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Abstract

Entanglement criteria for general (pure or mixed) states of systems consisting of two identical

fermions are introduced. These criteria are based on appropriate inequalities involving the entropy

of the global density matrix describing the total system, on the one hand, and the entropy of the

one-particle reduced density matrix, on the other hand. A majorization-related relation between

these two density matrices is obtained, leading to a family of entanglement criteria based on Rényi’s

entropic measure. These criteria are applied to various illustrative examples of parametrized fam-

ilies of mixed states. The dependence of the entanglement detection efficiency on Rényi’s entropic

parameter is investigated. The extension of these criteria to systems of N identical fermions is also

considered.
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I. INTRODUCTION

The entanglement features exhibited by systems consisting of identical fermions have

attracted the attention of several researchers in recent years [1–17]. Entanglement in fermion

systems has been studied in connection with different problems, such as the entanglement

between electrons in a conduction band [9], the entanglement dynamics associated with

scattering processes involving two electrons [10], the role played by entanglement in the

time-optimal evolution of fermionic systems [11, 12], the classification of three-fermion states

based on their entanglement features [13], the detection of entanglement in fermion systems

through the violation of appropriate uncertainty relations [14], the entanglement features of

fractional quantum Hall liquids [15] and the entanglement properties of the eigenstates of

soluble two-electrons atomic models [16].

The concept of entanglement in systems of indistinguishable particles exhibits some dif-

ferences from the corresponding concept as applied to systems consisting of distinguishable

parts. There is general consensus among researchers that in systems of identical fermions the

minimum quantum correlations between the particles that are required by the antisymmet-

ric character of the fermionic state do not contribute to the state’s amount of entanglement

[1–17]. This means that the separable (that is, non-entangled) pure states of N fermions are

those having Slater rank 1. These are the states whose wave function can be expressed (with

respect to an appropriate single-particle basis) as a single Slater determinant [3]. On the

other hand, the set of mixed non-entangled states comprises those states that can be written

as a statistical mixture of pure states of Slater rank 1. Here, when discussing systems of

identical fermions, we are considering entanglement between particles and not entanglement

between modes.

The problem of determining whether a given quantum state ρ is separable or entangled

is known as “the separability problem”. It constitutes one of the most fundamental prob-

lems in the theory of quantum entanglement and is the subject of a sustained and intense

research activity (see [18–25] and references therein). As clearly stated in a comprehensive

recent review article on entanglement; “The fundamental question in quantum entanglement

theory is which states are entangled and which are not” [20]. Besides its intrinsic interest,

the development of separability criteria also leads to useful quantitative entanglement indi-

cators: the degree to which a separability criterion is violated constitutes in itself a valuable
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quantitative indicator of entanglement. For instance, the well-known negativity measure of

entanglement (which is one of the most used practical measures of entanglement for mixed

states of systems with distinguishable subsystems) is based upon the celebrated Peres’ sep-

arability criterion [20]. Another interesting recent example of separability criteria leading to

quantitative indicators of entanglement concerns separability criteria based upon the viola-

tion of appropriate local uncertainty relations. In fact, it has been shown that the amount

of violation of these uncertainty relations provide useful lower bounds for the concurrence,

which constitutes a quantitative measure of entanglement [26, 27]

In the case of pure states of two identical fermions, necessary and sufficient separability

criteria can be formulated in terms of the entropy of the single-particle reduced density

matrix [4, 8, 17]. Alas, no such criteria are known for general, mixed states of two fermions,

except for the case of two fermions with a single-particle Hilbert space of dimension

four, for which a closed analytical expression for the concurrence (akin to the celebrated

Wootters’ formula for two qubits [28]) is known. In general, to determine whether a given

density matrix of a two-fermion system represents a separable state or not is a notoriously

difficult (and largely unexplored) problem. Consequently, there is a clear need for practical

separability criteria, or entanglement indicators, which can be extended to systems of

higher dimensionality or to scenarios involving more than two fermions [17].

Entropic separability criteria have played a distinguished role in the study of the

entanglement-related features of mixed states of multipartite systems constituted by distin-

guishable subsystems [18–24]. For this kind of composite quantum system, non-entangled

states behave classically in the sense that the entropy of a subsystem is always less or equal

than the entropy of the whole system. If the entropy of a subsystem happens to be larger

than the entropy of the whole system, then we know for sure that the state is entangled (that

is, this constitutes a sufficient entanglement criterion). This statement can be formulated

mathematically in terms of the Rényi entropic measures,

S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]), (1)

leading to the following family of inequalities satisfied by separable states [18–24],

3



S(R)
q [ρA] ≤ S(R)

q [ρAB]

S(R)
q [ρB] ≤ S(R)

q [ρAB]. (2)

In the above equations ρAB is the joint density matrix describing a bipartite system consisting

of the subsystems A and B, and ρA,B are the marginal density matrices describing the

subsystems. The entropic parameter in (1-2) adopts values q ≥ 1. In the limit q → 1

the Rényi entropy reduces to the von Neumann entropy. Note that the entropic criteria

considered in [18–24] and in the present work, which depend on the entropies of the total

and reduced density matrices, are different from those studied in [25], which involve entropic

uncertainty relations associated with the measurement of particular observables.

The study of entropic entanglement criteria based upon the above considerations has

been the focus of a considerable amount of research over the years [18–24]. It would be

interesting to extend this approach to systems consisting of identical fermions. The aim

of this paper is to investigate entanglement criteria for general (mixed) states of systems

of two identical fermions based upon the comparison of the entropy of the global density

matrix describing the total system and the entropy of the one-particle reduced density

matrix.

The organization of the paper is as follows. A brief review of entanglement between

particles in systems of identical fermions is given in Section II. Entropic entanglement criteria

for systems of two identical fermions based on the von Neumann, the linear, and the Rényi

entropies are derived in Section III. These entropic criteria are applied to particular families

of states of two-fermion systems in Sections IV and V. The extension to systems of N

fermions of the entanglement criteria based upon the Rényi entropies is considered in Section

VI. Finally, some conclusions are drawn in Section VII.

II. ENTANGLEMENT BETWEEN PARTICLES IN FERMIONIC SYSTEMS

The concept of entanglement between the particles in a system of identical fermions is

associated with the quantum correlations exhibited by quantum states on top of the minimal

correlations due to the indistinguishability of the particles and the antisymmetric character
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of fermionic states. A pure state of Slater rank one of N identical fermions (that is, a

state that can be described by one single Slater determinant) must be regarded as separable

(non-entangled) [2, 3]. The correlations exhibited by such states do not provide a resource

for implementing non-classical information transmission or information processing tasks.

Moreover, the non-entangled character of states of Slater rank one is consistent with the

possibility of assigning complete sets of properties to the parts of the composite system [4].

Consequently, a pure state of two identical fermions of the form

|ψsl〉 =
1√
2
{|φ1〉|φ2〉 − |φ2〉|φ1〉}, (3)

where |φ1〉 and |φ2〉 are orthonormal single-particle states, is regarded as separable.

A pure state |ψ〉 of a system of N identical fermions has Slater rank 1, and is therefore

separable, if and only if

Tr(ρ2
1) =

1

N
, (4)

where ρ1 = Tr2,...,N(ρ) is the single-particle reduced density matrix, ρ = |ψ〉〈ψ|, n is the

dimension of the single-particle state space and N ≤ n [17]. On the other hand, entangled

pure states satisfy

1

n
≤ Tr(ρ2

1) <
1

N
. (5)

Non-entangled mixed states of systems of N identical fermions are those that can be

written as a mixture of Slater determinants,

ρsl =
∑

i

λi|ψ(i)
sl 〉〈ψ

(i)
sl |, (6)

where the states |ψ(i)
sl 〉 can be expressed as single Slater determinants, and 0 ≤ λi ≤ 1 with∑

i λi = 1.

Systems of identical fermions with a single-particle Hilbert space of dimension 2k (with

k ≥ 2) can be formally regarded as systems consisting of spin-s particles, with s = (2k−1)/2.

The members {|i〉, i = 1, . . . , 2k} of an orthonormal basis of the single-particle Hilbert

space can be identified with the states |s,ms〉, with ms = s − i + 1, i = 1, . . . , 2k.

We can use for these states the shorthand notation {|ms〉, ms = −s, . . . , s}, because
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each particular example discussed here will correspond to a given value of k (and s).

According to this angular momentum representation, the antisymmetric joint eigenstates

{|j,m〉, −j ≤ m ≤ j, 0 ≤ j ≤ 2s} of the total angular momentum operators J2 and Jz

constitute a basis for the Hilbert space associated with a system of two identical fermions.

The antisymmetric states |j,m〉 are those with an even value of the quantum number j.

A closed analytical expression for the concurrence of general (pure or mixed) states of two

identical fermions sharing a single-particle Hilbert space of dimension four (corresponding

to s = 3/2) was discovered by Eckert, Schliemann, Bruss, and Lewenstein (ESBL) in [2].

The ESBL concurrence formula is

CF(ρ) = max{0, λ1 − λ2 − λ3 − λ4 − λ5 − λ6}, (7)

where the λi’s are the square roots of the eigenvalues of ρρ̃ in descending order of magnitude.

Here ρ̃ = DρD−1, with the operator D given by

D =



0 0 0 0 1 0

0 0 0 −1 0 0

0 0 1 0 0 0

0 −1 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 1


K, (8)

where K stands for the complex conjugation operator and (8) is written with respect to the

total angular momentum basis, ordered as |2, 2〉, |2, 1〉, |2, 0〉, |2, -1〉, |2, -2〉 and i|0, 0〉.

In what follows we are going to consider systems comprising a given, fixed number of

identical fermions. Therefore, we are going to work within the first quantization formalism.

III. ENTROPIC ENTANGLEMENT CRITERIA FOR SYSTEMS OF TWO IDEN-

TICAL FERMIONS

In this Section we are going to derive the main results of the present paper. We shall

advance new entropic criteria for mixed states of systems constituted by identical fermions.

In Subsection A we derive entropic criteria for mixed states of two fermions (based on
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inequality (10)) and N fermions (based on inequality (12)) formulated in terms of the von

Neumann entropy, and an entropic criterion for two fermions based upon the linear entropy.

In Subsection B we introduce a full family of entropic criteria based on the Rényi entropy.

A. Entanglement Criteria Based on the von Neumann and the Linear Entropies

Let ρ be a density matrix describing a quantum state of two identical fermions and ρr be

the corresponding single-particle reduced density matrix, obtained by computing the partial

trace over one of the two particles.

If ρ = |ψsl〉〈ψsl|, where |ψsl〉 represents a separable pure state of the form (3), and

SvN[ρ] = −Tr(ρ ln ρ) (9)

is the von Neumann entropy of ρ, we have that SvN[ρ] = 0 and SvN[ρr] = ln 2. That is, for

separable pure states we have SvN[ρ]− SvN[ρr] = − ln 2. It then follows from the concavity

property of the quantum conditional entropy [29] that, for a separable mixed state ρ of the

form (6), SvN[ρ]− SvN[ρr] ≥ − ln 2. Consequently, all separable states (pure or mixed) of a

system of two identical fermions satisfy the inequality

SvN[ρr] ≤ SvN[ρ] + ln 2. (10)

Hence, if the quantity

DvN = SvN[ρr]− SvN[ρ]− ln 2 (11)

is positive the state ρ is necessarily entangled. Indeed, in the particular case of pure states

this quantity has been used as a measure of entanglement in some applications (see, for

instance, [15] and references therein).

The argument leading to inequality (10) can be extended to the more general case of

systems of N identical fermions. A separable pure state ρ = |ψsl〉〈ψsl| of N identical fermions

(that is, a pure state expressible as a single Slater determinant) satisfies SvN[ρ] = 0 and

SvN[ρr] = lnN . Therefore, for this kind of state we have SvN[ρ] − SvN[ρr] = − lnN . The

concavity property of the quantum conditional entropy then implies that for a mixed state

ρ of N fermions having the form (6) we have SvN[ρ] − SvN[ρr] ≥ − lnN . Consequently, a
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separable state of N fermions (that is, a state that can be written as a statistical mixture

of pure states each having the form of single Slater determinant) satisfies the inequality

SvN[ρr] ≤ SvN[ρ] + lnN. (12)

Consequently, a state of N fermions violating inequality (12) is necessarily entangled. In the

case of pure states of N fermions this entanglement criteria reduces to one of the entangle-

ment criteria previously discussed in [17]. The special case of this criterion corresponding

to pure states of two fermions was first analyzed in [4]. That is, our present result (12) con-

stitutes a generalization to arbitrary mixed states of an inequality that has been previously

known and shown to be useful for the study of fermionic entanglement in the special case

of pure states. When deriving the inequalities (10) and (12) we have used the concavity

of the quantum conditional entropy. This property is usually discussed in connection with

composite systems comprising distinguishable subsystems. However, within the first quanti-

zation formalism, any density matrix of two identical fermions has mathematically also the

form of a density matrix describing distinguishable subsystems (in fact, it is just a density

matrix that happens to be expressible as a statistical mixture of antisymmetric pure states).

Consequently, any mathematical property that is satisfied by general density matrices de-

scribing distinguishable subsystems is also satisfied by the special subset of density matrices

that can describe a system of identical fermions.

An entanglement criterion for states of two fermions similar to the one already discussed

can be formulated in terms of the linear entropy,

SL[ρ] = 1− Tr(ρ2). (13)

Given a quantum state ρ of two fermions, let’s consider the quantity

c[ρ] = inf
∑

i

pic[|φi〉], (14)

where c[|φi〉] =

√
2
[
1− Tr[(ρ

(i)
r )2]

]
, ρ

(i)
r is the one-particle reduced density matrix corre-

sponding to |φi〉, ρ =
∑

i pi|φi〉〈φi|, and the infimum is taken over all the possible decompo-

sitions of ρ as a statistical mixture {pi, |φi〉} of pure states (note that c[ρ] adopts values in

the range [0,
√

2]). The quantity defined in (14) satisfies the inequality [30]
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c[ρ]2 ≥ 2
[
Tr(ρ2)− Tr

(
ρ2

r

)]
. (15)

If ρ corresponds to a separable state of the two fermions, we have that ρ =
∑

i pi|ψ(i)
sep〉〈ψ(i)

sep|

with c[|ψ(i)
sep〉] = 1 for all i. Therefore, for a separable state we have c[ρ] ≤ 1 and, from

(15), 1 ≥ (c [ρ])2 ≥ 2 [Tr(ρ2)− Tr (ρ2
r)]. Consequently, separable states (pure or mixed) of a

system of two identical fermions comply with the inequality,

SL[ρr] ≤ SL[ρ] +
1

2
. (16)

In other words, states for which the quantity

DL = SL[ρr]− SL[ρ]− 1

2
(17)

is positive are necessarily entangled. In the particular case of pure states of two identical

fermions, the positivity of (17) becomes both a necessary and sufficient entanglement

criterion ([17] and references therein). Moreover, a quantity basically equal to (17) has

been proposed as an entanglement measure for pure states of two fermions and indeed

constitutes one of the most useful entanglement measures for these states [10].

B. Entropic Entanglement Criteria Based on the Rényi Entropies

On the basis of the Rényi family of entropies we are going to derive now a generalization

of the separability criterion associated with inequality (10). We are going to prove that

a (possibly mixed) quantum state ρ of a system of two identical fermions satisfying the

inequality

S(R)
q [ρ] + ln 2 < S(R)

q [ρr], (18)

for some q ≥ 1, is necessarily entangled. Here S
(R)
q stands for the Rényi entropy,

S(R)
q [ρ] =

1

1− q
ln(Tr[ρq]). (19)
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The inequality (18) leads to an entropic entanglement criterion that detects entanglement

whenever the quantity

Rq = S(R)
q [ρr]− S(R)

q [ρ]− ln 2 (20)

is strictly positive. In the limit q → 1 the Rényi measure reduces to the von Neumann

entropy and we recover the entanglement criterion given by inequality (10). When q → ∞

the Rényi entropy becomes

S(R)
∞ [ρ] = − ln (λmax.) , (21)

where λmax. is the largest eigenvalue of ρ. In this limit case, the entropic criterion says that

any state satisfying

2λ(ρr)
max. < λ(ρ)

max. (22)

is entangled, where λ
(ρ)
max. and λ

(ρr)
max. are, respectively, the largest eigenvalues of ρ and ρr.

C. Proof of the Entropic Criteria Based on the Rényi Entropies

The following proof is based on the powerful techniques related to the majorization con-

cept [31, 32] that were introduced to the field of quantum entanglement by Nielsen and

Kempe in [31]. These authors proved that non-entangled states of quantum systems having

distinguishable subsystems are such that the total density matrix is always majorized by the

marginal density matrix associated with one of the subsystems. In the case of non-entangled

states of a system of identical fermions the total density matrix ρ is not necessarily majorized

by the one-particle reduced density matrix ρr. However, as we are going to prove, there is

still a definite majorization-related relation between ρ and ρr that yields a family of inequal-

ities between the Rényi entropies of these two matrices, which leads in turn to a family of

entropic entanglement criteria.

In our proof of the entropic criterion associated with the inequality (18) we are going to use

the following fundamental property of quantum statistical mixtures. If ρ =
∑

i pi|ai〉〈ai| =∑
j qj|bj〉〈bj| are two statistical mixtures representing the same density matrix ρ, then there

exists a unitary matrix {Uij} such that [31, 33]

√
pi|ai〉 =

∑
j

Uij
√
qj|bj〉. (23)

10



Let us now consider a separable state of two identical fermions,

ρ =
∑

j

pj

2
(|ψ(j)

1 〉|ψ(j)
2 〉 − |ψ(j)

2 〉|ψ(j)
1 〉)(〈ψ(j)

1 |〈ψ(j)
2 | − 〈ψ(j)

2 |〈ψ(j)
1 |) (24)

where 0 ≤ pj ≤ 1,
∑

j pj = 1 and |ψ(j)
1 〉, |ψ(j)

2 〉 are normalized single-particle states with

〈ψ(j)
1 |ψ(j)

2 〉 = 0. Equation (24) represents the standard definition of a non-entangled mixed

state of two identical fermions. Notice that in (24) no special relation between states |ψ(j)
i 〉

with different values of the label j is assumed. In particular, the overlap between two states

with different labels j is not necessarily equal to 0 or 1. This, in turn, means that the

overlap between two different members of the family of (separable) two-fermion pure states

participating in the statistical mixture leading to (24) may be non-zero.

Let us consider now a spectral representation

ρ =
∑

k

λk|ek〉〈ek| (25)

of ρ. That is, the |ek〉 constitute an orthonormal basis of eigenvectors of ρ and the λk are

the corresponding eigenvalues. Then, (24) and (25) are two different representations of ρ as

a mixture of pure states. Therefore, there is a unitary matrix U with matrix elements {Ukj}

such that

√
λk|ek〉 =

∑
j

Ukj

√
pj

2
(|ψ(j)

1 〉|ψ(j)
2 〉 − |ψ(j)

2 〉|ψ(j)
1 〉). (26)

The single-particle reduced density matrix corresponding to the two-fermion density matrix

(24) is

ρr =
∑

j

pj

2
(|ψ(j)

1 〉〈ψ(j)
1 |+ |ψ(j)

2 〉〈ψ(j)
2 |), (27)

admitting a spectral representation

ρr =
∑

l

αl|fl〉〈fl|. (28)

We now define,
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q2j = q2j−1 =
1

2
pj (j = 1, 2, 3, . . .) (29)

|φ2j−1〉 = |ψ(j)
1 〉

|φ2j〉 = |ψ(j)
2 〉 (j = 1, 2, 3, . . .). (30)

Now, since (27) and (28) correspond to two statistical mixtures yielding the same density

matrix, there must exist a unitary matrix W with matrix elements {Wil} such that,

√
qi|φi〉 =

∑
l

Wil

√
αl|fl〉 (i = 1, 2, 3, . . .). (31)

Now, eq.(26) can be rewritten as

√
λk|ek〉 =

∑
j

Ukj

(√
q2j−1|φ2j−1〉|φ2j〉 −

√
q2j|φ2j〉|φ2j−1〉

)
. (32)

Combining (31) and (32) gives

√
λk|ek〉 =

∑
l

[∑
j

Ukj

(
W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉

)]√
αl|fl〉. (33)

Therefore, since 〈ek|ek′〉 = δkk′ and 〈fl|fl′〉 = δll′ , we have that

λk =
∑

l

Mklαl, (34)

where

Mkl =

(∑
j′

U∗kj′

{
W ∗

2j′−1,l〈φ2j′| −W ∗
2j′,l〈φ2j′−1|

})(∑
j′′

Ukj′′ {W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉}

)
.

(35)

We now investigate the properties of the matrix M with matrix elements {Mkl}. First of

all, we have

Mkl ≥ 0, (36)

since the matrix elements of M are of the form Mkl = 〈Σ|Σ〉, with
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|Σ〉 =
∑

j

Ukj (W2j−1,l|φ2j〉 −W2j,l|φ2j−1〉) . (37)

We now consider the sum of the elements within a given row or column of M . The sum of

a row yields,

∑
k

Mkl =
∑
j′j′′

δj′j′′
(
W ∗

2j′−1,l〈φ2j′| −W ∗
2j′,l〈φ2j′−1|

)(
W2j′′−1,l|φ2j′′〉 −W2j′′,l|φ2j′′−1〉

)
=
∑

j

(
W ∗

2j−1,lW2j−1,l +W ∗
2j,lW2j,l

)
=
∑

i

(
W †)

li
Wil = 1, (38)

while the sum of a column is,

∑
l

Mkl =
∑
j′j′′

U∗kj′Ukj′′

(
〈φ2j′|φ2j′′〉

[∑
l

W ∗
2j′−1,lW2j′′−1,l

]
+ 〈φ2j′−1|φ2j′′−1〉

[∑
l

W ∗
2j′,lW2j′′,l

]

−〈φ2j′|φ2j′′−1〉

[∑
l

W ∗
2j′−1,lW2j′′,l

]
− 〈φ2j′−1|φ2j′′〉

[∑
l

W ∗
2j′,lW2j′′−1,l

])
=
∑
j′j′′

U∗kj′Ukj′′ (〈φ2j′|φ2j′′〉δj′j′′ + 〈φ2j′−1|φ2j′′−1〉δj′j′′)

= 2
∑

j

(
U †
)

jk
Ukj = 2. (39)

When deriving the above two equations we made use of the unitarity of the matrices {Ukj}

and {Wil}. Summing up, we have,

∑
k

Mkl = 1∑
l

Mkl = 2. (40)

We now define a new set of variables {λ′n} and a new matrix M ′ with elements M ′
nl, respec-

tively given by,

λ′2k−1 = λ′2k =
1

2
λk (k = 1, 2, 3, . . .) (41)

M ′
2k−1,l = M ′

2k,l =
1

2
Mkl (k = 1, 2, 3, . . .), (42)
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and so we have

λ′n =
∑

l

M ′
nlαl. (43)

By construction, then, we have

{λk} = {λ1, λ2, λ3, . . .}

{λ′n} =

{
λ1

2
,
λ1

2
,
λ2

2
,
λ2

2
,
λ3

2
,
λ3

2
, . . .

}
. (44)

Let us now compare the matrices {Mkl} and {M ′
nl}. The matrix {M ′

nl} has twice as many

rows as {Mkl}, but the rows of {M ′
nl} can be grouped in pairs of consecutive rows such that

within each pair the rows are equal to 1/2 a row of {Mkl}. It follows that

∑
k

Mkl = 1 =⇒
∑

n

M ′
nl = 1∑

l

Mkl = 2 =⇒
∑

l

M ′
nl = 1. (45)

Thus,

∑
n

M ′
nl =

∑
l

M ′
nl = 1 (46)

and, therefore, {M ′
nl} is a doubly stochastic matrix. Interpreting the λ′n’s and the αl’s as

probabilities, it follows from (43) and (46) that the probability distribution {λ′n} is more

“mixed” than the probability distribution {αl} [29] (or, alternatively that {αl} majorizes

{λ′n} [31]). This, in turn, implies that for any Rényi entropy S
(R)
q with q ≥ 1, we have

S(R)
q [λ′n] ≥ S(R)

q [αl]. (47)

Thus,

S(R)
q [λ′n] =

1

1− q
ln

(
2
∑

k

(
λk

2

)q
)

= ln 2 + S(R)
q [λk]. (48)

Therefore, all separable states of the two-fermion system comply with the inequality

S
(R)
q [λk]+ln 2 ≥ S

(R)
q [αl] and since {λk} and {αl} are the eigenvalues of ρ and ρr respectively,
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S(R)
q [ρ] + ln 2 ≥ S(R)

q [ρr]. (49)

The above inequality leads to an entanglement criterion that detects entanglement when the

indicator Rq defined in equation (19) is strictly positive.

D. Connection with a Quantitative Measure of Entanglement

As already mentioned in the Introduction, the development of separability criteria often

leads to useful entanglement indicators. In particular, when the separability criterion takes

the form of an inequality, such that entanglement is detected when the inequality is not

verified, the degree of violation of the inequality constitutes an entanglement indicator. In

the case of the entropic indicators advanced in the present work, it is indeed a reasonable

expectation that states with larger values of the indicators DvN and Rq tend to be more

entangled. In the next Section we shall illustrate this behaviour in the case of two-fermion

systems with a single-particle Hilbert space of dimension four, where the exact amount of

entanglement can be evaluated analytically.

Now we shall discuss two general aspects of the connection between the abovementioned

entanglement indicators and a quantitative measure of entanglement. First of all, it is

worth emphasizing that in the case of pure states, the indicators DvN and DL themselves

coincide (up to unessential multiplicative constants) with useful quantitative measures of

entanglement for fermion systems that have already been applied to the study of fermionic

entanglement. In particular, let us focus on the indicatorDvN of a two-fermion system, which

is based on the von Neumann entropies of the total and single-particle density matrices, ρ

and ρr. For a pure state |Φ〉 of the two-fermion system we have ρ = |Φ〉〈Φ| and SvN[ρ] = 0.

Consequently, in this case we have DvN = SvN[ρr]− ln2. As already mentioned, this quantity

constitutes a quantitative entanglement measure for pure states,

ε[|Φ〉] = SvN[ρr]− ln2. (50)

The extension of this quantitative entanglement measure to mixed two-fermion states ρ is

obtained via the standard convex roof construction,
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ε[ρ] = inf
∑

i

pi ε[|Φi〉], (51)

where the infimum is taken over all the possible mixtures {pi, |Φi〉} of pure states |Φi〉

(with weights pi, 0 ≤ pi ≤ 1,
∑

i pi = 1) generating the mixed state under consideration,

ρ =
∑

i pi|Φi〉〈Φi|. Now, given a particular decomposition ρ =
∑

i pi|Φi〉〈Φi| of the two-

fermion state ρ, let ρ(i) = |Φi〉〈Φi| be the total density matrix corresponding to the pure state

|Φi〉 and ρ
(i)
r be the corresponding single-particle reduced density matrix. Then, using the

concavity property of the quantum conditional entropy (see Subsection III.A) one obtains,

DvN[ρ] = SvN[ρr]− SvN[ρ]− ln2

≤
∑

i

pi

[
SvN[ρ(i)

r ]− SvN[ρ(i)]− ln2
]

(52)

which implies that

DvN[ρ] ≤ inf
∑

i

pi

[
SvN[ρ(i)

r ]− SvN[ρ(i)]− ln2
]

= ε[ρ], (53)

which leads to an inequality directly linking the entropic indicator DvN[ρ] with the quanti-

tative entanglement measure ε[ρ],

ε[ρ] ≥ DvN[ρ]. (54)

Summing up, the entropic indicator DvN[ρ] provides a lower bound for the quantitative

entanglement measure ε[ρ]. In the case of pure states of a systems of two fermions this lower

bound is saturated and the inequality (54) becomes an equality.

IV. TWO-FERMION SYSTEMS WITH A SINGLE-PARTICLE HILBERT SPACE

OF DIMENSION FOUR

In this and the next Sections we are going to illustrate our entanglement criteria by

recourse to examples of fermion systems with a single-particle Hilbert space of low dimen-

sionality. In this Section we are going to focus on systems of two fermions with a single-

particle Hilbert space of dimension four. This case is of considerable relevance both from

the conceptual and the practical points of view, and has been the subject of various recent

research efforts [2, 8, 14]. It is the fermionic system of lowest dimensionality admitting the
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phenomenon of entanglement and it has profound physical and mathematical relationships

with the celebrated two-qubits system of paramount importance in quantum information

science [2]. It is worth mentioning that, in spite of its low dimensionality, this system is

of considerable complexity, its generic (mixed) state depending on 35 (real) parameters.

This system can be realized when one has spin-1
2

particles confined by an external potential

well such that, within the range of energies available in the experimental setting, there are

only two relevant eigenfunctions, Ψa(x) and Ψb(x) [2] corresponding, for instance, to the

ground and first excited states of the confining potential. In such a scenario, the relevant

single-particle Hilbert space is spanned by the single-particle states |Ψa,+〉, |Ψa,−〉, |Ψb,+〉,

|Ψb,−〉 (here we use standard, self-explanatory notation, the ± signs corresponding to the

spin degree of freedom).

Now we are going to apply our above-derived entropic entanglement criteria to some

parametrized families of states of two fermions with a single-particle Hilbert space of dimen-

sion four. In this case there is an exact, analytical expression for the state’s concurrence. It

is then possible to compare the range of parameters for which entanglement is detected by

the criteria with the exact range of parameters for which the states under consideration are

entangled. As mentioned in Section II, in this case the two-fermion states can be formally

mapped onto the states of two s = 2
3

spins. The antisymmetric eigenstates |j,m〉 of the

total angular momentum operators J2 and Jz constitute then a basis of the system’s Hilbert

space. These states are |0, 0〉, |2,−2〉, |2,−1〉, |2, 0〉, |2, 1〉 and |2, 2〉.

A. Werner-Like States

First we are going to consider a family of states consisting of a mixture of the maximally

entangled state |0, 0〉 and a totally mixed state. These states are of the form,

ρW = p|0, 0〉〈0, 0|+ 1− p

6
I (55)

where 0 ≤ p ≤ 1, and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m| (56)

is the identity operator acting on the six-dimensional Hilbert space corresponding to the
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two-fermion system. Evaluation of the concurrence shows that these states are entangled

when p > 0.4. For these states we have,

DvN[ρW ] = ln 2 +
5

6
(1− p) ln

(
1− p

6

)
+

1

6
(1 + 5p) ln

(
1

6
(1 + 5p)

)
DL[ρW ] = − 7

12
+

5p2

6

R2[ρW ] = ln

(
1 + 5p2

3

)
R∞[ρW ] = ln

(
1 + 5p

3

)
. (57)

The minimum values pmin of the parameter p such that for p > pmin the entanglement

indicators DvN, DL, R2 and R∞ are positive (and thus entanglement is detected by the

corresponding criteria) are given in the following Table (that is, in each case, entanglement

is detected when p is larger than the listed value):

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.809
√

0.7 ≈ 0.837 ≈ 0.632 0.4 .

The entanglement detection efficiency of the entropic criterion based upon Rényi entropy

increases with q. Indeed, in the limit q → ∞ the Rényi entropic criterion detects all the

entangled states within the family of states (55). The behaviour of the minimum value of p

for which entanglement is detected as a function of the entropic parameter q is depicted in

Figure 1.

B. θ-State

As second illustration we consider the following pure state,

|ψ〉 =
sin θ√

2

[∣∣∣∣-32 3

2

〉
−
∣∣∣∣32-

3

2

〉]
+

cos θ√
2

[∣∣∣∣-12 1

2

〉
−
∣∣∣∣12-

1

2

〉]
, (58)

for which

DvN[|ψ〉〈ψ|] = − ln 2− cos2θ ln

(
cos2θ

2

)
− sin2θ ln

(
sin2θ

2

)
DL[|ψ〉〈ψ|] = cos2θ sin2θ. (59)
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Thus, both DvN and DL = 0 for θ = 0, π
2
, π and both quantities are positive for all other

values of θ in the interval [0, π]. We also have S
(R)
q [ρ] + ln 2 < S

(R)
q [ρr] for all θ ∈ (0, π), θ 6=

π
2
. Therefore, comparing this with the concurrence, one sees that all entangled states are

detected.

C. Gisin-Like States

As a final example let us consider the parametrized family of mixed states given by,

ρG = p|0, 0〉〈0, 0|+ 1− p

2
(|2,−2〉〈2,−2|+ |2, 2〉〈2, 2|), (60)

with 0 ≤ p ≤ 1. In this case we have,

DvN[ρG] = (1− p) ln(1− p) + p ln(2p)

DL[ρG] =
1

4

(
−1− 4p+ 6p2

)
R2[ρG] = ln(1− 2p+ 3p2)

R∞[ρG] =

ln(1− p) 0 ≤ p ≤ 1
3

ln(2p) 1
3
≤ p ≤ 1.

(61)

The critical p values at which the entropic criteria based on the indicators DvN, DL, R2 and

R∞ begin to detect entanglement are listed in the Table below:

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.773 2+
√

10
6

≈ 0.860 ≈ 0.667 0.5 .

From the evaluation of the concurrence it follows that the Gisin-like states are entangled

for p > 0.5. Thus, once again, the Rényi-based entropic criterion based on the indicator

Rq→∞ detects all the entangled states in the family (60). The behaviour of the minimum

value of p for which entanglement is detected as a function of the entropic parameter q is

depicted in Figure 1.

We shall now illustrate the fact that the quantities DvN, DL and Rq involved in the en-

tanglement criteria advanced here can also be regarded as entanglement indicators, in the

sense that states exhibiting large values of these quantities tend to have higher entangle-

ment. Two-fermion states with a single-particle Hilbert space of dimension four allow for
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FIG. 1: Minimum p-value for which entanglement is detected in the case of the state ρW defined

in eq.(55) (dashed line) and ρG given by eq.(60) (solid line).

the illustration of this, because in the case of these systems we have a closed analytical

expression for the amount of entanglement of mixed states [2],

E[ρ] = h

(
1 +

√
1− CF [ρ]2

2

)
,

h(x) = −x log2 x− (1− x) log2(1− x), (62)

where the concurrence CF was defined in equation (7). In Figure 2 we compare, for two

parametrized families of mixed states, the behaviour of the entanglement measure with the

behaviour of the abovementioned quantities. Note that in order to compare the entanglement

measure with our entanglement indicators, the logarithms in the entanglement indicators

are taken to the base 2 in Figure 2.

It transpires from Figure 2 that for these families of states the indicators associated with our

entropic entanglement criteria do indeed tend to increase with the amount of entanglement

exhibited by these states.

V. TWO-FERMION SYSTEMS WITH A SINGLE-PARTICLE HILBERT SPACE

OF DIMENSION SIX

Two identical fermions with a four-dimensional single-particle Hilbert space (the simplest

fermionic system admitting the phenomenon of entanglement) constitutes the only fermion

system for which an exact analytical formula for the concurrence has been obtained. It is thus
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FIG. 2: Entanglement measure (thick line) and entanglement indicators R∞ (solid line), R2 (dash-

dotted line), DvN (dotted line) and DL (dashed line) for the states (a) ρW defined in eq.(55) and

(b) ρG given by eq.(60). The logarithms in the entanglement indicators are taken to the base 2.

of interest to apply the entropic entanglement criteria to systems of higher dimensionality,

for which such an expression for the concurrence is not known. Here we are going to consider

a system consisting of two identical fermions with a single-particle Hilbert space of dimension

six. The Hilbert space of this system is 15-dimensional. The generic (mixed) state of this

system depends on 224 (real) parameters. The entanglement features of mixed states of

this system are (up to now) basically “terra incognita”. Here we are going to identify, for

some parametrized families of mixed states, the range of values of the relevant parameters

for which the states are entangled.

Using the angular momentum representation, the two-fermion system considered in this

Section can be mapped onto a system of two spins with s = 5
2
. It is useful to introduce the

following notation,

|m1m2| =
1√
2

[|m1〉|m2〉 − |m2〉|m1〉] . (63)

We are going to study three particular families of mixed states of the form

ρi = p|ϕi〉〈ϕi|+
1− p

15
I, (64)

where 0 ≤ p ≤ 1 and

I = |0, 0〉〈0, 0|+
2∑

m=−2

|2,m〉〈2,m|+
4∑

m=−4

|4,m〉〈4,m| (65)
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is the identity operator acting on the 15-dimensional Hilbert space describing the two-fermion

system, and |ϕi〉 is an entangled two-fermion pure state. We consider three particular

instances of |ϕi〉. In each case we provide the expressions for the indicators DvN, DL,

R2 and R∞, and give the minimum values pmin of the parameter p such that for p >

pmin entanglement is detected by the criteria based on the positivity of the entanglement

indicators.

The first illustration corresponds to

|ϕ1〉 =
1√
3

[∣∣∣∣52 3

2

∣∣∣∣+ ∣∣∣∣12-
1

2

∣∣∣∣− ∣∣∣∣-32-
5

2

∣∣∣∣] , (66)

for which

DvN[ρ1] = ln 3 +
14

15
(1− p) ln

(
1− p

15

)
+

1

15
(1 + 14p) ln

(
1

15
(1 + 14p)

)
DL[ρ1] =

1

15

(
−9 + 14p2

)
R2[ρ1] = ln

(
1

5
(1 + 14p2)

)
R∞[ρ1] = ln

(
1

15
(1 + 14p)

)
+ ln 3, (67)

resulting in

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.767 3√
14
≈ 0.802 ≈ 0.535 2

7
≈ 0.286 .

The second example is given by

|ϕ2〉 = −2

3

∣∣∣∣52 3

2

∣∣∣∣− 2

3

∣∣∣∣12-
1

2

∣∣∣∣+ 1

3

∣∣∣∣-32-
5

2

∣∣∣∣ , (68)

with,

DvN[ρ2] =
1

45

(
−45 ln 2 + 42(1− p) ln

(
1− p

15

)
− 5(3− 2p) ln

(
3− 2p

18

)
−10(3 + p) ln

(
3 + p

18

)
+ 3(1 + 14p) ln

(
1

15
(1 + 14p)

))
DL[ρ2] = −3

5
+

121p2

135

R2[ρ2] = − ln(9 + 2p2) + ln

(
9

5
(1 + 14p2)

)
R∞[ρ2] = − ln

(
1− p

6
+

2p

9

)
+ ln

(
1

15
(1 + 14p)

)
− ln 2, (69)

and
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FIG. 3: Minimum value of p, as a function of the entropic parameter q, for entanglement detection

in the states (64) with |ϕ1〉 (solid line), |ϕ2〉 (dashed line) and |ϕ3〉 (dash-dotted line).

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.788 9
11
≈ 0.818 ≈ 0.557 12

37
≈ 0.324 .

As a third instance we tackle,

|ϕ3〉 =
1√
2

[∣∣∣∣52 3

2

∣∣∣∣+ ∣∣∣∣12-
1

2

∣∣∣∣] , (70)

leading to,

DvN[ρ3] = − ln 2− 1− p

3
ln

(
1− p

6

)
− 2 + p

3
ln

(
2 + p

12

)
+

14

15
(1− p) ln

(
1− p

15

)
+

1 + 14p

15
ln

(
1

15
(1 + 14p)

)
DL[ρ3] = −3

5
+

17p2

20

R2[ρ3] = − ln(2 + p2) + ln

(
2

5
(1 + 14p2)

)
R∞[ρ3] = − ln

(
1− p

6
+
p

4

)
+ ln

(
1

15
(1 + 14p)

)
− ln 2, (71)

and

DvN > 0 DL > 0 Rq=2 > 0 Rq→∞ > 0

pmin ≈ 0.825 2
√

3
17
≈ 0.840 ≈ 0.590 8

23
≈ 0.348 .

For the above three cases, the behaviour of the minimum value of p for which entanglement

is detected, as a function of the entropic parameter q, is depicted in Figure 3.
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VI. SYSTEMS OF N IDENTICAL FERMIONS

Let us consider the general case of N fermions with single-particle Hilbert space of general

(even) dimension n > N . The dimension of the Hilbert space associated with the N -fermion

system is then d = n!
(n−N)!N !

. The Rényi-based entropic criterion for two fermions that we

derived in Section III can be extended to the case of N fermions. According to the extended

criterion a state ρ of N identical fermions satisfying the inequality

S(R)
q [ρr] > S(R)

q [ρ] + lnN, (72)

for some q ≥ 1 is necessarily entangled, where ρr is the single-particle reduced density

matrix. This criterion can be derived following a procedure that is a straightforward gen-

eralization to the case of N fermions of the one detailed in Subsection III.C for the case

of two fermions. One starts with a state of the N fermions that is a statistical mixture of

pure states, each one represented by a single Slater determinant. Then one considers two

equivalent representations for the total density matrix ρ: the spectral one, and the above-

mentioned one as a mixture of separable pure states. On the other hand, one considers

two equivalent representations for the single-particle reduced density matrix ρr: again, the

spectral one, and the one derived from the representation of the total state as a mixture of

separable states. The two representations for ρ and the two ones for ρr are then related via

appropriate unitary transformations according to equation (23). Following the same steps

as in Subsection III.C it is then possible to obtain a majorization relation connecting ρ and

ρr, which finally leads to the inequality (72).

As an illustration of the entanglement criterion based on the inequality (72) let us consider

a family of states of a system of N fermions having the form

p |Φ〉〈Φ|+ (1− p)

d
Id, (73)

where 0 ≤ p ≤ 1, Id is the identity operator acting on the N -fermion Hilbert space, and the

single-particle Hilbert space has dimension n = kN , with k ≥ 2 integer when N is even and

for N odd k ≥ 2t (t ≥ 1 integer). We also assume that the (pure) N -fermion state |Φ〉 is of

the form
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|Φ〉 =
1√
k

(
|1, 2, . . . , N |+ |N+1, N+2, . . . , 2N |+ . . .+ |(k−1)N+1, (k−1)N+2, . . . , kN |

)
,

(74)

where |i1, i2, . . . , iN | denotes the Slater determinant (as in equation (63)) constructed with N

different members {|i1〉, . . . , |iN〉} of an orthonormal basis {|1〉, . . . , |n〉} of the single-particle

Hilbert space. The single-particle, reduced density matrix associated with the (pure) state

|Φ〉 corresponds to the totally mixed (single-particle) state, 1
n
In, where In is the identity

operator corresponding to the single-particle Hilbert space. On the basis of the Rényi

entropic criterion corresponding to q → ∞ we identify as entangled the states of the form

(73) satisfying the inequality,

lnn+ ln

(
p+

(1− p)

d

)
− lnN > 0 (75)

and hence entanglement is detected for

p >
N (n− 1)!− (n−N)!N !

n!− (n−N)!N !
. (76)

WithN fixed, we find that the efficiency of the entanglement criterion grows as the dimension

of the single-particle states, n, increases (that is, pmin decreases with n).

A. Full Multi-Particle Entanglement: The Case of Systems of Three Fermions

When studying entanglement criteria for composite systems with more than two distin-

guishable subsystems a new problem arises: how to distinguish states exhibiting full multi-

partite entanglement from those that, although being entangled, are such that a subset of

the parts constituting the system is disentangled from the rest of the system. A problem

somewhat similar to this one also arises in the case of systems of N identical fermions with

N > 2, although in the fermionic case this problem is much more subtle than in the case of

distinguishable subsystems [5]. Although the analysis of this problem is beyond the scope

of the present work, we shall now discuss it (in connection with our entropic entanglement

criteria) for the case of systems of three identical fermions.

In the case of three fermions, a separable pure state (Slater determinant) is of the form
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|φsl〉 = |φ1, φ2, φ3|=
1√
6

[
|φ1〉|φ2〉|φ3〉 − |φ1〉|φ3〉|φ2〉 − |φ2〉|φ1〉|φ3〉+ |φ2〉|φ3〉|φ1〉

+|φ3〉|φ1〉|φ2〉 − |φ3〉|φ2〉|φ1〉
]
, (77)

with |φ1〉, |φ2〉, φ3〉 being three orthonormal single-particle states. A general, separable mixed

state is a state that can be expressed as a statistical mixture of states like (77). Now, let us

consider a pure state of three fermions of the form,

|Ψ〉 =
∑

1<i<j

cij |1, i, j| , (78)

where |1, i, j| stands for the Slater determinant constructed with the three normalized and

orthogonal single-particle states |1〉, |i〉, |j〉, and {|k〉, k = 1, 2, . . .} is a single-particle or-

thonormal basis. Now, in general, pure states of the above form are entangled in the sense

that they cannot be written as one, single Slater determinant (that is, they are not “fully

separable”). However, these states are special because they are a superposition of Slater

determinants each of them involving the single-particle state |1〉. This means that it is

physically sensible to say that when the system is in a state like (78) one of the particles is

in the state |1〉 (although it does not make sense to ask which particle is in the state |1〉).

Consequently, according to the analysis made in [4], where separability is associated to the

possibility of assigning complete set of properties to the constituting particles, the state (78)

can be regarded as describing a physical situation where one of the particles is disentangled

from the other two. The same considerations apply to mixed states that are a mixture of

states like (78) (each one involving the same “privileged” single-particle state |1〉).

The above discussion raises the following question: can the entropic entanglement criteria

advanced here be used to discriminate between entangled states that are mixtures of states

of the form (78) (having one “disentangled” particle in a given, single-particle state |1〉), on

the one hand, and entangled states that cannot be expressed as (78) (or cannot be written

as statistical mixtures of states like (78)) on the other hand? To address this problem let us

first notice that, as can be verified after some algebra, the single-particle, reduced density

matrix ρr corresponding to states of the form (78) (or to mixtures of such states) always

has its largest eigenvalue equal to 1
3
. This implies that S

(R)
∞ (ρr) = ln 3. Consequently, if a

three-fermion state satisfies the (strict) inequality
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R∞ = S(R)
∞ (ρr) − S(R)

∞ (ρ) − ln 3 > 0, (79)

which implies S
(R)
∞ (ρr) − ln 3 > S

(R)
∞ (ρ) ≥ 0, one then knows for sure that this state is

entangled and that it cannot be written as a statistical mixture of states like (78) (all

with the same “privileged” single-particle state |1〉). In other words, for three-fermion

systems, the entropic entanglement criterion based on the Rényi entropy with q → ∞ is

not just a sufficient entanglement criterion, but also a sufficient criterion for full, three-

particle entanglement.

To illustrate the above discussion we choose the minimum single-particle dimension com-

patible with three-fermion entanglement, namely the single-particle Hilbert space of dimen-

sion six. As examples of entangled three-fermion states that do not exhibit full three-particle

entanglement, let us consider the following family of states,

ρ = p|φ〉〈φ|+ (1− p)ρmix, (80)

where

|φ〉 = cos θ|1, 2, 3|+ sin θ|1, 4, 5|, (81)

ρmix is a mixture (with equal weights) of the projectors corresponding to the ten Slater

states containing a “1”, that is, |1, 2, 3|, |1, 2, 4|, |1, 2, 5|, |1, 2, 6|, |1, 3, 4|, . . . , |1, 5, 6|, where

|1〉, |2〉, . . . , |6〉 are normalized and mutually orthogonal single-particle states that form a

basis for the single-particle state space. It is clear that one particle is in the state |1〉

whereas the other two particles are entangled (although it does not make sense to ask which

particle is in the state |1〉), which means this is a multipartite system that is neither fully

separable, nor fully entangled in the sense that all three particles are entangled. In order

to evaluate the entanglement indicators DvN, R2 and R∞, one has to find the eigenvalues of

ρ and ρr. These are, {0, . . . , 0, 1−p
10
, . . . , 1−p

10
, 1+9p

10
} and {1

3
, p cos2θ

3
+ 2

15
(1− p), p cos2θ

3
+ 2

15
(1−

p), p sin2θ
3

+ 2
15

(1−p), p sin2θ
3

+ 2
15

(1−p), 2
15

(1−p)} respectively. In this case R∞ = ln(1+9p
10

) ≤ 0

and consequently full three-particle entanglement is (correctly) not detected. However, the

entanglement indicators DvN and R2 do detect entanglement and Figures 4(a) and 4(b) show

the results. Hence entanglement is detected for this multipartite state where not all particles

are entangled with each other. However, full multi-particle entanglement is (correctly) not

detected.
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FIG. 4: Entanglement indicators (a) DvN and (b) R2 for the state (80).

Summing up, we have seen that the entropic criterion based on the Rényi entropy S
(R)
∞

is, in the three-fermion case, also a sufficient criterion for full three-particle entanglement.

Incidentally, this is another manifestation of the fact that the most powerful entropic en-

tanglement criterion based upon the Rényi entropy corresponds to the limit q → ∞. The

case of N -fermion systems with N ≥ 4 is much more complex and certainly deserves fur-

ther research. Previous experience with composite quantum systems with distinguishable

subsystems (see [34] and references therein) suggests that in this case, besides the entropies

of the single-particle reduced density matrix, the entropies of M -particle reduced density

matrices (with 2 ≤M < N) are going to be necessary to tackle this problem.

VII. SUMMARY

In the present work new entropic entanglement criteria for systems of two identical

fermions have been advanced. These criteria have the form of appropriate inequalities

involving the entropy of the density matrix associated with the total system, on the one

hand, and the entropy of the single-particle reduced density matrix, on the other hand. We

obtained entanglement criteria based upon the von Neumann, the linear, and the Rényi

entropies. The criterion associated with the von Neumann entropy constitutes a special

instance, corresponding to the particular value q → 1 of the Rényi entropic parameter, of

the more general criteria associated with the Rényi family of entropies. Extensions of these

criteria to systems constituted by N identical fermions were also considered.

We applied our entanglement criteria to various illustrative examples of parametrized

families of mixed states, and studied the dependence of the entanglement detection efficiency
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on the entropic parameter q. For the two-fermion states we considered, the entanglement

criterion improves as q increases and is the most efficient in the limit q →∞.

In the three-fermion case we have seen that the entropic criterion based on the Rényi en-

tropy S
(R)
∞ is also a sufficient criterion for full three-particle entanglement. Incidentally, this

is another manifestation of the fact that the most powerful entropic entanglement criterion

based upon the Rényi entropy corresponds to the limit q →∞.
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