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Abstract – Engineers and scientists are often faced with the problem of objectively comparing
time histories of measured and/or simulated data. This paper presents a reliable and intuitive
validation metric for use in the validation process. The proposed validation metric is able to
quantify the agreement/disagreement between deterministic system response quantities of
interest obtained from measurements on a physical system and predictions from a mathematical
model. The validation metric is based on the relative error and the challenges concerning the use
of the relative error on periodic signals are addressed. The validation metric is compared to
similar  metrics  and  their  advantages  and  limitations  are  discussed.  The  results  show  that  the
proposed validation metric gives a comprehensive error that is able to quantify the agreement
between two periodic signals and is easily interpretable.
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1. Introduction

Mathematical and computer modelling have been playing an increasingly important role in the
computer aided engineering (CAE) process of many products in the last 60 years. Simulation
offers  great  advantages  in  the  development  and  analysis  phase  of  products  and  offers  a  faster,
better and more cost effective way than using physical prototypes alone. Engineers develop
mathematical models of varying complexity to emulate various physical systems. The engineer
needs to evaluate the mathematical model and decide whether the model does indeed represent
the physical system to an acceptable level of accuracy. Therefore, in order to obtain meaningful
simulation models it is necessary to verify and validate them. The need for a formal validation
method for quantifying the accuracy of simulation models emulating physical systems has
become increasingly important with the greater reliance on the CAE process during product
development. The drive for a formal validation method is fuelled by the need for obtaining
simulation models which satisfy accuracy requirements, and can be used with confidence to base
key engineering and business decisions on.

The verification and validation (V&V) process is an important part of any model that is created to
emulate physical events and engineering systems. Reference [1] states that “the terms verification
and validation have a wide variety of meanings in the various technical disciplines”. Similarly [2]
states that “the broad interest in V&V in many different scientific areas has led to a diverse and
often incompatible list of definitions and concepts as it pertains to different disciplines.
Moreover, despite the fact that modern views of the subject have been under development for
nearly a decade, much remains to be done towards developing concrete approaches for
implementing V&V procedures for particular applications”. Reference [1] refers to work that
played a major role in attempting to standardize the terminology within the engineering
community. Similarly, a committee was formed known as the ASME Committee for Verification
and Validation in Computational Solid Mechanics whose purpose is to develop standards for
assessing the correctness and credibility of modelling and simulation in computational solid
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mechanics. This committee released a guide for the verification and validation in computational
solid mechanics [3]. They give the following definitions for the verification and validation
process:

Verification  - The process of determining that a computational (or simulation) model
accurately represents the underlying mathematical model and its solution.

Validation      - The process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the intended uses of the
model.

Figure 1 gives an overview of the V&V process and the tasks associated with the process. The
two primary elements of a V&V process are 1) the physical system of interest and 2) the
mathematical (or simulation) model that is created to emulate the physical system. An
experimental setup of the physical system is constructed in task (a) from which the experimental
data is obtained. In task (b) measurements or analysis (e.g. Computer Aided Design (CAD)) are
made on the physical system in order to obtain the properties and parameters of the physical
system, such as mass, mass moments of inertia, etc., which are required as inputs to the
mathematical model. The path from the conceptual model to the simulation model is shown as
well as the stages where the code and calculation verification is performed. With the simulation
model verified it can be used to generate the simulation data. From the experimental data and the
simulation data the system response quantity (SRQ) of interest can be obtained. The measured
system response quantity (SRQm) is obtained from the measurements on the physical system and
the predicted system response quantity (SRQp) is obtained from the predictions of the model. The
measured and predicted SRQs are the required inputs into the validation process.

Various uncertainties exist that will affect both the measured and predicted SRQs. Reference [4]
categorizes the sources of uncertainty in the simulation model broadly into uncertainty occurring
in the model inputs, in the numerical approximations or in the model form. Similarly, uncertainty
may exist in the measurements taken during the experiment due to measurement errors. These
measurement errors may arise from various elements such as for example the individual
measuring instruments. The characterization of the numerical approximation errors associated
with a simulation is called verification. Verification, as described in reference [3], is divided into
code verification and calculation verification and is indicated in Figure 1. Reference [4] states
that the characterization of the model form uncertainty is estimated during the validation process.
The uncertainty quantification in the experimental measurements and in the simulation model is
outside the scope of this paper. Therefore, both the measured and predicted SRQs considered in
this study are deterministic. The reader is referred to [1], [4] and [5] for more detail on
uncertainties.

With the SRQs from the experimental and simulation model obtained, the validation process can
commence.  The  validation  process  can  be  divided  into  two  steps  [1].  The  first  step  is  the
quantitative comparison of the measured and predicted SRQs. The measured and predicted data
can however also be compared qualitatively by superimposing them on graphs but the subjective
conclusions on the correlation of bad, good or excellent makes quantifying the accuracy very
difficult. Qualitative validation may be useful in certain scenarios, especially in identifying
possible causes of errors in the model, but its inability to give a quantitative measure of the
agreement/disagreement between the experimental and simulated data makes it difficult to use in
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determining whether the accuracy requirements are satisfied (2nd step of the validation process).
Quantitative comparisons attempt to circumvent the limitations of qualitative comparisons.
Quantitative comparisons consist of comparing defined error measures or error metrics
(validation metrics). Reference [6] makes the following distinction between an error measure and
an error metric: “An error measure provides a quantitative value associated with differences in a
particular feature of time series. An error metric provides an overall quantitative value of the
discrepancy between time series; it can be a single error measure or a combination of error
measures”. The error measures to be used are chosen by the engineer and will vary depending on
the data.  Examples of error measures are steady state gains, response times, peak response times,
percent overshoot for time domain data and peak frequency, peak amplitude ratio and phase angle
for frequency domain data [7]. Reference [7] states however that certain data will not lend itself
to the identification of such error measures. Instead of defining error measures of certain features
of the data, the measured and predicted data can be compared by using error metrics (or
validation metrics) which do not require the extraction of specific features in the data. The
validation metric (or measure of comparison) attempts to give an overall measure of the
comparison between the data being compared. Validation metrics will be discussed in section 2.
It is the authors’ opinion that both quantitative and qualitative comparisons of measured and
predicted responses are useful to employ. During model refinement and fault-finding, qualitative
comparisons can supply the modeller with valuable information and may give much more insight
into the possible causes for the deviation than a validation metric. However, in determining
whether the model is valid or not, the qualitative comparisons should be substituted with a
quantitative comparison method.

The second step of the validation process shown in Figure 1 is concerned with determining
whether the results obtained from the quantitative validation metric satisfies the accuracy
requirements. When the result of the validation metric satisfies the accuracy requirements the
model can be considered to be valid. Alternatively, it may be that the validation metric gives
results that do not satisfy the accuracy requirements. Depending on the reason for the accuracy
requirements not being met one of the two dash-line paths can be taken. Either better/more
experimental data may be required or the model needs to be refined.

Although validation is essential in assuring that the model is valid, validation does have some
shortfalls and the engineer should be aware of them and should try to avoid them. Various studies
([8-10]) validated models against certain parameters and then used them to predict others. For
example, a vehicle model is developed for durability analysis but is only validated against
accelerations. This approach may have certain risks involved such as stated in reference [11].
They use the example of a vehicle doing a severe J-turn with the assumption that the measured
yaw rate and lateral acceleration are available from vehicle tests, but measured normal loads on
the tyres are not. They compare the simulated yaw rate and lateral acceleration of two models of
the same vehicle with the difference being that the centre of gravity height of one of the models is
10%  higher.  Comparing  the  yaw  rate  and  lateral  acceleration  the  models  seem  to  give  similar
results, but comparing the lateral load transfer it becomes clear that there is some discrepancy
between the two models. The importance of validating the model for the correct parameters is
also shown in reference [12].

The focus in this study will be on the validation process and more specifically on the first step of
the validation process concerned with the validation metric. The reader is referred to reference [2]
and [13] for further details on the complete V&V process. The rest of this paper will be
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concerned with the development and evaluation of a quantitative validation metric based on
relative  error  for  use  in  the  first  step  of  the  validation  process.  Of  primary  interest  will  be
quantifying the agreement/disagreement between SRQs that are periodic in nature with a
combination of many frequencies that may or may not oscillate around zero. An example of a
SRQ that exhibits behaviour as described above is an acceleration measurement on a vehicle
driving over a discrete bump or the accelerometer measurements on a vibrating beam. In this
study deterministic SRQs with time as the independent variable will be compared.

Figure 1. Overview of Verification and Validation processes

2. Quantitative validation metrics

A quantitative validation metric should be able to provide a measure that quantifies the overall
error (or agreement/disagreement) between two sets of data, for example between measured and
predicted  data.  In  the  context  of  the  validation  process  we  would  like  the  validation  metric  to
quantify the level of agreement/disagreement of the model with respect to the physical system in
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order to conclude whether the model satisfies the accuracy requirements and can be considered
valid for the intended use. The validation metric’s result should be an easily interpretable value
that can be used to determine whether the agreement between the physical system and model
satisfies the accuracy requirements.

Although many different error measures and validation metrics can be found in the literature for
quantitatively comparing SRQs with time as the independent variable, not many studies
concerning validation of simulation models make use of them. Rather the validation is done
qualitatively with subjective conclusions such as the correlation is good, excellent or fair. This
begs the question: Why are these measures not used? Do they give engineers physically
meaningful and interpretable results? In an attempt to answer these questions, a literature survey
was conducted in order to form an idea of the measures and metrics available, their capabilities,
limitations and whether they give physically meaningful and easily interpretable results in order
to determine whether or not the model satisfies the accuracy requirements.

2.1. Literature survey

Reference [1] divides traditional quantitative comparison approaches into three categories:
 i) Techniques developed by structural dynamists for assessing agreement between computational

and experimental results as well as techniques for improving agreement. These techniques are
known as parameter estimation, model parameter updating or system identification.

ii) Hypothesis testing or significance testing.
iii) Bayesian analysis or Bayesian statistical inference.

Reference [1] mentions the following on the approaches used in the three categories:
i) “Although these techniques are used to compare computational and experimental results, their

primary goal is to improve agreement based on newly obtained experimental data”.
ii) “A validation metric is not specifically computed as a stand-alone measure that indicates the

level of agreement or disagreement between computational and experimental results. The
results of a hypothesis test is focused, instead, on obtaining a yes-no statement of
computational-experimental consistency for a pre-specified level of significance”

iii) “Much of the theoretical development in Bayesian estimation has been directed towards
optimum methods for updating statistical models of uncertain parameters in the
computational model. In validation metrics, however, the emphasis is on methods for
assessing the fidelity of the physics of the existing computational model”.

They state that the primary goal of both parameter estimation and Bayesian inference is model
updating and model calibration. This may be the goal in many situations but is different from the
aim of the validation metric in the validation process. The purpose of a validation metric is to be
able to assess the predictive capability of the mathematical model and not to optimize the
agreement between the mathematical model and the experimental measurements. The
functionality of the parameter estimation and Bayesian inference to optimize the agreement
between the mathematical model and the physical system can be useful in the model refinement
stage shown in Figure 1.

Reference [1] presents an approach that evaluates the accuracy of the model based on comparing
deterministic computational results with the estimated mean of the experimental measurements.
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The primary differences between their approach from the three traditional quantitative
comparison approaches they mention are that: (a) “a stand-alone validation metric is constructed
to provide a compact, statistical measure of quantitative disagreement between computational and
experimental results”, and (b) “a statistical confidence interval is computed that reflects the
confidence in the accuracy of the experimental data“. They state however that their validation
metric  is  applicable  to  SRQs that  do  not  have  a  periodic  character  and  do  not  have  a  complex
mixture of many frequencies. They state that the types of SRQs that are periodic and contain
many frequencies require sophisticated time-series analysis and/or transformation into the
frequency domain. They suggest using validation metrics constructed by Geers [14], Russell [15]
and Sprague and Geers [16] for periodic systems or system responses with many frequencies.

Along with the three validation metrics (Geers, Russell and Sprague and Geers) many other error
measures  and  error  metrics  exist  that  can  be  used  to  quantify  the  agreement  between two time
histories. Table 1 attempts to summarize the various error measures and error metrics found in
literature. For a detailed discussion on each error measure/metric the reader is referred to the
study that treats them in detail.

Table 1. Summary of Error Measures and Metrics
Error measure/

Metric
Advantages Disadvantages

Discussed in [6]1

Vector norms Norm choice leads to different
conclusions.
Not capable of distinguishing error due to
phase from error due to magnitude.

Average Residual
and its standard
deviation

Positive and negative differences at
various points may cancel out.
Results of Average Residual and its
standard deviation are conflicting.

Coefficient of
correlation

Sensitive to phase difference and cannot
distinguish between error due to phase
and error due to magnitude.

Cross-correlation Can only measure difference in phase
Sprague & Geers
Metric

Gives error due to magnitude and phase
separately which is useful when more
detailed investigation of the error source is
necessary.

Not symmetric.
Cannot consider shape of the time
histories.

Russell’s Error
Measure

Symmetric Same problem with respect to magnitude
error as Sprague & Geers Metric.

Normalized Integral
Square Error (NISE)

Magnitude error can be negative, which
can decrease the combined error
erroneously.

Dynamic Time
Warping (DTW)

Effect of phase deviation on magnitude
error can be minimized by using DTW.

Discussed in [17]

Sprague & Geers
Metric

Magnitude error – Insensitive to phase
discrepancies

1 The comments made in reference [6] regarding the advantages and disadvantages are made with respect to their
application to vehicle safety applications.
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Error measure/
Metric

Advantages Disadvantages

Phase error – Uses error proposed by
Russell. Insensitive to magnitude
differences.
Defines a Comprehensive error

Discussed in [18]

Russell’s error
measure

Magnitude error is unbiased and signed.

Geers’ error measure May only be an appropriate choice when a
high level of confidence exists in the test
data

Whang’s inequality No means for evaluating phase and
magnitude errors

Theil’s inequality No means for evaluating phase and
magnitude errors

Zilliacus’ error Incorrectly identifies the degree of error
RSS error factor Incorrectly identifies the degree of error
Regression coefficient Incorrectly identifies the degree of error
Johansen’s
magnitude

Should not be used in current state.

Johansen’s energy Should not be used in current state.

Reference [18] evaluated various measures in Table 1 and concluded that some error measures
are very similar and others incorrectly identify the error. He recommends using Geers’, Whang’s
or  Russell’s  error  measure  [15],  but  state  that  Geers’  error  may  only  be  an  appropriate  choice
when a high level of confidence exists in the test data, and that Whang’s inequality is very
sensitive to phase errors. Russell [15] developed a set of magnitude, phase and comprehensive
error measures that can be used to evaluate the deviation between two general functions or test
and analytical data. Russell’s error measures address some of the issues associated with some of
the existing measures given in Table 1. He states the following five deficiencies with existing
error measures, which he claims his proposed error measure resolves:

i. The value may not be well bounded and therefore may make it difficult to evaluate and
compare results,

ii. the physical interpretation of the results may not be intuitive,
iii. the degree of error may not be correctly identified,
iv. the results can not be used to identify the cause of the error
v. the basis of the error factor may not be understood, which can lead to false interpretations

of the results.

Reference [6] proposes three error measures describing the error in magnitude, the error in phase
and the error in slope by combining existing measures. The three measures are then combined
into a single validation metric based on linear regression using Subject Matter Expert (SME)
ratings. Much of the objectivity of the proposed validation metric is lost as the metric is based on
the subjective opinions of SMEs. Before the validation metric can be used to validate a model,
the validation metric has to be created by training it, in order for it to be able to evaluate the
model. This training is done by fitting the regression model to the SME ratings of the comparison
between different data. This makes it highly dependent on the SMEs and it will therefore not be
possible to compare the quantitative results of comparisons between two different models to a
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single set of “true” data (or test data) made using two different sets of SMEs, unless the SMEs’
assessment is the same and given that the SME exists. The error measure proposed by [6] is not
used further in this paper as the metric is heavily dependent on SMEs. This causes it to lose a lot
of the required objectivity of a quantitative validation metric. This metric may however be useful
in certain applications.

From the above mentioned studies ([6], [18]) in which various error measures/metrics were
evaluated, it would seem that the two most likely error measures/metrics to give the most reliable
validation results are Russell’s error measure and Sprague & Geers’ metric. These two metrics
will now be discussed in more detail.

2.1.1. Russell’s error measure

The following equations are used to calculate the magnitude, phase and comprehensive error
measures as presented in reference [15].

For the magnitude error the following equation is used:
|)|1()( 10 rmeLogrmesignM R +=
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2.1.2. Sprague & Geers’ metric

The most recent version of Geers’ error measure [14], presented in reference [19], will be used.
In this version the equation for the phase error has been updated.
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The Sprague & Geers’ (S&G) magnitude error is calculated by:
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The Sprague and Geers’ comprehensive error measure is given by:
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From the above equations it can be observed that the phase error of both metrics is calculated in
the same way. The calculation of the magnitude and comprehensive error differs between S&G’s
metric and Russell’s error measure. Whether these two validation metrics are able to 1) give
results for which the physical interpretation is intuitive and 2) identify the degree of error
correctly, is not clear. A validation metric will be proposed in the next section that will address
these  two  aspects  directly.  This  proposed  validation  metric  will  then  be  compared  to  Russell’s
error measure and to the Sprague & Geers (S&G) metric in section 3.

2.2. Validation metric based on relative error

The validation metric that is proposed will use the simple and commonly used relative error to
quantify the agreement/disagreement between two data sets. The data sets may be SRQs obtained
from a physical system and a model. The use of the relative error as a validation metric has been
employed in previous studies ([1], [13]). Reference [1] states that, as long as the measured (m)
data is not near zero, the relative error metric is a useful quantity. A similar remark is made by
[17]  stating  that  “a  simple  metric  such  as  relative  error  works  well  for  point-to-point
comparisons, e.g. maximum deflection of a cantilever beam. However, when comparisons
involve time or spatial variations, e.g. velocity history at a point or deflection along a beam, the
application of a simple metric like relative error becomes sensitive to inaccuracies in time and
space dimensions as well as the system response quantity (SRQ)”. As mentioned, this paper will
consider the comparison of SRQs with a periodic nature and which may have values at or near
zero, which according to reference [1] and [17] will cause difficulties in using the relative error as
a validation metric. Before discarding the use of the relative error as a validation metric on
periodic systems where the measured (m) data might be near or equal to zero, we’ll investigate
the  characteristics  of  the  relative  error,  its  various  challenges  and  suggest  ways  to  circumvent
them.
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2.2.1. Relative error (RE)

The equation for the relative error between two values is given in eq.{1}. Consider the two values
as  one  being  the  measured  (m)  and  the  other  the  predicted  (p) value, with the measured value
taken as the true (or reference) value.

m
mpRE -

=       {1}

The calculation of the relative error between a measured  (m) and predicted (p) value is simple
and when expressed as a percentage (see eq.{2}) easy to interpret.

100% ´
-

=
m

mpRE             {2}

The relationship between the RE and the ratio p/m, which represents the respective over or under
prediction of the measured value, is shown in Figure 2.

Figure 2. Relationship between the RE and the ratio p/m

From Figure 2 the following observations can be made:
i. The first obvious observation is that in the limit of p approaching m, RE goes  to  zero

( 0lim =
®

RE
mp

).

ii. When 1>>
m
p  the relative error goes to positive infinity (along the line in section 1),

iii. Similarly, when 1<<
m
p  the relative error goes to negative infinity. However, because we

plot the absolute values of the ratio p/m these large negative values instead go to positive
infinity (along the line in section 2)
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The ratio of p/m indicates whether the predicted value p is  an  over  or  under  prediction  of  the
measured value m. The predicted value p is said to be an over prediction of m if p is a larger
positive value when m is positive, or when p is a larger negative value when m is negative.
Similarly, p is classified as an under prediction when p is a smaller positive value (or any
negative value) when m is positive, or when p is a larger negative value (or any positive value)
when m is negative. With this convention relative errors that fall in section 1 are over predictions
and relative errors in either section 2 or 3 are under predictions.

From Figure 2 and eq.{1} it is obvious that the relative error may result in infinite values and
NaNs (Not-a-Number) due to the operations of 0/0 and 1/0, which may make further calculations
on the relative error difficult. These challenges are discussed in the following paragraph.

2.2.2. Challenges in using the %RE as validation metric

The challenges concerning the use of the percentage relative error as a validation metric mainly
arise when data has to be compared that have been obtained from a periodic system and the
measured and/or predicted data has values equal to, or near, zero. Figure 3 shows an example of
measured and predicted data obtained from a periodic system.

Figure 3. SRQs from experimental measurements and model simulations of a periodic system

The challenges associated with the %RE when periodic data, as shown in Figure 3, is compared
are:

i. Non-constant %RE over the independent variable (time in the case of Figure 3),
ii. NaNs (Not-a-Number) present in the %REs,

iii. Inf (infinite) values present in the %REs.

The first challenge faced when using the %RE in comparing two periodic SRQs, is that the %RE
at each data point may not be the same. This makes it difficult to report a single representative
result indicating the overall agreement/disagreement. Further challenges that are associated with
using the %RE arise from comparing periodic SRQs that are near zero. When calculating the
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%RE of periodic SRQs near zero, NaNs and Inf values may be present in the %RE. These values
result from the operations 0/0 and 1/0, respectively, and make further calculations on the %RE
difficult. These challenges are discussed in further detail in the following paragraphs and
methods to overcome them, are proposed.

Non-constant %RE over the independent variable

The %RE may not  have  a  constant  value  over  the  entire  range  of  the  data.  In  other  words,  the
%RE may have different values for each data point. This makes it difficult to report on the
agreement between the measured and predicted data using the %RE. When the %RE does not
have a constant value, one of two methods can be used to report a single representative value for
the %RE. In the two methods the non-constant %RE will  be  represented  by  a  modified %RE
defined either by the mean of the %REs or by a specific %RE. In both methods a probability will
be given that represents the percentage of %REs that are below, or equal to, either the mean of
the %REs or the specific %RE that was chosen. When the mean of the %REs is used to define the
modified %RE, it will be denoted as m%REm and by m%REs when it is defined by a specific
%RE.

In order to define the m%REm the mean and cumulative histogram of the %REs are calculated.
Using the cumulative histogram and the mean, the probability is calculated that the %REs are at
or below the mean %RE. Figure 4(a) shows the histogram and the mean of the %REs and Figure
4(b) the cumulative histogram and the mean of the %REs for an arbitrary set of %REs. Figure 4
illustrates that when we take the y-intercept (representing the frequency of a specific %RE) of the
cumulative histogram where the mean value intersects the cumulative histogram, we can obtain
the probability that the data is at, or below the mean value. Therefore, for the data in Figure 4 the
result  will  be  that  55%  of  the %REs  are  at  or  below  the  mean %RE of  15%  (m%REm = 15%
P(55%)).

Figure 4. (a) Superimposed mean and histogram, and (b) superimposed mean and cumulative histogram of %RE
with a normal distribution
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Even if the %RE does not have a normal distribution (see Figure 5(a)) the mean %RE can still be
used to define the m%REm. Figure 5(a) shows the non-normal distribution of the %RE and Figure
5(b) presents the cumulative histogram with the mean %RE superimposed on it. For the example
in Figure 5 we obtain that 57.6% of the %REs are at or below the mean %RE of 48.5% (m%REm

= 48.5% P(57.6%)).

Figure 5. (a) Superimposed mean and histogram, and (b) superimposed mean and cumulative histogram of %RE
with a non-normal distribution

In the second method, instead of defining the modified %RE by using the mean %RE, a specific
%RE can be chosen and the probability that the %REs are below, or equal to, this specific %RE
can be calculated.  However it may be that there is no %REs below this chosen %RE and the
result will be that there is zero probability that the %REs are below this chosen %RE (m%REs =
x% P(0%)). This result will make comparing and selecting the best model from a group of
models impossible if this is the result for all the models. In this situation it may be better to use
the mean %RE to define the modified %RE. However, in the situation where accuracy
requirements are set for the model the result from the m%REs can easily be used to check whether
the requirements are satisfied or not. It will therefore depend on the intended use of the validation
metric whether the modified %RE is defined by a specific %RE or the mean %RE.

NaNs present in the %REs

The calculation of the %RE is  subject  to  the  operation  0/0.  This  is  one  of  the  major  problems
encountered when using the relative error to quantify the agreement/disagreement between the
measured and predicted SRQs obtained from periodic systems near zero. This occurs when the
%RE is calculated at a point where the measured and predicted values equal zero. The IEEE
floating point representation of 0/0 is NaN (Not-a-Number). The presence of NaNs in the %RE
makes it difficult to perform further calculations on it. It is proposed that any NaN is set equal to
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0 as the operation 0/0 implies that the %RE is equal to zero. The next step is now to use either the
m%REm or  the m%REs to report a single value for the %REs  in  order  to  quantify  the  overall
agreement between two SRQs.

The following considerations should be kept in mind when using the m%REm. Zeros in the %RE
results in problems with the representation of the m%REm. Consider the %RE between measured
and predicted data having 10 data points. Nine of them are equal to 8% and one is a NaN.
Assigning  a  zero  to  the  NaN  the  mean  of  the %RE is  7.2%.  Using  the  mean  of  7.2%  we  will
obtain a probability that 0.1% of the %REs are lower than 7.2% (m%REm = 7.2% P(0.1%)). If we
calculate the mean of the %RE but now ignoring any zero value we will obtain a mean of 8%.
This will give us the result that 100% of the %REs are at, or below, 8% (m%REm = 8% P(100%)).
Ignoring the zeros gives a result that represents the agreement better. Consider the example
shown in Figure 6 that reiterates this. We have a true time response and an approximation to the
true response. We know that the amplitude of the approximate response deviates from the true
response by 10%. If we calculate the modified %RE defined by the mean %RE, including the
zero values, the result is that there is a 0.2% probability that the %REs  are  smaller  or  equal  to
9.98% (m%REm = 9.98% P(0.2%)). Even though this is true, the results without including the
zeros in the calculation of the mean %RE, are considered more meaningful. Excluding the zeros
when the mean of the %RE is calculated, the result is obtained that a 100% of the %REs are equal
to, or below 10% (m%REm = 10% P(100%)), which we know to be true. Therefore the mean of
the %REs, defining the m%REm,  will  be  calculated  neglecting  all  the  zero  values  in  the %REs.
Zeros in the %REs  do  not  have  the  same  affect  on  the m%REs and does not need any special
consideration.

Figure 6. Example of time response histories of SRQs for the physical system (true) and computation model
(approximation)

Inf values present in the %REs

We already looked at how to handle operations involving 0/0 which the IEEE represents as
NaNs. Another problem with using the relative error in comparing periodic signals is introduced
by operations involving 1/0. This occurs when the measured value is zero and the predicted value
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has a non-zero value. The IEEE uses Inf to represent these operations The effects of operations
involving 1/0 on the modified %RE are discussed at the hand of an example.

In Figure 7, two mathematical models (approximation 1 and 2) are compared to the physical
system (true). Approximation 1 has a 10% deviation and approximation 2 a 30% deviation from
the true value. In Figure 7(a) the data of both approximations are perfectly in-phase with the true
data, whereas in Figure 7(b) the approximations and true data have some phase difference. Table
2 shows the results for the modified %RE. For the in-phase case we obtain the expected m%REm

of 10% P(100%) and 30% P(100%) respectively, however for the out-of-phase case we obtain the
result that there is a 100% probability that the %REs  are  smaller  than  infinity  (m%REm =  ∞
P(100%)), which has no meaning even though it is correct. The m%REs gives meaningful results
for both the in-phase and out-of phase example.

Figure 7. (a) Approximation 1 and 2 in-phase with true data. (b) Approximation 1 and 2 out-of-phase with true data

Table 2. Effect of %RE not being bounded on the results of the m%RE (Not bounded)
(a)

In-phase
(b)

Out-of-phase
Approximation

1
Approximation

2
Approximation

1
Approximation

 2

m%REm 10%
P(100%)

30%
P(100%)

Inf
P(100%)

Inf
P(100%)

m%REs 15%
P(100%)

15%
P(0.2%)

15%
P(21.6%)

15%
P(13.6%)

From the results in Table 2 it is clear that the presence of Inf values do not affect the results of
m%REs. However, the presence of Inf values in the %REs makes it difficult to compare the
models using the m%REm. There is one of two ways to deal with Inf values in the %REs when the
m%REm is used namely:

i. If %REi > Inf, then remove Inf value from %RE data, or
ii. Bound the %REs.
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Completely removing the Inf values, as proposed in method (i), will imply that the %REs at these
points are ignored. The implication of this is that when the m%REm is used, the mean of the %RE
will be lower than it really is. In the case were both models have the same amount of values
above the specified %RE threshold method (i) will not influence the results negatively. However,
if only one model has values above the threshold that is removed this may lead to the incorrect
model being chosen as the more accurate model. Bounding the %RE as proposed in method (ii)
will be less likely to make an erroneous model choice. Reference [13] presents a validation
metric that uses the relative error combined with the hyperbolic tangent function which results in
the relative error being bounded. Their equation is changed and presented here as equation {3}. V
is the bounded RE.

m
mpV -

= tanh       {3}

Plotting this equation on Figure 8 shows that the implementation of tanh bounds the RE, for all
ratios of p/m, to 1. However, using tanh the “true” relative error is distorted. As can be seen from
Figure 8, eq.{3} deviates from the true relative error as it moves away from p/m = 1. Therefore,
for a ratio of p/m = 2 equation {3} results in a relative error of 0.7616 instead of 1. This results in
a 24% lower error than which truly exists.  The use of tanh in combination with the RE bounds
the RE to 1, but has the implication that the true relative error is lost.

Figure 8. Relationship between the RE and the ratio p/m (relative error bounded)

The relative error can be bounded without distorting the true relative error by setting any RE that
is greater than a chosen RE threshold equal to the RE threshold. This implies that the RE is now
bounded but unlike eq.{3} all the REs below the RE threshold value are the true relative errors.
The implementation of this and its effect on the relationship between the RE and the ratio p/m is
also shown on Figure 8 as the graph Relative error bounded (RE threshold). From the figure it
can be observed that the true relative error is obtained until the RE threshold is reached. Above
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the RE threshold the true relative error is set equal to the RE threshold.  In  figure  one  the  RE
threshold was set equal to 2.

We again calculate the %RE between the measured and predicted data in Figure 7 but now using
the bounded %RE. The %RE threshold is set equal to a 100%. Using the bounded %RE we obtain
results for the m%REm that can actually be interpreted (see Table 3). It is now possible to
evaluate approximation 1 and approximation 2, using the m%REm, in order to conclude that
approximation 1 is more accurate than approximation 2. This is similar to the results obtained
from the m%REs which also indicates that approximation 1 is better than approximation 2.

Table 3. Effect of %RE not being bounded on the results of the m%RE (Bounded)
(a)

In-phase
(b)

Out-of-phase
Approximation

1
Approximation

2
Approximation

1
Approximation

 2

m%REm 10%
P(100%)

30%
P(100%)

48.5%
P(57.6%)

51.3%
P(56.8%)

m%REs 15%
P(100%)

15%
P(0.2%)

15%
P(21.6%)

15%
P(13.6%)

From the results in Table 2 and Table 3 it  is  clear that  whether the %RE is bounded or not the
m%REs is unaffected. Therefore unlike the m%REm the m%REs will not be affected by the choice
of the %RE threshold. It is important that when the m%REs is used, that the specific %RE that is
chosen to define the modified %RE, is never above the %RE threshold. The effect of the choice
of the %RE threshold on the m%REm will be discussed by considering three scenarios:

i.) All %REs < %RE threshold,
ii.) Some %REs > %RE threshold, and

iii.) All %REs > %RE threshold.

It  is  obvious that for scenario 1 the choice of the %RE threshold is irrelevant. With scenario 2
having some %RE greater than the %RE threshold the choice of the %RE threshold will  affect
the result of the m%REm. Consider the example given in Table 4. We have a set of true values
and their associated %RE between the true and approximate data. Table 5 presents the results for
the m%REm for two %RE threshold values.

Table 4. Known %RE between true and approximate data
Data point True %RE

1 0 0
2 0.5 90
3 0.8 80
4 1 60
5 1.2 50
6 0.8 4
7 0.7 6
8 0.6 8
9 0.5 10

10 0 1
11 -0.5 -20
12 -0.8 -30
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Data point True %RE
13 -1 -55
14 -1.2 -35
15 -0.8 -25
16 -0.7 -20
17 -0.6 -15
18 -0.5 -10
19 1 200
20 1 200
21 1 200

Table 5. Results for the m%REm using different %RE threshold values
%RE threshold 110% 250%

m%REm 44.6%
P(61.9%)

58.8%
P(71.4%)

Figure 9 shows the histogram, cumulative histogram and the mean of the %RE for both the %RE
threshold equal to 110% and 250%. From this figure it can be observed that the %REs smaller
than the %RE threshold are not affected by the choice of the %RE threshold. Therefore the
histogram and cumulative histograms will be identical up until the %RE threshold after  which
they will differ. This implies that both results in Table 5 are correct and it can be concluded that it
does not matter what value is chosen for the %RE threshold, as long as the same %RE threshold
is used when two models are compared.

Figure 9. Superimposed histograms, cumulative histograms and means of %RE using different γ values

This brings us to the third scenario. If all the %REs are above the %RE threshold, all the %REs
will be set equal to the %RE threshold. This implies that if the %RE threshold = 100% the results
for both model 1 with a constant %RE = 200% and model 2 with a constant %RE = 150% will be
that 100% of the %REs  are  below a  100% (m%REm = 100% P(100%)). This result is obtained
because the percentage relative errors that are above the %RE threshold are bounded by the %RE
threshold. Having two models with an accuracy worse than 100% may already make them
invalid models, however if they need to be analysed, the threshold value for the %RE can be
adjusted. By adjusting the %RE threshold to  200%  we  get  that  100%  of  the %REs are below
200% for model 1 and that 100% of the %REs are below 150% for model 2. Therefore model 2,
although bad, is a better approximation to the measurements than model 1.
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It is important to remember that because the %REs greater than the %RE threshold is bounded to
the %RE threshold, the %REs above the %RE threshold are not the true %REs. This is important
especially when a specific %RE is chosen to define the modified %RE. The specific %RE should
always be below the %RE threshold. When the specific %RE is chosen below the %RE threshold
both the m%REs and the m%REm will give the true relative error.

2.2.3. Summary of the modified %RE validation metric

The modified percentage relative error validation metric and its two formulations (m%REm and
m%REs) were presented. It should be realized that both formulations can be used to either
compare (and rank) a set of models or to evaluate the model against accuracy requirements using
either formulation of the modified %RE. It is however suggested that the m%REm should be used
for comparing a set of models and the m%REs used to evaluate the model against the accuracy
requirements. Table 6 summarizes the two formulations of the modified percentage relative error
validation metric.

Table 6. Summary of the two formulations of the modified %RE validation metric
m%REm m%REs

Defined by The percentage of %REs  (given  as  a
probability) that are equal to, or below, the
mean of the %REs:

m%REm = mean(%REs) P(%)

Note: the mean of the %REs is calculated
neglecting all zero values in the %REs

The percentage of %REs (given as a
probability) that are equal to, or below, the
specified %RE (for example x%):

m%REs = x% P(%)

Note: The specified %RE must always be
below the %RE threshold

Preprocessing
of the %REs

NaNs (Not-a-Number)
Set NaNs = 0 Set NaNs = 0

Inf (infinite) values
Bound %REs with %RE threshold

Note: Choice of %RE threshold influences
result of the m%REm. %RE threshold
must be the same when comparing
m%REm results

None required

Note: If the %REs were bounded, x% must
be below the %RE threshold

Suggested
uses

Primary use
Comparing and selecting the best
model from a group of models

Evaluation of model against
accuracy requirements

Secondary use
Evaluation of model against accuracy
requirements

Comparing and selecting the best
model from a group of models

In the previous paragraph the use of the relative error as basis for a validation metric between two
data sets was investigated. The relative error gives intuitive results, but has certain challenges.
We discussed how these challenges can be overcome to still get useful intuitive results from the
%RE when it is presented in the modified form (either m%REm or m%REs). Because the modified
%RE includes both the error due to a magnitude difference, as well as the error due to a phase
difference, it is considered to be a comprehensive error. The modified %RE validation metric will
now be compared to the validation metrics of Russell [15] and Sprague & Geers [19].
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3. Comparison of validation metrics

The modified %RE validation metric will now be compared to the Sprague & Geers metric [19]
and Russell’s metric [15] that were presented in section 2.1. It should be noted that the
magnitude, phase and comprehensive error measures of both S&G’s and Russell’s metric are
multiplied by a hundred in order to present them as a percentage. This is done to compare it
directly to the modified %RE metric. The %RE threshold value that is used throughout this study
is a 100%.

From the comparison of the validation metrics we would like to conclude two things. Firstly, and
most importantly, we would like to establish whether the validation metrics give a useful and
reliable measure that quantify the agreement between the experimental and simulated data. It is
important that the validation metrics give a reliable and easily interpretable metric which can be
used to determine whether the model satisfies the accuracy requirements. Secondly we would like
to evaluate the ability of the validation metrics to rank models and select the best model from a
group of models. Analytical functions will firstly be used to compare the capabilities of the
validation metrics to rank models. The analytical functions will also aid in determining whether
the validation metrics can indeed quantify the agreement of the model and give a useful and
reliable metric which will aid the engineer in deciding whether the model is valid or not. Case
studies will then be used to further show the advantages and limitations of the different metrics.

3.1. Analytical functions

The analytical functions that we will use include the functions used in previous studies ([17],
[18]) which are based on, and extensions of, the functions given in reference [14]. The analytical
functions that are used are given in Table 7.

The analytical functions 1 to 15, listed in Table 7, were used in reference [18]. Functions 1 to 8
represent the predicted data and are compared to the measured data given by )2sin()( tetm t p-= .
Similarly, functions 9 to 15 represent the predicted data that uses the measured data given
by )200sin(01.0)5sin(6.01)( 4.0/1.0/ tteetm tt pp +--= -- . Functions 21(a), 22(a) and 22(b) are
three additional functions used by [17] that were not considered by either [18] or [14]. The
reference function for function 21(a), 21(b), 22(a) and 22(b) is given
by )14.0(2sin)( )14.0( -= -- tetm t p .

Table 7. Equation for the various analytical functions
Function Equation

Reference function for 1 to 8 )2sin()( tetm t p-=
1 )2sin(8.0)( 8.0/ tetp t p-=
2 )6.1sin()( tetp t p-=
3 )6.1sin(2.1)( 2.1/ tetp t p-=
4 )6.1sin(4.0)( 2.1/ tetp t p-=
5 )6.1sin(5.0)( tetp t p-=
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Function Equation
6 )6.1sin(6.0)( 2.1/ tetp t p-=
7 )30sin(1.0)2sin()( tetetp tt pp -- +=
8 )30sin(3.0)2sin()( tetetp tt pp -- +=

Reference function for 9 to 15 )200sin(01.0)5sin(6.01)( 4.0/1.0/ tteetm tt pp +--= --

9 )5sin(6.01)( 3.0/1.0/ teetp tt p-- --=
10 )4sin(6.01)( 4.0/1.0/ teetp tt p-- --=
11 ).4sin(8.06.06.0)( 3.0/1.0/ teetp tt p-- --=
12 ).3sin(3.06.06.0)( 5.0/3.0/ teetp tt p-- --=
13 ).3sin(2.03.03.0)( 5.0/3.0/ teetp tt p-- --=
14 tteetp tt 25.0).5sin(5.01)( 4.0/1.0/ ---= -- p
15 tteetp tt 5.0).4sin(6.01)( 4.0/1.0/ ---= -- p

Reference function for 21 to 22 )14.0(2sin)( )14.0( -= -- tetm t p
21(a) )14.0(2sin2.1)( )14.0( -= -- tetp t p
21(b) )14.0(2sin8.0)( )14.0( -= -- tetp t p
22(a) )24.0(2sin)( )24.0( -= -- tetp t p
22(b) )04.0(2sin)( )04.0( -= -- tetp t p

3.1.1. Ability to rank models and identify the best model

We start by comparing the validation metrics using functions 1 to 8 given in Table 7. The
analytical functions 1 to 8 are compared to the same reference function. Table 8 shows how each
validation metric ranks the 8 examples. All the functions are ranked the same by the three
validation metrics except for Function 1 and 2. This gives an average agreement of 91.7%. The
m%REm ranks  Function  8  in  2nd and  Function  1  as  3rd. The m%REm gives a lower mean for
Function 1 than for Function 8 but Function 8 has a higher amount of %REs below the mean
%RE and therefore Function 8 is ranked higher than Function 1. The ranking of the functions in
this order is confirmed when the results for the m%REs is considered. The m%REs for Function 8
is 37% P(63.85) and Function 8 therefore has a higher amount of %REs below the same %RE
than Function 1. The same functions were given to subject matter experts (SMEs) and asked to
rank the comparisons of the eight functions to the reference function. The SMEs ranked all the
functions the same as the three validation metrics except for Function 2 and 3 (see Table 9). The
overall average agreement between the seven SMEs is 64.3%, which is a lot lower than between
the three validation metrics.

Table 8. Ranking of comparisons by different validation metrics (Functions 1 to 8)
Function S&G

Rank
Russell

Rank
m%REm

Rank
Overall

rank

1 28.68 4 20.2 3 37
P(47.9) 3 3

(66.6%)
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Function S&G
Rank

Russell
Rank

m%REm

Rank
Overall

rank

2 23.4 3 20.7 4 68.9
P(40.1) 4 4

(66.6%)

3 38.6 5 27.3 5 71.5
P(36.9) 5 5

(100%)

4 61.9 8 46.2 8 76.8
P(44.2) 8 8

(100%)

5 55.6 7 41.2 7 75
P(43.6) 7 7

(100%)

6 42.9 6 32.9 6 72.4
P(43) 6 6

(100%)

7 3.3 1 2.87 1 18.8
P(76.8) 1 1

(100%)

8 10.4 2 8.9 2 39.2
P(66.2) 2 2

(100%)

Table 9.  Ranking of comparisons by SME’s (Functions 1 to 8)
Function SME

#1
SME

#2
SME

#3
SME

#4
SME

#5
SME

#6
SME

#7
Overall

rank
1 2 3 5 3 3 3 3 3 (71.4%)
2 3 5 3 2 5 5 4 5 (42.8%)
3 4 6 4 4 4 4 5 4 (71.4%)
4 8 8 7 6 8 8 8 8 (71.4%)
5 6 4 8 7 7 6 7 7 (42.8%)
6 7 7 6 8 6 7 6 6 (42.8%)
7 1 1 1 1 1 1 1 1 (100%)
8 5 2 2 5 2 2 2 2 (71.4%)

The validation metrics were compared using another seven functions (Functions 9 to 15 given in
Table 7). The results for the validation metrics and the SMEs are given in Table 10 and Table 11,
respectively. The ranking by the three validation metrics and the seven SMEs are again the same
for all but two Functions. For Functions 13 and 15 the SMEs rank these two functions as either
6th or 7th. The three validation metrics again have a higher average agreement of 90.5% against
the 71.4% of the SMEs.

Table 10. Ranking of comparisons by different validation metrics (Functions 9 to 15)
Example S&G Rank Russell Rank m%RE Rank Overall rank

9 0.91 1 0.8 1 5
P(85.5) 1 1

(100)

10 3.37 2 2.98 2 11.3
P(67.7) 2 2

(100)

11 40.1 4 28.2 4 45
P(77.6) 4 4

(100)

12 45.7 5 32.3 6 49.9
P(73.1) 5 5

(66.6)
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Example S&G Rank Russell Rank m%RE Rank Overall rank

13 72.89 7 57 7 75
P(72.5) 7 7

(100)

14 26.4 3 18.91 3 29.52
P(54.2) 3 3

(100)

15 50.1 6 36.4 5 54.6
P(48.5) 6 6

(66.6)

Table 11. Ranking of comparisons by SMEs (Functions 9 to 15)
Function SME

#1
SME

#2
SME

#3
SME

#4
SME

#5
SME

#6
SME

#7
Overall

rank
9 1 1 1 1 1 1 1 1 (100)
10 2 2 2 2 2 2 2 2 (100)
11 4 4 4 3 4 4 3 4 (71.4)
12 5 6 5 5 5 5 4 5 (71.4)
13 6 7 6 6 7 7 5 6 (42.8)

7 (42.8)
14 3 3 3 4 3 3 6 3 (71.4)
15 7 5 7 7 6 6 7 6 (42.8)

7 (42.8)

From the above results it was observed that the three validation metrics and the SMEs tend to
rank  models  similarly.  The  ranking  of  the  functions  by  the  validation  metrics  were  done  with
more coherence than the ranking by the SMEs. The results may be influenced having more SMEs
or using different groups of SMEs. Having additional validation metrics may also influence the
results of the overall ranking of the models. These effects are outside the scope of this study. The
results obtained seem to indicate that the validation metrics are able to rank the models and
indicate which model is the best model from a group of models.  The question is now whether all
the metrics are able to give a reliable and useful measure of the level of agreement between the
experimental and the simulated data.

3.1.2. Reliability and usefulness of validation metrics

The following two examples, indicated in Figure 10 and Figure 11, discuss the reliability and
usefulness of the quantitative measure of the agreement/disagreement between two SRQs given
by the various validation metrics. The example we consider in Figure 10 uses function 21(a) and
21(b) given in Table 7. There is no phase difference between the function representing the
measured data and the two sets of predicted data represented by Function 21(a) and 21(b). The
magnitude of Function 21(a) is 20% larger than the magnitude of the measured response and
Function 21(b) is 20% smaller. We therefore know the error in magnitude between the measured
response and the two models. This makes it possible to evaluate which of the metrics can indeed
give the agreement between the two data sets correctly. Table 12 shows the results for the various
metrics. Only S&G and the m%REm give the correct percentage relative error between the two
signals. S&G is also capable of stating whether the magnitude is smaller or larger than the
measured magnitude.
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Figure 10. Comparison of Functions 21(a) and 21(b) to the reference function

Table 12. Comparison between the error measures’ ability to quantify the accuracy (Functions 21(a) and 21(b))
Function 21(a) Function 21(b)

S&G Russell m%REm S&G Russell m%REm

Magnitude 20 13.57 -20 -16.14
Phase 0 0 0 0

Comprehensive 20 12 20
P(100)

20 14.3 20
P(100)

The comprehensive error of S&G and m%REm, in the example where Functions 21(a) and 21(b)
were used, is easy to interpret and captures the agreement of the two models. The magnitude and
phase error of S&G provide additional information indicating that the error is due to a difference
in the magnitude. However, when we consider two models with only a phase difference and no
magnitude difference, as in Figure 11 for Functions 22(a) and 22(b), the results of the validation
metrics need more consideration to understand what they actually mean. Considering the
magnitude and phase error obtained from S&G for Function 22(a) and 22(b), it is clear that there
is little difference in the magnitude compared to the reference function and that there exists a
phase difference of almost 20% (see Table 13). However, the meaning of the comprehensive
errors is not as clear. The comprehensive error of S&G in the comparisons of Functions 21(a) and
(b) and Functions 22(a) and (b) are effectively equal. However, at time 0.4s the value that
Function 21(a) had to predict is 20% higher than the reference function’s value. At the same time
(0.4s) the value that Function 22(a) had to predict is 30% lower than the reference function’s
value.

The m%REm gives a comprehensive error that is easier to interpret. In comparing Function 21(a)
to the reference function the m%RE indicates that all the predicted values deviate less than 20%
from the measured value. In comparing Function 22(a) to the reference function, the m%REm

indicates that 53.1% of the errors between the responses are smaller than 60.3%. The magnitude
and phase error of S&G for Functions 21(a) and (b) and 22(a) and (b) is easily interpretable,
whereas its comprehensive error is not, as discussed above. Combining the magnitude and phase
errors of S&G with the comprehensive error of the m%REm, we obtain a validation metric that
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has a meaningful comprehensive error. Furthermore, this combination of S&G and the m%REm

makes it possible to determine whether the error is in the magnitude and/or in the phase.

Figure 11. Comparison of Functions 22(a) and 22(b) to the reference function

Table 13. Comparison between the error measures ability to quantify the accuracy (Functions 22(a) and 22(b))
Function 22(a) Function 22(b)

S&G Russell m%REm S&G Russell m%REm

Magnitude -0.48 -0.41 0.14 0.122
Phase 19.5 19.5 19.5 19.5

Comprehensive 19.5 17.3 60.3
P(53.1)

19.5 17.3 59.4
P(51.9)

3.1.3. Combination of S&G and the modified %RE

Figure 12 shows two approximations obtained from Model 1 and Model 2 both having the same
deviation in phase from the true value. The amplitude of Model 1 is 10% higher than the
measured value and Model 2 is 10% lower. The results for the different validation metrics are
shown in Table 14. Analyzing the results of the different validation metrics on their own are not
as insightful as combining them. When we combine the magnitude and phase error of S&G with
the comprehensive error of the m%REm we can form the following conclusion. The agreement of
both Model 1 and Model 2 is approximately similar with roughly 58% of the %RE being below
51%. The deviation of both Model 1 and Model 2 is due to a difference in both phase and
magnitude. Model 1 and Model 2 have the same difference in phase with the amplitude of model
1 being 10 % higher than the true signal’s amplitude and Model 2, 10% lower. In the context of
the validation procedure the magnitude error measure does not mean that Model 1 over predicts
the  true  (measured)  values  and  that  Model  2  under  predicts  the  values.  If  the  phase  difference
between the two signals were zero then the magnitude error measured of S&G would have
indicated that Model 1 over predicts the true data and Model 2 under predicts the data. In order to
comment on Model 1 and Model 2 over or under predicting the values, the relationship between
the relative error and the ratio of p/m, as discussed in paragraph 2.2.1, should be used to calculate
whether the model is under or over predicting.
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Figure 12. Model 1 and Model 2 with same phase shift but different magnitudes

Table 14. Comparison between error measures for models with same phase shift but different magnitudes
Model 1 Model 2

S&G Russell m%REm S&G Russell m%REm

Magnitude 10 7.6 -10 -8.3
Phase 12.7 12.7 12.7 12.8

Comprehensive 16.2 13.2 51.3
P(55.6)

16.2 13.5 48.5
P(57.6)

3.2. Case studies

Two case studies will now be used to further compare the validation metrics. The reliability and
usefulness of the validation metric’s results in quantifying the measure of agreement between the
experimental and simulated data are further investigated using these case studies.

3.2.1. Case study 1: Known error between signals

Consider the two predicted SRQs obtained from Model 1 and Model 2 shown in Figure 13. The
%RE between the two predicted SRQs and the measured SRQ are known and shown in Table 15.
The results for the different metrics are shown in Table 16. Looking at the comprehensive errors
of  S&G  and  Russell,  Model  1  seems  to  be  a  closer  fit  to  the  measured  data  than  Model  2.
However, when we consider the %RE between the models and the measured data, shown in Table
15, it is clear that Model 2 has the smaller %RE and is therefore closer to the measured data. The
m%REm metric correctly shows that Model 2 is closer to the measured data stating that 60% of
the errors are smaller than 35.2%. When the magnitude and phase errors of S&G are considered
along with the results from the m%REm metric for Model 2 it can be seen that the difference in
magnitude is the major contributor to the errors as the error in phase is  small.  For Model 1 the
magnitude and phase errors of S&G give similar results and it is difficult to conclude whether the
deviation is due to an error in the magnitude or an error in the phase. From Figure 13 it seems as
if the deviation is largely due to an error in the magnitude.
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Figure 13. Two models with known %RE relative to the measured data

Table 15. Relative error between Model 1, Model 2 and the measured data
Data point Model 1 Model 2

1 0 0
2 90 60
3 90 60
4 80 60
5 70 60
6 50 35
7 4 4
8 10 10
9 10 10
10 10 10
11 0 0
12 -60 60
13 -60 60
14 -60 60
15 -60 60
16 -60 35
17 -35 20
18 -20 10
19 -15 10
20 -10 10

mean(|%RE|) 39.7 31.7
mean(|%RE|) (without zero) 44.1 35.2

Table 16. Comparison between error measures for known %RE
Model 1 Model 2

S&G Russell m%REm S&G Russell m%REm

Magnitude 16.28 11.3 41.8 23.3
Phase 16.27 16.2 4.75 4.8

Comprehensive 23 17.5 44.1
P(50)

42.1 21.1 35.2
P(60)
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3.2.2. Case study 2: Elasto-plastic leaf spring models

In this case study the force of a multi-leaf spring, induced by a certain displacement input, has
been measured. We have two models which predict the behaviour of the multi-leaf spring. Model
1 uses a linear elasto-plastic formulation and Model 2 uses a nonlinear formulation to emulate the
multi-leaf spring. For details of the two models, the reader is referred to reference [20]. The two
models are given the same displacement input as was given to the physical spring. Figure 14
shows the qualitative comparison of the two models against the measured data and it seems as if
Model 2 is the better model. Table 17 shows the quantitative results for the different validation
metrics. All the metrics except the m%REm indicates that Model 2 is the better model. After
closer inspection of the measured signal we see that there exists noise around zero on the
measurement’s reading which is shown in Figure 15.

Figure 14. Qualitative comparison of predictions by leaf spring models and measured data

Table 17. Results with noise on measured data around zero
Model 1 Model 2

S&G Russell m%REm m%REs S&G Russell m%REm m%REs

Magnitude 2.0 1.7 1.3 1.1
Phase 1.4 1.4 0.83 0.83

Comprehensive 2.4 1.94 60.1
P(38.1)

10
P(21.9)

1.6 1.2 68.7
P(33.1)

10
P(28.9)
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Figure 15. Noise on measurement signal around zero (zoomed in on Figure 14)

Removing the noise on the measurement error around zero by reassigning all measurements
lower  than  25N  to  0N,  the  results  shown  in  Table  18  are  obtained.  The  results  for  S&G  and
Russell stay the same whereas the results from the modified %RE (the m%REm and the m%REs)
changes and show that Model 2 is much better than Model 1. When Figure 14 is viewed it would
be expected that the two models should give similar results. After closer inspection, it was found
that Model 1 had an error in predicting the zero values correctly (see Figure 16). After the cause
for the error in the prediction of Model 1 has been indentified and the model refined the results
shown in Table 19 are obtained. S&G and Russell still gives the same results. The results from
both the m%REm and the m%REs now show that Model 2 is the better model, but that there is not
a big difference in agreement between Model 1 and Model 2.

Table 18. Results with noise on measured data around zero removed
Model 1 Model 2

S&G Russell m%REm m%REs S&G Russell m%REm m%REs

Magnitude 2.0 1.7 1.3 1.1
Phase 1.4 1.4 0.83 0.83

Comprehensive 2.4 1.94 64.4
P(46.9)

10
P(35.2)

1.6 1.2 13.5
P(94.5)

10
P(92.8)

Table 19. Results with noise on measured data around zero removed and Model 1 refined
Model 1 Model 2

S&G Russell m%REm m%REs S&G Russell m%REm m%REs

Magnitude 2.0 1.7 1.3 1.1
Phase 1.4 1.4 0.83 0.83

Comprehensive 2.4 1.94 19.3
P(92.3)

10
P(83.7)

1.6 1.2 13.5
P(94.5)

10
P(92.8)
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Figure 16. Error in predictions of Model 1

It is interesting to note that S&G, Russell and the m%REs ranked the two models correctly from
the start. S&G and Russell indicated from the start that the difference between the models should
not be far from each other but the use of the modified %RE metric showed that there were large
errors between the SRQs and helped with identifying the error in Model 1. Both formulations of
the modified %RE continually gave an accurate representation of the accuracy between the
models. This example also shows that the modified %RE and especially the m%REs can easily be
used to compare the validation measure’s results to predefined accuracy requirements. An
accuracy requirement of 10% or closer could have been defined and Model 2 having 92.8% of the
model’s predictions below 10% may indeed satisfy the requirements.

4. Conclusion

An overview of the V&V process was presented and briefly discussed. From literature two
validation metrics were identified and compared to the proposed validation metric that is based
on relative error. The challenges associated with using the %RE as a validation metric was
discussed and techniques were presented to circumvent these challenges. From the comparisons
of the three validation metrics it was found that the validation metrics give similar results when
ranking models and in selecting the best model. It was shown that the comprehensive error of the
modified %RE validation metric is the most reliable in providing a representative measure of the
agreement/disagreement between two SRQs. Furthermore, when used in combination with the
magnitude and phase errors of other measures such as S&G it gives information that enables the
ranking of models, selecting the best model, fault finding and refinement, and ultimately
validation of  the model.

The modified %RE validation metric gives a comprehensive error but cannot distinguish between
an  error  in  phase  or  an  error  in  magnitude.  It  is  suggested  that  when  comparing  analytical
functions that the modified %RE be used together with the magnitude and phase error measures
such as presented by S&G. When SRQs are compared that are obtained from a simulation model
and a physical system, the modified %RE should rather be used with qualitative comparison
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methods as this might give the analyst a holistic view and make the identification of the possible
causes for the deviation more likely.

It was shown that the modified %RE validation metric gives a reliable and easily interpretable
metric that will enable the quantification of the agreement of the simulation model’s predictions
against the measurements on the physical system and the comparison to the accuracy
requirements. The modified %RE can also be used on analytical functions and on deterministic
SRQs with an independent variable other than time.
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