Inhibition of \(\rho\)-aminobenzoate and folate syntheses in plants and apicomplexan parasites by the natural product rubreserine*

Djeneb Camara\(^1\); Cordelia Bisanz\(^2\); Caroline Barette\(^3\); Jeroen Van Daele\(^4\); Esmare Human\(^5\); Bernice Barnard\(^5\); Dominique Van Der Straeten\(^6\); Christophe P. Stove\(^7\); Willy E. Lambert\(^4\); Roland Douce\(^1\); Eric Maréchal\(^1\); Lyn-Marie Birkholtz\(^2\); Marie-France Cesbron-Delauw\(^2\); Renaud Dumas\(^1\) and Fabrice Rébeillé\(^1\)

\(^1\)Laboratoire de Physiologie Cellulaire Végétale, CEA / CNRS UMR5168 / INRA USC1200 / Université Joseph Fourier Grenoble I, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, F-38054 Grenoble, France
\(^2\)Laboratoire Adaptation et Pathogénie des Microorganismes, CNRS UMR 5163 / Université Joseph Fourier Grenoble I, Institut Jean Roget, F-38042 Grenoble, France
\(^3\)Centre de Criblage pour Molécules Bioactives, Institut de Recherches en Technologies et Sciences pour le Vivant, CEA-Grenoble, F-38054 Grenoble, France
\(^4\)Laboratory of Toxicology, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
\(^5\)Malaria Research Group, Department of Biochemistry, University of Pretoria, Private Bag x20, Pretoria, South Africa, 0028
\(^6\)Laboratory of Functional Plant Biology, Department of Physiology, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium

*Running title: Inhibition of \(\rho\)ABA synthesis in plants and apicomplexans.

To whom correspondence should be addressed: Fabrice Rébeillé: PCV/iRTSV, CEA-Grenoble, 17 avenue des Martyrs, F-38054 Grenoble, France ; email : frebeille@cea.fr; Tel: 33 (0)4 38 78 44 93; Fax: 33 (0)4 38 78 50 91

Key words: pABA biosynthesis; GAT-ADCS; folate; Arabidopsis; Apicomplexa;

Background: pABA biosynthesis is a potential target for antifolate drugs.

Results: Rubreserine inhibits GAT-ADCS, an enzyme involved in pABA biosynthesis, and decreased the folate content in Arabidopsis and Toxoplasma.

Conclusion: Specific inhibition of pABA synthesis induces growth limitation of plants and apicomplexan parasites.

Significance: GAT-ADCS is a valuable target in eukaryotes, and rubreserine is a novel scaffold for anti-parasitic drugs.

SUMMARY

Glutamine amidotransferase / aminodeoxychorismate synthase (GAT-ADCS) is a bifunctional enzyme involved in the synthesis of \(\rho\)-aminobenzoate (pABA), a central component part of folate cofactors. GAT-ADCS is found in eukaryotic organisms autonomous for folate biosynthesis, such as plants or parasites of the phylum Apicomplexa. Based on an automated screening to search for new inhibitors of folate biosynthesis, we found that rubreserine was able to inhibit the GAT activity of the plant GAT-ADCS with an apparent IC\(_{50}\) of about 8 \(\mu\)M. The growth rates of Arabidopsis thaliana, Toxoplasma gondii and Plasmodium falciparum were inhibited by rubreserine with respective IC\(_{50}\) values of 65, 20 and 1 \(\mu\)M. The correlation between folate biosynthesis and growth inhibition was studied with Arabidopsis and Toxoplasma. In both organisms the folate content was decreased by 40 - 50 % in the presence of rubreserine. In both organisms, the addition of pABA or 5-formyltetrahydrofolate in the external medium restored the growth for inhibitor concentrations up to the IC\(_{50}\) value, indicating that, within this range of concentrations, rubreserine was specific for folate biosynthesis. Rubreserine appeared to be more efficient than sulfonamides, antifolate drugs known to inhibit the invasion and proliferation of Toxoplasma gondii in human fibroblasts. Altogether, these results validate the use of the bifunctional GAT-ADCS as an...
efficient drug target in eukaryotic cells, and indicate that the chemical structure of rubreserine presents interesting anti-parasitic (toxoplasmosis, malaria) potential.

Folates are a family of cofactors that are essential for cellular one-carbon (C1) transfer reactions. They are involved in several important metabolic pathways, such as the synthesis of nucleotides and the methylation cycle (1-3). Folate biosynthesis can be divided into three branches (Fig. 1A): the first one for the pterin ring synthesis, the second one for the pABA synthesis and the third one for the assembly of these two precursors plus glutamates to form the backbone of folate derivatives (4-6). Blocking folate biosynthesis or turnover leads to the arrest of cell division and eventually to cell death. Antifolate drugs have been developed to exploit this feature in therapies against cancer cells and microbial or parasitic infections. Biosynthesis of folate is mainly inhibited by two groups of compounds, i.e. inhibitors of dihydropteroate synthase (DHPS) and inhibitors of dihydrofolate reductase (DHFR). Inhibitors of DHFR are commonly used as therapeutic agents against cancer (7) whereas a combination of these two types of inhibitors are commonly used in clinical treatments against parasites of the Apicomplexa phylum, such as Plasmodium falciparum or Toxoplasma gondii (8,9). However, the use of these drugs is compromised by the emergence of resistance, and the currently used chemical scaffolds and protein targets are actually over-exploited. Nevertheless, the long-established efficacy of folate metabolism as a clinical target is strongly encouraging to identify new inhibitors acting against other enzymes of the folate pathway comprising nine enzyme activities in addition to DHPS and DHFR (Fig. 1A) (10-12). Among potential targets, the enzymes involved in the pABA branch of the pathway are of great interest (13). Indeed, they are absent in animals and the only known metabolic fate of pABA is its commitment in folate synthesis. In addition, it was recently shown in plants that the production of pABA, together with the production of pterins, is rate limiting for the whole folate pathway (4,5). Also, it was shown in P. falciparum that pABA was an effective salvage substrate in experiments using antifolates, suggesting that pABA metabolism might offer opportunities for chemotherapy (14). The pABA moiety is synthesized in two steps from chorismate [a metabolite also involved in aromatic amino acid synthesis (15)]. First, chorismate is aminated to form 4-amino-4-deoxychorismate (ADC), and then ADC is aromatized with loss of pyruvate (Fig. 1B). In many bacteria such as E. coli or B. subtilis, ADC synthesis requires two separate proteins: PabA (a glutamine amidotransferase) and PabB (the ADC synthase) (16). In eukaryotes, the situation appears different. Indeed, in plants and lower eukaryotes, such as yeast and Apicomplexa, ADC synthesis is catalyzed by a single bifunctional protein (Fig. 1A) containing two domains, the glutamine amidotransferase (GAT) in the N-terminal part and the ADC synthase (ADCS) in the C-terminus (17). Based on sequence similarities with TrpG (the component II of anthranilate synthase), GAT-ADCS is classified as a member of the G-type group of amidotransferases (18,19). There is only one gene coding for GAT-ADCS in apicomplexan parasites and plants, and a mutation in the plant gene is embryo defective. The ADCS domain belongs to the group of chorismate-utilizing enzymes, which also contains salicylate synthase, isochorismate synthase and anthranilate synthase (20,21). Until now, searches of inhibitors for this class of enzymes were only achieved using prokaryotic systems. They involved docking studies and design of chorismate analogous compounds (22-25), combinatorial chemistry approaches (26, 27), and a specific screening of a microorganism extract collection using growth inhibition of test bacteria as a marker of activity (28,29). Several compounds were identified by these different methods but appeared to be relatively weak inhibitors of ADCS, although some of them could be quite potent against other chorismate-utilizing enzymes (22-24,26). The most potent inhibitor of ADCS reported to date is an analogue of chorismate (2-hydroxy-4-amino-4-deoxychorismate), exhibiting a K_i value of 38 μM against the purified enzyme (23). To our knowledge, the in vivo effects of these ADCS inhibitors have not been investigated. In the present report, using a purified recombinant plant GAT-ADCS as a model enzyme for bifunctional GAT-ADCS, we screened a chemical library for new inhibitors of pABA synthesis. We identified one compound exhibiting a $K_i < 10 \mu$M and measured the impact of this molecule on a plant (Arabidopsis thaliana) and two apicomplexan parasites (T. gondii and P. falciparum).
EXPERIMENTAL PROCEDURES

Materials - Arabidopsis thaliana (ecotype Columbia) seedlings were grown on plates containing Murashige and Skoog medium, 15% agar, plus the various molecules to be tested. Seeds were first sterilized by soaking for 15 min in a solution containing 0.095% Tween and 0.57% sodium hypochlorite before to be laid on the agar medium. The plates were conserved in the dark at 4 °C for 48 hours then transferred in a green house (20 °C, 80% humidity, 150 μE.m⁻².s⁻¹, 12 h light period). The number of seedlings at the two leaf stage (rosette stage) was counted after 2 weeks.

Arabidopsis thaliana (ecotype Columbia) cell suspension cultures were grown and sub cultured as previously described (30). For measurements of metabolites, cells were collected after 7 days of treatment, rapidly washed with distilled water, weighted, frozen in liquid nitrogen and stored at -80 °C for later analyses.

Toxoplasma gondii tachyzoites from the RH-YFP2 strain (kindly provided by B. Striepen, Athens, USA) were propagated in human foreskin fibroblasts (HFF) under standard procedures as previously described (31). Invasion and proliferation assays were performed onto HFF cells grown to confluence on glass coverslips in 4 or 24 multiwell plates. For the invasion assay, freshly egressed RH-YFP₂ parasites were incubated for 5 hours with or without the different drugs. To perform synchronized invasion, 10⁶ parasites / well were centrifuged for 30 sec at 1300 rpm onto HFF monolayers, and wells were incubated for 15 min in a water bath at 37 °C. Wells were further washed three times with cold PBS to eliminate extracellular parasites. Infected cells were fixed in 5% formaldehyde / PBS for 30 min and stored in PBS at 4 °C until staining. To distinguish intracellular from remaining extracellular parasites, coverslips were incubated with the primary antibody mAb Tg05-54 against the major Toxoplasma surface protein SAG1 (TgSAG1), and then with Texas Red-conjugated goat anti-mouse secondary antibody (Molecular Probes). Intracellular parasites exhibiting a faint red colour can easily be distinguished from extracellular parasites which are in bright red. Nuclei were stained with Hoechst 33258 as described above. For each drug concentration, the number of parasites was determined from at least 100 individual vacuoles. To determine folate concentrations, parasites were determined using the at least 100 individual vacuoles.

Plasmodium falciparum (3D7) was maintained in human O⁺ erythrocytes as previously described (32). The in vitro anti-plasmodial activity of the rubreserine was determined using the malaria SYBR Green I fluorescence assay as described (33,34). In vitro ring-stage intra-erythrocytic P. falciparum parasites (1% hematocrit, 1% parasitaemia) were incubated with specific concentrations of rubreserine in complete P. falciparum culture medium, with chloroquine disulphate used as a positive control (0.5 mM) or vehicle (1xPBS) as negative control. Fluorescence was measured after 96 h under drug pressure (excitation 485 nm, emission 538 nm). The data, after subtraction of background (chloroquine disulphate treated iRBCs, no parasite growth) were expressed as percentage of untreated control to determine cell proliferation.

Rubreserine preparation - Rubreserine was prepared from (-)-eseroline fumarate salt (Sigma). Stock solutions of eseroline (10 mM) were made in 50 mM Pi (pH 8), 50 mM Tris (pH 8) or 1 x PBS (pH 7.5) buffers, depending on the experiment. Under these conditions, eseroline is spontaneously oxidized into rubreserine, a process completed in about 6 hours at room temperature. The formation of rubreserine was controlled through the appearance of a characteristic peak of absorption at 475 nm. These stock solutions were stored at 4 °C for 48 hours.
h or at -20 °C for one week. They were serially diluted before use.

Expression and purification of the recombinant Arabidopsis enzymes - AGAT-ADCS and EcADCL proteins were expressed and purified as previously described (19). Arabidopsis cDNAs encoding GMPS, β-subunit of AS starting at A51 to remove the plastid transit peptide, and α-subunit of AS starting at A61 were amplified by PCR and cloned into the expression vector pET28 (Novagen). E. coli BL21-CodonPlus (DE3)-RIL cells (Stratagene) were transformed and grown using the same protocol than for AGAT-ADCS. Cells were disrupted and His-tagged recombinant proteins were purified as described (19).

Determination of enzyme activities - GAT activity can be determined by measuring the production of glutamate, and ADCS activity by the production of pABA (19). Standard assays contained 100 mM Tris/HCl (pH 8.0), 5 mM MgCl2, 5% V/V glycerol, 0 to 0.5 mM L-glutamine, 0 to 0.02 mM chorismate, and 9 µg ml⁻¹ of the recombinant plant enzyme. The presence of an excess of EcADCL (20 µg ml⁻¹, 600 nM) is required for the production of pABA. Reactions (final volume 80 µl) were run in 96 well microplates (Greiner) and changes in fluorescence were continuously monitored with a microplate scanning spectrophotometer Safir² (Tecan). To monitor glutamate production, an excess of GDH (100 µg ml⁻¹, 4.2 units ml⁻¹) and 1 mM NAD were added to the assay, and NADH production was followed by its emission at 450 nm (excitation 340 nm). Concentration of pABA was monitored by its fluorescence emission at 340 nm (excitation 290 nm) in the presence of EcADCL.

The activities of GMPS and AS (β- plus α-subunits) were measured monitoring glutamate production. In both conditions the final volume was 500 µl. For GMPS, the assay medium contained: 200 µM XMP, 1 mM ATP, 0.5 mM L-glutamine, 10 µg GMPS, 1 mM NAD, 4.2 units ml⁻¹ GDH. For AS, the assay medium contained: 50 µM chorismate, 0.5 mM L-glutamine, 10 µg TrpG, 10 µg TrpE, 1 mM NAD, 4.2 units ml⁻¹ GDH and various concentrations of rubreserine. The reactions were started by addition of glutamine and the change in absorbance at 340 nm was monitored with a UV-visible spectrophotometer (Safas).

High throughput screening - The screening was conducted at the Center for the screening of Bio-Active Molecules (CMBA) located at the CEA-Grenoble, France. The library of compounds was purchased from The Prestwick Chemical Library® (http://www.prestwickchemical.com). This library contains 1200 molecules selected for their high chemical and pharmacological diversity. They are marketed and 100% FDA approved compounds, supplied in the library at a 10 mM concentration in DMSO. The final concentration used in the enzymatic assay was 100 µM, and we verified in separate control experiments that 2% DMSO had no effect on the activity. The enzymatic test used for primary and secondary screenings was identical to the one described above for the GAT activity. Quality of the assay was assessed based on the calculation of the Z’ factor, as defined by Zhang et al. (35). After optimization of the assay, the Z’ factor was 0.76 ± 0.08 (a good assay must display a Z’ factor > 0.5). The assay was conducted as follows: 50 µl of a mix containing 0.1 M Tris (pH 8), 5 mM MgCl₂, 5% glycerol, 40 µM chorismate, 1 mM NAD, 0.4 unit GDH, 0.7 µg GAT-ADCS and 100 µM of the various molecules were added in each well (in control wells, molecules were omitted). The reaction was started by injection in each well of 30 µl of a solution containing 1.3 mM Gln, and the fluorescence changes (Exc 340 nm, Emi 450 nm) were recorded at 0, 15 and 25 min. The most promising molecules were purchased and their inhibitory properties were manually confirmed.

Measurements of metabolites - Determinations of folates and pABA were essentially performed as described (36-38). Briefly, the extract corresponding to 3 - 5 x 10⁷ parasites or 0.5 g (fresh weight) of plant material was subjected to separation using UPLC (for folates) or HPLC (for pABA), followed by tandem mass spectrometric detection on an Applied Biosystems API 4000 (Foster City, CA, USA), using electrospray ionization, in the MRM mode. For folates, the final quantitative data reflect the sum of six different folate monoglutamates: tetrahydrofolate (THF), 5-methyl-THF, 10-formyl-folic acid, 5,10-methenyl-THF, folic acid, and 5-formyl-THF (5-FTHF). [¹³C]-folate derivatives and 3-NH₂-4-CH₃-benzoic acid were added in the extraction buffers as internal standards for folates and pABA, respectively.

RESULTS

GAT-ADCS assay, high throughput screening and GAT-ADCS inhibition - The
search for enzyme inhibitors by global approaches requires methods to determine the activity that are accurate, robust and compatible with the automated platforms used for screening of chemical libraries. When coupled with glutamate dehydrogenase (GDH), GAT activity was easily measurable with a UV-visible spectrophotometer (340 nm) or a fluorimeter (excitation 340 nm, emission 450 nm) monitoring NADH accumulation (19,39). Also, it was convenient to use the same procedure to test the inhibitors on GDH alone, in order to discard molecules that were specific for this last activity. Based on this protocol, we designed a miniature assay easily reproducible and optimized for the identification of active drugs, with a screening coefficient Z' [a statistical parameter measuring the quality of the screening assay (35)] of 0.76 ± 0.08 (see Experimental procedures). Because all our attempts to produce active recombinant GAT-ADCS from apicomplexan parasites failed, we used the recombinant plant enzyme as a model for this bifunctional system. We screened the registered Prestwick® Chemical Library (1200 compounds) against the GAT activity of the plant GAT-ADCS. After primary and secondary screenings, we identified only four molecules exhibiting IC_{50} values that were below 50 µM. They were manually tested and we found that rubreserine [1,3a,8-trimethyl-1,2,3,3a,8,8a-hexahydropyrrolo[2,3-b]indole-5,6-dione, an oxidative product of eseroline (40-42) that spontaneously forms at alkaline pH (Fig. 2 and Fig. S1 in Supplemental Data)] exhibited the best inhibitory properties. Eseroline itself had no effect, indicating that the carbonyl functions resulting from eseroline oxidation were essential for the inhibition. The rate constant of inhibition was rather low (about 0.1 min⁻¹) and a 20 min period of incubation with rubreserine was required to obtain maximal inhibition. We observed GAT-ADCS inhibition independently of the presence or position of the His-tag that was added for purification convenience, indicating that such a tag was not involved in the inhibition process. We previously showed that the GAT activity was maximal in the presence of chorismate as substrate of the ADCS domain, but could also operate independently (19). We observed inhibition of glutamate production in both conditions, i.e. with and without chorismate, and we also observed inhibition of pABA synthesis when GAT-ADCS was coupled with non limiting amounts of ADC lyase (Fig. 3A, 3B). In separate control experiments we verified that rubreserine did not impact ADC lyase activity. In all situations, rubreserine decreased the V_m and increased the K_m for glutamine, indicating a mixed-type inhibition (Fig. 3C). Apparent equilibrium constants K_i (representing the ratio $[E][I]/[E]I$) and aK_i, (representing the ratio $[ES][I]/[ES]I$) calculated from such pattern of curves (43) were estimated to be respectively $3 ± 1$ and $8 ± 1$ µM in the different conditions, i.e. measuring either glutamate or pABA productions.

In vivo effects of rubreserine on Arabidopsis thaliana growth and folate content - When *Arabidopsis* seedlings were grown on agar plates in the presence of rubreserine concentrations ranging from 50 to 100 µM, we observed a dose-dependent growth inhibition (Fig. 4). Interestingly, when the agar plates were supplemented with pABA, the growth was restored for inhibitor concentrations up to 50 µM, and partially restored for higher concentrations, the maximal effect being obtained with pABA concentrations ≥ 100 µM (Fig. 4). This suggests that for low rubreserine concentrations, at least, the growth inhibition was due to a limitation of pABA synthesis. Because pABA is required for folate biosynthesis, we also measured the potential impact of 5-formyl-THF (5-FTHF) on rubreserine-treated plants (Fig. 4). As shown, this folate derivative had similar effect than pABA.

Next, we investigated the effect of rubreserine on the folate content. We used Arabidopsis cell cultures for these experiments to dispose of enough material for metabolite determinations. For rubreserine concentrations within the range 25 - 100 µM, the cell division came to an arrest after about seven days. Similar results were obtained in the presence of sulfanilamide, a well-known specific inhibitor of DHPS that blocks pABA utilization in the folate pathway (Fig. 1A). After seven days, the pools of folate in rubreserine- and sulfanilamide-treated cells (Table I) decreased by about 40 and 60%, respectively. However, the distributions of folate derivatives were not markedly modified [in all situations, the various representative pools of folates were roughly: 50% 5-methyl-THF, 35% 10-formyl-THF plus 5,10-methenyl-THF, 8% 5-FTHF, 7% THF plus 5,10-methylene-THF, and 0.3% folic acid (30)]. Interestingly, when 100 µM pABA were present in the culture medium, the folate content in both control and rubreserine-treated cells were almost identical.
(Table I), which was clearly indicative of a protective effect of pABA. Since rubreserine inhibited the pABA branch of the folate pathway, we also attempted to measure the pABA content of Arabidopsis cells. In plants, pABA was found either as free acid or as a glucose ester conjugate. This last form (> 80% of total pABA) is sequestered in vacuoles and does not directly contribute to folate synthesis (44,45). This makes the determination of free pABA quite difficult because, as previously shown (44), breakdown of pABA utilization was blocked (46).

In contrast, the total amount of pABA did not markedly change, suggesting that the glucose ester conjugate in the vacuole and the free acid form in the cytosol are not in rapid equilibrium. In sulfanilamide-treated cells, free and total pABA slightly increased by about 30% (Table II), an expected result taking into account that pABA slightly increased by about 30% (Table II). In contrast, the total amount of pABA did not markedly change, suggesting that the glucose ester conjugate in the vacuole and the free acid form in the cytosol are not in rapid equilibrium.

Effect of rubreserine on the proliferation of apicomplexan parasites - Before testing the effect of rubreserine on Toxoplasma gondii, we first verified with the MTT [3-(4,5-Dimethylthiazol-2-yi)-2,5-diphenyltetrazolium bromide] cytotoxicity assay (47) that rubreserine concentrations up to 50 µM had no toxicity on confluent human fibroblast (HFF) cells. Indeed, after 48 h of exposure to 50 µM rubreserine, the cell viability was still 95 ± 5% of the control. Then, we evaluated the effect of rubreserine on Toxoplasma parasites in two different situations: invasion of confluent HFF by the parasites in one hand, and intracellular development of the parasites within confluent HFF in the other hand. As shown in Figure 5A, invasion of human cells strongly decreased when the parasites had been previously incubated with rubreserine. This effect was dose-dependent, the number of intracellular parasites being reduced two fold in the presence of 20 µM rubreserine (IC₅₀). Likewise, when infected cells were placed in the presence of the inhibitor, the number of parasites in parasitophorous vacuoles decreased after 24 h in comparison with untreated infected cells, which was indicative of a slowing down of the parasite’s intracellular division (Fig. 5B). In both situations, rubreserine appeared much more efficient than sulfanilamide and sulfadiazine, this last sulfonamide drug being widely used in the treatment of toxoplasmosis. To correlate the inhibitory effect with folate biosynthesis, we attempted to determine the folate concentration in T. gondii cells. To our knowledge, there was no report about the intracellular concentration of folates within proliferating T. gondii parasites. We measured folates in parasites grown for 24 h in HFF cells placed in the presence of either 20 or 40 µM rubreserine (Table III). Interestingly, in both conditions the total folate concentration decreased by a factor of two. Also, similar to what was observed in plants, the distributions of folate derivatives were not significantly changed in the presence of the drug (in these cells the various representative pools of folates were: 18% 5-methyl-tetrahydrofolate, 25% 10-formyl-tetrahydrofolate plus 5,10-methylene-tetrahydrofolate, 42% 5-FTHF, 8% tetrahydrofolate plus 5,10-methylene-tetrahydrofolate, and 7% folic acid). In addition, for a rubreserine concentration of 20 µM (IC₅₀ value), the parasite growth was largely restored in the presence of either pABA or 5-FTHF (Fig. 6A), the maximal protective effect being obtained for concentrations ≥ 25 µM. Thus, for such inhibitor concentration (20 µM), the inhibitory process largely relied on the inhibition of pABA and folate biosynthesis. However, for rubreserine concentrations higher than 20 µM, pABA and 5-FTHF had only little effect (Fig. 6B), suggesting that high concentrations of the inhibitor had other, non folate-specific, actions. Since antifolate drugs (anti DHPS and anti DHFR) are often used in combination, we tested the effect of rubreserine in combination with an anti DHFR (Fig. 6C). When 20 µM rubreserine and 0.4 µM pyrimethamine were combined, the inhibition was slightly but significantly increased compared to rubreserine alone. Interestingly, rubreserine alone appeared in our experimental conditions as efficient as a mixture combining 50 µM sulfadiazine and 0.4 µM pyrimethamine. Additionally, rubreserine was also tested on the in vitro proliferation of P. falciparum. As shown in Figure 7, rubreserine exhibited anti-malarial properties since the intraerythrocytic growth of the parasite was strongly inhibited by rubreserine, with an IC₅₀ of 1 ± 0.04 µM (n=5). Whether folate biosynthesis is also a primary target in these organisms is currently under investigation.

Specificity of inhibition by rubreserine - At low rubreserine concentrations, folate biosynthesis appeared as a main target in Arabidopsis and Toxoplasma. However, at high
rubreserine concentrations the growth activity could not be fully restored by the presence of pABA or 5-FTHF, raising the question of the inhibitor specificity. GAT-ADCS belongs to the family of class I glutamine amidotransferases (18,48), which contains six other members. The GAT domain of GAT-ADCS does not share strong homologies with the GAT domains of the other members of this class, the best scores being obtained with anthranilate synthase (AS, about 28% identity), GMP synthetase (GMPS, about 13% identity) and carbamoyl phosphate synthetase II (involved in UMP synthesis, about 15% identity). To test the effect of rubreserine on other members of this group, we attempted to produce these recombinant Arabidopsis activities. We failed to produce active recombinant carbamoyl phosphate synthetase, but we produced AS [a heterodimeric protein combining the activities of β- and α-subunits, respectively equivalent to TrpG and TrpE in prokaryotes (49)] and GMPS [a bifunctional enzyme with fused GAT and synthase domains (50), alike GAT-ADCS]. We determined these activities with the same GDH-coupled assay that we used for GAT-ADCS. As shown in Table IV, rubreserine also inhibited GMPS and AS activities, although inhibition of GMPS required higher concentrations of inhibitor. Toxoplasma, but not Plasmodium, is auxotroph for tryptophan because of the lack of AS activity (51,52). However, the enzymes involved in the synthesis of GMP [GMPS, a bifunctional enzyme, alike to plants (53)] and UMP [carbamoyl phosphate synthetase II, a heterodimer in plants (54), but a single protein in apicomplexan parasites (55)] are present in these organisms. When a mixture containing pABA, anthranilate, UMP and GMP (100 µM each) was added to the culture medium of rubreserine-treated plants or was present in the proliferation assay of Toxoplasma, the growth recovery for both organisms was not markedly improved compared to that obtained with pABA or 5-FTHF alone (see Fig. 6B for the experiments with T. gondii).

DISCUSSION

Two main conclusions can be drawn from this study: first, our data validate for the first time the use of the bifunctional GAT-ADCS as an efficient drug target in eukaryotic cells, and, second, we identified a new scaffold that inhibits plant growth and proliferation of apicomplexan parasites.

The screening test we used appeared efficient to select active compounds from Prestwick® chemical library, and we found that an oxidative product of eseroline, rubreserine, was inhibiting the GAT activity of AtGAT-ADCS. Eseroline and rubreserine were identified a long time ago as metabolites of physostigmine (eserine), an alkaloid present in the Calabar bean (Physostigma venenosum), and previously used for its potent anticholinesterase activity. To our knowledge, rubreserine and eseroline have no current use in any medical purpose. Pharmacological studies indicated that these two molecules were not or weak inhibitors of cholinesterase (56), but there was no report indicating that rubreserine could affect folate biosynthesis and inhibit the growth of plants and the proliferation of parasites. Thus, we describe for this compound a new biological effect with interesting therapeutic potentialities. When GAT-ADCS was coupled with ADC lyase, the apparent constant of inhibition (K_i) for pABA formation was estimated to be < 10 µM, which is the best constant of inhibition obtained so far for the biosynthesis of pABA. How rubreserine affects the protein activity is however not yet understood, and currently under investigation. The obvious difference between the chemical structures of eseroline and rubreserine is the presence of two carbonyl functions on the aromatic ring of the latter compound. Thus, these carbonyl functions were presumably at the origin of the inhibitory effect. It must be noted that many other natural quinonoid compounds were shown to display antimalarial properties (57), although the targets and modes of action were not described for most of them.

The rubreserine-dependent growth inhibitions of Arabidopsis and Toxoplasma were specifically associated with an inhibition of folate biosynthesis for concentrations ≤ IC_50, although higher concentrations might also inhibit other activities. The correlation between rubreserine and folate biosynthesis was observed by direct and indirect approaches. The direct approach indicated that Arabidopsis cells exhibited folate and free pABA contents lowered respectively by 45 % and 25 % in the presence of the inhibitor. In addition, when pABA was present in the culture medium of rubreserine-treated plant cells, the folate level was almost identical to the control, indicating a protective role of pABA. Likewise, the folate level in Toxoplasma cells was two times lowered by
rubreserine. The impact of rubreserine on folate biosynthesis was also shown indirectly. Indeed, for rubreserine concentrations close to the IC$_{50}$ values, the rubreserine-dependent growth inhibitions of *Arabidopsis* and *Toxoplasma* were for a large part reversed by the addition of pABA or 5-FTHF, indicating that the biosynthesis of pABA displayed a particular sensitivity to rubreserine, and that the resulting decrease of folate biosynthesis contributed to the inhibitory process. The mode of action of rubreserine in *Plasmodium* is currently under investigation to determine to which extent folate biosynthesis is inhibited in this organism, and the contribution of such an inhibition to the whole inhibitory process.

It is interesting to compare the effects of GAT-ADCS and DHPS inhibitors because both types of drugs impact pABA metabolism. Interestingly, rubreserine appeared in our experimental conditions much more efficient against *Toxoplasma gondii* than sulfadiazine, a sulfonamide widely used for the treatment of severe toxoplasmosis. Indeed, the IC$_{50}$ value calculated for rubreserine was significantly lower than the IC$_{50}$ for sulfadiazine estimated from this study (> 50 μM). The IC$_{50}$ for sulfadiazine may fluctuate widely depending on the parasite strain, from about 20 μM to more than 200 μM, and is generally > 30 μM (58). Such a variation presumably illustrates the occurrence of resistance within the numerous *Toxoplasma* strains. Sulfonamide drugs are normally not used alone against parasites of the Apicomplexa phylum because of their limited activity (8). However, they are potent synergizers of DHFR inhibitors (exemplified in Fig. 6B), which is the reason why these molecules are used in combination. Indeed, inhibition of DHPS decreases the *de novo* synthesis of dihydropteroate, which, in turn, leads to reduction of dihydrofolate, the substrate of DHFR. Because the amount of dihydrofolate is decreased, the efficiency of DHFR inhibitors increases and lower doses of these toxic molecules are required. When rubreserine was used in combination with pyrimethamine in *Toxoplasma*, we also observed a small but significant synergistic effect, and such an association appeared as efficient as a mixture combining sulfadiazine and pyrimethamine. Thus, molecules with a hexahydropyrrolo[2,3-b]indole-5,6-dione scaffold, such as rubreserine, could be interesting structures to develop novel drugs that could represent alternatives to sulfonamides.

REFERENCES

Acknowledgments - We wish to thank Bernadette Gbononnet for technical assistance, Dr Céline Richefeu-Contesto for helpful discussions and Drs Stéphane Ravanel and Claude Alban for critical reading of the manuscript.

FOOTNOTES

*This work and the Ph.D. fellowship of D.C. were supported by the Région Rhône-Alpes (Cluster 9, ‘Plantacter’). E.M. was supported by an ANR PlasmoExpress grant. D.V.D.S. and W.L. thank Ghent University for financial support (BOF09-GOA-004).

A patent was registered in the European Patent Office; patent number 11290215.0 – 1211.

The abbreviations used are: pABA, para-aminobenzoic acid; GAT-ADCS, glutamine amidotransferase - aminodeoxychorismate synthase; ADCL, aminodeoxychorismate lyase; AS, anthranilate synthase; GMPS, GMP synthetase; GDH, glutamate dehydrogenase; THF or H4F-Glu4, tetrahydrofolate; 5-FTHF, 5-formyl tetrahydrofolate; Rubre, rubreserine; Sulfa, sulfanilamide; SDZ, sulfadiazine.

FIGURE LEGENDS

FIGURE 1. Biosynthesis of THF. A) Schematic representation of the pathways found in E. coli, P. falciparum and A. thaliana. The enzymes involved are: 1, GTP cyclohydrolase I; 2, NUDIXhydrolase; 3, unspecific phosphatase; 4, dihydroneopterin aldolase; 4’, 6-pyruvoyltetrahydropterin synthase; 5, glutamine amidotransferase (GAT) and aminodeoxychorismate synthase (ADCS) (PabA and PabB in E. coli); 6, ADC lyase (ADCL); 7, 6-hydroxymethylidihydropterin (H2Pterin) pyrophosphokinase; 8, dihydropteroate (H2Pteroate) synthase; 9, dihydrofolate (H4F) synthetase; 10, dihydrofolate reductase; 11, folypolyglutamate synthetase; 12, thymidylate synthase. Other abbreviations: Cho, chorismate; pABA, p-aminobenzoate; H2PterinPP, 6-hydroxymethylidihydropterin pyrophosphate; H4F, tetrahydrofolate; H4F-Glu4, the polyglutamylated form of H4F. Merged symbols represent bifunctional enzymes. The activities 9 and 11 are catalyzed by a single enzyme in E. coli and Plasmodium. In Plasmodium, the activity 6 remains to be identified. Above the broken line, the activities are absent in animals. The black stars show the two enzymes actually targeted by antifolate drugs. The white stars show the potential target studied in the present paper. B) Details of the two-step pathway required for pABA synthesis. In all eukaryotes the first step involves a bifunctional GAT-ADCS, whereas two separate proteins PabA and PabB are found in most (but not all) prokaryotes (19).

FIGURE 2. Chemical structures of eseroline and rubreserine. Oxidation of eseroline into rubreserine is spontaneous and strongly increased at pH > 7.

FIGURE 3. Effect of rubreserine on GAT-ADCS kinetics. A) Glutamine-dependent glutamate production (GAT activity alone, no chorismate) in the presence of rubreserine. GAT-ADCS was first incubated with the various concentrations of rubreserine for 20 min, and then the kinetic was started by the addition of Gln, NAD and GDH. B) Glutamine-dependent pABA production (GAT-ADCS activity, 100 µM chorismate) in the presence of rubreserine and non-limiting amount of ADCL. GAT-ADCS was first incubated with the various concentrations of rubreserine for 20 min, and then the kinetic was started by the addition of Gln, chorismate and ADCL. C) Reverse plot of Figure 3B. Maximal rates of the recombinant enzyme were 140 ± 40 nmol min⁻¹ mg⁻¹ for GAT activity (glutamate
production, no chorismate) and 130 ± 30 nmol min⁻¹ mg⁻¹ for GAT-ADCS activity (pABA production, with chorismate and ADCL). Curves were fitted with the hyperbolic equation of Michaelis-Menten (3A and 3B) and linear regression (3C). All our assays were made in triplicate and expressed ± SD.

FIGURE 4. Effect of rubreserine on the development of Arabidopsis seedlings. Seedlings were grown in agar plates without (controls) or with 50, 75 or 100 µM rubreserine. The estimated number of seedlings at the rosette stage after 2 weeks is expressed as % of the conditions without rubreserine. The presence in the culture medium of 200 µM pABA or 200 µM 5-FTHF partially reversed the growth inhibition. Results are the average of at least three independent experiments ± SD. Asterisks mark datasets showing statistical difference with the condition containing rubreserine alone in a Student’s T-test (p < 0.05).

FIGURE 5. Effect of rubreserine (Rubre) on invasion and proliferation of T. gondii, and comparison with sulfanilamide (Sulfä) and sulfadiazine (SDZ). A) Invasion of human fibroblasts. The parasites were first incubated with the various drugs for 5 h, and then placed in contact with HFF cells for 15 min. The number of intracellular parasites is expressed for each experiment as % of the number recorded in non-treated cells. B) Intracellular growth of the parasites. Proliferation was estimated 24 h after the invasion process and expressed as the number of parasites present in the parasitophorous vacuoles. Results from invasion and proliferation experiments are the average of three to four independent experiments ± SD.

FIGURE 6. Effect of rubreserine in combination with various other compounds on the proliferation of T. gondii. The number of parasites present in the parasitophorous vacuoles after 24 h are expressed as % versus the corresponding controls (i.e. no adds, or pABA alone, or 5-FTHF alone). A) Reverse effect of pABA and 5-FTHF in the presence of 20 µM rubreserine (Rubre). B) Reverse effect of pABA and 5-FTHF (100 µM each) as a function of rubreserine concentration. C) Effect of various drug combinations; the concentrations used were: 20 µM rubreserine (Rubre), 0.4 µM pyrimethamine (Pyrim), 100 µM pABA, 100 µM 5-formyltetrahydrofolate (5-FTHF), 50 µM sulfadiazine (SDZ). Mix is a mixture containing pABA, anthranilate, UMP and GMP, 50 µM each. Asterisks indicate statistical difference in a Student’s T-test (p < 0.05) between the conditions rubreserine alone and rubreserine in combination with other drugs, and between the conditions sulfadiazine or pyrimethamine alone and sulfadiazine plus pyrimethamine. Results are the averages of 3 to 4 independent experiments ± SD.

FIGURE 7. Effect of rubreserine on the growth of P. falciparum. Parasites were maintained under normal culture conditions and exposed to serial dilutions of rubreserine from 10 mM and parasite proliferation determined as a measurement of DNA content with SYBR Green I fluorescence after 96 h of exposure. Data are averaged from 5 independent experiments performed in triplicate (± SD).
Table I. Effect of rubreserine (Rubre) on the folate content of *Arabidopsis* cells, and comparison with sulfanilamide (Sulfa). Cells were cultivated for 7 days with the various compounds before folate determinations. The total folate contents of control cells cultivated with or without 100 µM pABA were respectively 11.8 ± 2 and 10 ± 1.5 nmoles g⁻¹ fresh weight. Measurements are the average ± SD of 4 to 6 determinations from 2 to 3 independent set of experiments. Results for each set of experiment are expressed as % versus the corresponding control.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Total folates (%) versus control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rubre 25 µM</td>
<td>60 ± 10</td>
</tr>
<tr>
<td>Rubre 25 µM + pABA 100 µM</td>
<td>85 ± 9</td>
</tr>
<tr>
<td>Rubre 50 µM</td>
<td>66 ± 3</td>
</tr>
<tr>
<td>Rubre 50 µM + pABA 100 µM</td>
<td>116 ± 12</td>
</tr>
<tr>
<td>Rubre 100 µM</td>
<td>54 ± 9</td>
</tr>
<tr>
<td>Sulfa 25 µM</td>
<td>42 ± 3</td>
</tr>
<tr>
<td>Sulfa 100 µM</td>
<td>39 ± 6</td>
</tr>
</tbody>
</table>
Table II. Effect of rubreserine (Rubre) on the pABA contents of *Arabidopsis* cells, and comparison with sulfanilamide (Sulfa). Cells were cultivated for 7 days with the various compounds before pABA determination. The total and free pABA concentrations found in control cells were respectively 8.5 ± 2 and 1.1 ± 0.4 nmoles g⁻¹ fresh weight. Measurements are the average ± SD of 8 determinations from 4 sets of experiments. Results for each set of experiments are expressed as % versus the corresponding control.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>pABA (%) versus control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>Rubre 100 µM</td>
<td>90 ± 5</td>
</tr>
<tr>
<td>Sulfa 100 µM</td>
<td>128 ± 16</td>
</tr>
</tbody>
</table>
Table III. Effect of rubreserine (Rubre) on the folate content of *Toxoplasma gondii* cells. Parasites were grown for 24 hours in confluent HFF cells in the presence of 20 or 40 µM rubreserine. The results are expressed as nmoles per 10^7 parasites. Measurements are the average ± SD of 2 (40 µM Rubre), 3 (20 µM Rubre) and 4 (control) independent set of experiments.

<table>
<thead>
<tr>
<th>Conditions</th>
<th>Total folates (nmoles per 10^7 parasites)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No drug</td>
<td>10.2 ± 2.6</td>
</tr>
<tr>
<td>Rubre 20 µM</td>
<td>3.8 ± 1</td>
</tr>
<tr>
<td>Rubre 40 µM</td>
<td>4 ± 2</td>
</tr>
</tbody>
</table>
Table IV. Effect of rubreserine on the GAT activities associated with recombinant *Arabidopsis* GAT-GMPS, AS and GAT-ADCS. Activities were estimated measuring the glutamate production through a GDH coupled assay, as described in Experimental procedures. Rubreserine concentrations up to 50 µM had no detectable effect on GDH activity alone. Assays were made in triplicate and expressed ± SD.

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>Specific Activities (µmoles min⁻¹ mg⁻¹)</th>
<th>IC₅₀ (µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AtGAT-GMPS</td>
<td>0.30</td>
<td>25 ± 10</td>
</tr>
<tr>
<td>AtAS (α + β subunits)</td>
<td>0.16</td>
<td>7 ± 2</td>
</tr>
<tr>
<td>AtGAT-ADCS</td>
<td>0.40</td>
<td>8 ± 2</td>
</tr>
<tr>
<td>GDH (type II from bovine liver)</td>
<td>44</td>
<td>Not measurable: >> 50</td>
</tr>
</tbody>
</table>
Figure 1

A

\[
\begin{align*}
\text{GTP} & \quad \text{H}_2\text{Neopterin} \\
\text{Chorismate} & \quad \text{H}_2\text{Pterin} \\
\text{pABA} & \quad \text{H}_2\text{Pterin} \\
\text{H}_2\text{F} & \quad \text{H}_2\text{F} \\
\text{H}_4\text{F} \quad \text{H}_4\text{F} \\
\text{H}_2\text{FGlu} & \quad \text{H}_2\text{FGlu} \\
\text{E. coli} & \quad \text{A. thaliana} & \quad \text{P. falciparum}
\end{align*}
\]

B

\[
\begin{align*}
\text{Glutamine} & \quad \text{GAT} \quad \text{Glutamate} \\
\text{NH}_3 & \quad \text{ADC} \\
\text{Pyruvate} & \quad \text{pABA}
\end{align*}
\]
Figure 2

Eseroline $\xrightarrow{O_2, \text{pH} > 7}$ Rubreserine
Figure 3
Figure 4

A bar chart showing the percentage of seedlings at the two-leaf stage with different concentrations of Rubreserine. The x-axis represents the concentration of Rubreserine (0 μM, 50 μM, 75 μM, 100 μM), and the y-axis represents the percentage of seedlings (% of each control). The chart includes data for no addition, + pABA, and + 5-FTHF. Significant differences are indicated by asterisks (*).
Figure 5

Invasion

Proliferation

Itracellular parasites (% of control)

Concentration (µM)

A

Number of parasites per vacuole

Concentration (µM)

B
Figure 6

A: Graph showing the effect of pABA or 5-FTHF concentrations on parasites (% of corresponding controls) with different treatments: Control (+ pABA), Control (+ 5-FTHF), Rubre 20 μM + pABA, Rubre 20 μM + 5-FTHF.

B: Graph showing the effect of Rubre concentration on parasites (% of control) with different conditions: No addition, + pADA 100 μM, + 5-FTH 100 μM.

C: Bar graph comparing Parasites (% of control) across different treatments: Controls, Rubre, Rubre + Pyrim, Rubre + pABA, Rubre + 5-FTHF, Rubre + Mix, SDZ, Pyrim, SDZ + Pyrim.
SUPPLEMENTAL DATA

Supplementary Figure 1: The pH-dependent conversion of eseroline into rubreserine. A) GAT-ADCS inhibition is dependent on the age of the eseroline solution. During this period, the colour of the solution shifted from pinkish to red, suggesting that a product of transformation, rather than eseroline itself, was the inhibitory compound. B) UV-visible spectra of a 500 µM solution of eseroline (24 h old) either in water (pH 3.4 resulting from the presence of fumaric acid in the commercial preparation) or in 50 mM Pi buffer (pH8). Note in the last situation the presence of a peak at 475 nm, characteristic of the red colour of rubreserine. Following the peak at 475 nm, we observed that a 10 mM eseroline solution (pH 8) was converted into rubreserine in about six hours at room temperature (insert). C) 13C-NMR spectra of a 30 mM solution of eseroline (24 h old) showing the appearance at pH 8 of 2 peaks in the carbonyl region of the spectra, characteristic of rubreserine. NMR spectra were recorded on a Bruker NMR spectrometer (AMX 400, WB) equipped with a 10 mm multinuclear probe tuned at 100.6 MHz for 13C NMR studies. The delay D1 between two pulses was set to 60 s to allow a more complete relaxation of carbons in the carbonyl region. D) Reverse phase chromatography of a 24 h old eseroline solution (pH 8) showing one major peak (representing 91% of all peaks detected by their absorbance at 300 nm) with spectra under the peak characteristic of rubreserine. The HPLC conditions were as follow: C$_{18}$ reverse phase column (Zorbax ODS 5µM, 4.6 x 250 mm); flow rate 1 ml min$^{-1}$; solvent A: 50 mM NaPi, pH 6, 8 mM tetrabutylammonium bisulfate; solvent B: 29 % methanol in solvent A; linear gradient from 17 % to 100 % of solvent B in 15 min, then 100 % B for 9 min; peaks were detected by their absorbance at 300 nm.