Ultrasound Imaging of the Anal Sphincter Complex: A Review

Authors:

1. Zeelha Abdool, FCOG (SA)
 Consultant Obstetrician & Gynaecologist,
 University of Pretoria
 Pretoria, South Africa, 0002

2. Abdul H Sultan MD, FRCOG
 Consultant Obstetrician & Gynaecologist,
 Mayday University Hospital,
 London Road, Croydon, Surrey, CR7 7YE, United Kingdom.

3. Ranee Thakar MD, MRCOG
 Consultant Urogynaecologist,
 Mayday University Hospital,
 London Road, Croydon, Surrey, CR7 7YE, United Kingdom.

Author for correspondence:
Abdul H Sultan MD, FRCOG
Consultant Obstetrician & Gynecologist,
Mayday University Hospital,
London Road, Croydon, Surrey, CR7 7YE, United Kingdom.
Tel: # 44 208 401 3154
Fax: # 44 208 410 3681
Email: abdul.sultan@mayday.nhs.uk
Abstract:

Endoanal ultrasound is now regarded as the gold standard for evaluating anal sphincter pathology in the investigation of anal incontinence. The advent of 3 dimensional ultrasound has further improved our understanding of the 2 dimensional technique. Endoanal ultrasound requires specialised equipment and its relative invasiveness has prompted clinicians to explore alternative imaging techniques. Transvaginal and transperineal ultrasound have been recently evaluated as alternative imaging modalities. However, the need for technique standardisation, validation and reporting is of paramount importance. We conducted a Medline search (1950-Feb 2010) and critically reviewed studies using the three imaging techniques in evaluating anal sphincter integrity.

Introduction:

Over the last three decades the anal sphincter complex has been the subject of increasing interest involving a variety of disciplines including obstetricians, colorectal surgeons, gastroenterologists, physiotherapists, paediatric surgeons, anatomists, radiologists, and midwives. Obstetric trauma is the major cause of fecal incontinence. However the precise mechanism of maintaining continence is complex, and our understanding of the major mechanism underlying the development of anal incontinence has evolved from that of progressive pudendal neuropathy1,2, to that of unrecognised mechanical anal sphincter trauma at the time of vaginal delivery 3-5. Although cadaveric dissections6, physiological testing7, ultrasound images8 and Magnetic Resonance Imaging9, have enabled
progressive improvement in understanding the anatomy, function and pathophysiology of the anal sphincter, much remains to be understood.

The technique of anal endosonography was first described by Law and Bartram in 1989 using a B&K (Bruel & Kjaer, Naerum, Denmark) Type 1846 ultrasonographic scanner with a 7-MHz rotating endoprobe. The sonographic anatomy of five layers of the anal canal were described (mucosa, submucosa, internal anal sphincter (IAS), intersphincteric plane and EAS). In 1993 Sultan et al correlated endosonographic findings with anatomical dissection and rectified the previous description. In 1994, they demonstrated the normal sonographic anal sphincter anatomy and highlighted differences between males and females. Using histological confirmation as the 'gold standard' they then validated the sonographic images of EAS defects and established a 100% accuracy of EAS defects when compared with clinical assessment by colorectal surgeons (50%), manometry (75%) and electromyography (75%). Sultan et al then validated the appearance on internal sphincter defects by prospectively comparing images before and after lateral internal sphincterotomy. Anal endosonography is currently regarded as the diagnostic tool of choice in the investigation of anal incontinence. Recently, 2 dimensional (D) and 3D volumetric endovaginal ultrasound (EVUS) and transperineal ultrasound (TPUS) have been proposed as alternative imaging modalities to describe anal sphincter integrity.

The aim of this review was firstly to critically evaluate the different ultrasound imaging modalities of the anal sphincter complex, and analyse comparator studies between the three imaging modalities to determine the reproducibility of
anal sphincter morphology and biometry among the three different methods, namely endoanal, endovaginal and transperineal. We conducted a Medline search (1950- Feb 2010) using the keywords, ‘endoanal,’ ‘endovaginal,’ ‘transvaginal,’ ‘transperineal,’ ‘translabial,’ and ‘anal sphincter’. For the purpose of this article the term ‘transanal’ is synonymous with the term ‘endoanal’; ‘transvaginal’ with ‘endovaginal’ and ‘translabial’ with ‘transperineal’.

Anal endosonography:
Traditionally EAUS is performed using a 2-dimensional (2-D) ultrasound scanner with a 7 or 10-MHz rotating endoprobe (focal range 5-45mm) providing a 360 degrees axial view of the anal canal. The patient is usually scanned in the left lateral position, although the prone position may be preferred by others. After the probe is inserted into the anal canal up to approximately 6cm it is gently withdrawn down the anal canal during which cross-sectional images of the puborectalis muscle, the longitudinal muscle, EAS, IAS, and the anal epithelium are obtained (Fig 1).
In earlier studies anal sphincter defects were noted at three areas along the anal canal, i.e., the upper (proximal), middle and lower anal canal. Using these defined areas, Sultan et al in 19933 determined that at 6 weeks after delivery 35\% of primiparous women had defects of either the IAS, the EAS or both and an increment of 4\% in the multiparous women (from 40 to 44\%). A B & K scanner with a rotating rectal probe fitted with a 7-MHz transducer was used.
In 1999, Gold et al.15 noted that the intraobserver and interobserver agreement for anal sphincter injury was influenced by the ease with which the IAS and EAS were visualised endosonographically. Using a B&K (type 3535) scanner with a 1850 axial endoprobe fitted with a 10-MHz transducer, the boundaries of the proximal, middle and distal anal canal were defined as the following, i.e., proximal anal canal—at the most cranial level of the puborectalis; middle anal canal—level where the EAS forms a complete ring; distal anal canal—level below which the IAS terminates. The hypoechogenic nature of the IAS made it more easily identifiable than the EAS since the echogenicity of the EAS was similar to that of the proximal structures, i.e., the longitudinal muscle medially and ischioanal fat laterally. In this study of 51 adults referred for investigation of possible sphincter injury, there was no disagreement with respect to IAS tears but some disagreement with the assessing the radial and linear extent as well as the sonographic boundaries of the EAS tears. The overall interobserver agreement with respect to diagnosis of IAS and EAS tears was found to be ‘very good’ (weighted K of 0.8). This investigator then performed 3D EAUS reconstructions on 24 consecutive patients with sphincter defects on EAUS, with specific attention to the radial and longitudinal extent of defect. The shorter anterior part of the EAS (as compared to males) and the direct relationship between the radial and longitudinal extent of sphincter trauma was noted using volume imaging16. At 10 weeks postpartum, Williams et al found that the total incidence of sphincter trauma using EAUS was 29%, with 11% affecting the EAS17 (similar to the finding of Sultan et al; 35% sphincter trauma at 6 week
postpartum). The author also found a significant decrease in the length of the anterior EAS in a group of 22 women after a atraumatic vaginal delivery and no endosonographic evidence of sphincter trauma after delivery \(^{18}\). (Table 1).

2D EAUS generates cross-sectional images in the axial plane only, and remains the mainstay of sphincter evaluation. As opposed to 2D static ultrasound, 3D imaging allows volume measurements which may be displayed as either multiplanar images (usually as 3 orthogonal planes, namely, coronal, sagittal and axial) \(^{16,17,18}\), and rendered images which display the entire volume in a single image, or tomographic slicing which allows better visualisation of defects (Figure 4,5). Furthermore, the images can be rotated and sliced to enable visualisation from different angles. Off line analysis using proprietary software is also an advantage and has important research implications, as the image can be stored and reviewed for a second opinion and also shortens the duration of procedure.

Investigators in the field have noted that most endoanal scanners are located in specialised radiological centres and also require specialized training, and thus TVUS and TPUS have been evaluated as alternative imaging modalities. It must be noted that images obtained with both these techniques might be complex and thus require training as well. Transvaginal probes and the standard convex 5-MHz probe are available in almost all obstetric and gynaecologic units. With this in mind several studies followed using the transvaginal and transperineal route to establish its place in the evaluation of the anal sphincter. The advantages and disadvantages of the 2 methods are mentioned in the conclusion.
<table>
<thead>
<tr>
<th>Aim</th>
<th>Cohort assessed</th>
<th>Probe characteristics</th>
<th>Technique</th>
<th>2D/3D</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gold et al 16</td>
<td>Intraobserver and interobserver agreement of sonographic measurements of the anal structures</td>
<td>51 patients referred for possible anal sphincter abnormalities</td>
<td>Axial endoscopic probe, 10-MHz</td>
<td></td>
<td>Overall interobserver agreement for diagnosis of EAS and IAS was found to be very good, κ=0.8</td>
</tr>
<tr>
<td>Gold et al 16</td>
<td>Relationship between radial and linear extent of anal sphincter tear</td>
<td>20 controls and 24 patients with faecal incontinence</td>
<td>N.S</td>
<td></td>
<td>3D multiplanar imaging revealed a direct relationship between the length of anal sphincter tear and radial extent</td>
</tr>
<tr>
<td>Williams et al 17</td>
<td>Incidence of obstetric trauma to the EAS and related structures</td>
<td>55 women scanned at a median of 33 weeks gestation and 10 weeks postpartum</td>
<td>B & K Sirius 3D system, rotating transducer, 10-MHz</td>
<td></td>
<td>3D Total incidence of obstetric sphincter trauma was 29% with 11% affecting the EAS</td>
</tr>
<tr>
<td>Williams et al 16</td>
<td>Assess morphologic change in anal sphincter in absence of endosonographic evidence of trauma after vaginal delivery</td>
<td>22 women with no evidence of tears on post delivery scans</td>
<td>B & K Sirius 3D system, rotating transducer, 10-MHz</td>
<td></td>
<td>3D Multiplanar anal endosonography allows longitudinal measurement of anal sphincter. After a vaginal delivery there are changes in the anal sphincter morphology</td>
</tr>
</tbody>
</table>

N.S-Not stated
Vaginal endosonography:

In 1994 Sultan et al described a new approach to imaging the anal canal at rest, using a B&K rotating endoprobe fitted with a 7-MHz transducer. Subjects included 20 females (10 healthy volunteers and 10 with faecal incontinence). With the patient lying in the left lateral position the probe was inserted 3 cm into the vagina. By gradually withdrawing the probe the puborectalis muscle, the EAS, IAS, anal submucosa and anal cushions were clearly imaged. The shorter EAS anteriorly in females as seen previously during endoanal endosonography was also confirmed. When vaginal sonographic findings were correlated with anal endosonography it was found that anal endosonography consistently underestimated the thickness of the internal anal sphincter (2.3 ± 0.5 vs 3.2 ± 1.2mm; mean ± standard deviation), and this difference in thickness may be explained by the distension of the sphincter caused by the endoanal probe.

Sandridge et al performed vaginal endosonography on 70 women as part of an indicated endovaginal scan. Patients with previous anorectal surgery and complaints of fecal or flatus incontinence were excluded. Using an Aloka 650 CL scanner fitted with a 5-MHz phased array vaginal probe an attempt was made to obtain at least 3 images per subject in a dorsal lithotomy position. The probe was placed vertically just inside the hymenal ring with the tip directed towards the floor.

The anal length and diameter, the thickness and angle of the puborectalis muscle, the thickness of the IAS and EAS were measured. In this study it was found that 36% of subjects had occult IAS defects and 29% had occult EAS
defects, and the sphincter measurements were similar to previously published data based on EAUS, MRI and cadaveric dissections. These findings were not directly compared with anal endosonography. Alexander et al21 and Poen et al22 demonstrated that apart from detecting sphincter defects, transvaginal ultrasound (TVUS) was also useful in determining other causes of fecal incontinence such as rectal fistulae and abscesses. Although TVUS is more readily accessible in most units, is cheaper than the endoanal probe and eliminates distortion of anal epithelium, interpretation of images requires more expertise and clear images of the full length of anal canal are not always obtainable23. This may be due to the utilisation of the endoanal probe for transvaginal scanning; the endoanal probe is approximately 55cm long and obtaining optimum views of the anal canal may not be ergonomically possible especially when the patient is in the supine position16,22,24. A summary of findings of relevant studies is shown in Table 2 and 4. With TVUS, it is important to keep the transducer inserted into the vagina in a neutral position, since excessive pressure of the transducer on the perineum and inappropriate angle of incidence of the ultrasound beam to the anal sphincter may distort images and lead to erroneous results.

Transperineal ultrasound:

In the quest for a less invasive, user friendly, more accessible and patient acceptable imaging modality the transperineal approach was evaluated. Similar to the technological advancement of EAUS and TVUS, studies were performed
<table>
<thead>
<tr>
<th>Aim</th>
<th>Cohort assessed</th>
<th>Probe characteristics</th>
<th>Technique</th>
<th>2D/3D</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sandridge et al. 20</td>
<td>70 women as part of an indicated endovaginal scan</td>
<td>Aloka 650 machine, 5-MHZ phased array vaginal probe; Position: dorsal lithotomy Probe: held vertically just inside hymenal ring with the tip directed posteriorly</td>
<td>2D</td>
<td>29% occult EAS defects and 36% occult IAS defects. Anal sphincter measurements using vaginal ultrasound are comparable to endoanal sonoanography</td>
<td></td>
</tr>
<tr>
<td>Alexander et al. 21</td>
<td>28 women complaining of faecal incontinence underwent transvaginal US</td>
<td>Acuson (side-fire endorectal probe), 5-7-MHz; left lateral decubitus position</td>
<td>2D</td>
<td>Fistulas, peri-rectal abscesses (25%) and pudendal injuries (15%) account for other causes of faecal incontinence</td>
<td></td>
</tr>
</tbody>
</table>
with TPUS to determine the incidence occult sphincter defects, normal anal sphincter parameters as well as its accuracy in detecting sphincter defects. Another advantage of transperineal scanning is the ability to study the dynamic interaction between the pelvic floor and pelvic viscera without using an endocavity probe (endovaginal and endoanal). TPUS is usually performed with the patient placed in the dorsal lithotomy, with the hips flexed and abducted, and the convex transducer positioned on the perineum between the mons pubis and the anal sphincter.

In a group of 139 primiparous women, Valsky et al. found that 7.9% had occult damage to the anal sphincter using 3D TPUS. In this study 91.4% of acquired volumes were adequate for interpretation. In the group that sustained third degree tears (repaired by overlap technique) TPUS was possible as early as 48 hours postpartum. He described the ‘half moon sign’ as IAS thinning in the area of damage and opposite thickening, as well as an abnormal appearance of mucosal folds as signs indicative of sphincter damage. A 5-9MHz vaginal probe (Olson 730, GE) was used. Suboptimal imaging of the EAS was noted in 15% in the 12 o’clock area. Hall et al. placed a 4-8MHz curvilinear endovaginal probe (Phillips 1022) at the introitus of 60 Hispanic and Caucasian women presenting for a gynaecologic ultrasound for symptoms other than pelvic organ prolapse and urinary or faecal incontinence. The aim was to determine normal values of IAS and EAS measurements at the proximal, middle and distal levels of the anal canal using clock face terminology. This was possible for the IAS at all levels but not for the EAS, which was measured only at the distal level. In a subgroup of intact asymptomatic women (n=36), measurements were comparable to...
previously published endoanal data \(^{15}\). Peschers et al \(^{27}\) applied a conventional 5MHz convex transducer (Siemens SI 400) to the perineum (exoanal ultrasound) of a heterogeneous group of 68 females (25 with faecal incontinence, 11 asymptomatic nulliparous and 32 asymptomatic parous women). In both axial and sagittal planes all the layers of the anal sphincter complex as described by EAUS were visualised. The presence of sphincter defects were determined from video records by two independent examiners blinded to each other’s results. There was 100\% agreement for IAS defects, and one disagreement about an EAS defect. All defects detected by the transperineal method were verified at sphincter reconstructive surgery (5 patients). Using a 5-9MHz endovaginal transducer (Voluson 730, GE) placed at the introitus and then directed posteriorly on the perineum Lee et al \(^ {28}\) acquired 3D volumes to evaluate dynamic changes in anal sphincter measurements and the levator hiatus during rest and squeeze in 22 asymptomatic nulliparous women in the lithotomy position. While the IAS was easily defined, the EAS and intersphincteric space were not. There was no difference in IAS transverse thickness at the proximal level (puborectalis level) and distal level (middle of the EAS) at 3 and 9\(\circ\)clock positions during rest and squeeze. Huang et al studied the biometry of the anal sphincter in 55 nulliparous Chinese women, and also demonstrated that all the levels of the EAS can be visualised using an endovaginal probe placed at the perineum, and that the EAS was thinner at 12 o’clock \(^ {29}\). As can be seen in Table 3, many of the TPUS studies utilised vaginal transducers placed on the perineum with alteration of the axis to obtain optimal views. Since endocavity transducers have a higher
<table>
<thead>
<tr>
<th>Aim</th>
<th>Cohort assessed</th>
<th>Probe characteristics</th>
<th>Technique</th>
<th>2D/3D</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Valsky et al</td>
<td>152 primiparous women Group 1 included 139 women without clinically recognised third or fourth-degree perineal tears who were examined 24–72 h following vaginal delivery. Group 2 included 13 women with clinically recognised third-degree perineal tears, who were examined from 48 h postpartum up to 4 months following surgical repair by the overlapping technique.</td>
<td>Vaginal transducer 5–9-MHz (Voluson 730 Expert, GE)</td>
<td>Position: not stated Probe: placed on the fourchette and perineal body and scanned in the transverse and sagittal planes.</td>
<td>3D</td>
<td>Scanning possible in 91.4% of cases Occult sphincter damage in 7.9% (group) IAS in all cases and EAS in 84.6% Determined reference data in postpartum women</td>
</tr>
<tr>
<td>Hall et al</td>
<td>Sixty women presenting for gynecologic ultrasound for symptoms other than pelvic organ prolapse or urinary or anal incontinence</td>
<td>4-8 MHz endovaginal transducer</td>
<td>Position: lithotomy Probe: directed posteriorly towards the anal sphincter complex and aligned nearly perpendicularly to the floor</td>
<td>2D</td>
<td>Anal sphincter measurements for intact asymptomatic and asymptomatic women were comparable to EAUS and MRI data</td>
</tr>
<tr>
<td>Peschers et al</td>
<td>68 patients (25 with faecal incontinence, 11 asymptomatic nulliparous and 32 asymptomatic parous women)</td>
<td>Conventional 5-MHz convex transducer (Siemens SI 400)</td>
<td>Position: lithotomy Probe: placed on the perineal body and directed perpendicular to the longitudinal axis of the anal canal. Angle adjusted until all layers of the anal canal visualised</td>
<td>2D</td>
<td>Anal sphincter anatomy can be visualised with TPUS. 100% agreement for IAS defects One discordant result in EAS group</td>
</tr>
<tr>
<td>Lee et al</td>
<td>22 nulliparous healthy female volunteers</td>
<td>Endovaginal transducer 5–9-MHz (Voluson 730 GE)</td>
<td>Position: lithotomy Probe: placed on the perineum at the vaginal introitus and directed posteriorly on the perineum in a mid-sagittal orientation</td>
<td>3D</td>
<td>TPUS is useful in evaluating anal sphincter anatomy, and measurements are comparable to EAUS. Lontitudinal muscle</td>
</tr>
</tbody>
</table>
| Huang et al | 55 nulliparous Chinese women | Transvaginal transducer - 5-9 MHz (Voluson 730 GE) | Position: supine, probe placed at the introitus in the mid-sagittal plane and then at the perineum after turning the probe 60–80° downward | 3D Post processing with GE Kretz 4D View, version 5.0, software package | Morphology of anal sphincter clearly demonstrated on 3D TPUS and biometry is reproducible, however EAS significantly anteriorly. Longitudinal muscle not clearly visualized. Multiplanar imaging allowing serial paramedian views, and post processing can be repeated. Automated data acquisition.
resolution (4-8MHz, 5-9 MHz) than transperineal transducers (5 MHz), these studies labelled as TPUS represent a different subset of the transperineal ultrasound imaging modality and are thus not ‘true transperineal scanning’.

Comparative studies:
Frudinger et al reported that when compared to EAUS, TVUS revealed a sensitivity of 44% and specificity of 96% for the detection of IAS defects and a sensitivity of 48% and specificity of 88% for EAS defects, and an interobserver agreement of 88.6% for identifying sphincter defects. Stewart et al documented that their TVUS and EAUS sonographic findings were in agreement in a group of 40 out of 44 patients imaged prospectively (24 with intact sphincters and 20 with sphincter defects). Poen et al and Ramirez et al highlighted the added value of TVUS in identifying perianal pathology (e.g. perianal abscess and fistula) and the ability to clarify a ‘doubtful EAUS study’. When compared to EAUS, difficulties encountered with TPUS include poor visualisation of the lateral border of the EAS and the anal mucosa and submucosa cannot be viewed as a separate entity. In this study by Roche et al, TPUS was able to detect all cases of EAS defects identified on EAUS (6 patients) and the IAS thickness obtained by TPUS was comparable to the EAUS findings. However, Lohse et al found a significant difference in both the IAS
and EAS thickness when comparing measurements obtained on TPUS and EAUS in 64 women attending a urogynaecological clinic complaining only of urinary incontinence. Two independent operators performed the scans using a 5-MHz linear probe (Aloka SSD) and a 7.5-MHz rectal endoprobe. In this study the sensitivity for the detection of anal sphincter defects using TPUS was 50%. However, the authors did not mention the technique of TPUS or the levels along the length of the sphincter used to detect lesions (See Table 5). In both these studies the average thickness of the IAS was greater on TPUS than on EAUS, and the average thickness of the EAS was less on TPUS than on EAUS. (See table 4 and 5). Currently there are limited transvaginal and transperineal ultrasound studies that are directly compared to EAUS. Although the sensitivity for the detection of sphincter defects ranges between 44 to 50% for TVUS and TPUS respectively, the higher resolution of vaginal probes and the larger field of view of transperineal probes maybe of added value.

Conclusion:
The use of ultrasound in the evaluation of pelvic floor disorders has increased dramatically (Figures 2, 3, 4). It has been shown to be useful, safe and well tolerated by patients. Imaging has evolved from static 2D imaging to dynamic 3D volumetric and recently even 4D imaging.

This review highlights that normal anal sphincter morphology and anal sphincter measurements can be obtained using both transvaginal and transperineal routes. From the literature it is evident that the incidence of occult anal sphincter
Table 4: Comparator studies- TVUS versus EAUS

<table>
<thead>
<tr>
<th>Aim</th>
<th>Cohort assessed</th>
<th>Probe characteristics</th>
<th>Technique</th>
<th>2D/3D</th>
<th>Outcome</th>
<th>Difficulties noted/Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frudinger et al 30</td>
<td>47 parous and 1 nulliparous(75% complained of fecal incontinence)</td>
<td>Anal and Vaginal US with B&K rectal endprobe, 10-MHz; Modified vaginal probe in 5 patients, B&K, 10 MHz transducer</td>
<td>Position: Supine left lateral position? Probe: Inserted 3 cm into vaginal and gradually withdrawn</td>
<td>2D</td>
<td>TVUS: Sensitivity and specificity for detection of IAS defects was 44% and 96%; and for EAS defects was 48% and 88% respectively</td>
<td>Limited anatomic information on TVUS due to axial plane imaging only</td>
</tr>
<tr>
<td>Poen et al 22</td>
<td>56 women (36 patients with faecal incontinence, 20 patients with perianal sepsis)</td>
<td>Anal and Vaginal US with B&K, 7-MHz rotating endprobe, probe inserted into vagina until rectum was visualised</td>
<td>Patient position not stated Probe: Inserted into the vagina until the rectum was visualised and gradually withdrawn while images of the PR and anal sphincters were taken</td>
<td>2D</td>
<td>TVUS increased the diagnostic yield in 25% (added important information- location of abscess and fistulae tracts)</td>
<td>Limited focal range of the vaginal probe in viewing the dorsolateral part of the EAS</td>
</tr>
<tr>
<td>Stewart et al 23</td>
<td>50 patients of which 32 were referred for faecal incontinence and rest for other anorectal problems. 44 had both EAUS and TVUS</td>
<td>EAUS: B&K, with 10 MHz rotating endprobe TVUS: with 7.5 MHz biplane side-fire transrectal probe</td>
<td>Position: EAUS- left lateral decubitus position; TVUS- supine position Probe: For TVUS, Special attention to depression of the probe towards the perineal body as the probe is withdrawn</td>
<td>2D</td>
<td>TVUS is accurate as EAUS for sphincter evaluation</td>
<td>TVUS and EAUS performed by same radiologist</td>
</tr>
<tr>
<td>Ramirez et al 24</td>
<td>30 females with faecal incontinence (3 sepsis from episiotomy, 4 previous anal surgery, 3 complained of rectal prolapse)</td>
<td>Both EAUS and TVUS- B&K, 7-MHz endoprobe;</td>
<td>Patient position not stated Probe: Inserted into the vagina until the rectum was visualised and gradually withdrawn while images of the PR and anal sphincters were taken</td>
<td>2D</td>
<td>TVUS more valuable in a group of patients with a ‘doubtful’ EAUS study</td>
<td>TVUS is difficult to perform and 1 in 4 patients could be adequately scanned (reason not stated), but TVUS clarified doubts in 10% of cases arising from findings on EAUS</td>
</tr>
</tbody>
</table>
Table 5: Comparator studies- TPUS versus EAUS

<table>
<thead>
<tr>
<th>Study</th>
<th>Population Details</th>
<th>Ultrasound Details</th>
<th>Position Details</th>
<th>Modality</th>
<th>Findings</th>
<th>Additional Info</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roche et al</td>
<td>20 healthy nulliparous women 20 postpartum primiparous women</td>
<td>TPUS: Hitachi convex & linear probe, 3.5-7.5 MHz, EAUS: B&K 360° 7-MHz rotating probe</td>
<td>Position: dorsal lithotomy, Probe: placed on the perineum between the anus and introitus and inclined until all levels visualised</td>
<td>2D</td>
<td>TPUS demonstrated all EAS tears, and all IAS tears except one</td>
<td>Cannot clearly visualise the anal mucosa separate from the submucosa</td>
</tr>
<tr>
<td>Lohse et al</td>
<td>64 urogynaecological patients with urinary incontinence only</td>
<td>TPUS: Aloka SSD 2000, 5MHz linear probe, EAUS: Aloka SSD 2000 7.5 MHz endoanal probe</td>
<td>Patient: supine, Probe: not stated</td>
<td>2D</td>
<td>Significant difference between EAS and IAS measurements</td>
<td>Sensitivity of TPUS for the diagnosis of sphincter lesions using EAUS as gold standard is 50%</td>
</tr>
</tbody>
</table>

Abbreviations: EAUS, endoanal ultrasound; TVUS, transvaginal ultrasound; TPUS, transperineal ultrasound, EAS, external anal sphincter; IAS internal anal sphincter, PR, puborectalis
Figure 2a: Endoanal scan demonstrating the “U” shaped puborectalis muscle which attaches to the pubic rami anteriorly (B&K, Type 2052, frequency 16 MHz, focal range 50mm)

Figure 2b: Endoanal scan demonstrating the internal anal sphincter (white arrow), and the external anal sphincter (black arrow) (B&K, Type 2052, frequency 16 MHz, focal range 50mm)
Fig 2c: 3d endoanal ultrasound demonstrating the circumference/width as well length of the anal sphincter defect (white arrows) (B&K, Type 2052, frequency 16 MHz, focal range 50mm)
Figure 3a: Endovaginal scan demonstrating the puborectalis muscle (white arrow) (B&K, Type 8819, frequency 5-9 MHz, focal range 110mm)

Figure 3b: Endovaginal scan demonstrating the internal anal sphincter (white arrow), and the external anal sphincter (black arrow) (B&K, Type 8819, frequency 5-9 MHz, focal range 110mm)
damage is comparable between EAUS and TVUS (29%) but is significantly lower with TPUS (7.9%) (highlighted in tables 1, 2 and 3); and thus more TPUS studies are necessary. Advantages of the transvaginal and transperineal route include availability of commonly used transducers, absence of distortion of the anal canal and better patient acceptability. The transvaginal route may be more valuable in patients with a short anal canal and wide introitus, and since the need for insertion of an endocavity probe is negated with TPUS, it may be more acceptable and less painful in patients with perianal pathology.

There is a need for further corroboration, technique standardisation (especially with TPUS) and reporting of defects as current studies differ in methodology and include heterogeneous samples. Currently, 3D EAUS is still the preferred method of sphincter defect evaluation. Future studies should focus on the predictive value of both TVUS and TPUS as compared to EAUS in the detection of sphincter defects.

References
Figure 4a: 2D Transperineal scan demonstrating the puborectalis muscle (B&K, Transperineal Type 8802, frequency 4.3-6 MHz, focal range 6-114mm).

Figure 4b: 2D Transperineal scan demonstrating the internal anal sphincter (white arrow), and the external anal sphincter (black arrow). Note that the EAS is circumferential at a more distal level to the PR (B&K, Transperineal Type 8802, frequency 4.3-6 MHz, focal range 6-114mm).

Figure 5a: 3D Transperineal scan demonstrating good sphincter repair (white arrow) (courtesy of Prof H.P. Dietz).

Figure 5b: 3rd degree tear with residual defect between 10 and 1 o’clock as demonstrated on 3D tomographic slicing (white arrow) (courtesy of Prof H.P. Dietz).

26. Hall RJ, Rogers RG, Saiz L, Qualls C. Translabial ultrasound assessment of
the anal sphincter complex: normal measurements of the internal and external anal sphincters at the proximal, mid-, and distal levels. Int Urogynecol J Pelvic Floor Dysfunct. 2007; 18: 881-888.

Gynaecol 2002; 103:79-82.