all vehicles

T̄ , the set of all time slices

Let:

24

qi be the known demand for location i, wherei ∈ Q̄c

si be the service time for location i, wherei ∈ Ī
dijt be the distance between location i and j during time slice t,

where i, j ∈ Ī , t ∈ T̄
cijt be the cost incurred on the arc between locations i and j

during time slice t, where {i, j ∈ Ī | i 6= j}, t ∈ T̄
tijt be the travel time from location i to location j during

time slice t, wherei, j ∈ Ī , t ∈ T̄
pk be the load capacity of vehicle k, where k ∈ K̄
fk be the �xed cost incurred when vehicle k is utilised, where k ∈ K̄
ai be the arrival time of the assigned vehicle at location i,

wherei ∈ Ī
wi be the waiting time of the assigned vehicle at location i,

where i ∈ Ī
ei be the commencement time of the time window of locationi ∈ Ī
li be the termination time of the time window of locationi ∈ Ī

The decision variable, xtijk:

xtijk =


1 if vehicle k ∈ K̄ travels from location i ∈ Ī to location j ∈ Ī ,

i 6= j, during time slice t ∈ T̄
0 otherwise

minz =
∑
i∈Ī

∑
j∈Ī,j 6=i

∑
k∈K̄

∑
t∈T̄

cijtx
t
ijk +

∑
i∈Q̄

∑
j∈Q̄c

∑
k∈K̄

∑
t∈T̄

fkx
t
ijk

+ µ

∑
i∈Q̄c

1−
∑
k∈K̄

∑
i∈Ī

∑
j∈Q̄c,j 6=i

∑
t∈T̄

xtijk

 (3.1)

subject to:

∑
i∈Q̄

∑
j∈Q̄c

∑
k∈K̄

∑
t∈T̄

xtijk =
∑
i∈Q̄c

∑
j∈Q̄

∑
k∈K̄

∑
t∈T̄

xtijk ≤
∑
k∈K̄

1 (3.2)

25

∑
i∈Q̄

∑
j∈Ī

∑
t∈T̄

xtijk =
∑
i∈Ī

∑
j∈Q̄

∑
t∈T̄

xtijk ≤ 1 ∀k ∈ K̄ (3.3)

∑
j∈Ī,j 6=i

∑
k∈K̄

∑
t∈T̄

xtijk ≤ 1 ∀i ∈ Q̄c (3.4)

∑
i∈Ī,i6=j

∑
k∈K̄

∑
t∈T̄

xtijk ≤ 1 ∀j ∈ Q̄c (3.5)

∑
i∈Q̄c

qi
∑

j∈Q̄c,j 6=i

∑
t∈T̄

xtijk ≤ pk ∀k ∈ K̄ (3.6)

∑
i∈Q̄

∑
t∈T̄

∑
k∈K̄

xtijk = 0 ∀j ∈ Q̄ (3.7)

∑
j∈Q̄

∑
t∈T̄

∑
k∈K̄

xtijk = 0 ∀i ∈ Q̄ (3.8)

xtijk ∈ {0, 1} (3.9)

aq = wq = sq = 0 ∀q ∈ Q̄ (3.10)

ei ≤ (ai + wi) ≤ li ∀i ∈ Ī (3.11)∑
i∈Ī,i6=j

∑
k∈K̄

∑
t∈T̄

xtijk(ai + wi + si + tij) ≤ aj ∀j ∈ Ī (3.12)

The objective function, (3.1), seeks to minimise the cost associated with serving
a set of customers. The �rst set of summations calculates the travelling cost
associated with visiting a set of customers. The second set of summations
calculates the total �xed cost incurred by making use of a subset of the �eet
of available vehicles or the entire �eet of available vehicles in visiting a set of
customers. If a vehicle is used, its associated �xed cost will be included in the
total �xed cost. The third collection of summations calculates the number of
unvisited customers and applies a penalty cost, µ, to each unvisited customer.
(3.2) ensures that the number of vehicles which depart from the depot(s) equates
to the number of vehicles which return to the depot(s) and that this number
is less than or equal to the number of available vehicles. (3.3) ensures that if
a vehicle is used, its tour starts and ends at a depot. (3.4) and (3.5) disallow
customers from being visited more than once. (3.6) avoids vehicle load capacity
violations. (3.7) and (3.8) disallow tours which include direct trips from one
depot to another depot. (3.9) de�nes the decision variable as a binary variable.
(3.10) ensures that the waiting time and service time at every depot is zero.
This constraint also ensures that the vehicles at each depot are present from
the moment the depots open. (3.11) ensures that time window impositions are
not violated. (3.12) ensures that the modelling of time is valid. It requires the
arrival time at a destination node to be later than or equal to the sum of the
arrival time at its departure node, the wait time at the departure node, the
service time at the departure node and the travel time. This constraint ensures
that vehicles are not modelled with the ability to be in more than one place at
a given instant.

26

3.2 Solution Algorithm

The various components and concepts of the solution algorithm appear below.

3.2.1 Important Concepts

3.2.1.1 Time Window Compatibility

The concept of time window compatibility was introduced by Joubert [2003].
Time window compatibility is a measure of the compatibility of the time win-
dows of a pair of customers. A pair of customers is said to be time window
compatible if there exists a time opportunity to feasibly juxtapose these cus-
tomers while considering travel time, service time and the time windows of the
customers. A pair of customers can and probably will have varying degrees of
time window compatibility depending on the visitation order.

3.2.1.2 Insertion Criteria

The insertion criteria is a measure of the additional distance and time incurred
by inserting a particular customer into a speci�c position within a partially
constructed tour. The calculation of the insertion criteria is shown by (3.13),
(3.14) and (3.15). (3.14) calculates the additional distance incurred due to the
insertion of customer u between customers i and j. (3.15) calculates the addi-
tional time incurred due to the insertion of customer u between customers i and
j. (3.13), the insertion criteria, is a weighted average of the additional distance
and time incurred due to the introduction of customer u between customers i
and j. α1 and α2, in (3.13), are the weighting coe�cients while anewj , in (3.15),
is the post-insertion arrival time at customer j. (3.14) makes use of time slices
to determine the distance between two nodes. This is done due to the fact that
di�erent routes may be taken during di�erent time slices due to tra�c condi-
tions. For each term in (3.14), the time slice t must contain the departure time
from the initial node (which is indicated by the �rst subscript). For instance:
the distance, dijt, is the distance of the path chosen during time slice t from
node i to node j. The time slice t in this instance must contain the departure
time from node i. It is important to note that the insertion criteria is only
calculated for inserts involving three time window compatible customers. This
avoids unnecessary computational exertion.

Insertion criteria: c1(i, u, j) = α1c11(i, u, j) + α2c12(i, u, j) (3.13)

where c11(i, u, j) = diut + dujt − µdijt, µ ≥ 0 (3.14)

c12(i, u, j) = anewj − aj (3.15)

3.2.1.3 Selection Criteria

The selection criteria is a measure of the bene�t of inserting a particular cus-
tomer into a speci�c position within a partially constructed tour as opposed to
introducing a new direct route from one of the depots to this customer. The

27

selection criteria, for a vehicle routing problem involving a single depot, is ex-
pressed mathematically in (3.16).

c2(i, u, j) = λ(d0ut + t0ut) + su − c1(i, u, j), λ ≥ 0 (3.16)

(3.16) is not relevant to vehicle routing problems which involve multiple depots.
The following de�nitions are required in order to establish the selection criteria
for multiple depot vehicle routing problems:

P̄ the set of available (unassigned vehicles)

gp the starting depot of vehicle p ∈ P̄
hp the ending depot of vehicle p ∈ P̄

c2(i, u, j) =

∑
p∈P̄ (dgput1 + tgput1 + duhpt2 + tuhpt2)∑

p∈P̄ 1
− c1(i, u, j) (3.17)

Time slice t1 must contain the departure time from depot gp, which equates
to: egp + sgp . Time slice t2 must contain the departure time from customer u,
which equates to: egp + sgp + tgput1 + su. Much like (3.16), (3.17) is a measure
of the bene�t of inserting a particular customer, u, between customers i and j
in a partially constructed tour as opposed to starting a new tour for customer
u. (3.17) however considers all the potential depots which could be the starting
point and ending point of a new dedicated tour to customer u. (3.17) avoids
an in�ated �rst term by taking the average of the distance and travel time of
the possible new tours to customer u. (3.17) serves the same purpose as (3.16).
(3.17) is just the multiple depot analogue of (3.16).

3.2.2 Initial Solution Algorithm

Algorithm 1 is a sequential insertion algorithm which has been adapted from the
initial solution algorithm presented by Joubert [2003]. This algorithm generates
an initial solution, which serves as the input to the Tabu search metaheuristic
algorithm. This algorithm requires as input the customer, depot and vehicle
data pertaining to a particular problem instance. The algorithm, after initial-
ising a new tour, selects a vehicle randomly from the �eet of available vehicles.
The starting and ending depot of the vehicle assigned to the tour are inserted
as the start- and end- locations of the tour. The algorithm then identi�es and
inserts a seed customer into the tour.

The algorithm identi�es as the seed customer the least time window compat-
ible customer amongst the set of customers which have yet to be assigned to a
tour. This is done by considering the time window compatibility of each unas-
signed customer with all other unassigned customers to determine the total time

window compatibility for the unassigned customer in concern. The time window
compatibility for each pair of unassigned customers will be considered twice due
to the di�erence in the time window compatibility when the visitation sequence
is changed for a given pair of customers. The least time window compatible
customer is the one with the smallest total time window compatibility.

28

Once the seed customer has been inserted into the tour, the algorithm contin-
ues to attempt to insert customers into the tour until customers can no longer
be feasibly inserted into the tour because of time window or vehicle load ca-
pacity constraints. The algorithm identi�es for each unassigned customer the
best feasible insert location. This is achieved by considering all potential insert
locations for a given unassigned customer. The insertion criteria for each of
these insert locations is calculated if the customer being considered for inser-
tion is time window compatible with the customers between which it could be
inserted. The insert location with the lowest insertion criteria is considered as
the best insertion for a given unassigned customer. Insertion criteria is used in
Algorithm 1 to compare the feasible inserts of a given unassigned customer (line
12). The best insertion for the unassigned customer in concern is then identi�ed
in line 13 of Algorithm 1.

The best feasible insert location for each customer is considered by the al-
gorithm in its selection of the customer to be inserted into the tour. This is
achieved by considering the best insertion of each unassigned customer and cal-
culating its selection criteria. The insertion with the largest selection criteria is
considered as the best insertion (line 15 of Algorithm 1). The insertion which
is considered as the best by the selection criteria is inserted into the current
tour. The algorithm continues to insert customers into the tour, which is under
construction, in this manner. Once no additional customer can be feasibly in-
serted into the tour, the algorithm considers the tour as complete and initialises
another tour. The algorithm will continue to add tours to the initial solution
while at least one customer has yet to be assigned to a tour and at least one
vehicle is still available. Vehicles become unavailable upon being assigned to a
single tour.

3.2.3 Tabu Search Algorithm

The Tabu search metaheuristic algorithm, Algorithm 2, receives the initial so-
lution, which is generated by Algorithm 1, as input. The incumbent solution
is the best solution found thus far by the algorithm. When the Tabu search
algorithm is �rst initiated, the initial solution is the best solution. The Tabu
search algorithm starts with the initial solution as the current solution. The
algorithm applies changes to the current solution in an attempt to yield a bet-
ter solution. These changes take the form of moving a single customer from
a certain position in one tour to another position in the same or an alterna-
tive tour as indicated in Algorithm 3. Algorithm 3 also adds feasible moves
involving the insertion of unassigned customers into tours to the set of poten-
tial moves. This will only be attempted if unassigned customers exist within
the current solution. Only moves which maintain the feasibility of the solution
are considered as potential moves. The non-tabu move1 in the set of potential

1Xu et al. [1998] note that a move is classi�ed tabu when it is not permitted as a result of
the tabu status of its attributes.

29

moves which has the most preferential e�ect on the cost of the current solution
is selected as the best move. The algorithmic representation of the identi�cation
and selection of the best move is displayed in Algorithm 5. In the event that no
feasible non-tabu move can be identi�ed, the algorithm attempts to exchange
two randomly selected nodes in the current solution. This is done in the hope
that the exchange will introduce feasible moves. The node exchange algorithm
is displayed in Algorithm 4. After executing a move or an exchange on the
current solution, the objective function value (cost) of the new current solution
is calculated. The algorithm also attempts to exchange vehicles between tours
or exchange an available vehicle for a vehicle which is assigned to a tour. This
is attempted just after the best move is executed by the algorithm. The algo-
rithmic representation of the vehicle exchange routine is displayed in Algorithm
6. After executing the best move, the algorithm searches the solution for tours
which involve only depots. If such a tour is found, the algorithm will make
the vehicle assigned to it available and remove the tour from the solution if all
of the customers associated with the problem instance have been assigned to
a tour. The algorithm attempts to insert any unassigned customers into tours
after the execution of each move in case the best move selection routine does
not select a move involving an unassigned customer. Each time a new best
solution is found, this solution is saved as the incumbent solution. The Tabu
search algorithm terminates when a speci�ed number of iterations have elapsed
without �nding a new best solution.

3.2.3.1 Tabu List

When a particular move is made, the inverse of that move is considered tabu.
Such a move will be added to the tabu list, which is the short term memory
tabu structure, for the duration of the tabu tenure. This allows the search to
avoid returning to a past solution immediately. The frequency of executing each
move is tracked by the solution algorithm. A limit, Frequency limit, is placed
upon the number of times a particular move may be executed. Once this limit
is reached by a particular move, that move is considered tabu. Such a move will
be added to the frequency list which is the long term memory tabu structure.
Unlike the tabu list, the frequency list does not make use of the tabu tenure.
The moves added to the frequency list will remain in the list until the search
terminates or the tabu memory structures' contents are erased.

3.2.3.2 Tabu Tenure

The tabu tenure is the number of iterations for which a tabu move will be
prevented. The solution algorithm makes use of a dynamic tabu tenure. The
dynamism of the tabu tenure is driven by the number of iterations which have
elapsed since a new best solution was last found. The tabu tenure resembles a
step function with an independent variable representing the number of iterations
which have elapsed since a new best solution was last found. The value of
the tabu tenure is smaller for a certain number of iterations when a new best

30

solution is found. This mechanism promotes the intensi�cation of the search in
a promising neighbourhood. The tabu tenure tends to increase with the number
of iterations which have elapsed since a new best solution was last found. This
increase in tabu tenure promotes the diversi�cation of the search into uncharted
neighbourhoods.

3.2.3.3 Aspiration Criteria

The solution algorithm makes use of an aspiration criterion which will allow
tabu moves to be executed if their execution will yield a new best solution.
This mechanism is represented in Algorithm 5, line 7.

3.2.3.4 Restarting the Search

The tabu memory structures are cleared when the search reaches a predeter-
mined number of iterations without �nding a new best solution. This mechanism
is utilised later on during the search of a problem instance's solution space. This
mechanism has the same e�ect as would restarting the Tabu search algorithm
at the current solution (as opposed to the initial solution). This mechanism is
utilised in an attempt to �nd a new best solution by allowing moves that would
otherwise have been disallowed by the tabu memory structures.

3.3 Veri�cation

3.3.1 Solomon's VRPTW Benchmarking Problems

The solution algorithm has been tested on several of Solomon's VRPTW bench-
marking problem instances. The results of these tests appear in Table 3.1 below.
For each problem instance, the problem identi�er, number of vehicles utilised
in the solution (N.V.) and the solution distance are detailed.

3.3.2 Convergence and Repeatability of the Solution Al-

gorithm

The convergence and repeatability of a metaheuristic algorithm are important
characteristics which give an indication of the e�cacy and consistency of the
algorithm. The convergence of an algorithm is best displayed in graphical form.
Figure 3.4 displays graphically the convergence of the solution algorithm for
one of Solomon's benchmark problem instances (RC102.100). The repeatability
of an algorithm is an indicator of how consistently the algorithm performs. A
measure of the variation in the performance of an algorithm can be used to give
an indication of the consistency of the algorithm. In order to test the repeata-
bility of the solution algorithm, the algorithm was executed twenty times on a
particular problem instance (Solomon's RC102.100 benchmark problem). The
results of these trials are tabulated in Table 3.2. Table 3.2 displays the result
for each trial. The result of each trial is the objective function value (distance

31

for Solomon's benchmark problems) of the �nal solution found by the solution
algorithm. The mean absolute deviation (MAD) is used as a measure of varia-
tion in analysing the repeatability of the algorithm. The MAD is signi�cantly
below �ve percent (of the mean of the performance results in Table 3.2) which
indicates that the algorithm displays favourable repeatability.

3.4 Conclusion

This chapter o�ers a review of the nuances of the problem. The problem review
is used as the point of departure in the establishment of the problem's math-
ematical model and in turn the solution algorithm. Finally, the algorithm is
tested on several of Solomon's benchmarking problem instances and its perfor-
mance is subjected to analyses.

Algorithm 1 Generate Initial Solution

Input: Customer, depot and vehicle data

1: Initialise solution
2: while unrouted customers exist and unused vehicles are available do
3: Initialise tour
4: Assign a vehicle to tour
5: Insert assigned vehicle's start depot as tour start location
6: Insert assigned vehicle's end depot as tour end location
7: Identify and insert seed customer
8: while feasible inserts exist and unrouted customers exist do
9: Initialise set of potential inserts

10: for all unrouted customers do

11: Identify feasible inserts
12: Compare feasible inserts and identify best insert
13: Add best insert to the set of potential inserts
14: end for

15: Identify the best insert in the set of potential inserts
16: Insert the best insert into tour
17: end while

18: end while

32

Algorithm 2 Tabu Search

Input: Initial solution

1: Incumbent solution ← Initial solution

2: Current solution ← Initial solution

3: Counter ← 0
4: while Counter<Stop condition do

5: Identify a set of Potential moves for the Current solution
6: Identify the best move from the set of Potential moves

7: if Potential moves is ∅ or Best move Tabu count> 0 or Best move Fre-

quency count==Frequency limit then

8: Attempt to execute feasible node exchange in the Current solution
9: else

10: Execute the best move on the Current solution
11: end if

12: if tours involving only depots exist and all customers have been assigned
to a tour then

13: Add the vehicles which are assigned to depot-only tours to the set of
Available vehicles

14: Remove tours involving only depots from the solution
15: end if

16: if Unassigned customers exist then
17: Insert unassigned customers if feasible insert positions exist
18: end if

19: Try to exchange vehicles
20: Add the executed move to the Frequency list

21: Add the inverse of the executed move to the Tabu list

22: Inverse of executed move Tabu count ← Tabu tenure

23: Executed move Frequency count ← executed move Frequency count +1
24: Update the Tabu list

25: Calculate cost of the Current solution
26: if Current solution cost<Incumbent solution cost then
27: Incumbent solution ← Current solution

28: Counter ← 0
29: clear Tabu list

30: clear Frequency list

31: else

32: Counter ← Counter+1
33: end if

34: Assign a suitable value to tabu tenure based on the value of Counter
35: if Counter has reached Predetermined value then

36: Clear tabu memory structures
37: end if

38: end while

33

Algorithm 3 Identify Feasible Moves

Input: Current solution

1: Initialise the set Potential moves

2: while Potential moves =∅ & StopCriterion is not satis�ed do
3: {StopCriterion avoids in�nite looping}
4: for arbitrary integer do

5: a← randomly selected tour from Current solution

6: b← randomly selected tour from Current solution

7: {a may be the same tour as b}
8: for each position j in a except the �rst and last do
9: for each position k in b except the �rst and last do

10: if a 6= b or j 6= k then
11: Consider move p of customer in j to k
12: if p is feasible then
13: Add p to Potential moves

14: end if

15: end if

16: end for

17: end for

18: end for

19: end while

20: if unassigned customers exist then
21: for each customer z in the set of Unassigned customers do

22: for each tour y in Current solution do

23: Consider the insert, x, of customer z into tour y
24: if x is feasible then
25: Add x to Potential moves

26: end if

27: end for

28: end for

29: end if

30: return Potential moves

34

Algorithm 4 Attempt to Exchange Nodes

Input: Current solution

1: for �ve counts do
2: if feasible exchange has yet to be identi�ed then
3: i← random tour in Current solution

4: j ← random tour in Current solution

5: k ← random customer in i
6: l← random customer in j
7: if i 6= j or k 6= l then
8: if exchanging customers k and l will not violate any constraints then
9: {moving k to l′s current position and l to k′s current position}

10: exchange customers k and l
11: feasible exchange found
12: end if

13: end if

14: end if

15: end for

Algorithm 5 Identify Best Move

Input: Current solution, Incumbent solution,
Potential moves

1: Best move ← randomly selected move in Potential moves

2: for all moves in Potential moves do

3: if move di�erential cost < Best move di�erential cost then
4: if move is not tabu then
5: Best move ← move

6: else

7: if Current solution cost + move di�erential cost<Incumbent solution

cost then
8: Best move ← move

9: end if

10: end if

11: end if

12: end for

13: return Best move

35

Algorithm 6 Exchange Vehicle

Input: Current solution

1: if All available vehicles have been assigned to a tour then
2: Select random tour, i, in Current solution

3: Select random tour, j, in Current solution

4: a← vehicle assigned to tour i
5: b← vehicle assigned to tour j
6: c← the total demand of tour i
7: d← the total demand of tour j
8: e← the start depot of vehicle a
9: f ← the end depot of vehicle a

10: g ← the start depot of vehicle b
11: h← the end depot of vehicle b
12: k ← the load capacity of vehicle a
13: l← the load capacity of vehicle b
14: if i 6= j and f == h and e == g and k ≥ d and l ≥ c then

15: Assign vehicle a to tour j
16: Assign vehicle b to tour i
17: end if

18: else

19: Randomly select an available vehicle w
20: q ← the start depot of vehicle w
21: r ← the end depot of vehicle w
22: s← the load capacity of vehicle w
23: Randomly select a tour, t, in Current solution

24: u← vehicle assigned to tour t
25: v ← the start depot of vehicle u
26: w ←the end depot of vehicle u
27: x← the total demand of tour t
28: if q == v and r == w and s ≥ x then
29: Add u to the set of Available vehicles

30: Remove w from the set of Available vehicles

31: Assign vehicle w to tour t
32: end if

33: end if

36

Problem N.V. Distance
R101.100 15 2540.56
R102.100 11 1810.66
R201.100 10 1883.55
R202.100 10 1570.54
C101.100 13 1816.74
C102.100 13 1699.40
C201.100 11 1585.59
C202.100 10 1664.75
RC101.100 11 1974.43
RC102.100 12 1802.66
RC201.100 14 2365.40
RC202.100 11 1894.33

Table 3.1: Solomon's VRPTW benchmarking problems

Trial Result
1 1786.47
2 1917.854
3 1835.46
4 1712.94
5 1859.47
6 1821
7 1793.54
8 1971.2
9 1852.06
10 1767.95
11 1818.72
12 1805.69
13 1816.98
14 1777.47
15 1817.39
16 1959.29
17 1970.98
18 1822.25
19 1821.41
20 1820.44

MAD MAD (%)
50.63 2.76%

Table 3.2: Algorithm repeatability

37

Figure 3.1: Convergence of the solution algorithm

38

Chapter 4

Implementation

4.1 Introduction

This chapter presents a case study problem which is an epitome of the type of
problem instance to which the solution algorithm is intended to be applied. The
solution yielded by the solution algorithm is also presented in this chapter. The
solution algorithm has been programmed in the object-oriented programming
language Java.
Metaheuristic optimisation algorithms which are intended to be applied to a
number of problem instances must possess the �exibility required to accommo-
date the data associated with di�erent problem instances. Another important
capability of such algorithms is the ability to perform well over the spectrum of
problem instances to which they will be applied. Algorithms which perform well
over a variety of problem instances are said to be robust. The performance of a
metaheuristic algorithm is often dependent upon the values of its parameters.
As a result, in developing a robust optimisation algorithm, parameter tuning is
a crucial exercise.

4.2 Parameter Tuning

Statistical methods are applied to tune the parameters of optimisation algo-
rithms. Design of experiments (DOE) is one statistical method which can be
utilised to �nd appropriate values for the parameters of optimisation algorithms.
According to Ridge [2007] DOE is an e�cient statistical method from which
substantiated conclusions can be drawn. Alternative approaches which may be
used to identify appropriate parameter values include the trial-and-error ap-
proach and one-factor-at-a-time (OFAT) analysis. DOE tends to demonstrate
a greater appreciation for the interaction between factors which in�uence the
performance of an optimisation algorithm. Thorough parameter tuning is a
time-consuming exercise. Automated parameter-tuning software has been de-
veloped to facilitate this process and decrease the time required for parameter

39

tuning. An example of such software is CALIBRA, which is freely available:
http://opalo.etsiig.uniovi.es/∼adenso/�le_d.html.

4.2.1 Design of Experiments

Montgomery and Runger [2007] note that the validity of the conclusions which
are drawn from an experiment depends heavily upon the way in which the ex-
periment is conducted. The design of an experiment therefore serves a critical
purpose in the conducting of a valid experiment. Factorial experiments, which
are utilised for experiments involving two or more factors, consist of trials in-
volving all of the combinations of the levels of the factors being investigated.
The factors which an experiment investigates are those parameters which the
experimenter suspects have an impact upon some response variable of interest.
The levels of a factor are the values which the factor can assume in the ex-
periment. The more factors involved in an experiment, the larger the number
of treatments undertaken in the experiment. To overcome this obstacle, sev-
eral approaches make use of a screening step initially to identify those factors
which have a considerable e�ect upon response variables of interest. Screening
experiments which involve several factors often make use of fractional factorial
experiments which only consider a fraction of the combinations of levels of the
various factors. Fractional factorial experiments however lose some of the infor-
mation which a full factorial experiment provides. The e�ects of some factors or
some combinations of factors may be aliased in fractional factorial experiments.
Aliased e�ects are those e�ects on the response variable of interest which cannot
be attributed to a single factor or a single combination of factors. This may lead
to the experimenter misinterpreting the experiment's results or not being able
to isolate the e�ect of a particular factor due to the alias. This situation can
however be remedied by conducting one or more additional small experiments
which then provide more information which e�ectively removes the uncertainty
pertaining to the aliased e�ects of interest. In this way series of compact ex-
periments can e�ectively be used to determine the e�ects of parameters upon a
response variable of interest. Those factors which are identi�ed as considerable
in the screening step are then subjected to thorough experimentation. Typi-
cally, screening experiments involve fewer levels (generally two or three) of each
factor. The subsequent thorough experimentation will involve more levels of
those factors which progress beyond the screening experiment.

4.2.2 Screening Experiment

Trial-and-error experimentation during the course of the development of the
solution algorithm accommodated insightful observations of the e�ect of various
factors upon the quality of the ultimate solution. The cost of the ultimate
solution yielded by the solution algorithm is the response variable of interest.
One factor which has been observed to have a notable e�ect upon the quality (or
cost) of the ultimate solution is the quality of the initial solution presented to
the metaheuristic algorithm. It was also noted that any increase in the value of

40

the termination criterion beyond a certain threshold value does not seem to have
a considerable e�ect upon the response variable. The termination criterion is
responsible for terminating the solution algorithm's search of the solution space.
The following factors have been considered in the parameter tuning activities:

• Initial solution quality or cost.

• Search termination criterion.

• Tabu tenure (short-term tabu memory structure).

• Frequency limit (long-term tabu memory structure).

The results and normal probability plot of an unreplicated 2k factorial experi-
ment for a particular problem instance are displayed in Figure 4.1. The factor
labels correspond to factors as follows: A represents initial solution cost (or
quality), B represents tabu tenure, C represents frequency limit and D repre-
sents termination criterion. An unreplicated 2k factorial experiment involves a
single replication of all combinations of factor levels. For each factor, two levels
are considered, a low level and a high level. The normal probability plot facil-
itates the identi�cation of factors with considerable e�ects upon the response
variable of interest. Such factor e�ects will be conspicuously displaced from the
best-�t regression line. The response variable of interest in this experiment is
the cost or quality of the ultimate solution produced by the solution algorithm.
Those factors and factor combinations which have a considerable e�ect upon the
response variable have been labelled on the normal probability plot. These fac-
tors are: initial solution cost (A), tabu tenure (B) and the termination criterion
(D). The interaction between factors also a�ect the response variable consider-
ably in some cases. The interaction between the factors in the following factor
combinations can be identi�ed upon the normal probability plot: CD, AB and
BD. With some of the isolated factors identi�ed in the screening experiment,
more thorough experimentation involving more levels has been undertaken.

4.3 Case Study Problem

Solomon's VRPTW benchmarking problem instances are not accompanied by
a road network. Therefore, all distances are based on Euclidean distance. The
following case study problem requires inter-customer distances to be calculated
using a shortest path algorithm which searches the relevant road network. Once
the road network search has been executed, the routing algorithm issues as
output the internode distance and travel-time matrices. The case study problem
considered consists of distributing products to twenty customers. Table 4.1
displays the customer data pertaining to this case study problem. The delivery
vehicle �eet consists of �ve vehicles. The vehicle data is tabulated in Table 4.2.
For demonstrative purposes, this case study problem involves two time slices.
Each time slice has associated internode distance and travel-time matrices. The
necessity of including a unique set of internode distance and travel-time matrices

41

for each time slice stems from the e�ect of tra�c upon the choice of path and
travel time between two nodes. The �rst time slice spans half of the operational
hours of the depot (node 1) and time slice two spans the remaining half of the
depot's operational hours. The internode distance matrices for time slice one
and two are displayed in Figure 4.2 and Figure 4.4 respectively. The internode
travel-time matrices for time slice one and time slice two are displayed in Figure
4.3 and Figure 4.5 respectively. Time is measured in minutes from the opening
time of the depot (node 1). This time is used as the datum and is set to zero.
Therefore all times have been expressed as the number of minutes which have
elapsed since the opening time of the depot. The results, depicted in Table
4.3, show that only two of the �ve available vehicles are utilised. The sequence
of visitation is conveyed by this depiction. The total distance of the solution
is 254.89 km. Solutions of a shorter distance have been encountered by the
solution algorithm. It must however be noted that the objective function of
the solution algorithm, presented in (3.1) in chapter 3, strives to minimise a
combination of several cost drivers, including: the number of vehicles used,
solution travel-time and solution distance. This case study problem involves
a single depot. Each customer in the case study problem has a single time
window of delivery opportunity and a heterogeneous vehicle �eet is utilised to
service the set of customers. Geographical displays of the customer locations
and the solution yielded by the solution algorithm appear in Figures 4.6, 4.7 and
4.8. Take note that two nodes, nodes 4 and 12, are hidden from view in these
displays due to their close proximity with other nodes. This statement can be
con�rmed upon inspection of the coordinates of the nodes in Table 4.1. The
case study problem's constraints have a signi�cant impact upon the structure of
the solution. In particular, the sequence of visitation is to a large extent at the
mercy of the customers' time windows. In the event that the time windows of
the customers in the case study problem are altered, it is highly probable that
a radically di�erent solution will be presented by the solution algorithm.

4.4 Conclusion

This chapter introduces a case study problem which is an epitome of the type
of problem instance to which the solution algorithm will be applied. The al-
gorithm's results for this case study problem are presented in this chapter. A
discussion on parameter tuning, in which its importance in the development of
robust optimisation algorithms is emphasized, is also presented in this chapter.
An example of the parameter tuning activities which have been undertaken is
presented and discussed in this chapter.

42

ID Demand Early Late ServiceTime x-coordinate y-coordinate
1 0 0 780 0 28.22397 -26.18496
2 15 117 716 21 28.103707 -26.00005
3 9 159 628 17 28.126228 -26.008651
4 10 113 663 58 28.117228 -25.977431
5 10 106 622 40 28.11697 -25.976711
6 17 193 675 15 28.176941 -26.003722
7 9 216 670 60 28.229415 -25.9757
8 9 76 634 46 28.161337 -25.8853
9 9 135 606 25 28.151463 -25.869916
10 18 13 614 21 28.167945 -25.855158
11 5 95 692 36 28.148665 -25.747338
12 15 135 679 48 28.188967 -25.862011
13 7 132 610 57 28.189432 -25.858073
14 18 135 630 32 28.204514 -25.88521
15 8 74 646 52 28.259813 -25.826475
16 5 187 685 54 28.234451 -25.770004
17 14 232 679 60 28.187231 -25.740372
18 9 4 651 55 28.242347 -25.700749
19 15 174 610 24 28.192748 -25.683407
20 17 14 686 58 28.24114 -25.677787
21 14 116 658 45 28.311646 -25.735168

Table 4.1: Case study problem customer data

Vehicle ID Load Capacity Fuel Type Fuel Tank Capacity
1 80 P 50
2 100 D 40
3 50 P 30
4 40 D 60
5 150 P 100

Table 4.2: Case study problem vehicle data

43

Figure 4.1: Screening experiment results and normal probability plot

Figure 4.2: Time slice one internode distance matrix

44

Figure 4.3: Time slice one internode travel-time matrix

Figure 4.4: Time slice two internode distance matrix

45

Figure 4.5: Time slice two internode travel-time matrix

Figure 4.6: Customer geographical locations

46

Tour ID Tour ID
1 2

Vehicle ID Vehicle ID
2 5

Tour Distance Tour Distance
94.76 km 160.12 km

Node ETA Node ETA
1 0 1 0
15 74 21 116
13 136.41 20 173.49
8 198.47 19 235.85
7 257.46 18 268.5
5 329.95 16 331.14
4 370.14 11 393.02
2 430.51 17 435.43
3 456.48 10 506.34
6 480.94 9 530.98
1 519.24 14 561.6

12 597.54
1 673.38

Table 4.3: Case study problem results

47

Figure 4.7: Tour one

48

Figure 4.8: Tour two

49

Chapter 5

Re�ection

This project has presented several obstacles during its span. Some notable ob-
stacles include: a one-and-a-half month delay in its initiation due to delayed au-
thorisation by project stakeholders; learning the programming language, Java,
without assistance and with very limited programming experience. As a result,
the climax of this project is its conclusion. It must however be acknowledged
that this project, along with all its obstacles, has provided an incredibly fruit-
ful learning experience. If it were not for the di�culties encountered during
the span of this project, the learning experience o�ered by the project would
likely have been signi�cantly less fruitful. The developed solution algorithm is
capable of achieving the targets which were initially set for it. It is capable
of solving a considerable array of problem instances which may involve one or
several depots, a heterogeneous vehicle �eet or a homogeneous vehicle �eet and
instances with di�ering magnitudes, details and levels of restrictiveness. With
optimisation algorithms, metaheuristic algorithms in particular, there is always
an opportunity for improvement. A considerable amount of experimentation
and parameter tuning has already been undertaken, however, as with a high-
performance vehicle, the desire for yet further improved performance may set
the wheels in motion once more.

50

References

Toth, P. and Vigo, D. eds., 2002. The vehicle routing problem. Philadelphia:
Society for Industrial and Applied Mathematics.

Goel, A. and Gruhn, V., 2005. Solving a dynamic real-life vehicle routing prob-
lem. In: Haasis, H., Kopfer, H. and Schønberger, J. eds., 2005. Operations
Research Proceedings 2005, Bremen: Springer, pp.367-372.

Gendreau, M., Potvin, J., Bräumlaysy, O., Hasle, G. and Løkketangen, A.,
2007. Metaheuristics for the vehicle routing problem and its extensions: a
categorised bibliography. In: Golden, B., Raghavan, S. and Wasil, E. eds.,
2008. The vehicle routing problem: latest advances and new challenges, Op-
erations Research/Computer Science Interfaces, Vol. 43, pp.143-169.

Rizzoli, A., Montemanni, R., Lucibello, E. and Gambardella, L., 2007. Ant
colony optimisation for real-world vehicle routing problems, Computer Science

Collection, pp.135-151, online Springerlink.

Joubert, J.W., 2003. An initial solution heuristic for the vehicle routing and

scheduling problem. MEng thesis. University of Pretoria, Pretoria.

Joubert, J.W., 2006. An integrated and intelligent metaheuristic for constrained

vehicle routing. PhD thesis. University of Pretoria, Pretoria.

Winston, W.L. and Venkataramanan, M., 2003. Introduction to mathematical

programming, Operations Research: Volume One. Fourth Edition. Belmont:
Brooks/Cole.

Ta³, D., Daellert, N., van Woensel, T. and de Kok, A.G., 2012. Vehicle routing
problem with stochastic travel times including soft time windows and service
costs. Computers & Operations Research, 40 (1), pp.214-224.

Xu, J., Chiu, S.Y. and Glover, F., 1998. Fine-tuning a tabu search algorithm
with statistical tests. Operations Research, 5 (3), pp.233-244, online Elsevier.

Ridge, E., 2007. Design of experiments for the tuning of optimisation algorithms.
PhD thesis. University of York, York.

Montgomery, D.C. and Runger, G.C., 2007. Applied statistics and probability

for engineers. 4th ed. John Wiley and Sons Inc.

51

Glossary

Alias An aliased e�ect is an e�ect on the response variable of interest which
cannot be attributed to a unique factor or a unique factor combination.
40

E�ect The mean change in the response variable of interest brought about by
the level of a factor in concern. 40

Factor The factors which an experiment investigates are those parameters
which the experimenter suspects have an impact upon some response vari-
able of interest. 40

Level The levels of a factor are the values which the factor can assume in the
experiment. 40

Tour is a set of customers served by a single vehicle. Each tour starts and ends
at a depot. 17

Treatment A treatment is a speci�c level of a factor of interest or a combina-
tion of factors, each of which assume a speci�c level. 40

52

Acronyms

CVRP capacitated vehicle routing problem. 14, 15

DCVRP capacitated and distance-constrained vehicle routing problem. 14

DOE design of experiments. 39

GRASP greedy randomised adaptive search procedure. 18

MAD mean absolute deviation. 32

MDVRP multiple depot vehicle routing problem. 14, 16

MDVRPTW multiple depot vehicle routing problem with time windows. 22

NP non-determinant polynomial-time. 1, 7, 17

OFAT one-factor-at-a-time. 39

SA simulated annealing. 19

TSP travelling salesman problem. 6

VNS variable neighbourhood search. 18

VRP vehicle routing problem. 1, 6, 7, 17, 19

VRPB vehicle routing problem with backhauls. 14, 15

VRPBTW vehicle routing problem with backhauls and time windows. 14

VRPPD vehicle routing problem with pickup and delivery. 14, 16

VRPPDTW vehicle routing problem with pickup, delivery and time windows.
14

VRPTW vehicle routing problem with time windows. 14, 15, 17, 21, 31, 41

53

	Introduction
	Problem Statement
	Potential Solution Strategies
	Solution Strategy
	Project Scope
	Input
	Output
	Dataset Interfaces

	Case Study
	Considerations
	Document Structure

	Literature Review
	Introduction
	Problem Variants
	Capacitated Vehicle Routing Problem
	Vehicle Routing Problem with Time Windows
	Vehicle Routing Problem with Backhauls
	Vehicle Routing Problem with Pickup and Delivery
	Multiple Depot Vehicle Routing Problem
	Applications

	Metaheuristics
	Simulated Annealing
	Tabu Search
	Ant Colony Optimisation
	Application

	Conclusion

	Model Formulation
	The Problem
	Problem Characteristics
	Mathematical Model

	Solution Algorithm
	Important Concepts
	Initial Solution Algorithm
	Tabu Search Algorithm

	Verification
	Solomon's VRPTW Benchmarking Problems
	Convergence and Repeatability of the Solution Algorithm

	Conclusion

	Implementation
	Introduction
	Parameter Tuning
	Design of Experiments
	Screening Experiment

	Case Study Problem
	Conclusion

	Reflection
	References
	Glossary
	Acronyms

