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Abstract

Rado constructed a (simple) denumerable graph R with the positive integers as vertex set
with the following edges: For given m and n with m < n, m is adjacent to n if n has a 1 in
the m’th position of its binary expansion. It is well known that R is a universal graph in the
set Ic of all countable graphs (since every graph in Ic is isomorphic to an induced subgraph of
R) and that it is a homogeneous graph (since every isomorphism between two finite induced
subgraphs of R extends to an automorphism of R).

In this paper we construct a graph U(H) which is H-universal in →Hc, the induced-
hereditary hom-property of H-colourable graphs consisting of all (countable) graphs which
have a homomorphism into a given (countable) graph H. If H is the (finite) complete graph
Kk, then →Hc is the property of k-colourable graphs. The universal graph U(H) is charac-
terised by showing that it is, up to isomorphism, the unique denumerable, H-universal graph
in →Hc which is H-homogeneous in →Hc. The graphs H for which U(H) ∼= R are also
characterised.

With small changes to the definitions, our results translate effortlessly to hold for digraphs
too. Another slight adaptation of our work yields related results for (k, l)-split graphs.
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1 Introduction

All graphs considered here are simple, undirected (except later only in Corollaries 1 and 2),
unlabelled and have countable vertex sets. When the vertex set is taken to be the set, or some
subset, of the positive integers N = {1, 2, . . .}, number-theoretic properties of the integers may
be employed in constructions and proofs. Otherwise, the vertex set of a graph may be indexed
by N or one of its subsets.

Let P be a class of countable graphs. Following [6], we define a graph U to be a universal
graph for P if every graph in P is (isomorphic to) an induced subgraph of U ; it is a universal
graph in P if U ∈ P too. We shall often have occasion to refer to two graphs which are
isomorphic; in that case we shall refer to (any) one of them as a clone of the other. For any
graph property P (i.e., an isomorphically closed class of graphs) we use the symbols Pc, Pd, Pf

to denote, respectively, the classes of countable, denumerable, and finite graphs of P.
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Rado [11] constructed the denumerable graph R on N with the following edges: For given
m and n with m < n, m is adjacent to n in R (i.e., we have an edge mn in R) if n has a 1 in
the m’th position of its binary expansion. It is well known that R is a universal graph in the
set Ic of all countable graphs (since R ∈ Ic and every graph in Ic is isomorphic to an induced
subgraph of R). Some known constructions of clones of this graph, together with many new
constructions, are discussed in [2]. Important properties of R (sometimes called the “random
graph”) are discussed in [4].

A homomorphism from a graph G to a graph H is an edge-preserving map from the
vertex set V (G) of G into the vertex set V (H) of H. If such a map exists, we say that G is
homomorphic to H and we write G→ H. Given any (countable) graph H, the hom-property
→Hc is the class of H-colourable graphs, i.e., it consists of all (countable) graphs which have
a homomorphism into the given graph H. In symbols: →Hc = {G | G ∈ Ic, G → H}. Using
the terminology of [1], we note that every hom-property is an additive, induced-hereditary graph
property. In [10] the authors describe the construction of a universal graph in the hom-property
→Hc for any given finite graph H. Our aim in this paper is to construct and characterise a
graph U(H) which is universal in →Hc for any countable graph H. If H is the (finite) complete
graph Kk, then →Hc is the property of k-colourable graphs denoted (following [1]) by Ok

c , while
(→Kℵ0)c = Ic. We also characterise those graphs H for which U(H) ∼= R.

A slight adaptation of our work yields related results for (k, l)-split graphs.

2 Constructing universal H-colourable graphs

Throughout this section, H is any graph with vertex set {w1, w2, . . .} (in the denumerable case)
or {w1, w2, . . . , wk} (in the finite case). We introduce the notation V (H) = {w1, w2, . . . �wk�}
to cover both cases at once. We are going to construct a graph U(H), universal in the property
→Hc, and then investigate its properties in sections 3 and 4.

Let p1, p2, . . . be any enumeration of the denumerable set of prime numbers. For any integer
n ≥ 2 there is a unique sequence n1, n2, . . . for which n =

∏
i≥1 p

ni
i . Here each power ni is a

non-negative integer, and at least one (but only finitely many) ni ≥ 1.
First we define countably many pairwise disjoint denumerable proper subsets N1,N2, . . . of

N′ = {2, 3, . . .} by specifying Nj , 1 ≤ j, to be the set of all integers n ≥ 2 for which the power
of any prime in its prime factorization is either 0 or j:

Nj := {n ∈ N′ | every ni ∈ {0, j}}.

We now define the graph U(H), co-determined by H, as follows: The vertex set of U(H) is

V (U(H)) := N1 ∪N2 ∪ . . . �∪Nk � .

In U(H) there are no edges between vertices from the same Nj . If m ∈ Nh and n ∈ Nj , h 6= j,
then there is an edge in U(H) between m and n if and only if
(i) there is an edge in H between wh and wj ;
(ii) m < n; and
(iii) nm = j.

For a graph G we now want to define the notion “G is H-universal in →Hc” – where this is
stronger than “G is universal in→Hc” – and then prove that the U(H) that we have just defined
is H-universal in →Hc. We need some preliminary definitions.

Consider two graphs F,G ∈→Hc and two homomorphisms λ : F → H and ζ : G → H,
together with a third homomorphism ν : F → G. Then we say that ν is (λ, ζ)-respecting when,
for every wj ∈ V (H), ν(λ−1(wj)) ⊆ ζ−1(wj). A graph G ∈→Hc is now called H-universal in
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→Hc if there exists a surjective homomorphism (H-colouring) ζ : G → H such that for every
F ∈→Hc and every λ : F → H there exists a (λ, ζ)-respecting isomorphic embedding ν : F → G,
i.e., ν : F ∼= G[ν(V (F ))]. This is a stronger property than universality in →Hc, which requires
only isomorphic embeddings into G. It says that there is some surjective H-colouring ζ of G
such that for every H-colouring λ of any F ∈→Hc there exists an isomorphic embedding ν of
F into G which preserves the colours (elements of V (H)) assigned by λ to the vertices of F : for
every v ∈ V (F ), ζ(ν(v)) = λ(v). We say then that G is H-universal in →Hc with respect to ζ.

Theorem 1 For any countable graph H the graph U(H) is H-universal in →Hc.

Proof:
By the construction of U(H) it is clear that U(H) ∈→Hc, since n 7→ wj for every n ∈ Nj induces
a homomorphism µ : U(H) → H, which is even a surjection. In the sequel we shall call this µ
the canonical homomorphism from U(H) onto H, or the canonical H-colouring of U(H). Note
that, for every j, µ−1(wj) = Nj . We shall establish H-universality of U(H) in→Hc with respect
to µ.

Let F with V (F ) = {v1, v2, . . . �v`�} be any countable graph for which F → H, indeed, let λ
be a homomorphism from F into H. We recursively construct an injection ν : V (F )→ V (U(H))
such that ν(V (F )) induces a subgraph of U(H) which, under ν, is isomorphic to F . By its
construction, ν will be (λ, µ)-respecting.

We begin by defining subsets Vj of V (F ) by Vj := λ−1(wj), 1 ≤ j�≤ k�, and note that
V1 ∪ V2 ∪ . . . �∪Vk� is a partition of V (F ). (For some indices j, Vj may be empty, since λ need
not be surjective onto H.) Furthermore, since λ is a homomorphism from F into the (simple)
graph H, there is no edge in F between any two vertices from the same Vj . Note also that, for
every edge uv of F , λ(u)λ(v) is an edge of H.

We now define ν by recursion on the indices 1, 2, . . . � `� of the vertices of F . Let us
suppose that v1 ∈ Vs; then we can choose ν(v1) to be any element of Ns. Next assume that
ν(v1), ν(v2), . . . , ν(vp−1) have already been specified so that for every q and r with 1 ≤ q, r ≤ p−1
• if q 6= r, then ν(vq) 6= ν(vr);
• if vq ∈ Vj , then ν(vq) ∈ Nj ; and
• F [{v1, v2, . . . , vp−1}] ∼= U(H)[{ν(v1), ν(v2), . . . , ν(vp−1)}] under ν|{v1, v2, . . . , vp−1}.
Note that, for every q and r with 1 ≤ q, r ≤ p − 1, an edge vqvr of F corresponds to an edge
ν(vq)ν(vr) of U(H) and an edge λ(vq)λ(vr) of H, and that µ(ν(vq)) = λ(vq).

Now we consider vp to decide on ν(vp). Suppose that vp ∈ Vt. We shall construct (by speci-
fying its prime factorization) an n ∈ Nt which is a suitable choice for ν(vp). Let {u1, u2, . . . , um}
be the subset of {v1, v2, . . . , vp−1} of those vertices which are adjacent to vp in F , (none of
them is with vp in Vt, of course). Now, in the prime factorization of n, the primes with indices
ν(u1), ν(u2), . . . , ν(um) all occur to the power t, and so does one extra prime with a value so
large as to ensure that n is larger than each of ν(u1), ν(u2), . . . , ν(um); all other primes have
power zero in the factorization of n. Then, by specifying ν(vp) = n, we have that ν establishes
the isomorphism F [{v1, v2, . . . , vp}] ∼= U(H)[{ν(v1), ν(v2), . . . , ν(vp)}]. Thus a (λ, µ)-respecting
isomorphism ν from F onto an induced subgraph of U(H) (i.e., λ = µ ◦ ν) is constructed in
countably many recursive steps. 2

Let us here digress for a moment and devote some thought to the case when H is a directed
graph and, correspondingly, consider H-colourings of directed graphs, i.e., homomorphisms into
H which not only preserve edges, but also the directions of those edges. The obvious way for the
directions of the edges of H to induce directions on the edges of U(H) is as follows: where we
say (in the definition of U(H)) that “there is an edge in U(H) between m and n if and only if
(i) there is an edge in H between wh and wj ; . . . ; (iii) . . . ”, we just add
“and the direction of the edge between m and n corresponds to the direction of the edge between
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wh and wj in H”.
In this way U(H) becomes directed (“H-directed”, if you like). Similarly, the directions of the
edges on H determine unambiguously the direction of every single edge of any H-colourable graph
– irrespective of the choice of a particular H-colouring of that graph. Colour F by λ : F → H
and consider an edge in F between vertices vq and vr. If in H the edge (λ(vq), λ(vr)) is directed
from λ(vq) to λ(vr), then (vq, vr) ∈ E(F ) is directed from vq to vr, since λ preserves directions.
And then any other H-colouring λ′ : F → H would of course yield (λ′(vq), λ′(vr)), directed from
λ′(vq) to λ′(vr) in H. So there is no possibility whatsoever for any edge in F to be directed in
the opposite direction to the one consistent with an arbitrary H-colouring of F .

The definitions of “→Hc” and “H-universal in →Hc” when H is directed are also obvious.
Thus the proof of Theorem 1 can be rewritten for the directed case with minimal changes. To
the crucial “an edge vqvr of F corresponds to an edge ν(vq)ν(vr) of U(H) and an edge λ(vq)λ(vr)
of H”, we can then add “with corresponding directions”. To summarise, we obtain

Corollary 1 For any countable digraph H the digraph U(H) is H-universal in →Hc.

3 Two characterisations of U(H)

The Rado graph R, universal in Ic, has interesting properties, some of which characterise it
[4]. It is, up to isomorphism, the unique countable graph with the “extension property”. It is
also characterised by being universal in Ic and “homogeneous”. (These properties are defined
in the sequel.) The relative simplicity of these properties relates to the extreme symmetry of
the structure of R. H-colouring complicates issues somewhat for U(H). We have, however,
already relativised the notion of universality in Section 2 and shall now do so for the extension
property and homogeneity to incorporate H-colourings. This will facilitate characterisations of
U(H) analogous to those of R.

Suppose, again throughout this section, that V (H) = {w1, w2, . . . �wk�} is the vertex set
of a countable graph H.

Consider any G ∈→Hc and let λ : G → H be a surjective homomorphism with V1 ∪ V2 ∪
. . . �∪Vk� of V (G) the partition associated with it, i.e., for every j, Vj = λ−1(wj). Then
V1 ∪ V2 ∪ . . . �∪Vk� is called the λ-induced partition of V (G). Note that every G[Vj ] is
edgeless.

We say that a countable graph G has the H-extension property if there exists a surjective
homomorphism λ : G→ H such that, with respect to the λ-induced partition V1∪V2∪ . . . �∪Vk�

of V (G), for every possible choice of all of the following:
(i) any index j with 1 ≤ j�≤ k�;
(ii) any finite subset Zj of Vj ;
(iii) any finite subset Q of the set of indices {1, 2, . . .� k�} such that, for every h ∈ Q, whwj ∈
E(H);
(iv) any two finite disjoint subsets Xh and Yh of Vh for each h ∈ Q,
the following holds: there exists a vertex in Vj which is not in Zj and which is adjacent in G to
every vertex in every Xh and to no vertex in any Yh.
If the graph G has this property, we also say that G has the H-extension property with respect
to λ.

Consider a graph G ∈→Hc and the partition V (G) = V1 ∪ V2 ∪ . . . �∪Vk� induced by a
homomorphism λ : G→ H. Let α : C → D be any isomorphism between two induced subgraphs
C and D of G. Then we say that α is λ-isochromatic if, for every j, α(V (C) ∩ Vj) ⊆ Vj . We
also say that such a graph G is λ-homogeneous if every λ-isochromatic isomorphism α between
two finite induced subgraphs of G extends to a λ-isochromatic automorphism α+ of G. Note

4



that, for every j, α+|Vj is then a permutation of Vj . When G ∈→Hc is λ-homogeneous for
some surjective λ : G → H, then we say that G is H-homogeneous in →Hc with respect to
λ. This is in general a property different from homogeneity (as defined in [8]), which requires
the extendability to an ordinary automorphism of any isomorphism between two finite induced
subgraphs. (It is known that every homogeneous graph belongs to one of only three types, one
of which is “clone of R” [9].)

Theorem 2 Let G be any denumerable graph. Then the following three conditions on G are
equivalent:
(a) G is a clone of U(H)
(b) G has the H-extension property
(c) There exists a surjective H-colouring of G with respect to which G is both H-universal and
H-homogeneous in →Hc.

Proof:
(a) implies (b): Since an isomorphism preserves all graph theoretical properties, it suffices to
prove that U(H) has the properties ascribed to G in (b).
We shall prove that U(H) has the H-extension property with respect to the partition N1 ∪
N2 ∪ . . . �∪Nk� of V (U(H)) which is induced by the canonical surjective homomorphism
µ : U(H)→ H defined by n 7→ wj for every n ∈ Nj .

Consider for any index j with 1 ≤ j� ≤ k� any finite subset Zj of Nj , a finite Q ⊆
{1, 2, . . . � k�} with whwj ∈ E(H) for every h ∈ Q, and any two finite disjoint subsets Xh and
Yh of Vh for each h ∈ Q. Construct n ∈ Nj by having in its prime factorization a factor pj

u for
every u in any Xh; a factor p0

u = 1 for every u in any Yh; a factor pj for some prime p large
enough to ensure that n is larger than all the numbers in Zj ∪

⋃
{Xh ∪Yh | h ∈ Q}; and all other

factors p0
r = 1.

It is easy to see that this vertex n has the required properties to ensure that U(H) has the
H-extension property with respect to µ.

(b) implies (a): Assume that G has the H-extension property with respect to the surjective
homomorphism λ : G → H with concomitant λ-induced partition V1 ∪ V2 ∪ . . . �∪Vk� of
V (G) = {v1, v2, . . .}. For V (U(H)) := N1 ∪ N2 ∪ . . . �∪Nk� we consider any enumeration
V (U(H)) = {u1, u2, . . .}. By a construction going back and forth between G and U(H), recursive
on both the indices of v1, v2, . . . as well as those of u1, u2, . . ., we shall now build an isomorphism
α : G → U(H) with the property that, for every j, α | Vj is a bijection from Vj to Nj , i.e., α is
(λ, µ)-respecting.

Suppose v1 ∈ Vi. Define α(v1) to be any element of Ni. Let ur be the vertex of U(H) with
smallest index r such that ur /∈ {α(v1)}, and suppose that ur ∈ Nj . Now define the finite subset
Zj := Vj ∩ {v1} of Vj , Q = {i} if wiwj ∈ E(H) and Q = ∅ otherwise, and, for each h ∈ Q, two
finite disjoint subsets Xh and Yh of Vh as follows:

Xh := {x ∈ Vh | α(x) ∈ {α(v1)} and α(x)ur ∈ E(U(H))};

Yh := {y ∈ Vh | α(y) ∈ {α(v1)} and α(y)ur /∈ E(U(H))}.

(An explanatory remark: By writing, say α(x), we of course mean “α has already been defined
on x at this stage and . . . ”.)

Employing the H-extension property of G with respect to λ, we now have a vertex, say vs, in
Vj which is not in Zj , i.e., vs /∈ {v1}, and vs is adjacent in G to v1 if and only if α(v1) is adjacent
in U(H) to ur. By defining α(vs) = ur, we have that
• v1 ∈ Vi and α(v1) ∈ Ni; vs ∈ Vj and α(vs) ∈ Nj ; and
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• v1vs ∈ E(G) if and only if α(v1)α(vs) ∈ E(U(H)); so
• G[{v1, vs}] ∼= U(H)[{α(v1), α(vs)}] under α | {v1, vs}.

The next step in the back and forth construction of α has to start again in G with vertex vt,
say, with lowest index t of those outside {v1, vs}. But let us rather describe the recursive step in
general, distinguishing the two cases, starting from either vertex vt ∈ V (G) with smallest index t
of some sort, or starting from vertex ur ∈ V (U(H)) with smallest index r of some sort. In both
cases the starting situation before the recursive step is the same:

I is a finite subset of the index set {1, 2, . . .} of V (G) = {v1, v2, . . .}, and VI = {vi ∈ V (G) |
i ∈ I}. For each i ∈ I we have now already defined α(vi) ∈ V (U(H)), with, for each j, elements
of Vj mapping into Nj and G[VI ] ∼= U(H)[α(VI)] under α | VI .

Case 1, starting from vt ∈ V (G): Let vt ∈ V (G) be the vertex with the lowest index of all
those outside VI . We need to define α(vt) ∈ V (U(H)). Suppose vt ∈ V`; we want α(vt) ∈ N`.
Define the finite subset Z` := N` ∩ α(VI) of N`. Suppose that α(VI) ⊆ Nj1 ∪Nj2 ∪ . . . ∪Nja ,
and define Q = {h ∈ {j1, j2, . . . , ja} | whw` ∈ E(H)}. Now define, for every h ∈ Q, two finite
disjoint subsets Xh and Yh of Nh as follows:

Xh := {x ∈ Nh | for some i ∈ I, x = α(vi) and vivt ∈ E(G)};

Yh := {y ∈ Nh | for some i ∈ I, y = α(vi), but vivt /∈ E(G)}.

By the H-extension property of U(H) with respect to µ, there exists a vertex, say us ∈ N`,
which is not in α(VI), which is adjacent in U(H) to every α(vi), i ∈ I, for which vivt ∈ E(G),
while us is adjacent in U(H) to no α(vi) for which vivt /∈ E(G). By defining α(vt) = us, we now
have extended α to establish G[VI ∪ {vt}] ∼= U(H)[α(VI) ∪ {us}].

Case 2, starting from ur ∈ V (U(H)): Let ur be that vertex of U(H) with the least index
r among those vertices not already in α(VI). Suppose that ur ∈ Nj . We need to find a vs ∈ Vj

suitable for defining α(vs) = ur. Define the finite subset Zj := Vj ∩ VI of Vj . Suppose that
VI ⊆ Vg1 ∪ Vg2 ∪ . . . ∪ Vgb

, and define Q = {h ∈ {g1, g2, . . . , gb} | whwj ∈ E(H)}. Now define, for
each h ∈ Q, the finite disjoint subsets Xh and Yh of Vh as follows:

Xh := {x ∈ Vh | x ∈ VI and α(x)ur ∈ E(U(H))};

Yh := {y ∈ Vh | y ∈ VI and α(y)ur /∈ E(U(H))}.

Employing the H-extension property of G with respect to λ, we have a vertex, say vs ∈ Vj \ VI ,
which is adjacent in G to every vi, i ∈ I, for which α(vi) is adjacent in U(H) to ur and to no
vi for which α(vi) is not adjacent in U(H) to ur. By defining α(vs) = ur we extend α to ensure
that G[VI ∪ {vs}] ∼= U(H)[α(VI) ∪ {ur}].

By alternating the two cases in a back and forth manner through denumerably many recursive
steps we construct the isomorphism α : G ∼= U(H).

(b) implies (c): Suppose G satisfies (b) with respect to the surjective homomorphism ζ : G→
H. Suppose (again) that V (G) = {v1, v2, . . .}, with V1 ∪ V2 ∪ . . . �∪Vk� the partition of V (G)
induced by ζ.

To demonstrate H-universality of G in →Hc with respect to ζ, let C be any graph in →Hc

and suppose V (C) = {u1, u2, . . . �u`�} with U1 ∪ U2 ∪ . . . �∪Uk� the induced partition of its
vertex set with respect to a homomorphism λ : C → H. By recursion on the indices of the
vertices of C we now construct a (λ, ζ)-respecting embedding α : C → G of C into G.

If u1 ∈ Ui, let α(u1) be any element of Vi. Next suppose that r is the least index of a
vertex of C for which α(ur) has not yet been defined and suppose that ur ∈ Uj . Let R =
{α(u1), α(u2), . . . , α(ur−1)} and suppose that R ⊆ Vg1 ∪ Vg2 ∪ . . . ∪ Vgq . Now define the finite
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subset Zj := Vj ∩ R of Vj , Q := {h ∈ {g1, g2, . . . , gq} | whwj ∈ E(H)}, and, for each h ∈ Q, two
finite disjoint subsets Xh and Yh of Vh ∩R as follows:

Xh := {x ∈ Vh ∩R | α−1(x)ur ∈ E(C)} and Yh := {y ∈ Vh ∩R | α−1(y)ur /∈ E(C)}.

Employing the H-extension property of G with respect to ζ, we have a vertex, say vs ∈ Vj ,
which is not in Zj and which is, for every h ∈ Q, adjacent in G to every x ∈ Xh and not
adjacent in G to any y ∈ Yh. By defining α(ur) = vs we extend α and ensure in the process that
C[{u1, u2, . . . , ur}] ∼= G[{α(u1), α(u2), . . . , α(ur)}]. Thus a (λ, ζ)-respecting isomorphism from
C onto an induced subgraph of G is constructed in countably many recursive steps. So G is
H-universal in →Hc with respect to ζ.

Next we prove that G is H-homogeneous in →Hc with respect to the same ζ with respect to
which it is H-universal in →Hc. Consider any two isomorphic finite induced subgraphs C and
D of G with a ζ-isochromatic isomorphism α from C onto D. We prove that α can be extended
to a ζ-isochromatic automorphism α+ of G by a recursive construction on the indices of the
vertices in V (G). Hence suppose that V is a finite subset of V (G) containing V (C), and that a
ζ-isochromatic isomorphism α+, which extends α, has already been defined from V into V (G):
α+ : G[V ] ∼= G[α+(V )]. Let r be the least index of a vertex of G for which vr /∈ V ; we want to
define α+(vr).

Suppose that, with respect to the ζ-induced partition of V (G), vr ∈ Vj . Define Zj := α+(V )∩
Vj . Suppose α+(V ) ⊆ Vg1 ∪ Vg2 ∪ . . . ∪ Vgq and let Q := {h ∈ {g1, g2, . . . , gq} | whwj ∈ E(H)}.
For every h ∈ Q, define

Xh := {α+(x) ∈ Vh | x ∈ V ∩ Vh and xvr ∈ E(G)};

Yh := {α+(y) ∈ Vh | y ∈ V ∩ Vh and yvr /∈ E(G)}.

By the H-extension property with respect to the ζ-induced partition of V (G), there exists a
vertex z ∈ Vj which is not in α+(V ) and which is adjacent to every vertex α+(x) in α+(V ) for
which x is adjacent to vr in G and to no vertex α+(y) in α+(V ) for which y is not adjacent to
vr in G. Hence, by defining α+(vr) = z, we have extended α+ to a ζ-isochromatic isomorphism
on V ∪ {vr} into G.

By symmetry (between C and D), the same proof can now be used to extend it starting with
V (D) ∪ {z}. Hence, in denumerably many such recursive back and forth steps, a ζ-isochromatic
automorphism of G which extends α is built, establishing the H-homogeneity of G with respect
to ζ.

(c) implies (b): Suppose G is H-universal in →Hc and H-homogeneous in →Hc, both with
respect to the same surjective homomorphism ζ : G→ H and corresponding partition

V (G) = V1 ∪ V2 ∪ . . . �∪Vk�

in which each Vj = ζ−1(wj). With respect to this ζ-induced partition we show that G has the
H-extension property. Pick a finite subset Zj of Vj , a finite set Q of indices h ∈ {1, 2, . . .� k�}
for which whwj ∈ E(H), and, for each h ∈ Q, two finite disjoint subsets Xh and Yh of Vh.

First we construct a finite graph A (considered as if outside G) from the subgraph F = G[Zj∪⋃
{Xh ∪ Yh | h ∈ Q}] of G by adding to F a vertex m /∈ V (G) and, for each q ∈

⋃
{Xh | h ∈ Q}

an edge between m and q. From the partitioning

V (A) =
⋃
{(Xh ∪ Yh) | h ∈ Q} ∪ ({m} ∪ Zj)

it is clear that A ∈→Hc: This is ensured by the homomorphism λ : A → H which, for h ∈ Q,
maps each element of Xh ∪ Yh to wh, and each element of {m} ∪ Zj to wj .
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By the H-universality of G in →Hc with respect to ζ, the graph A can (λ, ζ)-respectingly be
isomorphically embedded into G by, say, α : A → B, where B = α(A) is an induced subgraph
of G. Suppose α(m) = n ∈ Vj . (That α(m) ∈ Vj follows from the fact that ζ(α(m)) = λ(m) =
wj .) It is clear that the subgraph F of G and the subgraph B − n of G are ζ-isochromatically
isomorphic. By the H-homogeneity of G in →Hc with respect to ζ, this isomorphism can be
extended to a ζ-isochromatic automorphism β of G. Clearly the vertex β−1(n), corresponding
to n, has the properties required to ensure that G has the H-extension property with respect to
the ζ-induced partition of V (G) with which we started. 2

Properties of R, universality, extension, and homogeneity, have now been H-“relativised”. R is
also self-complementary, i.e., isomorphic to its complement. Does U(H) have what we could call
its “H-complement” to which it is isomorphic? The answer is “yes”.

We shall now define a graph U∗(H), which will turn out to be a clone of U(H). Its vertex
set is the same as that of U(H):

V (U∗(H)) := N1 ∪N2 ∪ . . . �∪Nk � .

In U∗(H) there are no edges between vertices from the same Nj . If m ∈ Nh and n ∈ Nj , h 6= j,
and whwj /∈ E(H), then there is no edge in U∗(H) between m and n. If, however, whwj ∈ E(H),
then mn ∈ E(U∗(H)) if and only if mn /∈ E(U(H)):

E(U∗(H)) := {mn | µ(m)µ(n) ∈ E(H) but mn /∈ E(U(H))}.

Theorem 3 U∗(H) ∼= U(H).

Proof:
By Theorem 2 it is sufficient to prove that U∗(H) has the H-extension property. The same
function µ : V (U∗(H) → V (H)) that we had before as the canonical µ : U(H) → H is also a
surjective H-colouring of U∗(H), inducing the same partition of V (U∗(H) into Nj ’s. We show
that U∗(H) has the H-extension property with respect to this µ.

Choose a j; a finite subset Zj of Nj ; a finite set Q of indices h such that whwj ∈ E(H);
and, for each h ∈ Q, two finite disjoint subsets X∗h and Y ∗h of Nh. Now define, for each h ∈ Q,
Xh = Y ∗h and Yh = X∗h. By the H-extension property of U(H) there is a vertex z ∈ Nj \Zj which
is adjacent in U(H) to every vertex in every Xh and to no vertex in any Yh. By the definition
of E(U∗(H)), z is adjacent in U∗(H) to every vertex in every X∗h and to no vertex in any Y ∗h .
Hence U∗(H) has the H-extension property with respect to µ, and so is a clone of U(H). 2

At the end of Section 1 in Corollary 1 we formulated how, with apt small changes to def-
initions, the H-universality of U(H) in →Hc (as established in Theorem 1) holds also in the
case of digraphs. Similarly now, modulo slight adaptations of the definitions of the “H-extension
property” and being “H-homogeneous in →Hc”, no major conceptual struggle is required to see
the truth of

Corollary 2 Given the obvious definitions of the concepts involved, Theorems 2 and 3 hold for
digraphs too.

4 Special cases: H ∼= Kk, and U(H) ∼= R

We now investigate the special case of the definitions and results of the previous two sections if
we choose H = Kk. Note that the existence of a homomorphism λ : G→ Kk is equivalent to the
existence of a partition V1 ∪ V2 ∪ . . . ∪ Vk of the vertex set V (G) into subsets inducing edgeless
subgraphs of G, i.e., the existence of a (classical) k-colouring of G. Hence the hom-property
→(Kk)c is the property of countable k-colourable graphs.
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Taking these remarks into account, the concepts defined above simplify to:
• G is Kk-universal in →(Kk)c if there is a k-colouring ζ of G which uses all k colours, such that
for every k-colourable graph F (in→(Kk)c) and every Kk-colouring λ : F → Kk there is a (λ, ζ)-
respecting isomorphic embedding ν : F → G; hence for every k-colouring λ : V (F )→ {1, 2, . . . , k}
of F the k-colouring ζ : V (G) → {1, 2, . . . , k} of G is such that the isomorphism ν respects the
colours assigned to vertices, i.e., if a vertex x of F is assigned the colour j by λ, then the vertex
ν(x) of G is assigned the same colour j by ζ.
• In this strong sense of universality, U(Kk) is Kk-universal in Ok

c by Theorem 1.
We can also simplify the characterisation of U(H) when taking H = Kk. Again we start

with the simplified definitions:
• Consider (again) a k-colourable graph G and consider any k-colouring λ : G → Kk of it with
V1∪V2∪. . .∪Vk its colour classes. Let α : C → D be any isomorphism between induced subgraphs
C and D of G. Then α is λ-isochromatic if it preserves the colours assigned to the vertices of C.
Furthermore, G is λ-homogeneous if every λ-isochromatic isomorphism between finite induced
subgraphs C and D of G extends to a λ-isochromatic automorphism of G. Furthermore, a k-
colourable graph G ∈ Ok

c is Kk-homogeneous in Ok
c if it is λ-homogeneous for some surjective

k-colouring λ : G→ Kk.
• These concepts can now be used to characterise the clones of U(Kk) by simply formulating a
special case of Theorem 2.

The concept of a universal graph in Ok
c is revisited in the next section where a second

construction of such a graph is given.
We now turn our attention to the special case H = Kℵ0 . In this case, it is immediate to see

that U(H) is universal in Ic since (→Kℵ0)c = Ic. Indeed, we shall see that U(H) is a clone of
the Rado graph R, the classical universal graph in Ic. Hence our construction of U(H), using
the prime factorizations of positive integers, supplements the many constructions of R discussed
in [2].

Our result uses the fact that the Rado graph is characterised by the (classical) extension
property (for which see [4]): A graph G is said to have the extension property if for every
two finite disjoint sets of vertices X and Y of G there is a vertex of G outside X ∪ Y which is
adjacent in G to every vertex of X and to no vertex of Y . Furthermore, a graph G is here said
to have the weak extension property if for every finite set of vertices X of G there is a vertex
of G outside X which is adjacent in G to every vertex of X.

Theorem 4 The graph U(H) has the extension property (i.e., U(H) ∼= R) if and only if H has
the weak extension property.

Proof:
⇒: Suppose U(H) has the extension property. Let X = {wi1 , wi2 , . . . , wip} be any finite subset of
V (H). Pick a finite set X ′ = {u1, u2, . . . , up} of vertices in V (U(H)) with uj ∈ Nij for 1 ≤ j ≤ p
– and Y ′ = ∅ if you insist. By the extension property of U(H) there is a vertex u ∈ V (U(H)),
say u ∈ N`, with uju ∈ E(U(H)) for every j. By the definition of adjacency in U(H), N` 6= Nj

for every j. Since the canonical µ : U(H)→ H preserves adjacency, it follows that wijw` ∈ E(H)
for every j, establishing the weak extension property of H.
⇐: SupposeH has the weak extension property. LetX = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}
be any two finite disjoint subsets of V (U(H)). Assume that X ⊆ Ni1 ∪Ni2 ∪ . . .∪Nip where the
sets in this union need not all be different. Consider the finite set {wi1 , wi2 , . . . , wip} ⊆ V (H)
(not necessarily all different vertices). By the weak extension property of H, there is a vertex
w` ∈ V (H) with wijw` ∈ E(H) for every j. By specifying its prime factorization, we define a
vertex n ∈ N` of U(H) which is adjacent in U(H) to every element of X and to no element of Y :
• nm = ` if m ∈ X;
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• ns = ` for some s /∈ Y for which the associated prime ps is larger than every element in X ∪Y ;
and
• nt = 0 for each other t, including any t ∈ Y .
This n has the properties required for the extension property of U(H). 2

We note that, while U(H) is always H-homogeneous in →Hc (Theorem 2), when U(H) has the
extension property it also has the different property of being homogeneous, like its clone R.

Since Kℵ0 obviously has the weak extension property, we immediately have that U(Kℵ0) ∼= R.
Clearly, Kℵ0 does not have the extension property. We conclude this section with an example
of a non-complete (denumerable) graph G which also has the weak extension property but not
the extension property: Let V (G) be the set of all finite subsets of N and let AB ∈ E(G) if and
only if A and B are different comparable subsets of N, i.e., subsets satisfying A ⊂ B or B ⊂ A.
The weak extension property easily follows by considering the union of finitely many finite sets
(together with an extra element, if needed); it is the vertex with the required properties. The
fact that G does not have the extension property follows by considering, for example, for X any
singleton {F} consisting of any finite set F with at least two elements and for Y the finite set
of its proper subsets {H | H ⊂ F}. Clearly, every (finite) subset of N comparable to F is then
comparable to some element of Y .

5 Another universal graph in k-colourable countable graphs

A graph G is called k-colourable (k ≥ 1) if its vertex set can be partitioned into k subsets
such that every edge has its endpoints in two of these (different) sets. The graph property of
countable k-colourable graphs is Ok

c = {G | G is a countable k-colourable graph}; it is also
an induced-hereditary graph property (of finite character, by the Compactness Theorem – see
[5]). The existence of a universal graph in Ok

c is already guaranteed by the results of [10] (and
reassured by Theorem 1 since Ok

c = (→Kk)c).
Every positive integer n has a unique (k+ 1)-ary expansion with entries from {0, 1, . . . , k},

i.e., a (finite) power series n =
∑∞

i=0 ni(k + 1)i with k ≥ 1 and 0 ≤ ni ≤ k. We shall refer
to ni−1 (i ≥ 1) as the entry in the i’th position of the expansion. We use this fact to
define k denumerable, pairwise disjoint, proper subsets M1,M2, . . . ,Mk of N = {1, 2, . . .}: Mi

(1 ≤ i ≤ k) is the set of all those positive integers whose (k + 1)-ary expansion has all entries
from only {0, i}. We now define a graph Uk as follows: The vertex set of Uk is

V (Uk) := M1 ∪M2 ∪ . . . ∪Mk.

In Uk there are no edges between vertices from the same M`. If m ∈ Mi and n ∈ Mj (i 6= j),
then there is an edge in Uk between m and n if and only if m < n and n has the entry j in
position number m of its (k + 1)-ary expansion: nm−1 = j. For this graph we shall now prove
universality in the set Ok

c .

Theorem 5 For any positive integer k the graph Uk is universal in Ok
c .

Proof:
By the construction of Uk, it is clear that Uk ∈ Ok

c , in fact Uk ∈ Ok
d .

Let G with V (G) = {v1, v2, . . .} be any countable k-colourable graph. We recursively con-
struct an injection α : V (G)→ V (Uk) such that α(V (G)) induces a subgraph of Uk which, under
α, is isomorphic to G. Since G is k-colourable, there is a partition V (G) = V1 ∪ V2 ∪ . . . ∪ Vk

such that G has no edge between any two vertices from the same V`. Suppose v1 ∈ Vi and
let α(v1) be any element of Mi. Next assume that α(v1), α(v2), . . . , α(vp−1) have already been
specified so that G[{v1, v2, . . . , vp−1}] ∼= Uk[{α(v1), α(v2), . . . , α(vp−1)}]. Suppose that vp ∈ Vj .
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We shall construct an n ∈Mj which is a suitable choice for α(vp) by prescribing its (k + 1)-ary
expansion. Let {u1, u2, . . . , u`} be the subset of {v1, v2, . . . , vp−1} of those vertices which are
adjacent to vp in G, (none of them is with vp in Vj , of course). Now the (k + 1)-ary expansion
of n has entry j in the positions with numbers {α(u1), α(u2), . . . , α(u`)}, as well as in one po-
sition with a number so large as to ensure that n is larger than each of α(u1), α(u2), . . . , α(u`)
– and entry 0 in all other positions. It is clear that by specifying α(vp) = n we have that
G[{v1, v2, . . . , vp}] ∼= Uk[{α(v1), α(v2), . . . , α(vp)}]. Thus an isomorphism from G onto an in-
duced subgraph of Uk is constructed in countably many steps. 2

If you now wonder whether Uk is even Kk-universal in Ok
c , the answer is “yes”, as will be seen in

Theorem 6. Note that both constructions we provide of universal graphs in Ok
c , namely U(Kk)

in Section 2 and Uk above, have the desirable properties of what is called an A-type universal
graph in [3].

We now proceed to show that the graph Uk also has, like U(Kk), the Kk-extension property
with respect to the surjective homomorphism ζ : Uk → Kk which maps every vertex in Mj to
the vertex j of Kk, 1 ≤ j ≤ k.

Lemma 1 The graph Uk has the Kk-extension property with respect to ζ.

Proof:
Let M1 ∪M2 ∪ . . . ∪Mk be the partition of V (Uk) induced by ζ. Pick a j, a finite subset Zj of
Mj , any subset Q of {1, 2, . . . , k} \ {j}, and, for every h ∈ Q, two finite disjoint subsets Xh and
Yh of Mh. We define v ∈ Mj through its (k + 1)-ary expansion by putting an entry j in every
position u for which u ∈

⋃
{Xh | h ∈ Q} and in some position which is larger than all of the

numbers in Zj ∪
⋃
{(Xh ∪ Yh) | h ∈ Q} and a 0 in every position u for which u ∈

⋃
{Yh | h ∈ Q};

the remaining positions can be filled with 0’s and (finitely many) j’s at will. It is easy to see
that this vertex v has the required properties. 2

From Lemma 1, together with Theorem 2, it now follows that Uk and U(Kk), although con-
structed differently, are clones of each other, and hence share the same graph theoretical prop-
erties. From Theorem 2 we then have as a special case

Theorem 6 Let G be any denumerable graph. Then the following four conditions on G are
equivalent:
(a) G is a clone of Uk

(b) G is a clone of U(Kk)
(c) G has the Kk-extension property
(d) There exists a surjective Kk-colouring of G with respect to which G is both Kk-universal and
Kk-homogeneous in →(Kk)c.

6 Split graphs

In logic, a contradiction and a tautology harbour no employable information: no possibility, or
every possibility, is allowed. Somewhat analogously, in graph theory, an edgeless graph and a
complete graph have similarly inane internal structure. This has the effect that if in Uk+l we
replace l of the edgeless induced subgraphs by complete subgraphs, we easily obtain another
universal graph. We now describe this briefly.

Following [7], a graph G is called a (k, l)-split graph (k ≥ 0, l ≥ 0 and k + l ≥ 2) if its
vertex set can be partitioned into k + l (possibly empty) subsets

V1, V2, . . . , Vk, Vk+1, Vk+2, . . . , Vk+l
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such that each induced subgraph G[Vi], i = 1, 2, . . . , k is edgeless, while each induced subgraph
G[Vj ], j = k + 1, k + 2, . . . , k + l is a complete subgraph of G. The graph property of countable
(k, l)-split graphs is denoted by Sk,l

c = {G | G is a countable (k, l)-split graph}; it is also an
induced-hereditary graph property. Note that the (k, 0)-split graphs are exactly the k-colourable
graphs, i.e., Sk,0

c = Ok
c .

We now define the graph Uk,l with the following adaptation of our previous graph Uk+l. It
has vertex set

V (Uk,l) = V (Uk+l) = M1 ∪ . . . ∪Mk ∪Mk+1 ∪ . . . ∪Mk+l

but now with no edges between vertices from the same Mi when 1 ≤ i ≤ k; and all possible
edges between vertices from the same Mj when k + 1 ≤ j ≤ k + l. Edges between vertices from
Mg and Mh (g 6= h) are exactly as in Uk+l. Then the proof of Theorem 5 can be rewritten with
slight adaptations to yield

Theorem 7 For any integers k and l, where k ≥ 0, l ≥ 0 and k + l ≥ 2, the graph Uk,l is
universal in Sk,l

c .

We have not (yet) been able to prove or disprove that Uk,k is self-complementary, but formulate
the open

Conjecture 1 Uk,k
∼= Uk,k.
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properties of graphs. Discussiones Mathematicae Graph Theory 17, 5 – 50 (1997)

[2] Broere, I., Heidema, J.: Constructing an abundance of Rado graphs. Utilitas Mathematica
84, 139 – 152 (2011)
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