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We consider a set of equations governing the behavior of a polymer melt which is modeled as a 
viscoelastic fluid possessing a natural, or stress-free state. The natural configuration is characterized 
through a symmetric, proper orthogonal intermediate deformation tensor, analogous to the left 
Cauchy–Green deformation tensor in continuum mechanics. This tensor is required to satisfy an 
evolution equation. It is shown that the constraint that the intermediate tensor be proper orthogonal 
is satisfied provided that its initial value satisfies this constraint. Local existence and uniqueness of 
solutions to the initial boundary value problem of the resulting viscoelastic fluid system are 
established. It is also shown that the local solutions can be extended globally provided that the data 
are small enough. 
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1. Introduction 

A significant number of fluids, both natural and manufactured, may be modeled as 
viscoelastic. Blood is a key example of a naturally occurring viscoelastic fluid,1 while a 
range of polymeric fluids generally fall into this class.2 

An important class of viscoelastic fluids is those of differential type, with the 
variables of interest being the velocity, pressure, and extra stress. The resulting set 
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of nonlinear equations generally has the features of a mixed parabolic–hyperbolic
system. The problem studied in this work falls within this class.

Not surprisingly, problems involving viscoelastic fluids offer significant theoret-
ical and computational challenges. With regard to theoretical studies, the work
by Guillopé and Saut9 represents an early, important contribution. These authors
established existence locally and globally in time, and uniqueness of solutions, for
the equations corresponding to an Oldroyd-B fluid. Chemin and Masmoudi5 estab-
lished the global existence for small data to the Cauchy problem for a fluid flow
with a differential law of Oldroyd-B type making use of Besov theory. The approach
pioneered by Lions for compressible Navier–Stokes equation to define renormalized
solutions has been adapted by Lions and Masmoudi19 to prove the existence of
global weak solutions with general initial data. A key result in that approach, after
obtaining some uniform a priori estimates, is that in some sense compactness in
L2 for the extra stress is propagated in time by the transport equation. On the
other hand, Sideris and Thomases28 studied the Cauchy problem for incompress-
ible nonlinear isotropic elastodynamics making use of the Galilean invariance for
such a system, a weighted L2 estimate, and the null condition. They obtained the
global-in-time existence of classical solutions and decay for small initial displace-
ments. Since all the obtained are uniform with respect to the viscosity, the incom-
pressible limit of the isotropic elastodynamics is also examined. Finally Fanghua
Lin and Ping Zhang16 have obtained global-in-time existence of solutions for an
Oldroyd model by adapting the hyperbolic type approach, provided that the ini-
tial data are close enough to the equilibrium state. It should be mentioned that
all these models involve nonlocal (in time) constitutive equations. There are also
those models where the relations between the stress and strain can be expressed
in local form. An interesting and related work is that by Lin and Liu15 on the
dynamics of systems which model the flow of liquid crystals. One of the features of
this work is the presence of an algebraic constraint that must be satisfied at each
time.

Neças and co-author, have studied the flow of fluids where the viscosity is
a function on both the pressure p and the symmetric part of the rate of the
deformation gradient D.20,21 They have established the existence of weak solu-
tions for spatially periodic three-dimensional flows that are global-in-time, for a
large class of physically meaningful viscosity-pressure relationships. Their method
of proof also provides the existence of a strong solution for a short time interval
or a global strong solution for small data that are unique in the class of weak
solutions. It is worth noting that the pressure is determined up to a function of
time.

As far as computational studies for viscoelastic fluids are concerned, a compre-
hensive overview may be found in the monograph by Owens and Philips.24

It is well known that a viscoelastic material can be regarded as a transition
state between fluid and solid. A particularly interesting class of viscoelastic flu-
ids is those that are modeled as continua with multiple natural configurations or
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stress-free states. Materials which fall within this class include metal plasticity,
viscoelastic liquids, anisotropic fluids, to mention a few. Many complex hydrody-
namic and rheological features of complex fluids can be viewed as consequences of
an internal elastic response. Rao and Rajagopal27 have developed a continuum ther-
modynamic framework for materials that have an elastic response in an evolving
set of natural configurations, making use among others of the Helmholtz poten-
tial.a In related work, Rajagopal and co-workers12,13 have used this framework
to model polymers which undergo a phase transition from the melt phase to one
of flow-induced crystallization, and finally to a solid state. More recently, Karra
and Rajagopal14 have extended the framework presented in Ref. 27 by allowing
the intermediate configuration to evolve without an instantaneous elastic response.
The qualitative properties of the problems described have not been studied in any
detail, and in this, the first of a series of papers, we shall investigate the model where
only an elastic response is allowed in the intermediate configuration. The focus in
this work is on the melt phase, and the model is that developed and presented
by Kannan, Rao and Rajagopal.12 The novelty of the problem, from the mathe-
matical point of view, derives from various features: the intermediate deformation
tensor which represents the reference state, and its evolution; the constraint that
these tensors be proper orthogonal, that is, that they have a determinant equal to
unity; the need to take account of thermal effects, and to include temperature as a
variable; and finally, the highly coupled and nonlinear nature of the problem.

The aim of this work is to establish local and global existence in time of solutions,
and uniqueness of solutions, for the melt problem with a single relaxation time;
the extension to multiple relaxation times may be readily made. The approach
pioneered by Guillopé and Saut9 is adopted, in which local existence of solutions are
shown through the use of a fixed-point method, while global existence of solutions
are obtained by first obtaining uniform a priori bounds of the solutions constructed
locally, using once more the arguments presented in Ref. 9. Note that the question
of defining weak solutions in the sense of either Ref. 19 or 20 for the problem
under investigation is open and seems complicated due to the strong coupling, the
nonlinearity of the system, and the nontrivial transport equation associated with
the intermediate deformation tensor B.

The structure of the rest of this work is as follows. In Sec. 2, the initial-boundary-
value problem is formulated. Then, in Sec. 3, it is shown that the intermediate
deformation tensor B satisfies the constraint detB = 1 if and only if this condition
is satisfied initially. In Sec. 4, various results for function spaces are presented,
and estimates for some problems related to the original initial-value problem are
derived. These estimates are essential for establishing solvability of the problem
using a Leray–Schauder fixed point argument, which is presented in Sec. 5. Finally,
the local solution obtained in Sec. 5, is extended globally in time in Sec. 6.

aMore recently, Rajagopal and Srinivasa26 have developed a class of implicit models for viscoelastic
materials based on the Gibbs potential.
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2. The Initial-Boundary-Value Problem for the Polymer Melt

2.1. Governing equations

The essential features of the melt model are presented for the case of a single
relaxation time, based on Refs. 12 and 27. The extension to multiple relaxation
times may be carried out readily.

A fluid occupies a bounded domain Ω ⊂ R
d (d = 2, 3) with boundary Γ, and

is subject to the action of a body force b per unit mass. The mass density of the
fluid is assumed, without loss of generality, to be equal to unity. It is required
to find the velocity u(x, t), the pressure p(x, t), the temperature θ(x, t), and the
“intermediate” left Cauchy–Green tensor B (which contains the information about
the orientation of the molecules in the melt) which satisfy the following set of
equations: conservation of momentum

ut + [u · ∇]u − div T = b; (2.1)

conservation of mass (continuity equation)

div u = 0; (2.2)

conservation of energy

θt + [u · ∇]θ + div q = T :D + r, (2.3)

where r is the radiant heating, the heat flux q is given by Fourier’s law

q = −κ∇θ,

with κ the thermal conductivity, and the heat capacity has been set equal to unity
in (2.3). The constitutive equation for the stress is given by

T = −pI + α1θB + 2νD, (2.4)

where α1 is a positive constant, I is the identity tensor, and D is the rate of
deformation tensor which is defined by

D =
1
2
[∇u + (∇u)T].

Here and henceforth (·)t ≡ ∂t denotes the partial derivative with respect to
time.

The motion of the fluid is represented by the function x = ϕ(X, t) in which X
and x are respectively the initial and current positions of a material point in the
body. The deformation gradient associated with this motion is defined by F = ∇Xϕ.

The intermediate deformation tensor FI gives the deformation between the ref-
erence and intermediate configurations, and is required to be non-singular. The
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corresponding symmetric intermediate left Cauchy–Green tensor B is defined byb

B = FIFT
I . (2.5)

At this stage it should be pointed out that FI is not in general the gradient of a
mapping.25

The evolution equation for the tensor B is given by

DB
Dt

− [∇u]B − B[∇u]T = α2θ

[
d

trB−1
I− B

]
, (2.6)

where α2 stands for a positive constant, and DB/Dt is the material time derivative
of B, that is,

DB
Dt

= Bt + [u · ∇]B.

Note that B is non-singular so that B−1 exists, by virtue of FI being non-singular.
Thus, (2.6) can be written as

Bt = −[u · ∇]B + [∇u]B + B[∇u]T + α2θ

[
d

trB−1
I − B

]
. (2.7)

As the fluid is incompressible, it is required in addition that the motion associated
with the intermediate configuration be isochoric; that is,

detB = 1. (2.8)

After substitution of the constitutive equations for the stress T in (2.1) and
the heat flux q in (2.3), the initial-boundary-value problem for the melt may be
summarized as follows: find (u, p,B, θ) such that for (t,x) ∈ (0, T ) × Ω,

ut + [u · ∇]u − ν∆u − α1(B∇θ + θ div B) + ∇ p = b,

Bt + [u · ∇]B− [∇u]B − B[∇u]T = α2θ

[
d

trB−1
I− B

]
,

θt + [u · ∇]θ − κ∆θ = [α1θB + 2νD] :D + r,

div u = 0, detB = 1, B = BT,

(2.9)

together with the boundary conditions

θ|∂Ω = 0 and u|∂Ω = 0, (2.10)

and initial conditions

θ(x, 0) = θ0, u(x, 0) = u0 and B(x,0) = B0, (2.11)

where of course, we have the compatibility condition

div u0 = 0. (2.12)

bThe notation B conventionally denotes the left Cauchy–Green tensor FFT in continuum mechan-
ics. This tensor plays no role in the problem discussed here, so the notation B (with a subscript,
for convenience) is used for the intermediate tensor without danger of confusion.
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We have chosen to work with homogeneous condition on the velocity in order to
avoid the technical arguments linked to the Hopf lemma (see Ref. 8, Chap. 4,
Lemma 2.3).

Remarks. (a) The more relevant physical condition θ|∂Ω = θb may be adopted
instead of (2.10)1, but with the help of the lifting operator L, that is, an operator
from H1/2(∂Ω) into H1(Ω) which is continuous from Hs+1/2(∂Ω) into Hs+1(Ω) for
all s ≥ 0 (the existence of such an operator is established in Ref. 8 for instance),
it is always possible to revert to the homogeneous boundary condition. Indeed,
considering θb(t) ∈ H1/2(∂Ω) (at least), we denote by θ̃ the function defined for
a.e. t, 0 < t < T , by

θ̃(t) = Lθb(t).

It is manifest that the function θ̃ is an element of L2(0, T ;H1(Ω)) and one has

‖θ̃‖L2(0,T ;H1(Ω) ≤ C‖θb‖L2(0,T ;H1/2(∂Ω). (2.13)

When setting θ∗ = θ − θ̃, one sees that θ∗|∂Ω = 0. There is thus no loss of
generality in considering a homogeneous boundary condition.

(b) In the problem described by (2.9)–(2.11), the incompressibility condition
detB = 1 is not linked to the incompressibility of the fluid divu = 0, while for
the model of viscoelastic fluid discussed in Ref. 17, both conditions are the same
because the deformation of the material is described by the tensor F = ∂x/∂X,
where x(t,X) is the flow map. Since

D

Dt
detF = detF div u,

one sees that div u = 0 is equivalent to det F = 1.

(c) The first equation in the system of Eqs. (2.9), is essentially an extension of
the Navier–Stokes equation, while the third one is an extension of the standard
equation for heat convection and conduction, in both cases with the addition of
terms which capture the coupling with temperature and velocity, respectively, and
the state of the fluid in the intermediate configuration.

3. Some Properties of B

3.1. The constraint detB = 1

The presence of the nonlinear constraint detB = 1 is a complicating factor in
determining the solvability of (2.9)–(2.11). We show that the constraint can be
removed provided that the initial condition detB(x, 0) = 1 is imposed. Indeed,
setting

J = detB, (3.1)
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and from a general result on derivatives of determinants (see Ref. 4, p. 20) and
using (2.9)2 we have, with a superposed dot denoting the material derivative D/Dt,

J−1J̇ = B−T : Ḃ

= B−T :
(

[∇u]B + B[∇u]T + α2 θ

[
d

trB−1
I − B

])
= 2 div u + α2θ

[
d

trB−1
I − B

]
:B−T

= 2 div u + α2 θ

[
d tr(B−T)

trB−1
− tr(B−1B)

]
= 2 div u.

For an incompressible fluid it follows that J̇ = 0, which implies that

J = detB = detB0. (3.2)

Thus we have the following result.

Lemma 3.1. Let B be the intermediate left Cauchy–Green tensor satisfying (2.9)2,
and being symmetric. Then det B(t) = 1 if and only if detB(0) = 1.

In conclusion, we have shown that

Lemma 3.2. The set (u, p,B, θ) is a solution of (2.9)–(2.11) if and only if it solves

ut + [u · ∇]u − ν∆u − α1(B∇θ + θ div B) + ∇p = b,

Bt + [u · ∇]B − [∇u]B − B[∇u]T = α2θ

[
d

trB−1
I − B

]
,

θt + [u · ∇]θ − κ∆θ = [α1θB + 2νD] :D + r,

div u = 0,

θ|∂Ω = 0, θ(x, 0) = θ0, u|∂Ω = 0, u(x, 0) = u0,

B = BT, B(x,0) = B0, detB0 = 1.

(3.3)

4. Auxiliary Results

For a multi-index α = (α1, . . . , αd) where αi are non-negative integers, we define

∂α(·) :=
∂α1+···+αd(·)
∂α1x1 · · · ∂αdxd

. (4.1)

Leibniz’s formula can be expressed using multi-index notation in the form as in
Ref. 6,

∂α(uv) =
∑

βi≤αi

(
α

β

)
∂βu∂α−βv, (4.2)
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where (
α

β

)
=

α!
β!(α− β)!

and α! = α1! · · ·αd!.
We introduce the classical function spaces

M := H1
0 (Ω)d = closure of C∞

0 (Ω,Rd) in the norm
(∫

Ω

|∇v|2dx
)1/2

,

H2(Ω)d = {v ∈ L2(Ω,Rd) : ∂βv ∈ L2(Ω,Rd), |β| ≤ 2},
W = C∞

0 (Ω,Rd) ∩ {v : divv = 0},
V = closure of W in H1(Ω),

H = closure of W in L2(Ω,Rd),

H−1(Ω) = the dual of H1
0 (Ω),

X = {B = (Bij) |Bij ∈ L2(Ω), Bij = Bji, 1 ≤ i, j ≤ d}.

(4.3)

Clearly, from the identification of H with its dual, one has the triplet V ⊂ H ⊂ V ′.
We will denote by ‖·‖k the classical Sobolev norm, and by (·, ·) and ‖·‖ the L2-inner
product and norm respectively. The notation will be used for scalar-, vector- and
matrix-valued functions, with the norms for the latter two types of functions being
defined in the usual, componentwise way. As usual, u(t) stands for the function
x ∈ Ω 	→ u(x, t).

If I is an interval of R+, we denote by C(I, V ) the space of vector-valued func-
tions v(t,x) such that v(t) ∈ V for all t ∈ I and the function t 	→ v(t, ·) with values
in V is continuous on I. Cb(I, V ) is the space of bounded continuous functions on
I into V . Finally, if E is a Banach space, Lp(I, E) for 1 ≤ p ≤ ∞ consists of
p-integrable functions with values in E.

In inequalities that will occur later, C denotes a generic positive constant which
may take different values even in the same calculation. The entities on which it may
depend, are given in brackets, e.g. C(Ω) denotes a constant which depends at most
on Ω.

We denote by P the orthogonal projection of L2(Ω)d onto H , and by D(A) the
domain of the Stokes operator A = −νP∆. It can be shown (see Ref. 30) that

D(A) = H2(Ω)d ∩ V,

and that there exists a positive constant C such that

‖u‖2 ≤ C‖Au‖ for all u ∈ D(A). (4.4)
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We will make reference to the following results.

Lemma 4.1. (Ref. 30) Let Ω be a bounded open set of R
d, with boundary ∂Ω of

class C3. If v0 ∈ D(A), F ∈ L2(0, T ;H1(Ω)d) and Ft ∈ L2(0, T ;H−1(Ω)d), then
the time-dependent Stokes problem{

vt + Av = F, a.a. t ∈ (0, T )

v(0) = v0,
(4.5)

admits a unique solution v(t) and associated pressure p(t), with

v ∈ L2(0, T ;H3(Ω)d ∩ V ) ∩ C(0, T ;D(A)), vt ∈ L2(0, T ;V ) ∩ C(0, T ;H),

∇p ∈ L2(0, T ;H1(Ω)).
(4.6)

Moreover, there exists a positive constant C such that

‖v‖2
L2(0,T ;H3)∩ L∞(0,T ;D(A)) + ‖vt‖2

L2(0,T ;V )∩L∞(0,T ;H) + ‖p‖2
L2(0,T ;H2)

≤ C[‖Av0‖2 + ‖F‖2
L2(0,T ;H1) + ‖Ft‖2

L2(0,T ;H−1) + ‖F(0)‖2]. (4.7)

Next, we recall the following result for the time-dependent heat equation.

Lemma 4.2. (Ref. 6, pp. 360–361) Let Ω be a bounded open set of R
d, with a

smooth boundary ∂Ω. If θ0 ∈ H1
0 (Ω) and f ∈ L2(0, T ;L2(Ω)), then the problem

θt − κ∆θ = f, a.a. t ∈ (0, T ),

θ(0) = θ0,

θ|∂Ω = 0, a.a. t ∈ (0, T ),

(4.8)

admits a unique solution θ(t), with

θ ∈ L2(0, T ;H2(Ω)) ∩ L∞(0, T ;H1
0 (Ω)), θt ∈ L2(0, T ;L2(Ω)). (4.9)

Furthermore, there exists a positive constant C ≡ C(κ,Ω), such that

‖θ‖L∞(0,T ;H1) + ‖θ‖L2(0,T ;H2) + ‖θt‖L2(0,T ;L2(Ω)) ≤ C [‖f‖L2(0,T ;L2(Ω)) + ‖θ0‖1].

(4.10)

If in addition θ0 ∈ H2(Ω) and ft ∈ L2(0, T ;L2(Ω)), then

θ ∈ L∞(0, T ;H2(Ω)), θt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

θtt ∈ L2(0, T ;H−1(Ω)), (4.11)

and there exists a positive constant C ≡ C(κ,Ω), such that

‖θ‖2
L∞(0,T ;H2) + ‖θt‖2

L∞(0,T ;L2)∩L2(0,T ;H1) + ‖θtt‖2
L2(0,T ;H−1(Ω))

≤ C[‖f‖2
H1(0,T ;L2(Ω)) + ‖θ0‖2

2]. (4.12)

1150004-9



January 10, 2012 11:1 WSPC/103-M3AS 1150004

J. K. Djoko & B. D. Reddy

In order to analyze the transport equation in (3.3), we let

ũ(t) ∈ D(A) ∩H3(Ω)d and θ̃(t) ∈ H1
0 (Ω) ∩H2(Ω).

Now, we introduce the following problem: find B(t) ∈ X such thatBt + [ũ · ∇]B = [∇ũ]B + B[∇ũ]T + α2θ̃

[
d

trB−1
I − B

]
, a.a. t ∈ (0, T )

B(0) = B0.

(4.13)

We first investigate some qualitative properties associated with the solution of
problem (4.13). We then claim the following:

Lemma 4.3. Let (ũ(t), θ̃(t)) ∈ D(A)∩H3(Ω)d ×H1
0 (Ω)∩H2(Ω). Let B be a reg-

ular solution to the system (4.13). If B0 is symmetric and detB0 = 1, then the
solution B remains so for all later times of existence of solutions.

Proof. Following Lemma 3.1, we readily see that detB = 1 for all later times of
existence of solutions if detB0 = 1.

Next, in order to show that B remains symmetric, we follow Ref. 7, and let

H = B− BT, K = B−1 − B−T.

One has trK = 0 = trH, trB = trBT, and trB−1 = trB−T, since K and H are
skew-symmetric. From (4.13), one obtains{

Ht = −[ũ · ∇]H + [∇ũ]H + H[∇ũ]T − α2θ̃H,

H(0) = H0.

A standard energy estimate gives
1
2
d

dt
‖H(t)‖2 =

∫
Ω

[∇ũ]H :H +
∫

Ω

H[∇ũ]T :H − α2

∫
Ω

θ̃H :H

= −2
∫

Ω

[∇ũ] :H2 − α2

∫
Ω

θ̃H :H

≤ C(‖ũ(t)‖3 + ‖θ̃(t)‖2)‖H‖2, (4.14)

which by Gronwall’s lemma and the assumptions made on ũ and θ̃ leads to H(t) = 0;
that is, B = BT.

As far as the existence of solutions of (4.13) is concerned, we quickly observe
that we are dealing with a first-order nonlinear hyperbolic system of equations.
Thus, following the method of characteristics (see Ref. 11, p. 15), (4.13) can be
transformed into a nonlinear first-order system of ordinary differential equations
in a Banach space X . Consequently, its existence relies on the application of the
Cauchy–Lipschitz theorem (see Ref. 10, p. 60).

So, we need to show that the nonlinear mapping defined by

B 	→ F (B) = [∇ũ]B + B[∇ũ]T + α2θ̃

[
d

trB−1
I − B

]
is Lipschitz continuous on X .
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We recall that the symbol | · | will denote the absolute value in the case of
scalars, the Euclidean norm |u|2 = u ·u for vectors, and the Frobenius norm |A|2 =∑d

i,j=1 AijAij in the case of tensors or matrices. We also mention that if A and B
are two invertible matrices, then the following identity holds:

A−1 − B−1 = A−1(B − A)B−1. (4.15)

Now, to show that F is Lipschitz continuous on X , let B,A ∈ X , then from (4.15)
and triangle inequality

|F (B) − F (A)| ≤ 2|∇ũ||B − A| + α2|θ̃(B − A)| + d2α2|θ̃|
∣∣∣∣tr(A−1(B− A)B−1)

trB−1trA−1

∣∣∣∣
≤
[
2|∇ũ| + α2|θ̃| + d2α2|θ̃| |A−1||B−1|

|trA−1||trB−1|
]
|B − A|

≤ [2|∇ũ| + α2(1 + d2)|θ̃|]|B − A|,
from which we easily get

‖F (B) − F (A)‖ ≤ C(‖ũ‖3 + ‖θ̃‖2)‖B− A‖,
where we have used Agmon’s inequalities31 (p. 52):

‖u‖L∞(Ω) ≤
C‖u‖

1/2

Hd/2−1(Ω)
‖u‖1/2

Hd/2+1(Ω)
∀u ∈ Hd/2+1(Ω) if d is even,

C‖u‖1/2

H(d−1)/2(Ω)
‖u‖1/2

H(d+1)/2(Ω)
∀u ∈ H(d+1)/2(Ω) if d is odd.

(4.16)

We conclude that F (B) is Lipschitz continuous on X .
Of course more regular solutions of (4.13) can be obtained by imposing stronger

regularity conditions on the initial data B0. Indeed one can claim the following
result.

Lemma 4.4. Let Ω be a regular domain of R
d with boundary ∂Ω of class C1.

Assume that B0 ∈ X ∩H2(Ω)d×d. Then there exists a positive constant T such that
for ũ ∈ L∞(0, T ;H3(Ω)d ∩D(A)) and θ̃ ∈ L∞(0, T ;H2(Ω) ∩H1

0 (Ω)), the solution
of (4.13) enjoy the following regularity:

B ∈ L∞(0, T ;H2(Ω)d×d ∩X) and Bt ∈ L∞(0, T ;L2(Ω)d×d).

Moreover, if

C(‖ũ‖L1(0,T ;H3) + ‖θ̃‖L1(0,T ;H2) + ‖θ̃‖2
L2(0,T ;H2)) ≤

1
‖B0‖4

2

, (4.17)

then

‖B(t)‖2 ≤ ‖B0‖2 for t ∈ [0, T ]. (4.18)

In addition, if

ũ ∈ C(0, T ;H3(Ω)d), θ̃ ∈ C(0, T ;H2(Ω)) and trB−1 ∈ C(0, T ;H2(Ω)),
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then Bt ∈ L∞(0, T ;H1(Ω)d×d) and

‖Bt(t)‖1 ≤ C‖θ̃(t)‖2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2[(‖B0‖3
2 + ‖B0‖6

2)‖B0‖2
2]

1/2

+C(‖ũ(t)‖3 + ‖θ̃(t)‖2)‖B0‖2 + C‖θ̃(t)‖2[‖B0‖2

+ ‖B0‖2
2]

1/2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2. (4.19)

Proof. We just need to derive the bounds (4.18) and (4.19). For that purpose we
recall some well-known inequalities that will be used frequently.

First, Young’s inequality states that

ab ≤ ε

p
ap +

1
qεq/p

bq for all a, b, ε > 0, with
1
p

+
1
q

= 1. (4.20)

The following interpolation inequality3 (p. 195) will also be used: for 1 ≤ p ≤ q <∞
there exists a positive constant C ≡ C(p, q,Ω), such that

‖u‖Lq(Ω) ≤ C‖u‖1−α
Lp(Ω)‖u‖α

W 1,d(Ω) with α = 1 − p

q
. (4.21)

The following Sobolev inequality6 will be employed for Ω ⊂ R
3: there exists a

constant C ≡ C(Ω), such that for all v ∈ H1(Ω),

‖v‖L3(Ω) ≤ C‖v‖1/2‖v‖1/2
1 ,

‖v‖L6(Ω) ≤ C‖v‖1.
(4.22)

We will also use the following31 (p. 53):

Multiplicative algebra. If Ω ⊂ R
d is of class Cm, and m > d/2, then Hm(Ω) is a

multiplicative algebra. That is, one can find C ≡ C(Ω) such that if u,v ∈ Hm(Ω),
then u · v ∈ Hm(Ω) and

‖u · v‖m ≤ C‖u‖m‖v‖m. (4.23)

We also recall that for v ∈ V and B sufficiently smooth, one has

([v · ∇]∂βB, ∂βB) = 0. (4.24)

Estimates for the solution of (4.13). A standard energy estimate for Eq. (4.13) gives
(see Refs. 7 and 23)

1
2
d

dt
‖B(t)‖2

2 = −
∑
|β|≤2

(∂β([ũ · ∇]B), ∂βB)

+
∑
|β|≤2

(∂β([∇ũ]B + B[∇ũ]T), ∂βB)

+α2

∑
|β|≤2

(
∂β

[
θ̃

(
d

trB−1
I− B

)]
, ∂βB

)
. (4.25)

We now estimate the terms on the right-hand side of (4.25).
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Starting with the first term on the right-hand side, from (4.24) and (4.2) we
have∑

|β|≤2

(∂β([ũ · ∇]B), ∂βB)

= ([ũ · ∇]B,B)

+
∑
|β|=1

(∂β([ũ · ∇]B), ∂βB) +
∑
|β|=2

(∂β([ũ · ∇]B), ∂βB)

= 0 +
∑
|β|=1

([∂βũ · ∇]B + [ũ · ∇]∂βB, ∂βB)

+
∑
|β|=2

[∂βũ · ∇]B +
∑
|α|=1

(
α

β

)
[∂αũ · ∇]∂β−αB + [ũ · ∇]∂βB, ∂βB


≤ C(‖∇ũ‖L∞‖B‖2

2 + ‖[∂2ũ · ∇]B‖‖B‖2).

When d = 2, thanks to Hölder’s inequality and (4.21),

‖[∂2ũ · ∇]B‖ = ‖∂2ũ‖L4‖∇B‖L4

≤ C‖∂2ũ‖1/2‖∂2ũ‖1/2
1 ‖∇B‖1/2‖∇B‖1/2

1

≤ C‖ũ‖3‖B‖2, (4.26)

and when d = 3, using Hölder’s inequality and (4.22),

‖∂2ũ · ∇B‖ ≤ ‖∂2ũ‖L6‖∇B‖L3

≤ C‖∂2ũ‖1‖∇B‖1

≤ C‖ũ‖3‖B‖2. (4.27)

Thus from (4.16), (4.27) and (4.26), we deduce that∑
|β|≤2

(∂β((ũ · ∇)B), ∂βB) ≤ C‖ũ‖3‖B‖2
2. (4.28)

Next, the process in getting (4.28) and use of (4.23), yield∑
|β|≤2

(∂β([∇ũ]B + B[∇ũ]T), ∂βB) ≤ 2
∑
|β|≤2

‖∂β(∇ ũB)‖‖∂βB‖

≤ C‖∇ ũB‖2‖B‖2

≤ C‖ũ‖3‖B‖2
2. (4.29)

1150004-13



January 10, 2012 11:1 WSPC/103-M3AS 1150004

J. K. Djoko & B. D. Reddy

Finally,∑
|β|≤2

(
∂β θ̃

(
d

trB−1
I− B

)
, ∂βB

)
=
(
θ̃

(
d

trB−1
I − B

)
,B
)

+
(
∂θ̃

(
d

trB−1
I− B

)
, ∂B

)
+
(
θ̃

(
∂

d

trB−1
I − ∂B

)
, ∂B

)
+
(
∂2θ̃

(
d

trB−1
I− B

)
, ∂2B

)
+
(
θ̃

(
∂2 d

trB−1
I− ∂2B

)
, ∂2B

)
. (4.30)

We now estimate each term on the right-hand side of (4.30). For that purpose we
first recall that if E is symmetric and positive-definite matrix of size d, then

E2
ij ≤ EiiEjj for all i 
= j,

and

[detE]1/d ≤ (1/d) trE. (4.31)

Now, observing that B−1 is symmetric, positive-definite, from (4.31)2, and the fact
that detB−1 = 1 (see Lemma 4.3), the inequality trB−1 ≥ d holds. Combining
this with (4.16), it follows that(

θ̃

(
d

trB−1
I − B

)
,B
)

≤ C‖θ̃‖‖B‖ + C‖θ̃‖2‖B‖2
2,(

∂θ̃

(
d

trB−1
I− B

)
, ∂B

)
≤ C‖θ̃‖1‖B‖1 + C‖θ̃‖2‖B‖2

2, (4.32)(
∂2θ̃

(
d

trB−1
I − B

)
, ∂2B

)
≤ C‖θ̃‖2‖B‖2 + C‖θ̃‖2‖B‖2

2.

Next, we let H(B) = 1/trB−1. From Gateaux-differentiability, and the identity
(4.15), one gets

∂H(B) ·A =
tr[B−1AB−1]

[trB−1]2
,

∂2H(B) · (A,C) =
2 tr[B−1AB−1] tr[B−1CB−1]

[trB−1]3

− tr[B−1AB−1CB−1] + tr[B−1CB−1AB−1]
[trB−1]2

. (4.33)

One readily observes that

(a) ∂2H(B)(·, ·) is symmetric,

(b) ∂H(B) = ∂H(B) · ∂B =
tr[B−1∂BB−1]

[trB−1]2
,
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(c) ∂2H(B) = ∂2H(B) · (∂B, ∂B)

=
2[tr[B−1∂BB−1]]2

[trB−1]3
− 2 tr[B−1∂BB−1∂BB−1]

[trB−1]2
.

Now, working in a specific direction, say x, and using the fact that B−1 is symmetric,
positive semi-definite, and detB−1 = 1, from (4.31)1, one obtains

∂xH(B) =
B−1

ij [∂xBjk]B−1
ki

[B−1
ii ]2

≤ |[∂xBjk]|[B−1
jj B

−1
kk ]1/2

B−1
ii

≤ |∂xB|,

∂2
xxH(B) =

2[B−1
ij ]2[∂xBjk]2[B−1

ki ]2

[B−1
ii ]3

− 2[B−1
ij ][∂xBjk][B−1

kl ][∂xBlm][B−1
mi ]

[B−1
ii ]2

≤ 2|∂xB|2[trB−1] + 2|∂xB|2|B−1|.
Next, repeating the above computations in each direction, we find that{|∂H(B)| ≤ C|∂B|,

|∂2H(B)| ≤ C|∂B|2[trB−1] + C|∂B|2|B−1| ≤ C|∂B|2|B−1|. (4.34)

Hence,(
θ̃

(
∂

d

trB−1
I − ∂B

)
, ∂B

)
≤ C(|∂B|, θ̃|∂B|) ≤ C‖θ̃‖1‖B‖2

1,(
θ̃

(
∂2 d

trB−1
I− ∂2B

)
, ∂2B

)
≤ C(|B−1||∂B|2|∂2B|, θ̃) + (θ̃|∂2B|, |∂2B|)

≤ C‖θ̃‖2‖B‖3
2‖B−1‖2 + C‖θ̃‖2‖B‖2

2. (4.35)

It is apparent that to close the estimates in (4.35)2, we need to estimate ‖B−1‖2.
For that purpose, since detB = 1, in two space dimensions we have

‖B−1‖2 = ‖cof B‖2 = ‖B‖2,

while in three space dimensions,

‖B−1‖2 = ‖cof B‖2 ≤ C‖B‖2
2.

Therefore,

‖B−1‖2 ≤ C(‖B‖2 + ‖B‖2
2). (4.36)

Thus (
θ̃

(
∂

d

trB−1
I − ∂B

)
, ∂B

)
≤ C‖θ̃‖1‖B‖2

1,(
θ̃

(
∂2 d

trB−1
I− ∂2B

)
, ∂2B

)
≤ C‖θ̃‖2‖B‖3

2{‖B‖2 + ‖B‖2
2} + C‖θ̃‖2‖B‖2

2.

(4.37)
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Returning to (4.30) with (4.37), and (4.32), one obtains∑
|β|≤2

(
∂β θ̃

(
d

trB−1
I − B

)
, ∂βB

)

≤ C‖θ̃‖2‖B‖2 + C‖θ̃‖2‖B‖2
2 + C‖θ̃‖2‖B‖4

2 + C‖θ̃‖2‖B‖5
2. (4.38)

Putting together (4.25) with (4.28), (4.29), (4.38), and (4.20) one has

d

dt
‖B(t)‖2

2 ≤ C(‖ũ‖3 + ‖θ̃‖2)‖B‖2
2 + C‖θ̃‖2‖B‖2 + C‖θ̃‖2‖B‖4

2 + C‖θ̃‖2‖B‖5
2

≤ C(1 + ‖ũ‖3 + ‖θ̃‖2 + ‖θ̃‖2
2)(1 + ‖B‖2

2)
5, (4.39)

from which we deduce that

‖B(t)‖4
2 ≤ ‖B0‖4

2

1 − C‖B0‖4
2(‖ũ‖L1(0,t;H3) + ‖θ̃‖L1(0,t;H2) + ‖θ̃‖2

L2(0,t;H2))
, (4.40)

provided that (4.17) is satisfied. We select T such that

T [‖ũ‖L∞(0,T ;H3) + ‖θ̃‖L∞(0,T ;H2) + ‖θ̃‖2
L∞(0,T ;H2)] ≤

1
C‖B0‖4

2

. (4.41)

Thus (4.40), and (4.41) gives the desired inequality (4.18).
In order to show that Bt ∈ L∞(0, T ;L2(Ω)d×d), we take the L2-norm on both

sides of B-equation of (4.13), which gives

‖Bt(t)‖ ≤ ‖ũ(t) · ∇]B(t)‖ + ‖[∇ũ(t)]B(t)‖ + ‖B(t)[∇ũ(t)]T‖

+α2

∥∥∥∥θ̃(t) [ d

trB−1(t)
I− B(t)

]∥∥∥∥
≤ C‖ũ(t)‖2‖B(t)‖2 + C

∥∥∥∥∥ θ̃(t)
trB−1(t)

∥∥∥∥∥+ C‖θ̃(t)B(t)‖

≤ C‖ũ(t)‖2‖B(t)‖2 + C‖θ̃(t)‖ + C‖θ̃(t)‖2‖B(t)‖2 <∞,

where we have used the inequality trB−1 > d, (4.18), and similar arguments as in
the proofs of (4.27) and (4.26). This shows that Bt ∈ L2(0, T ;L2(Ω)d×d).

Finally, if (4.13) is written in the form

Bt = −[ũ · ∇]B + [∇ũ]B + B[∇ũ]T + α2θ̃

[
d

trB−1
I − B

]
︸ ︷︷ ︸

G(eu,eθ,B)

, (4.42)

then by integrating (4.42) over (0, t) one gets

B(t) = B0 +
∫ t

0

G(ũ, θ̃,B(s))ds. (4.43)
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It is manifest that if ũ ∈ C(0, T ;H3(Ω)d), θ̃ ∈ C(0, T ;H2(Ω)), trB−1 ∈
C(0, T ;H2(Ω)), with B ∈ C(0, T ;H2(Ω)d×d), then G(ũ, θ̃,B) ∈ C(0, T ;H1).

Hence taking the H1-norm on both sides of (4.42), one gets

‖∂tB(t)‖1 ≤ ‖[ũ(t) · ∇]B(t)‖1 + 2‖∇ũ(t)B(t)‖1 + α2

∥∥∥∥θ̃(t) [ d

trB−1(t)
I− B(t)

]∥∥∥∥
1

≤ ‖[ũ(t) · ∇]B(t)‖1 + C‖ũ(t)‖3‖B(t)‖2

+C

∥∥∥∥∥ θ̃(t)
trB−1(t)

∥∥∥∥∥
1

+ C‖θ̃(t)B(t)‖1. (4.44)

We now need to bound expressions on the right-hand side of (4.44).
First, since [ũ(t) · ∇]B(t)|∂Ω = 0, Poincaré’s inequality ensures that

‖[ũ(t) · ∇]B(t)‖1 ≤ C‖∇[ũ(t) · ∇]B(t)‖
≤ C‖∇ũ(t) · ∇B(t)‖ + C‖ũ(t) · ∂2B(t)‖
≤ C‖ũ(t)‖2‖B(t)‖2

≤ C‖ũ(t)‖2‖B0‖2. (4.45)

Secondly, since θ̃(t)B(t)|∂Ω = 0, similar arguments as in the proof of (4.45) yield

‖θ̃(t)B(t)‖1 ≤ C‖∇(θ̃(t)B(t))‖
≤ C‖∇θ̃(t)B(t)‖ + C‖θ̃(t)∇B(t)‖
≤ C‖θ̃(t)‖2‖B(t)‖2

≤ C‖θ̃(t)‖2‖B0‖2. (4.46)

Thirdly θ̃(t)[trB−1(t)]−1|∂Ω = 0, so that∥∥∥∥∥ θ̃(t)
trB−1(t)

∥∥∥∥∥
1

≤ C

∥∥∥∥∥∂ θ̃(t)
trB−1(t)

∥∥∥∥∥ ≤ C

∥∥∥∥∥∇θ̃(t)tr B−1(t) − θ̃(t)∂ trB−1(t)
tr2 B−1(t)

∥∥∥∥∥ .
But since B−1 is symmetric and positive definite, (4.31) applies and one has

1
trB−1(t)

≤ 1
d[detB−1(t)]1/d

≤ 1
d
.

Hence ∥∥∥∥∥ θ̃(t)
trB−1(t)

∥∥∥∥∥
1

≤ C

d2
‖∇θ̃(t)trB−1(t) − θ̃(t)∂ trB−1(t)‖

≤ C‖∇θ̃(t)trB−1(t)‖ + C‖θ̃(t)∂ trB−1(t)‖. (4.47)
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By similar arguments as in the proofs of (4.27) and (4.26), one has

‖∇θ̃(t) trB−1(t)‖ ≤ C‖θ̃(t)‖2‖B−1(t)‖1/2‖∂ trB−1(t)‖1/2,

‖θ̃(t)∂ trB−1(t)‖ ≤ C‖θ̃(t)‖1‖∂ trB−1(t)‖1/2‖∂2 trB−1(t)‖1/2. (4.48)

In order to treat ‖∂ trB−1(t)‖ and ‖∂2 trB−1(t)‖, we let K(B) = trB−1. From
Gateaux-differentiability, and the identity (4.15),

∂K(B) · A = −tr[B−1AB−1],

∂2K(B) · (A,C) = ∂(∂K(B) ·A) ·C = tr[B−1CB−1AB−1] + tr[B−1AB−1CB−1].

Thus

∂ trB−1 = ∂K(B) · ∂B = −tr(B−1∂BB−1),

∂2 trB−1 = ∂2K(B) · (∂B, ∂B) = 2 tr(B−1∂BB−1∂BB−1).

By similar arguments as in the proofs of (4.27) and (4.26), one has

‖∂ trB−1(t)‖ ≤ ‖tr(B−1(t)∂B−1(t))‖ ≤ C‖(B−1(t))2∂B(t)‖
≤ C‖B−1(t)‖2

2‖B(t)‖2

‖∂2 trB−1(t)‖ ≤ C‖(B−1(t))3(∂B(t))2‖ ≤ C‖B−1(t)‖3
2‖B(t)‖2

2,

which combined with (4.36) gives

‖∂ trB−1(t)‖ ≤ C(‖B(t)‖2 + ‖B(t)‖2
2)

2‖B(t)‖2 ≤ C(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2,

‖∂2 trB−1(t)‖ ≤ C(‖B(t)‖2 + ‖B(t)‖2
2)

3‖B(t)‖2
2 ≤ C(‖B0‖3

2 + ‖B0‖6
2)‖B0‖2

2.

(4.49)

Coming back to (4.48), we find that

‖∇θ̃(t)trB−1(t)‖ ≤ C‖θ̃(t)‖2[‖B0‖2 + ‖B0‖2
2]

1/2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2,

‖θ̃(t)∂ trB−1(t)‖ ≤ C‖θ̃(t)‖1[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2

· [(‖B0‖3
2 + ‖B0‖6

2)‖B0‖2
2]

1/2. (4.50)

Putting together (4.50) and (4.47), it follows that∥∥∥∥∥ θ̃(t)
trB−1(t)

∥∥∥∥∥
1

≤ C‖θ̃(t)‖2[‖B0‖2 + ‖B0‖2
2]

1/2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2

+C‖θ̃(t)‖2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2[(‖B0‖3
2 + ‖B0‖6

2)‖B0‖2
2]

1/2.

(4.51)

Returning to (4.44) with (4.45), (4.46) and (4.51), one finds the announced bound
(4.19).
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The uniqueness of the solution B of (4.13) is obtained by using the energy
estimate for the difference between two solutions. A similar approach is presented
in the next section, so the proof is omitted here.

5. Local Existence and Uniqueness of a Regular Solution

In this section a fixed point strategy is used to construct regular solutions of (3.3).
This approach was introduced by Guillopé and Saut9 in the context of the problem
for Oldroyd B-fluids, and has also been used, inter alia, in Refs. 7 and 23 which
are concerned with fiber suspension flows. A regular solution of (3.3) is understood
to be any solution which satisfies the initial and boundary conditions in the usual
sense, and which is smooth in the interior of Ω × [0, T ]. As mentioned before, the
question of constructing weak solutions in any suitable sense (i.e. Ref. 20 or 19) is
open and is a nontrivial problem due to the complicated nature of the transport
equation which does not have any dissipative mechanism, and the nonlinearities of
the system.

The following is one of the main results of this section.

Theorem 5.1. Let Ω be a bounded open set of R
d and assume that Γ is of class

C3. Assume further that u0 ∈ D(A), B0 ∈ X ∩H2(Ω)d×d, with detB0 = 1, θ0 ∈
H2(Ω) ∩H1

0 (Ω), and that b and r satisfy the conditions

(i) bt ∈ L2(0, T ;H−1(Ω)d), b ∈ L2(0, T ;H1(Ω)d), b(0) ∈ L2(Ω)d,

(ii) r ∈ H1(0, T ;L2(Ω)).

Then there exists a positive constant T0 such that (2.9) has only one solution
(B,u, p, θ), with

(a) B ∈ C([0, T0];X ∩H2(Ω)d×d),
(b) u ∈ C([0, T0];D(A)) ∩ L2((0, T0);H3(Ω)), ut ∈ C([0, T0];H) ∩ L2((0, T0);V ),
(c) ∇p ∈ L2((0, T0);H1(Ω)), and
(d) θ ∈ C([0, T0];H2(Ω) ∩H1

0 (Ω)), with θt ∈ C([0, T0];L2(Ω)) ∩ L2((0, T0);H1
0 (Ω)).

Proof. The proof proceeds in the following steps.

Step 1. Using the projection operator P introduced earlier, the u-equation of (3.3)
is equivalent to

ut + Au = F,

where

F(u, θ,B) = C1(B∇θ + θ div B) − P [u · ∇]u + b.

Now, for (ũ, θ̃, B̃) fixed, consider the problem of seeking u(t) ∈ D(A) such that

ut + Au = F(ũ, θ̃, B̃), a.e. for t ∈ (0, T ),

u(0) = u0.
(5.1)
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Step 2. Seek θ(t) ∈ H2(Ω) ∩H1
0 (Ω) such that

θt − κ∆θ = f(ũ, θ̃, B̃), a.e. in (0, T ),

θ(0) = θ0,
(5.2)

where f is given by

f(u, θ,B) = −[u · ∇]θ + [C1θB + 2νD] :D + r.

From Lemmas 4.1 and 4.2, problems (5.1) and (5.2) are well-defined.
Next, for positive constants T,K1,K2,K3 set

R(T )

=



(v, q,B), with (v(0), q(0),B(0)) = (v0, q0,B0),

v ∈ L2(0, T ;H3(Ω)d ∩ V ) ∩ C(0, T ;D(A)),vt ∈ L2(0, T ;V ) ∩ C(0, T ;H),

q ∈ L∞(0, T ;H2(Ω)), qt ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)),

B ∈ L∞(0, T ;H2(Ω)d×d ∩X),Bt ∈ L∞(0, T ;H1(Ω)d×d ∩X),

‖v‖2
L∞(0,T ;D(A))∩L2(0,T ;H3(Ω)) + ‖vt‖2

L∞(0,T ;H)∩L2(0,T ;V ) ≤ K1,

‖q‖2
L∞(0,T ;H2(Ω)) + ‖qt‖2

L∞(0,T ;L2(Ω))∩L2(0,T ;H1(Ω)) ≤ K2,

‖B‖2
L∞(0,T ;H2(Ω)d×d) ≤ max(K1,K2), ‖Bt‖2

L∞(0,T ;H1(Ω)d×d) ≤ K3.


.

(5.3)

The set R(T ) has the following properties:

(i) R(T ) is non-empty. Indeed, let (w, ψ) be a solution of (4.5) and (4.8) with
(F, f) = (0, 0). Thus the estimates

‖w‖2

L2(0,T ;H3)∩L∞(0, T ;D(A)) + ‖wt‖2
L2(0,T ;V )∩L∞(0,T ;H) ≤ C‖Aw0‖2,

‖ψ‖2
L∞(0,T ;H2) + ‖ψt‖2

L∞(0,T ;L2)∩L2(0,T ;H1) ≤ C‖q0‖2
2,

are valid (see (4.7) and (4.12)). Let K1 > C‖Aw0‖2+‖B0‖2 and K2 > C‖ψ0‖2
2.

It is manifest that (w, ψ,B0) ∈ R(T ).
(ii) R(T ) is a closed, convex subset of C(0, T ;H1(Ω)d) × C(0, T ;H1(Ω)) ×

C(0, T ;H1(Ω)d×d).

Step 3. We introduce the mapping

L : R(T ) → C(0, T ;H1(Ω)d) × C(0, T ;H1(Ω)) × C(0, T ;H1(Ω)d×d)

(ũ, θ̃, B̃) → (û, θ̂, B̂), with (û, θ̂, B̂) a solution of (5.1), (5.2) and (4.13).

The mapping L is well-defined, and a fixed point of L, if it exists, will solve (3.3).
From the Leray–Schauder theory6 it is therefore necessary to show that

(a) there exists a positive constant T0, such that L(R(T0)) ⊂ R(T0);
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(b) the mapping L is compact;
(c) the mapping L is continuous.

For (ũ, θ̃, B̃) ∈ R(T ) we want T0 > 0 such that (û, θ̂, B̂) = L(ũ, θ̃, B̃) ∈ R(T0).
If (û, θ̂, B̂) is the solution of (5.1), (5.2) and (4.13), then from (4.7),

‖û‖2
L2(0,T ;H3)∩L∞(0,T ;D(A)) + ‖ût‖2

L2(0,T ;V )∩L∞(0,T ;H)

≤ C[‖Au0‖2 + ‖F‖2
L2(0,T ;H1) + ‖Ft‖2

L2(0,T ;H−1) + ‖F(0)‖2], (5.4)

with

F = C1(B̃∇θ̃ + θ̃ div B̃) − P [ũ · ∇]ũ + b. (5.5)

It is therefore necessary to estimate ‖F‖2
L2(0,T ;H1) + ‖Ft‖2

L2(0,T ;H−1) + ‖F(0)‖2.
Firstly,

‖F(0)‖ ≤ C1(‖B̃(0)∇θ̃(0)‖ + ‖θ̃(0) div B̃(0)‖) + ‖ũ(0) · ∇ũ(0)‖ + ‖b(0)‖
= C1(‖B0∇θ0‖ + ‖θ0 div B0‖) + ‖(u0 · ∇)u0‖ + ‖b(0)‖
≤ C‖B0‖2‖θ0‖2 + C‖u0‖2

2 + ‖b(0)‖. (5.6)

Secondly, taking the H1-norm on both sides of (5.5) and using (4.16) and (4.22),
one gets

‖F‖1 ≤ C‖θ̃‖2‖B̃‖2 + C‖[ũ · ∇]ũ‖1 + ‖b‖1. (5.7)

Now (ũ · ∇)ũ|Γ = 0 so by Poincaré’s inequality,

‖[ũ · ∇]ũ‖1 ≤ C‖∇([ũ · ∇]ũ)‖
= C‖(∇ũ)2 + [ũ · ∇]∇ũ‖
≤ C‖(∇ũ)2‖ + C‖[ũ · ∇]∇ũ‖.

In two-space dimensions, as in (4.26),

‖(∇ũ)2‖ ≤ C‖∇ũ‖‖∇2ũ‖ ≤ C‖ũ‖2
2,

while in three-space dimensions, following (4.27),

‖(∇ũ)2‖ ≤ C‖∇ũ‖1/2‖∇2ũ‖3/2 ≤ C‖ũ‖2
2.

Similarly, one easily gets

‖[ũ · ∇]∇ũ‖ ≤ C‖∇ũ‖‖∇2ũ‖1/2‖ũ‖1/2
3 ≤ C‖ũ‖2

3.

Using these results in (5.7) we obtain

‖F‖1 ≤ C(‖θ̃‖2‖B̃‖2 + ‖ũ‖2
3) + ‖b‖1,
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which by (4.20) gives

‖F‖2
1 ≤ C(‖θ̃‖4

2 + ‖B̃‖4
2 + ‖ũ‖4

3) + ‖b‖2
1.

Consequently,

‖F‖2
L2(0,T ;H1) ≤ C(‖θ̃‖4

L4(0,T ;H2) + ‖B̃‖4
L4(0,T ;H2) + ‖ũ‖4

L4(0,T ;H3)) + ‖b‖2
L2(0,T ;H1)

≤ CT (‖θ̃‖4
L∞(0,T ;H2) + ‖B̃‖4

L∞(0,T ;H2) + ‖ũ‖4
L∞(0,T ;H3))

+ ‖b‖2
L2(0,T ;H1)

≤ CT (K2
1 +K2

2) + ‖b‖2
L2(0,T ;H1). (5.8)

Next, taking the time derivative of F we obtain

Ft = C1(B̃t∇θ̃ + B̃∇θ̃t + θ̃t div B̃ + θ̃ div B̃t) − P [ũt · ∇]ũ − P [ũ · ∇]ũt + bt.

Thus, following the steps leading to (5.8), it follows that

‖Ft‖2
L2(0,T ;H−1) ≤ CT [K2

3 +K2
1 +K2

2 +K2
3 ] + ‖bt‖2

L2(0,T ;H−1). (5.9)

Returning to (5.4) and using (5.6)–(5.9), we find that

‖û‖2
L2(0,T ;H3)∩L∞(0,T ;D(A)) + ‖ût‖2

L2(0,T ;V )∩L∞(0,T ;H)

≤ C[‖Au0‖2 + ‖b‖2
L2(0,T ;H1) + ‖bt‖2

L2(0,T ;H−1) + ‖B0‖4
2 + ‖θ0‖4

2

+ ‖u0‖4
2 + ‖b(0)‖2] + CT [K2

1 +K2
2 +K2

3 +K2
3 ]. (5.10)

Now from the estimate (4.12),

‖θ̂‖2
L∞(0,T ;H2) + ‖θ̂t‖2

L∞(0,T ;L2)∩L2(0,T ;H1) ≤ C[‖f‖2
H1(0,T ;L2(Ω)) + ‖θ0‖2

2], (5.11)

with

f = −[ũ · ∇]θ̃ + [C1θ̃B̃ + 2νD̃] : D̃ + r.

But

‖f‖ ≤ C (‖ũ‖1‖θ̃‖2 + ‖θ̃‖2‖B̃‖2‖ũ‖3 + ‖ũ‖2
2) + ‖r‖. (5.12)

Combining (5.11), (5.12) and (4.20), one has

‖θ̂‖2
L∞(0,T ;H2) + ‖θ̂t‖2

L∞(0,T ;L2)∩L2(0,T ;H1)

≤ (K2
1 +K2

2 +K1 +K2)T + C[‖r‖2
H1(0,T ;L2(Ω)) + ‖θ0‖2

2]. (5.13)
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Moving to the transport equation, the estimates (4.18) and (4.19) reads

‖B̂‖L∞(0,T ;H2) ≤ ‖B0‖2,

‖B̂t‖L∞(0,T ;H1) ≤ C(‖ũ‖L1(0,T ;H3) + ‖θ̃‖L1(0,T ;H2))‖B0‖2

+C‖θ̃‖L1(0,T ;H2)[‖B0‖2 + ‖B0‖2
2]1/2 [(‖B0‖2

2 + ‖B0‖4
2)‖B0‖2]1/2

+C‖θ̃‖L1(0,T ;H2)[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2[(‖B0‖3
2 + ‖B0‖6

2)‖B0‖2
2]

1/2,

only if the following condition is fulfilled:

C(‖ũ‖L1(0,T ;H3) + ‖θ̃‖L1(0,T ;H2) + ‖θ̃‖2
L2(0,T ;H2)) ≤

1
‖B0‖4

2

.

(5.14)

But

C(‖ũ‖L1(0,T ;H3) + ‖θ̃‖L1(0,T ;H2) + ‖θ̃‖2
L2(0,T ;H2))

≤ CT (‖ũ‖L∞(0,T ;H3) + ‖θ̃‖L∞(0,T ;H2) + ‖θ̃‖2
L∞(0,T ;H2))

≤ CT (K1/2
1 +K

1/2
2 +K2).

So we require that

CT (K1/2
1 +K

1/2
2 +K2) ≤ 1

‖B0‖4
2

. (5.15)

One sees that if (5.15) is satisfied, then we automatically obtain (5.14)1,2. The
upper bound on (5.14)2, can be treated as follows:

‖B̂t‖L∞(0,T ;H1)

≤ CT (‖ũ‖L∞(0,T ;H3) + ‖θ̃‖L∞(0,T ;H2))‖B0‖2

+CT ‖θ̃‖L∞(0,T ;H2)[‖B0‖2 + ‖B0‖2
2]

1/2[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2

+CT ‖θ̃‖L∞(0,T ;H2)[(‖B0‖2
2 + ‖B0‖4

2)‖B0‖2]1/2[(‖B0‖3
2 + ‖B0‖6

2)‖B0‖2
2]

1/2

≤ CT (K1/2
1 +K

1/2
2 )‖B0‖2

+CTK
1/2
2 [‖B0‖2 + ‖B0‖2

2]
1/2[(‖B0‖2

2 + ‖B0‖4
2)‖B0‖2]1/2

+CTK
1/2
2 [(‖B0‖2

2 + ‖B0‖4
2)‖B0‖2]1/2[(‖B0‖3

2 + ‖B0‖6
2)‖B0‖2

2]
1/2. (5.16)

Now, following Refs. 7, 23 and 15, choose T0 such that:

(i) CT0(K
1/2
1 +K

1/2
2 +K2) ≤ ‖B0‖−4

2 ,
(ii) the right-hand side of (5.10) is bounded by K1,
(iii) the right-hand side of (5.13) is bounded by K2,
(iv) the right-hand side of (5.14)1 is bounded by max(K1,K2),
(v) the right-hand side of (5.16) is bounded by K3.
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So, it is clear that L(R(T0)) ⊂ R(T0).
Next, we prove that L is compact. Indeed, with T0 given as above, and

based on the estimates (5.10), (5.13), (5.14), and the Aubin–Lions compactness
theorem,29 R(T0) is compact in X(T0) = C([0, T0];H1(Ω)d) × C([0, T0];H1(Ω)) ×
C([0, T0];H1(Ω)d×d). Hence L is compact.

Finally, we show that L is continuous in X(T0). We know that R(T0) is com-
pact in X(T0), thus it will be enough to show that L is continuous on Y (T0) =
C([0, T0];L2(Ω)d) × C([0, T0];L2(Ω)) × C([0, T0];L2(Ω)d×d).

For that purpose, set

(û1, θ̂1, B̂1) = L(ũ1, θ̃1, B̃1), (û2, θ̂2, B̂2) = L(ũ2, θ̃2, B̃2),

(ũ, θ̃, B̃) = (ũ1, θ̃1, B̃1) − (ũ2, θ̃2, B̃2), (û, θ̂, B̂) = (û1, θ̂1, B̂1) − (û2, θ̂2, B̂2),

where for i = 1, 2, (ũi, θ̃i, B̃i) is an element of R(T0).
From (5.1) one obtains

ût + Aû = F(ũ1, θ̃1, B̃1) − F(ũ2, θ̃2, B̃2), a.e. for t ∈ (0, T ),

û(0) = 0,

which, by taking the L2 inner product of the main equation with û gives

1
2
d

dt
‖û(t)‖2 + ‖∇û(t)‖2 = C1(div(θ̃2(t)B̃(t) + θ̃(t)B̃1(t)), û(t))

− ([ũ(t) · ∇]ũ1(t), û(t)) − ([ũ2(t) · ∇]ũ(t), û(t))

= −C1(θ̃2(t)B̃(t) + θ̃(t)B̃1(t),∇û(t))

− ([ũ(t) · ∇]ũ1(t), û(t)) − ([ũ2(t) · ∇]ũ(t), û(t))

≤ C‖θ̃2(t)‖2‖B̃(t)‖‖∇û(t)‖ + C‖B̃1(t)‖2‖θ̃(t)‖‖∇û(t)‖
+ ‖[ũ(t) · ∇]ũ1(t)‖‖û(t)‖ + ‖[ũ2(t) · ∇]ũ(t)‖‖û(t)‖

≤ C‖θ̃2(t)‖2‖B̃(t)‖‖∇û(t)‖ + C‖B̃1(t)‖2‖θ̃(t)‖‖∇û(t)‖
+C‖∇ũ(t)‖‖ũ1(t)‖2‖û(t)‖ + C‖ũ2(t)‖2‖∇ũ(t)‖‖û(t)‖.

Using the Poincaré’s and Young’s inequalities, (4.20) leads to

d

dt
‖û(t)‖2 + C‖∇û(t)‖2 ≤ C‖θ̃2(t)‖2

2‖B̃(t)‖2 + C‖B̃1(t)‖2
2‖θ̃(t)‖2

+C(‖ũ1(t)‖2
2 + ‖ũ2(t)‖2

2)‖∇ũ(t)‖2.

Therefore

‖û(t)‖ ≤ C‖B̃‖C([0,T0];L2) + C‖θ̃‖C([0,T0];L2) + C‖ũ‖C([0,T0];H1). (5.17)
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Next, from (5.2), one obtains

θ̂t − κ∆θ̂ = f(ũ1, θ̃1, B̃1) − f(ũ2, θ̃2, B̃2), a.e. in (0, T ),

θ(0) = 0.

Now, proceeding as before, one gets

1
2
d

dt
‖θ̂(t)‖2 + ‖∇θ̂(t)‖2

≤ C‖ũ(t)‖1‖θ̃1(t)‖2‖∇θ̂(t)‖ + C‖ũ2(t)‖2‖∇θ̃(t)‖‖∇θ̂(t)‖
+C‖∇θ̃(t)‖‖∇θ̂(t)‖‖ũ1(t)‖3‖B̃1(t)‖2 + C‖B̃(t)‖1‖∇θ̂(t)‖‖ũ1(t)‖3‖θ̃2(t)‖2

+C‖ũ(t)‖1‖∇θ̂(t)‖‖θ̃2(t)‖2‖B̃2(t)‖2

+C(‖ũ1(t)‖3 + ‖ũ1(t)‖3)‖ũ(t)‖1‖∇θ̂(t)‖,
from which one obtains

d

dt
‖θ̂(t)‖2 + C‖∇θ̂(t)‖2

≤ C‖ũ(t)‖2
1‖θ̃1(t)‖2

2 + C‖ũ2(t)‖2
2‖∇θ̃(t)‖2

+C‖∇θ̃(t)‖2‖ũ1(t)‖2
3‖B̃1(t)‖2

2 + C‖B̃(t)‖2
1‖ũ1(t)‖2

3‖θ̃2(t)‖2
2

+C‖ũ(t)‖2
1‖θ̃2(t)‖2

2‖B̃2(t)‖2
2 + C(‖ũ1(t)‖2

3 + ‖ũ1(t)‖2
3)‖ũ(t)‖2

1.

Thus

‖θ̂(t)‖ ≤ C‖ũ‖C([0,T0];H1) + C‖θ̃‖C([0,T0];H1) + C‖B̃‖C([0,T0];H1). (5.18)

Finally, from (4.13), one obtains the equations

B̂t + [ũ · ∇]B̂2 + [ũ1 · ∇]B̂ = [∇ũ1]B̂ + [∇ũ]B̂2 + B̂1[∇ũ]T + B̂[∇ũ2]T

+α2θ̃
d

tr B̂−1
1

I + dα2θ̃2(t)

[
tr[B̂−1

2 B̂ B̂−1
1 ]

tr B̂−1
1 tr B̂−1

2

]
I

−α2θ̃B̂1 − α2θ̃2B̂, a.a. t ∈ (0, T )

B̂(0) = 0.

Hence

1
2
d

dt
‖B̂(t)‖2 ≤ C‖ũ(t)‖1‖B̂2(t)‖2‖B̂(t)‖ + C(‖ũ1(t)‖3 + ‖ũ2(t)‖3)‖B̂(t)‖2

+C‖ũ(t)‖1‖B̂(t)‖(‖B̂2(t)‖2 + ‖B̂1(t)‖2) + C‖θ̃(t)‖‖B̂(t)‖
+C‖θ̃(t)‖1‖B̂(t)‖‖B̂1(t)‖1

+C‖θ̃2(t)‖2‖B̂(t)‖2 + C‖B̂−1
2 ‖2‖B̂‖2‖B̂−1

1 ‖‖θ̃2‖2,
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which gives

d

dt
‖B̂(t)‖2 − C‖B̂(t)‖2 ≤ C‖ũ(t)‖2

1 + C‖θ̃(t)‖2
1.

Then

‖B̂(t)‖ ≤ C‖ũ‖C([0,T0];H1) + C‖θ̃‖C([0,T0],H1). (5.19)

From (5.17)–(5.19), one can conclude that L is continuous on Y (T0) =
C([0, T0];L2(Ω)d) × C([0, T0];L2(Ω)) × C([0, T0];L2(Ω)d×d).

We can then conclude that the mapping L has a fixed point (u, θ,B), say. The
pressure is obtained in the standard way (see Ref. 18), and it is unique up to an
additive constant.

To obtain the regularity required for the pressure, consider the u-equation of
(3.3), that is,

−ν∆u + grad p = −[ut + [u · ∇]u] + α1(B∇θ + θ div B) + b,

div u = 0,

u|∂Ω = 0.

Using the regularity result for the steady Stokes problem (see Lemma 4.1), we have

‖u‖3 + ‖∇p‖1 ≤ C‖b‖1 + C‖div(θB)‖1 + C‖ut‖1 + C‖(u · ∇)u‖1

≤ C‖b‖1 + C‖θ‖2‖B‖2 + C‖∇ut‖ + C‖(u · ∇)u‖1.

But

‖[u · ∇]u‖1 ≤ C(‖∇u‖‖∇2u‖ + ‖∇u‖1/2‖∇2u‖3/2 + ‖∇u‖‖∇2u‖1/2‖u‖1/2
3 ).

Thus from (4.4) and (4.20), we obtain

‖u‖3 + ‖∇p‖1 ≤ C‖b‖1 + C‖θ‖2 + C‖∇ut‖
+C(‖∇u‖‖Au‖+ ‖∇u‖1/2‖Au‖3/2 + ‖∇u‖2‖Au‖). (5.20)

On the other hand, θ satisfies{−κ�θ = −θt − [u · ∇]θ + α1θB :D + 2νD :D + r in Ω,

θ|∂Ω = 0.

Using the regularity of the solution to the Laplace equation (see Ref. 3, p. 181),
one has

‖θ‖2 ≤ C‖θt‖ + C‖[u · ∇]θ‖ + C‖θD‖‖B‖L∞ + C‖D‖2
L4 + C‖r‖

≤ C‖θt‖ + C‖∇u‖‖∇θ‖1/2‖θ‖1/2
2 + C‖∇θ‖‖∇u‖1/2‖u‖1/2

2 ‖B‖2

+C‖∇u‖‖u‖2 + C‖r‖.
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By (4.20) and (4.4), we then find that

‖θ‖2 ≤ C‖θt‖ + C‖r‖ + C‖∇u‖2‖∇θ‖ + C‖∇u‖‖Au‖
+C‖∇θ‖‖∇u‖1/2‖B‖2‖Au‖1/2. (5.21)

Returning to (5.20) with (5.21), we obtain

‖u‖3 + ‖∇p‖1 ≤ C(‖θt‖ + ‖r‖ + ‖∇u‖2‖∇θ‖ + ‖∇u‖‖Au‖
+ ‖∇θ‖‖∇u‖1/2‖B‖2‖Au‖1/2)‖B‖2 + C‖∇ut‖
+C(‖∇u‖‖Au‖+ ‖∇u‖1/2‖Au‖3/2 + ‖∇u‖2‖Au‖) + C‖b‖1,

which shows the desired regularity.

Step 4. Uniqueness of the regular solution. Let (B1,u1, θ1, p1) and (B2,u2, θ2, p2)
be two solutions to (3.3) that satisfy the regularity properties listed in Theorem
5.1. Set

(B12,u12, θ12, p12) = (B1 − B2,u1 − u2, θ1 − θ2, p1 − p2).

Then Eqs. (3.3) yield

[∂tu12 + (u1 · ∇)u12 + (u12 · ∇)u2] − ν∆u12 − α1div (θ12B1)

−α1 div(θ2B12) + gradp12 = 0,

div u12 = 0, B12 = BT
12,

∂tB12 + [u1 · ∇]B12 + [u12 · ∇]B2 − [∇u1]B12

− [∇u12]B2 − B12[∇u1] − B2[∇u12]

= α2

[
d I

trB−1
1

θ12 +
d I

trB−1
1

θ2 − d I
trB−1

2

θ2 − θ1B12 − θ12B2

]
,

[∂tθ12 + (u12 · ∇)θ1 + (u2 · ∇)θ12] − κ∆θ12

= α1θ12B1 :D1 + α1θ2B12 :D2 + α1θ2B1 :D12

+ 2νD1 :D12 + 2νD12 :D2,

θ12|∂Ω = 0 and u12|∂Ω = 0,

θ12(x, 0) = 0, u12(x, 0) = 0, B12(x, 0) = 0,

detB1(x, 0) = 1, detB2(x, 0) = 1,

from which we get, by L2-energy estimates,

1
2
d

dt
‖u12‖2 + ν‖∇u12‖2

≤ ‖u12 · ∇u2‖‖u12‖ + α1‖θ12B1‖‖D12‖ + α1‖θ2B12‖‖D12‖
≤ C‖∇u12‖2‖u2‖2 + C‖θ12‖‖B1‖2‖∇u12 + C‖θ2‖2‖B12‖‖∇u12‖. (5.22)
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Similarly, we obtain

1
2
d

dt
‖θ12‖2 + κ‖∇θ12‖2

≤ C‖∇u12‖‖θ1‖2‖θ12‖ + C‖θ12‖‖B1‖2‖u1‖2‖θ12‖
+C‖θ2‖2‖B12‖‖u2‖2‖θ12‖ + C‖θ2‖2‖∇u12‖‖B1‖2‖θ12‖
+C‖u1‖2‖∇u12‖‖θ12‖ + 2Cν‖∇u12‖‖u2‖2‖θ12‖. (5.23)

Finally,

1
2
d

dt
‖B12‖2

= −([u12 · ∇]B2,B12) + ([∇u1]B12,B12)

+ ([∇u12]B2,B12) + (B12[∇u1],B12) + (B2[∇u12],B12)

+α2

([
d I

trB−1
1

θ12 + dI
tr(B−1

2 − B−1
1 )

trB−1
1 trB−1

2

θ2 − θ1B12 − θ12B2

]
,B12

)
≤ C‖∇u12‖‖B2‖2‖B12‖ + c‖u1‖2‖B12‖2

+α2

([
d I

trB−1
1

θ12 + dI
trB−1

1 (B1 − B2)B−1
2

trB−1
1 trB−1

2

θ2 − θ1B12 − θ12B2

]
,B12

)
.

But from (4.31)1, we readily get

tr[B−1
1 (B1 − B2)B−1

2 ]
trB−1

1 trB−1
2

≤ |B1 − B2| = |B12|.

Thus

1
2
d

dt
‖B12‖2 ≤ C‖∇u12‖‖B2‖2‖B12‖ + C‖u1‖2‖B12‖2

+C2(dI|θ12| + dI|B12||θ2| + |θ1||B12| + |θ12||B2|, |B12|)
≤ C‖∇u12‖‖B2‖2‖B12‖ + C‖u1‖2‖B12‖2 + C‖θ12‖‖B12‖

+C‖B12‖2‖θ2‖2 + C‖θ1‖2‖B12‖2 + c‖θ12‖‖B12‖‖B2‖. (5.24)

Now, putting together (5.22)–(5.24), the regularity of ui, θi,Bi derived in Step 3,
and using (4.20), we obtain

d

dt
[‖u12‖2 + ‖θ12‖2 + ‖B12‖2] + C‖∇θ12‖2 + C‖∇u12‖2

≤ C[‖u12‖2 + ‖θ12‖2 + ‖B12‖2].

It follows from Gronwall’s lemma that ‖u12‖2 + ‖θ12‖2 + ‖B12‖2 = 0 a.e. in [0, T0].
The uniqueness of the solutions in the function class described in Theorem 5.1
follows.
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6. Global Existence of Solutions for Small Data

In this section we shall prove that the local solution constructed in Theorem 5.1 is
global provided that the data are small. Once more, the approach used here follows
closely the work of Guillopé and Saut.9 The key point in this approach is to derive
a new differential inequality (see (6.18)) for the solution constructed in Theorem
5.1 that is valid for all time. The method employed here differs from that used in
Ref. 17 because the deformation tensor in the intermediate state B is not defined
via the gradient of a flow mapping.

We claim that

Theorem 6.1. Under the assumptions of Theorem 5.1, assume in addition that

bt ∈ L2(R+;H−1(Ω)d), b ∈ L2(R+;H1(Ω)d), r ∈ H1(R+;L2(Ω)),

are small enough in their respective norms.
Then the solution constructed in Theorem 5.1 is global with

(a) B ∈ Cb(R+;X ∩H2(Ω)d×d), Bt ∈ Cb(R+;H1(Ω)d×d) ∩ L2
loc(R

+;H1(Ω)d×d),
(b) u ∈ Cb(R+;D(A)) ∩ L2

loc(R
+;H3(Ω)d) with ut ∈ Cb(R+;H) ∩ L2

loc(R
+;V ),

(c) p ∈ L2
loc(R

+;H2(Ω)), and
(d) θ ∈ Cb(R+;H2(Ω) ∩H1

0 (Ω)),with θt ∈ Cb(R+;L2(Ω)) ∩ L2
loc(R

+;H1
0 (Ω)).

Proof. The proof proceeds in two steps.

Step 1. New differential inequality
Let (u, θ,B, p) be the solution of (3.3) given in Theorem 5.1.

We start by deriving differential inequalities for u, θ,B, and ut, θt,Bt.
First, replacing (ũ, θ̃, B̃) by (u, θ,B) in (4.39), one obtains

d

dt
‖B(t)‖2

2 ≤ C(‖u(t)‖3 + ‖θ(t)‖2 + ‖θ(t)‖2
2)(1 + ‖B(t)‖2

2)
5. (6.1)

By applying ∂t to the B-equation of (3.3), and taking the L2 inner product of the
resulting equation with Bt, one has

1
2
d

dt
‖Bt(t)‖2 = −((ut · ∇)B,Bt) + (([∇u]B + B[∇u]T)t,Bt) − α2(θtB,Bt)

+α2d

(
θt

trB−1
, trBt

)
+ α2d

(
tr[B−1BtB−1]

[trB−1]2
, θBt

)
− α2(θ, |Bt|2).

But,

((ut · ∇)B,Bt) ≤ ‖(ut · ∇)B‖‖Bt‖ ≤ C‖∇ut‖‖B‖2‖Bt‖,
((∇uB + B[∇u]T)t,Bt) ≤ ‖(∇uB + B[∇u]T)t‖‖Bt‖

≤ 2{‖∇ut‖‖B‖L∞ + ‖Bt‖‖∇u‖L∞}‖Bt‖
≤ C{‖∇ut‖‖Bt‖‖B‖2 + ‖Bt‖2‖∇u‖1/2

1 ‖∇u‖1/2
2 },
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(θtB,Bt) ≤ ‖B‖L∞‖θt‖‖Bt‖ ≤ C‖B‖2‖θt‖‖Bt‖,(
θt

trB−1
, trBt

)
≤
(

1
trB−1

|θt|, |trBt|
)

≤ 1
d
(|θt|, |trBt|) ≤ C‖θt‖‖Bt‖,(

tr[B−1BtB−1]
[trB−1]2

, θBt

)
≤ C(|Bt|2, θ) ≤ C‖θ‖L∞‖Bt‖2 ≤ C‖∇θ‖1/2‖θ‖1/2

2 ‖Bt‖2,

(θ, |Bt|2) ≤ ‖θ‖L∞‖Bt‖2 ≤ C‖∇θ‖1/2‖θ‖1/2
2 ‖Bt‖2.

We thus conclude that (after using Lemma 4.1)

d

dt
‖Bt(t)‖2 ≤ C(‖∇ut‖ + ‖θt‖)‖Bt‖‖B‖2

+C‖θt‖‖Bt‖ + C(‖∇θ‖1/2‖θ‖1/2
2 + ‖Au‖1/2‖u‖1/2

3 )‖Bt‖2,

which, with (6.1) and (4.20) yields

d

dt
[‖B(t)‖2

2 + ‖Bt(t)‖2] ≤ C(‖u(t)‖3 + ‖∇ut‖ + ‖θt‖ + ‖θ(t)‖2

+ ‖θ(t)‖2
2)(1 + ‖B(t)‖2

2)
5 + C(‖∇ut‖ + ‖θt‖

+ ‖∇θ‖1/2‖θ‖1/2
2 + ‖Au‖1/2‖u‖1/2

3 )(1 + ‖Bt‖)2. (6.2)

We now turn to the estimates for u. We first take the L2-inner product of the
u-equation of (3.3) with Au to obtain

1
2
d

dt
‖∇u(t)‖2 + ‖Au‖2 = −((u · ∇)u,Au) − α1(div(θB),Au) − (b,Au)

≤ ‖(u · ∇)u‖‖Au‖ + α1‖div(θB)‖‖Au‖ + ‖b‖‖Au‖
≤ C‖∇u‖3/2‖∂2u‖1/2‖Au‖ + ‖b‖‖Au‖

+C{‖B‖L∞‖∇θ‖ + ‖θ‖L3‖div B‖L6}‖Au‖
≤ C‖∇u‖3/2‖∂2u‖1/2‖Au‖ + ‖b‖‖Au‖

+C{‖B‖2‖∇θ‖ + ‖θ‖1/2‖∇θ‖1/2‖B‖2}‖Au‖,
which, together with Lemma 4.1 and (4.20) gives

d

dt
‖∇u(t)‖2 + C‖Au‖2

≤ C‖∇u‖6 + C{‖B‖2
2‖∇θ‖2 + ‖θ‖‖∇θ‖‖B‖2

2} + C‖b‖2. (6.3)

To derive the estimates concerning the time derivative of the velocity, we first note
that ut|∂Ω = 0. Then using Poincaré’s inequality, and proceeding as before, we
obtain
1
2
d

dt
‖ut(t)‖2 + ν‖∇ut‖2 = −((ut · ∇)u,ut) − α1((θB)t,∇ut) + (bt,ut)

≤ ‖(ut · ∇)u‖‖ut‖ + α1‖(θB)t‖‖∇ut‖ + ‖bt‖‖ut‖

1150004-30



January 10, 2012 11:1 WSPC/103-M3AS 1150004

Existence Results for a Polymer Melt

≤ C‖∇ut‖‖∇u‖1/2‖∂2u‖1/2‖ut‖ + C‖bt‖‖∇ut‖
+C{‖θt‖L3‖B‖L6 + ‖Bt‖‖θ‖L∞}‖∇ut‖

≤ C‖∇ut‖‖∇u‖1/2‖∂2u‖1/2‖ut‖ + C‖bt‖‖∇ut‖
+C{‖θt‖1/2‖∇θt‖1/2‖B‖2 + ‖Bt‖‖∇θ‖1/2‖θ‖1/2

2 }‖∇ut‖,
which with (4.20) gives

d

dt
‖ut(t)‖2 + C‖∇ut‖2 ≤ C‖∇u‖‖Au‖‖ut‖2 + C‖θt‖‖∇θt‖‖B‖2

2

+C‖Bt‖2‖∇θ‖‖θ‖2 + C‖bt‖2. (6.4)

Putting together (6.3), (6.4), and using (4.20), one gets

d

dt
[‖ut(t)‖2 + ‖∇u(t)‖2] + C‖∇ut‖2 + C‖Au‖2

≤ C‖∇u‖2‖ut‖4 + C‖θt‖‖∇θt‖‖B‖2
2 + C‖Bt‖2‖∇θ‖‖θ‖2

+C‖B‖2
2‖∇θ‖2 + C‖θ‖‖∇θ‖‖B‖2

2 + C‖∇u‖6 + C‖b‖2 + C‖bt‖2. (6.5)

Next, we turn our attention to the estimate of θ. We then take the L2 inner product
of the θ-equation of (3.3), with −�θ, which yields

1
2
d

dt
‖∇θ(t)‖2 + κ‖�θ‖2

= −((u · ∇)θ,�θ) + α1(θB : D,�θ) + 2ν(D :D,�θ) − (r,�θ)
≤ ‖(u · ∇)θ‖‖�θ‖ + C1‖θB :D‖‖�θ‖ + 2ν‖∇u :∇u‖‖�θ‖ + ‖r‖‖�θ‖
≤ C‖∇u‖‖∇θ‖1/2‖θ‖1/2

2 ‖�θ‖ + C‖θ‖‖B‖2‖u‖3‖�θ‖
+C‖∇u‖1/2‖∇u‖3/2

1 ‖�θ‖ + ‖r‖‖�θ‖.
With (4.20) and (4.4), this gives

d

dt
‖∇θ(t)‖2 + C‖�θ‖2 ≤ C{‖∇u‖1/2‖Au‖3/2 + ‖∇u‖2‖∇θ‖}‖θ‖2

+C‖∇θ‖2‖B‖2
2‖u‖2

3 + C‖r‖2. (6.6)

Finally, we notice that θt|∂Ω = 0. Applying the time derivative to the θ-equation of
(3.3) and taking the L2 inner product of the resulting equation with θt, we obtain

1
2
d

dt
‖θt(t)‖2 + κ‖∇θt‖2

= −((ut · ∇)θ, θt) + ((α1θB + 2νD)t :D, θt)

+ ((α1θB + 2νD) :Dt, θt) + (rt, θt)
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≤ C‖ut‖1/2‖∇ut‖1/2‖∇θ‖1/2‖θ‖1/2
2 ‖θt‖

+C‖∇θt‖1/2‖B‖2‖u‖1/2
2 ‖u‖1/2

3 ‖θt‖5/4‖∇θt‖1/4

+C‖∇θ‖1/2‖θ‖1/2
2 ‖u‖1/2

2 ‖u‖1/2
3 ‖Bt‖‖θt‖ + C‖∇ut‖‖u‖1/2

2 ‖u‖1/2
3 ‖θt‖

+C‖u‖3‖∇ut‖‖θt‖ + C‖∇θ‖1/2‖θ‖1/2
2 ‖B‖2‖∇ut‖‖θt‖ + ‖rt‖‖θt‖,

which by Poincaré’s inequality and (4.20) yield;

d

dt
‖θt(t)‖2 + C‖∇θt‖2

≤ C‖ut‖‖∇ut‖‖∇θ‖‖θ‖2 + C‖B‖4/3
2 ‖u‖2/3

2 ‖u‖2/3
3 ‖θt‖5/3‖∇θt‖1/3

+C‖∇θ‖‖θ‖2‖u‖2‖u‖3‖Bt‖2 + C‖∇ut‖‖u‖1/2
2 ‖u‖1/2

3 ‖θt‖
+C‖u‖3‖∇ut‖‖θt‖ + C‖∇θ‖1/2‖θ‖1/2

2 ‖B‖2‖∇ut‖‖θt‖ + C‖rt‖2. (6.7)

Putting together (6.6), (6.7), and (4.4), one obtains

d

dt
[‖∇θ(t)‖2 + ‖θt(t)‖2] + C‖∇θt‖2 + C‖�θ‖2

≤ C‖ut‖‖∇ut‖‖∇θ‖‖θ‖2 + C‖B‖4/3
2 ‖Au‖2/3‖u‖2/3

3 ‖θt‖5/3‖∇θt‖1/3

+C‖∇θ‖‖θ‖2‖Au‖‖u‖3‖Bt‖2 + C‖∇ut‖‖Au‖1/2‖u‖1/2
3 ‖θt‖

+C‖u‖3‖∇ut‖‖θt‖ + C‖∇θ‖1/2‖θ‖1/2
2 ‖B‖2‖∇ut‖‖θt‖

+C{‖∇u‖1/2‖Au‖3/2 + ‖∇u‖2‖∇θ‖}‖θ‖2

+C‖∇θ‖2‖B‖2
2‖u‖2

3 + C‖r‖2 + C‖rt‖2. (6.8)

Performing (6.2), (6.5), and (6.8), one obtains

d

dt
[‖B(t)‖2

2 + ‖Bt(t)‖2 + ‖ut(t)‖2 + ‖∇u(t)‖2 + ‖∇θ(t)‖2 + ‖θt(t)‖2]

+C‖∇ut‖2 + C‖Au‖2 + C‖∇θt‖2 + C‖�θ‖2

≤ C(‖u(t)‖3 + ‖∇ut‖ + ‖θt‖ + ‖θt‖‖∇θt‖ + ‖θ(t)‖2 + ‖θ(t)‖2
2

+ ‖∇θ‖2‖u‖2
3)(1 + ‖B(t)‖2

2)
5 + C(‖∇ut‖ + ‖θt‖ + ‖∇θ‖1/2‖θ‖1/2

2

+ ‖Au‖1/2‖u‖1/2
3 + ‖∇θ‖‖θ‖2‖Au‖‖u‖3 + ‖∇θ‖‖θ‖2)(1 + ‖Bt‖)2

+C‖u‖3‖∇ut‖‖θt‖ + C‖∇u‖2‖ut‖4 + C‖∇ut‖‖Au‖1/2‖u‖1/2
3 ‖θt‖

+C‖∇u‖6 + C‖B‖4/3
2 ‖Au‖2/3‖u‖2/3

3 ‖θt‖5/3‖∇θt‖1/3
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+C‖∇θ‖1/2‖θ‖1/2
2 ‖B‖2‖∇ut‖‖θt‖ + C(‖∇u‖1/2‖Au‖3/2 + ‖∇u‖2‖∇θ‖

+ ‖ut‖‖∇ut‖‖∇θ‖)‖θ‖2 + C‖b‖2 + C‖bt‖2 + C‖r‖2 + C‖rt‖2. (6.9)

In order to close the estimates in (6.9), it is manifested that one has to estimate
‖u‖3 and ‖θ‖2. First, from the u-equation of (3.3),

−ν∆u + grad p = −[ut + [u · ∇]u] + α1 div(θB) + b,

div u = 0,

u|∂Ω = 0.

Using the regularity result for the steady Stokes problem (see Lemma 4.1), we have

‖u‖3 ≤ C‖b‖1 + c‖div(θB)‖1 + C‖ut‖1 + C‖(u · ∇)u‖1

≤ C‖b‖1 + C‖θ‖2‖B‖2 + C‖∇ut‖ + C‖(u · ∇)u‖1.

But from Step 3 in Sec. 5 one has

‖[u · ∇]u‖1 ≤ C(‖∇u‖‖∂2u‖ + ‖∇u‖1/2‖∂2u‖3/2 + ‖∇u‖‖∂2u‖1/2‖u‖1/2
3 ),

which together with (4.4) and (4.20) yields

‖u‖3 ≤ C‖b‖1 + C‖∇ut‖ + C‖∇u‖2 + C‖∇u‖4

+C‖θ‖2‖B‖2 + C‖Au‖2. (6.10)

Now, projecting the u-equation of (3.3) on H , this becomes{
Au = −P [ut + [u · ∇]u] + α1P div(θB) + b,

u|∂Ω = 0.

We take the L2-norm on both sides of the former equation. Thus

‖Au‖ ≤ ‖P [ut + [u · ∇]u]‖ + α1‖P div(θB)‖ + ‖b‖
≤ ‖ut‖ + C‖∇u‖3/2‖∂2u‖1/2 + C‖∇θ‖1/2‖θ‖1/2

2 ‖B‖2 + ‖b‖,

which combined with (4.4) and (4.20) leads to

‖Au‖ ≤ ‖ut‖ + C‖∇u‖3 + C‖∇θ‖1/2‖θ‖1/2
2 ‖B‖2 + ‖b‖. (6.11)

We now turn to the estimate of ‖θ‖2. We first notice that θ satisfies{
−κ�θ = −θt − [u · ∇]θ + α1θB :D + 2νD :D + r in Ω,

θ|∂Ω = 0.
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Thus from the regularity result (Ref. 3, p. 181), one has

‖θ‖2 ≤ C‖θt‖ + C‖[u · ∇]θ‖ + C‖θD :B‖ + 2ν‖D :D‖ + C‖r‖
≤ C‖θt‖ + C‖∇u‖‖∇θ‖1/2‖θ‖1/2

2 + C‖∇θ‖1/2‖θ‖1/2
2 ‖∇u‖‖B‖2

+C‖∇u‖3/2
1 ‖∇u‖1/2 + C‖r‖.

By (4.20) and (4.4), we then find that

‖θ‖2 ≤ C‖θt‖ + C‖∇u‖2‖∇θ‖ + C‖∇θ‖‖∇u‖2‖B‖2
2

+C‖Au‖3/2‖∇u‖1/2 + C‖r‖. (6.12)

Returning to (6.11) with (6.12), and (4.20), we obtain

‖Au‖ ≤ ‖ut‖ + C‖∇u‖3 + C‖∇θ‖2‖B‖4
2‖∇u‖ + ‖b‖

+C‖θt‖1/2‖∇θ‖1/2‖B‖2 + C‖∇u‖‖∇θ‖‖B‖2

+C‖∇θ‖‖∇u‖‖B‖2
2 + ‖r‖1/2‖∇θ‖1/2‖B‖2. (6.13)

Therefore (6.12) and (6.10) become respectively

‖θ‖2 ≤ C‖θt‖ + C‖∇u‖2‖∇θ‖ + C‖∇θ‖‖∇u‖2‖B‖2
2 + C‖∇u‖5

+C‖∇u‖1/2‖ut‖3/2 + C‖∇θ‖3‖B‖6
2‖∇u‖2 + C‖∇u‖1/2‖b‖3/2

+C‖∇u‖1/2‖θt‖3/4‖∇θ‖3/4‖B‖3/4
2 + ‖∇u‖2‖∇θ‖3/2‖B‖3/2

2

+C‖∇θ‖3/2‖∇u‖2‖B‖3
2 + C‖r‖3/4‖∇u‖1/2‖∇θ‖3/4‖B‖3/2

2 + C‖r‖ (6.14)

and

‖u‖3 ≤ C‖b‖1 + C‖∇ut‖ + C‖∇u‖2 + C‖∇u‖4

+C{‖θt‖ + ‖∇u‖2‖∇θ‖ + C‖∇θ‖‖∇u‖2‖B‖2
2 + C‖∇u‖5}‖B‖2

+C{‖∇u‖1/2‖ut‖3/2 + c‖∇θ‖3‖B‖6
2‖∇u‖2 + C‖∇u‖1/2‖b‖3/2}‖B‖2

+C{‖∇u‖1/2‖θt‖3/4‖∇θ‖3/4‖B‖3/4
2 + ‖∇u‖2‖∇θ‖3/2‖B‖3/2

2 }‖B‖2

+C{‖∇θ‖3/2‖∇u‖2‖B‖3
2 + ‖r‖3/4‖∇u‖1/2‖∇θ‖3/4‖B‖3/2

2 + ‖r‖}‖B‖2

+C{‖ut‖2 + ‖∇u‖6 + ‖∇θ‖4‖B‖8
2‖∇u‖2}

+C{‖θt‖‖∇θ‖‖B‖2
2 + ‖∇u‖2‖∇θ‖2‖B‖2

2}
+C{‖∇θ‖2‖∇u‖2‖B‖4

2 + ‖∇θ‖2‖B‖4
2} + C‖b‖2 + C‖r‖2. (6.15)
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Returning to (6.9) with (6.14) and (6.15), we obtain

Xt + C‖∇ut‖2 + C‖Au‖2 + C‖∇θt‖2 + C‖∆θ‖2

≤ C{X2 +X3 +X4 + · · · +X32} + F, (6.16)

where

X(t) = 1 + ‖B(t)‖2
2 + ‖Bt(t)‖2 + ‖∇u(t)‖2 + ‖ut(t)‖2

+ ‖∇θ(t)‖2 + ‖θt(t)‖2, (6.17)

F = F (‖rt‖, ‖r‖, ‖bt‖, ‖b‖1).

Since θ ∈ H2(Ω) ∩H1
0 (Ω), then there is a positive constant C, such that C‖∇θ‖ ≤

‖�θ‖. But ‖∇u‖ ≤ ‖Au‖ since ‖Au‖ and ‖u‖2 are equivalent (see (4.4)). Next,
since θt|∂Ω = 0, Poincaré’s inequality ensures that ‖θt(t)‖ ≤ C‖∇θt(t)‖. Now,
adding and subtracting ‖B(t)‖2

2 + ‖Bt(t)‖2 from (6.16), and taking into account
the facts just mentioned, one obtains

Xt + C1X ≤ C2{X2 +X3 +X4 + · · · +X32} + C + F︸ ︷︷ ︸
G

. (6.18)

Step 2. Application of the differential inequality (6.18)
First, one observes that for the local existence (see Theorem 5.1), the lifetime of the
solution T0 depends ‖Au0‖, ‖B0‖2 and ‖θ0‖1, when b and r satisfies the conditions
listed in Theorem 5.1.

We now recall one of the fundamental tools in getting global existence.

Lemma 6.1. (Ref. 9) Let f be a non-negative, absolutely continuous function sat-
isfying the inequality

f ′ + kf ≤ α(f2 + f3 + · · · + f2m) + β,

where m ≥ 2, k > 0, α > 0 and β ≥ 0 are some constants. Let M, 0 < M < M0 is
the unique positive solution of

M2m−1 + · · · +M3 +M2 +M − k

2α
= 0.

If f(0) ≤M and β ≤ k
2M, then f(t) is bounded by M for all t > 0.

From (6.2)–(6.5) and (6.8), one readily checks that the real-valued function
t 	→ X given by (6.18)1 is absolutely continuous on [0, T0].

Next, since X(t) is the solution of the differential inequality (6.18), one has

X(0) = ‖B0‖2
2 + ‖Bt(0)‖2 + ‖∇u0‖2 + ‖ut(0)‖2 + ‖∇θ0‖2 + ‖θt(0)‖2.

But from (3.3), we can deduce that

‖ut(0)‖ ≤ ‖[u0 · ∇]u0‖ + ν‖�u0‖ + α1‖div (θ0B0)‖ + ‖b(0)‖
≤ C‖u0‖2

2 + C‖u0‖2 + C‖θ0‖2‖B0‖2 + ‖b(0)‖,
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‖Bt(0)‖ ≤ ‖[u0 · ∇]B0‖ + ‖[∇u0]B0‖ + C

∥∥∥∥ θ0

trB−1
0

∥∥∥∥+ ‖θ0B0‖

≤ C‖u0‖1‖B0‖2 + ‖u0‖2‖B0‖2 + C‖θ0‖ + C‖θ0‖1‖B0‖1,

‖θt(0)‖ ≤ ‖(u0 · ∇)θ0‖ + κ‖�θ0‖ + C‖θ0B0 :∇u0‖ + C‖∇u0 :∇u0‖ + ‖r(0)‖
≤ C‖u0‖1‖θ0‖2 + C‖θ0‖2 + C‖θ0‖2‖B0‖2‖∇u0‖ + C‖u0‖2

2 + ‖r(0)‖,
which shows that X(0) is bounded.

From (6.18), (6.18) and Lemma 6.1, there exists a positive constant M0, such
that if X(0) ≤ M < M0, and G ≤ C1M/2, then X(t) ≤ M for all t > 0 as soon
as u(t), θ(t) and B(t) satisfy the regularity listed in Theorem 5.1. From (6.13)–
(6.15) and the definition of X , we then deduce that ‖Au(t)‖, ‖B(t)‖2, ‖θ(t)‖2 are
uniformly bounded on the maximal interval of existence of (u, p,B, θ). Thus the
local solution constructed in Theorem 5.1 can be extended for all positive time.
This completes the proof of Theorem 6.1.
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