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There is a paucity of studies examining direct impacts of introduced alien species on
biodiversity, a key need for motivating for alien species control in conservation areas. The
introduced prickly pear (Opuntia stricta) has invaded some 35 000 ha of Kruger National Park.
We investigated the effect of O. stricta on beetle and spider species assemblages in the Skukuza
region of Kruger National Park. We used unbaited pitfall traps over a 12-month period in four
treatments of varying O. stricta density. Species richness, species density and abundance of
beetles and spiders were compared. A total of 72 beetle and 128 spider species were collected.
Species richness and species density for beetles and spiders did not differ significantly across
the four treatments. Assemblages for spiders did not differ across treatments but beetle assem-
blages were significantly different from uninvaded control sites. This study suggests that the
current density of O. stricta does not significantly affect spider species richness, density or
assemblages but that beetle assemblages are significantly affected.
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Opuntia stricta.

INTRODUCTION
Patterns of invasions of flora and fauna have been
reasonably well documented at various spatial
scales (Kennedy et al. 2002; Stohlgren et al. 2003;
Fridley et al. 2007). However, there is less quantita-
tive information on defining and measuring the
ecological impacts of invasions and how these
impacts vary for different species (van Wilgen
2004). Both globally and in South Africa, the
impacts of invasive species, especially plants, on
invertebrate diversity is still poorly understood
(Samways & Moore 1991; Steenkamp & Chown
1996; French & Major 2001; Samways & Taylor
2004; Gratton & Denno 2005; Coetzee et al. 2007). It
is important to quantify these impacts because
invertebrates make a large contribution to global
species diversity and are important in regulating
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many fundamental processes in most biomes
throughout the world (Wilson 1987).
Invertebrates have been used as bioindicators in
a variety of roles (Noss 1990; McGeoch 1998;
Andersen & Majer 2004) and could serve as valuable
tools in monitoring the effects of invasive alien
plants. Bio-indicators can be classified into three
categories: biodiversity, environmental and eco-
logical indicators (McGeoch 1998). A biodiversity
indicator provides information on the presence of
a set of other species in an area, while environ-
mental indicators directly show change in the state
of the abiotic environment. Spiders (Araneae) con-
stitute a highly diverse group and their trophic
position and mobility suggest that they are ideal
candidates for use as bio-indicators (Churchill
1997). Several studies have already advocated the
use of spiders as indicators of habitat quality and
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change in a variety of habitats (Pétillon et al. 2005;
Scott et al. 2006; Foord et al. 2008; Mgobozi et al.
2008). Dung beetles (Scarabaeidae) and ground
beetles (Carabidae) are also considered to be good
indicators of habitat quality and change, due to
their sensitivity to habitat modification and have
consequently been used in several studies (van
Rensburg et al. 1999; McGeoch et al. 2002; Rainio &
Niemelé 2003; Coetzee et al. 2007). Pearce & Venier
(2006) advocated using both spiders and ground
beetles to evaluate the impact of habitat fragmen-
tation and the creation of forest edges.

Within the Kruger National Park (KINP), which is
considered the flagship reserve in South Africa’s
protected area network (Carruthers 1995), inva-
sive alien plants have been identified as one of the
most pressing threats to biodiversity (Foxcroft
& Richardson 2003). Opuntia stricta var. dillenii
(Cactaceae) is the most widespread of these inva-
sive plants and since it was first recorded in 1953 it
is estimated that the plant has invaded 35 000 ha
(2%) of KNP’s surface area (Foxcroft et al. 2007),
while in total 66 000 ha are required for surveil-
lance and containment. Initial attempts to control
the plant began in 1985 and depended largely on
herbicidal applications and mechanical removal,
but more recently the emphasis has shifted to
biological control (Lotter & Hoffmann 1998). The
biological control programme is reliant on two
agents; the cactus moth, Cactoblastis cactorum
(Lepidoptera: Pyralidae) (Hoffmann et al. 1998a)
and a cochineal insect, Dactylopius opuntiae
(Homoptera: Dactylopiidae) (Volchansky et al.
1999). Both have played a major role in managing
the weed (Foxcroft & Hoffmann 2000) and the
density of the weed appears to have declined from
what it was when the programme was initiated
(Lotter 1996; Hoffmann et al.1998b).

Invasive organisms require long-term manage-
ment programmes in protected areas in many
parts of the world (Usher 1988; Lonsdale 1999).
The population of a particular invasive organism
needs to be managed to a level at which it has as
little impact on biodiversity and ecosystem services
as possible. Quantifying these impacts on bio-
diversity and understanding the level of manage-
ment required to reduce the impacts to an
acceptable level requires carefully designed stud-
ies. The management of alien invasive organisms
in KNP is based on the concept of Thresholds of
Potential Concern (TPCs) (Foxcroft 2009). These
thresholds represent the upper and lower limits of
acceptable change in ecosystem structure, func-
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tion and composition over time and at a specified
spatial scale (Foxcroft & Richardson 2003). The
threshold is breached when one or more of these
limits are exceeded. Once exceeded, appropriate
management interventions are then implemented.
The alien invasive species TPCs are divided into
three distinct management responses or levels
relating to the invasion process or pathway (Fox-
croft & Downey 2008). The TPCs are: Level 1 TPCs
target new or potential invasions or incursions
within the KNP; Level 2 TPCs target increases in
the distribution of alien species already in the
KNP; Level 3 TPCs target increases in the density
of an alien species in the KNP.

The Level 3 TPC is stated as a hypothesis due to
the lack of data on acceptable thresholds relating
to density related impacts and the availability of
efficient cost-effective monitoring protocols to
detect such thresholds (Foxcroft & Downey 2008).
However, an increase in density could potentially
be used as a surrogate measure for an increase in
biodiversity impact (Foxcroft & Downey 2008). If
different densities of O. stricta result in different
impacts on beetle and spider assemblages, then
this would provide some insights into density
related impacts (Level 3 TPCs) and possibly
inform the selection of appropriate thresholds.

The key objective of the KNP’s alien species
management and monitoring programme is to
minimize the influence of non-indigenous organ-
isms on native biodiversity. However, little is
known about the effects of O. stricta invasion on
arthropod assemblages and whether the current
density of O. stricta can be considered to be having
an impact on these assemblages (Harris 2009).

The aims of this study were: 1) to assess the
impact of different densities of O. stricta on beetle
and spider assemblages; 2) to determine whether
current densities of O. stricta can be considered to
be having an impact on beetle and spider diver-
sity; 3) toidentify beetle and spider species thatare
characteristic of each O. stricta density class and
that could be used as indicator species for monitor-
ing invasive plant impacts; 4) to determine
whether impacts of O. stricta on beetles and
spiders were confined only to patches of O. stricta
or whether they were also present outside the
patchesin areas where the plant was not present.

METHODS

Study area
The KNP is situated on the eastern side of the
Limpopo and Mpumalanga provinces of South
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Table 1. Comparison of beetle and spider species density and abundance collected across a gradient of Opuntia
stricta invasion density. n = number of sampling sites, S = total species density (observed number of species) and
N = total abundance. Means with no letters in common denote significant differences between treatments calculated

at P < 0.05.

Treatment Density mean + S.E. Abundance mean + S.E. n S N
Beetles Fs16=1.88, P=0.17 Fs16 = 3.59, P=0.04

High 24.00 + 2.02° 151.40 + 26.36° 5 46 757
Medium 22.00 + 2.10% 112.60 + 19.31% 5 48 563
Surrounded 23.20 + 2.40° 106.00 + 17.01% 5 47 530
Control 17.80 = 1.39% 63.20 + 9.97° 5 48 316
Spiders Fs16=1.23, P=0.33 Fs16=1.81, P=0.19

High 24.60 + 2.69° 59.20 + 11.57% 5 64 296
Medium 26.80 + 3.37% 56.60 + 11.30% 5 72 283
Surrounded 21.20 + 1.59° 33.60 + 2.56° 5 62 168
Control 27.20 + 2.85% 58.80 + 8.66° 5 75 294

Africa and is bordered by Mozambique to the east.
The park falls within the savanna biome (Scholes
1997) and covers a surface area of 1.9 million ha.
The climate is subtropical and rainfall varies from
400 mm in the north to 700 mm in the south.
Fieldwork was conducted in the Skukuza region
of the KNP, South Africa (25°00'S 31°58'E), in
the Sabie-Crocodile thorn thicket habitat type
(Gertenbach 1983), as this region has been most
heavily invaded by O. stricta (Foxcroft et al. 2007).
This habitat is characterized by native woody
species such as Dichrostachys cinerea Wight & Arn.
(Mimosaceae), Spirostachys africana Sonder
(Euphobiaceae) and Grewia bicolor Juss.
(Malvaceae). Panicum maximum Jacq. (Poaceae),
Pogonarthria squarrosa (Roem. & Schult.) Pilg.
(Poaceae) and Aristida congesta Roem. & Schult.
(Poaceae) are grasses that dominate the under-
storey vegetation.

Experimental design

In order to compare the effect of O. stricta density
on beetle and spider assemblages, four different
treatments, containing five replicates each, were
selected to represent a gradient O. stricta density.
Treatments were selected according to the size (i.e.
ground cover) and density of the O. stricta patch
and each replicate was placed atleast 50 m apart to
prevent pseudo-replication of samples. Due to the
overall size of the area invaded in the study site, it
was not possible to place the replicates further
apart. The four treatments included high density,
medium density, surrounded and an uninvaded
control. The high treatment consisted of O. stricta
patches with dense continuous cladodes covering
a ground surface area larger than 100 m?% The

medium treatment consisted of O. stricta patches
with dense continuous cladodes covering a
ground surface area between 18 and 100 m* The
surrounded treatment consisted of areas that were
surrounded by O. stricta patches, but contained
very few O. stricta plants. These areas covered a
ground surface area of larger than 1 m* and were
characterised by having a lower overall vegetation
cover than any of the other treatments. This treat-
ment was selected due to the patchy nature of
O. stricta. We wanted to determine whether any
possible impacts of O. stricta on beetles and spiders
were confined only to patches or whether they
were also present outside the patches. Finally, the
control consisted of sites where O. stricta had not
invaded and were at least 50 m away from other
treatments and covered a ground surface area
larger than 100 m? (Table 1). Sampling of beetles
and spiders was conducted bimonthly for 12
months between 2005 and 2006 (i.e. six sampling
events), commencing in July 2005 and ending May
2006.

Beetle and spider sampling

During each sampling event, beetles and spiders
were collected using pitfall traps. Spiders were
additionally sampled using leaf litter sifting and
active searching methods.

Pitfall trapping. Pitfall traps consisted of two-litre
plastic buckets with a diameter of 20 cm filled with
approximately 500 ml of water. In total, 100 pitfall
traps were used with five traps placed in each
replicate. Each trap was placed 1.5 m away from
the next within the replicate in a circular pattern.
During each sampling event, traps were left open
for 10 days and cleared every second day. Traps
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were covered with a steel mesh grid, a novel
method to prevent the removal of contents by
wild animals. A 10 cm gap was left between the
steel grid and the ground, so that the trapping of
spiders and beetles was unhindered.

Leaf litter sifting. A 1m? quadrat was placed
randomly at two locations within each replicate
and all leaf litter was sifted through a 5 X 5 mm
mesh.

Active searching. Two 1 m?* quadrats were ran-
domly placed within each replicate on each sam-
pling event. In each replicate, all habitats suitable
for spiders (including the ground, plants, rocks
and fallen logs) were searched for 15 minutes
(between 08:00 and 16:00). To prevent any collect-
ingbias, all active searching was conducted by one
person. Spiders were identified to family level,
and then where possible to species level. Spider
voucher specimens are housed in the National
Collection of Arachnida at the ARC-Plant Protec-
tion Research Institute, South Africa. Beetles were
identified to species level where possible and
beetle voucher specimens are housed at the
Ditsong National Museum of Natural History,
South Africa.

Vegetation sampling

Vegetation structure and species composition
for each of the replicates was sampled during
winter (August 2006) and summer (March 2007).
In each replicate, a 100 m? plot was placed in the
centre of the O. stricta patch. Species composition,
percentage cover and plant height was recorded
for each species in each of eight 1 m* quadrats that
were laid out on the inner edge of the 100 m?
plot (Fig. 1). To quantify the extent of O. stricta
surrounding the quadrats, four 10 m line transects
were extended outwards from the corners of each
100 m? plot at a 45° angle and four 10 m transects
were extended from the centre of the boundary of
the 100 m? plot at a 90° angle (Fig. 1). Each line
transect was divided into 50 cm segments and the
presence or absence of O. stricta was recorded in
each segment. The total number of O. stricta plants
per replicate was calculated by summing the pres-
ences across the eight transects of each replicate.
As O. stricta was only present in the high, medium
and surrounded treatments, this analysis was not
conducted for the control.

Data analysis
Beetles and spiders. Sample-based rarefaction curves
were compiled for the total number of beetles and
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Fig. 1. Sampling design used to quantify vegetation com-
position in each replicate of the four treatments. A 10 m x
10 m quadrat (large square) was measured out and
contained eight 1 m x 1 m quadrats (grey squares). Eight
10 m line transects (black lines) radiated out from the
edge of each of the 1 m x 1 m quadrats. The line transect
analysis was not conducted for the control.

spiders collected in the study to establish sam-
pling-representavity using the analytically calcu-
lated Scbs (Mao Tao) of EstimateS V7.5 (Colwell
2005). For both spiders and beetles, the total
number of samples was 120 (i.e. four treatments by
five replicates per treatment on six sampling
occasions = 120 samples). The non-parametric
incidence-based coverage estimator (ICE) (Chazdon
etal. 1998) and Michaelis-Menten Mean (MMMean)
richness estimators were used to evaluate sample
size adequacy (Colwell & Coddington 1994). ICE
and MMMean richness estimators were chosen as
they have performed well in studies with small
sample sizes (Chazdon et al. 1998; Toti et al. 2000).
When the observed rarefaction curves (Sobs (Mao
Tao)) and the estimators (ICE and MMMean)
converge closely at the highest observed richness,
the richness estimates can be considered to be
representative (Longino et al. 2002). Species rich-
ness (i.e. the total number of species (Magurran
2004) for this study is defined as the total number
of species sampled across all sampling events)
between treatments was compared using sample-
based rarefaction curves that were rescaled by
individuals, to account for differing densities of
individuals (Gotelli & Colwell 2001). Species rich-
ness was compared by plotting the treatment
rarefaction curves with their 95% confidence
intervals. If the confidence intervals overlapped,
the differences were not significant at P > 0.05
(Colwell et al. 2004).

Species density and abundance of both beetles
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and spiders were determined for each treatment
(high, medium, surrounded and control). Species
density is the number of species per specified
collection area or unit (Magurran 2004). To calcu-
late species density and abundance for both spider
and beetle species, the total number of species
captured across the six sampling events was
pooled generating a total of 20 samples (i.e. four
treatments with five replicates per treatment =
20 samples). Spider species data were pooled for
the three collecting methods. Species density was
summed for each treatment replicate and com-
pared using ANOVA and post-hoc Tukey tests.
Similarly for abundance, the number of individuals
sampled was summed for each treatment replicate
(five pitfall traps) in each sampling period and
compared between treatments using ANOVA and
post-hoc Tukey tests.

Analysis of similarity (ANOSIM), implemented
in the PRIMER 5.2.0 software package (Clarke &
Warwick 2001), was used to compare beetle and
spider assemblages across the four treatments
(high, medium, surrounded, control). Common
and rare species were weighted equally by double
square-root transformation of the data before
analysis and a Bray-Curtis similarity measure was
used to calculate the similarity matrix. ANOSIM
generates a Global R statistic which can be used to
quantify the similarity of assemblages being com-
pared. The closer a significant Global R statistic is
to one, the more distinct the differences are between
the assemblages that are being compared. Pairwise
tests are used to compare similarity of assemblages
between pairs of treatments and give an R statistic
that is interpreted in the same way as the Global
R statistic. The similarities of the beetle and spider
assemblages of each replicate were visualized using
non-metric multidimensional scaling (NMDS)
plots (Clarke & Warwick 2001).

The characteristic beetle and spider species
(indicator species) were identified for each of the
treatments using the Indicator Value Method
(Dufréne & Legendre 1997), calculated using the
Labdsv package in R (R development core team,
2011). The method assesses the degree (expressed
as a percentage) to which each species fulfils the
criteria of specificity (uniqueness to a site) and
fidelity (frequency within that habitat type) for
each habitat type compared with all other habitats.
The higher the indicator value (IndVal) obtained,
the higher the specificity and fidelity values for
that species, and the more representative the
species is of that particular habitat (or treatment).
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Species with significant IndVals greater than 70%
(subjective benchmark; van Rensburg et al. 1999)
can be regarded as indicator species for the habitat
in question (van Rensburg et al. 1999; McGeoch
et al. 2002).

Vegetation. Cover estimates for plants were aver-
aged over the two sample periods (August 2006
and March 2007). The mean cover of plants that
were less than one metre in height was compared
across treatments using an analysis of variance
(ANOVA). As these cover values were recorded as
percentages they were arcsine transformed prior
to analysis (Crawley 2007). A Tukey test was then
used to compare between treatments. The total
number of O. stricta plants recorded along the
transects was compared across treatments using
an ANOVA.

Plant species assemblages (of both O. stricta and
natural vegetation) of the four treatments were
compared using an ANOSIM. Common and rare
species were weighted equally by double square-
root transformation of the data before analysis. A
Bray-Curtis similarity measure was used to calcu-
late the similarity matrix.

RESULTS

Beetles and spiders

Seventy-two beetle (morpho) species (2162 indi-
viduals) and 128 spider (morpho)species (1051
individuals) were collected from the four treat-
ments representing the gradient of O. stricta den-
sity at the study site (Appendix 1).

For beetles, the observed richness (Sobs) con-
verged closely with the richness estimators (ICE
and MMMean) indicating a representative sample
(Fig. 2a). However, the observed richness (Sobs) for
the spider sample did not converge closely with
the richness estimators indicating that the spiders
were under-sampled (Fig. 2b). Given that spiders
are a hyperdiverse group leading to high levels of
spatial and temporal turnover in assemblage
structure, this is a common problem in studies
focusing on spider surveys (Coddington et al.
1996). Confidence intervals for both beetles and
spiders overlapped indicating that differences in
species richness among the four treatments were
not significant (Fig. 3a,b). Beetle species density
did not differ significantly across treatments
(ANOVA, F316 = 1.88, n = 20, P = 0.17). Beetle
abundance was significantly higher in heavily
invaded sites compared to control sites (ANOVA,
Fs16 = 3.59, n = 20, P = 0.04) (Table 1). Spider
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Fig. 2. Sample-based rarefaction curves indicating observed number of species (Sobs Mao Tao), incidence-based
coverage estimator (ICE) and Michaelis-Menten mean (MMMean) richness estimators, of beetles (a) and spiders
(b). In total, 120 samples were obtained for beetles and spiders (four treatments x five replicates per treatment x six

sampling occasions = 120 samples).

species density (ANOVA, F316 = 1.23,n = 20, P =
0.33) and abundance (ANOVA, F316 = 1.81, n = 20,
P = 0.19) did not differ significantly across the
treatments (Table 1).

Beetle assemblages differed significantly across
the four treatments (Global R = 0.19, P = 0.005). In
the NMDS plot for beetles (Fig. 4), the replicates
representing medium (M), high (H) and surrounded
(S) treatments are clustered closely together on the
left of the plot, indicating small assemblage differ-
ences among these treatments. Four of the control
replicates (C1, C2, C4 & C5) form a second cluster

on the right hand side of the plot, indicating that
the assemblages of these replicates differ from
those of the first cluster. C3 is on the edge of the
first cluster and separate from the high and
medium replicates. Considering those individual
pairwise comparisons that were significant, the
largest assemblage differences for beetles were
between control vs surrounded treatments (R =
0.43), followed by high vs control treatments (R =
0.35) and medium vs control treatments (R = 0.27 —
Table 2). As we did not find significant differences
in assemblages, species richness or density between
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Fig. 3. Sample-based rarefaction curves (scaled by individuals) indicating observed number of beetle species (a) and
spider species (b) (Sobs). Species richness should be compared when the number of individuals is equal in all treat-
ments (i.e. approximately 340 individuals for beetles; approximately 180 individuals for spiders). The finely dashed
lines represent the 95% confidence interval. Where confidence intervals overlap, the differences in species richness

are not significant at P> 0.05.

medium and high treatments for either beetles or
spiders, we pooled the data from the medium and
high treatments into a single treatment called
‘invaded” and repeated the ANOSIM analysis
based on three treatments. The results of the
ANOSIM comparing beetle assemblages across
invaded, surrounded and control revealed a
higher Global R statistic of 0.376 (P = 0.001) com-
pared to the four treatments. The pairwise tests

showed a significant difference between control
and invaded (R = 0.55) and between control and
surrounded (R = 0.43 — Table 2).

Overall, spider assemblages did not differ signif-
icantly across the four treatments (Global R = 0.13,
P = 0.06). There is no clear separation of treatments
in the NMDS plot for spiders (Fig. 5), which
supports the low Global R statistic. However, the
ANOSIM comparing spider assemblages across
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Fig. 4. Non-metric multidimensional scaling plot indicating similarity of beetle assemblages among replicates for four
treatments. Treatments: H, high density; M, medium density; S, surrounded; C, control.

invaded, surrounded and control revealed a
significant Global R statistic of 0.208 (P = 0.027).
However, the only significant pairwise difference
was between invaded and surrounded (R = 0.257,
P =0.043).

A total of 14 beetle species were unique to the
control. Only three of these species were repre-

Table 2. Pairwise comparisons of beetle assemblages
between treatments using analysis of similarity. The first
ANOSIM compared assemblages among high, medium,
control, and surrounded treatments. The second ANOSIM
compared assemblages among invaded (a combination
of high and medium), control and surrounded treatments.
The R statistic is a measure of the similarity of assem-
blages. If R is significantly different from zero, then
there are significant differences between assemblages.
Significant values (P < 0.05) are in boldface.

Comparison R statistic P-value
High vs control 0.348 0.02
Medium vs control 0.268 0.04
Control vs surrounded 0.428 0.01
Medium vs high -0.1 0.79
Medium vs surrounded 0.148 0.16
High vs surrounded 0.12 0.14
Invaded vs control 0.553 0.003
Control vs surrounded 0.428 0.008
Invaded vs surrounded 0.171 0.114

sented by three or more individuals (Acmaeotethya
virgo, four individuals; Orthophagus bicavifrons, five
individuals; Philoserica vittata, eight individuals).
Only three beetle species were unique to the
medium treatment and none were represented by
three or more individuals. No beetle species were
unique to the surrounded or high treatments. A to-
tal of 14 beetle species were found in the control
treatment that were not present in either the
medium or high treatments.

A total of 19 spider species were unique to the
control. Of these only two species were repre-
sented by three or more individuals, including:
Oxyopes sp. 2 (11 individuals) and Runcinia flavida
(three individuals). A total of 15 spider species
were unique to the medium treatment, with only
one species being represented by three or more
individuals (Xerophaeus sp. 1, four individuals). No
spider species were unique to the surrounded or
high treatments. A total of 25 spider species were
found in the control that were not presentin either
the medium or high (invaded) treatments.

No beetle or spider species fulfilled the criteria
for indicator species (IndVal = 70%) in any of the
treatments (high, medium, surrounded and con-
trol). When the high and medium treatments were
combined (invaded treatment) one beetle species
fulfilled the criteria for indicator species (Graphi-
pterus fasciatus distinctus Péringuey, 1899; IndVal =
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Fig. 5. Non-metric multidimensional scaling plot indicating similarity of spider assemblages among replicates for four
treatments. Treatments: H, high density; M, medium density; S, surrounded; C, control.

70%, P = 0.003) for the invaded treatment. The
beetle species with the highest IndVal for the con-
trol was Acmaeodera virgo Boheman, 1860
(IndVal = 60%, P = 0.014) and the highest IndVal
for the surrounded was Gymmnopleurus ignitus
Klug, 1855 (IndVal = 66%, P = 0.017). The spider
species with the highest IndVal for the control was
Runcinia flavida (Simon, 1881) (IndVal = 60%, P =
0.014). The spider species with the highest IndVal
for the invaded was Loxosceles spiniceps Lawrence,
1952 (IndVal = 59%, P = 0.027) and for sur-
rounded was Cheiramiona krugerensis Lotz, 2002
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that only had an IndVal of 43% which was not
significant (P = 0.09).

Vegetation

The mean cover of plants that were less than one
metre in height differed significantly across
treatments (ANOVA, F3156 = 19.03, n = 20, P <
0.001) (Fig. 6a). A Tukey testrevealed that the cover
of the high and medium treatments did not differ
significantly from the control, that the surrounded
treatment was significantly lower than the control,
high and medium treatments (Fig. 6a). When
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Fig. 6. Mean percentage vegetation cover (and standard error) measured in quadrats for each treatment, (a) for all
species and (b) with Opuntia stricta excluded. Only plant species of less than 1 m in height were included. Treatments:
High, high infestation; Med, medium infestation; Sur, surrounded; Con, control.
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O. stricta was excluded from the dataset, the mean
vegetation cover was much lower in the high and
medium treatments, very slightly lower in the
surrounded treatment and unaffected in the
control (Fig. 6b). This shows the contribution of
O. stricta to the vegetation cover in high and
medium treatments was larger (13% reduction for
high and 12% reduction medium) compared with
the surrounded treatment (2% reduction). The
percentage cover of O. stricta recorded in the
quadrats differed significantly across treatments
(ANOVA, F3156 = 16.86, n = 20, P < 0.001). There
was no significant difference in cover of O. stricta
between high and medium treatments, but the
high and medium treatments had significantly
higher cover of O. stricta than control and sur-
rounded treatments (Tukey test). The number of
O. stricta plants along 10 m transects radiating out
from the centre of each replicate was marginally
non-significant among treatments (ANOVA,
Fo12=3.77,n =15, P = 0.054).

Plant assemblages differed significantly across
the treatments (Global R = 0.36, P = 0.001). Plant
assemblages of the high treatment were significantly
different from the control (R = 0.46, P = 0.008) and
the surrounded treatment (R = 0.29, P = 0.04), but
not significantly different from the medium treat-
ment (R = 0.26, P = 0.09). Plant assemblages of the
medium treatment were significantly different
from both control (R = 0.32, P = 0.008) and sur-
rounded treatments (R = 0.53, P = 0.008). The
plant assemblages of the control and surrounded
treatments were significantly different (R = 0.46,
P =0.008).

DISCUSSION
For spiders we found that there were no signifi-
cant differences in assemblages across treatments.
Although we found significant differences in
assemblages between invaded (by pooling the
data from high and medium treatments) and the
surrounded, the differences between invaded and
control were not significant. The results suggest
that current densities of O. stricta are not having a
major impact on spider assemblages, species rich-
ness and species density. In contrast, Mgobozi et al.
(2008) found significant impacts of an invasive
shrub (Chromolaena odorata) on spider assemblages,
richness and diversity in a South African savanna.
Bultman & DeWitt (2008) found that ground-
dwelling spider assemblages were substantially
altered in broadleaf forest that was invaded by a
herb (Vinca major) compared to uninvaded forest.
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For beetles, we found a significant difference in
assemblages between the medium treatment and
control, and between the high treatment and
control. However, species richness and species
density did not differ significantly across treat-
ments. Several studies that have investigated the
impacts of invasive plants on arthropod diversity
across a variety of habitats; both in South Africa
(Samways & Moore 1991; Samways et al. 1996;
Steenkamp & Chown 1996; Samways & Taylor
2004; Coetzee et al. 2007) and elsewhere (Toft et al.
2001; Greenwood et al. 2004; Ernst & Cappuccino
2005) have found significant impacts on diversity.
In a study by Coetzee et al. (2007) comparing dung
beetle assemblages between wattle (Acacia dealbata)
invaded grassland and uninvaded grassland, they
found major differences in assemblages.

We found significantly higher abundances of
beetlesin the high treatment than the control. This
is difficult to explain and contrasts with other
studies that have reported decreases in abun-
dance of arthropods in invaded ecosystems
(French & Major 2001; Standish 2004; Ernst &
Cappuccino 2005; Gerber et al. 2008).

No beetle or spider species could be considered
to be reliable indicators of high or medium treat-
ments. Only one beetle species fulfilled the criteria
for indicator species (Graphipterus fasciatus
distinctus) for the invaded treatment. This species
can be used as an indicator of O. stricta invasion
and it is possible that increased abundance of this
species could indicate increased impact of O.
stricta on beetle diversity. In contrast, reduced
abundance of this species could indicate a decline
in O. stricta impact, but further research will be
required to confirm this. This species could be
useful for setting TPC targets but ideally several
species should be used to define these targets.

The cover of vegetation below one metre in
height did not differ significantly among the
control, high and medium treatments but was
significantly lower in the surrounded treatment.
The cover of O. stricta was significantly higher
in the medium and high treatments than in the
control and surrounded treatment. This confirms
that O. stricta density is likely to explain the beetle
assemblage differences between the medium
treatment and control and between the high treat-
ment and control. In comparing the assemblages
between the control and the surrounded treat-
ment, we wanted to determine whether the effect
of O. stricta was confined to dense patches of this
plant. Although we found a significant difference
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in beetle assemblages between the control and
surrounded treatment, the vegetation cover was
significantly lower in the surrounded treatment
than the control. We are thus not able to say
whether the effects of O. stricta on beetle assem-
blages are confined to patches due to the con-
founding effect of vegetation cover.

The contribution of O. stricta to overall vegeta-
tion cover (<1 m) was relatively low at 12% for the
medium and 13% for the high treatment. There
were also no extensive areas (several hectares)
invaded by O. stricta at high densities. Bultman &
DeWitt (2008) reported significant changes in
spider assemblages in forest invaded by Vinca
major compared to uninvaded forest. They
described the area invaded by this plant as ‘a
dense mat on the forest floor” and said that it
forms a dense blanket of groundcover in forests’.
This suggests that it probably has a higher cover
and more radically transforms invaded areas than
that of O. stricta. This could explain why they
found substantial impacts on spider assemblages
whereas we did not. In addition, Mgobozi et al.
(2008) cited the decrease of habitat heterogeneity
in savanna in KwaZulu-Natal (South Africa) as the
most likely cause of the reduction of spider species
richness and abundance in patches of Chromolaena
odorata (Asteraceae), a non-indigenous perennial
shrub that radically alters native vegetation struc-
ture and diversity. Harris et al. (2003) reported that
the extent to which vegetation structure is altered
could influence the degree to which spider assem-
blages differ from one another.

Although we did not quantify vegetation struc-
ture, the overall structure of the vegetation has not
been radically altered when the two extremes are
compared, namely the high treatment and the
control. The high treatment and the control both
contain trees in the canopy, a shrub layer and an
herbaceous layer. The highly invaded treatment
can therefore still be described as savanna vegeta-
tion and has a similar overall vegetation cover for
plants less than 1 m in height to the control. This is
in contrast to, for example, the case reported by
Coetzee et al. (2007) where an invasive tree (Acacia
dealbata) has invaded grassland and completely
transformed the vegetation structure from grass-
land to what is effectively a forest.

A change in vegetation structure resulting from
alien plant invasion has been cited as one of the
principal causes of changes in arthropod assem-
blages (Standish 2004; Coetzee et al. 2007). Green-
wood et al. (2004) attributed lower abundance and
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diversity of terrestrial arthropods to the simpler
habitat structure and lower plant diversity in
invaded areas. This notion is supported by the
study of French & Eardley (1997) that found mini-
mal impacts in litter invertebrate assemblages in
shrub land invaded by Chrysanthemoides monilifera
(Asteraceae) compared with native heath land of
similar structure (i.e. height, canopy and leaf litter
cover).

Changes in spider diversity and assemblages are
expected to reflect habitat changes and changes in
the arthropod community on which spiders prey,
as spiders only interact indirectly with alien plants
(Mgoboziet al. 2008). These results suggest that the
invasion of O. stricta has not altered the habitats
or the arthropod community (spider food sources)
to the extent that it has resulted in detectable
changes in spider assemblages. However, the
invasion has altered the habitat sufficiently to
result in assemblage differences for beetles. This
suggests that beetles may be more sensitive to
invasion of O. stricta than spiders. It has been
suggested that food specialist herbivores are likely
to be vulnerable to invasion (Tallamy 2004;
Yoshioka et al. 2010). We expect that a proportion of
the beetle species would be food specialist
herbivores (whereas spiders are predators) and
that beetles would be more directly dependent on
plant composition than spiders.

It appears that at current densities O. stricta does
not have a major impact on spider assemblages
and diversity, although it does have an impact on
beetle assemblages. We suggest that higher densi-
ties of O. stricta, resulting in greater habitat trans-
formation, could have a greater impact on beetles
and spiders and management should aim to
prevent densities from increasing. Indeed, the
O. stricta invasion in the KNP has shown a steady
decrease in the size of the patches and the number
of cladodes per plant. For example, Lotter (1996)
reported 68 dense, impenetrable clumps of
O. stricta and Hoffmann et al. (1998b) found several
plants with more than 150 cladodes. In this study,
we found only a few dense stands of O. stricta
(approximately 15) and no plants with more than
150 cladodes. The decline in the density of O. stricta
can be attributed to the biological control pro-
gramme that was initiated in 1988. The manage-
ment of O. stricta has been successful at reducing
the density of this species to feasible maintenance
levels. Economically this is the point at which the
follow up controlis quickest and cheapest and bio-
logically it is the point where biodiversity is least
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affected by O. stricta. Given that beetle assem-
blages differ significantly between the invaded
treatments (medium and high) and the control
suggests that the density of O. stricta should be
further reduced if possible.

CONCLUSION

At current densities, Opuntia stricta does nothave a
significant impact on spider assemblages, but
beetle assemblages are affected. Beetle and spider
species richness and species density were not
significantly affected. The most likely explanation
for these findings is that the currentlevel of O. stricta
invasion, maintained by the use of biological
control, is insufficient to transform the structure of
the vegetation to the extent that it significantly
alters spider assemblages but that it is sufficient to
alter beetle assemblages.
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Appendix 1. The total number of beetles and spiders, listed per family, collected in the Kruger National Park, South
Africa at four Opuntia stricta densities. Spider species names marked with * represent new records for the KNP.

Species

Medium Surrounded Control

infestation

High
infestation

ORDER COLEOPTERA

Buprestidae

Acmaeodera luteopicta Fahraeus, 1851
Acmaeodera virgo Boheman, 1860

Carabidae

Abacetus auspilatus Péringuey

Anthia thoracica (Thunberg, 1784)

Aulacoryssus pavoninus Gerstaecker,1866)
Callistoides pulchellus Boheman,1848)
Carabidae sp. 1

Carabidae sp. 2

Carabidae sp. 3

Chlaenius marginicollis Boheman,1848
Crepidogastrini cicatricosa Jeannel, 1949
Dromica simplex (Bates, 1878)

Graphipterus fasciatus distinctus Péringuey, 1899
Graphipterus griseus Latreille, 1802
Megacephala regalis Boheman, 1848
Pachydinodes bipustulatus Boheman, 1848
Polyhirma graphipteroides Guérin-Méneville, 1845
Polyhirma alveolata Brime, 1844

Tefflus carinatus Klug, 1853

Thermophilium homoplatum Lequien, 1832

Cerambycidae
Crossotus stypticus Pascoe, 1869

Chrysomelidae
Aspidimorpha tecta Boheman,1854

Curculionidae
Brachycerus congestus Gerstécker, 1855

—_

—_

—_
QO = NN =
N

57 27 15

W =N w

e

45 19 20 5
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Species High Medium Surrounded  Control
infestation infestation

Brachycerus sp. 1

Calodemas sp. 1 11 4 7 2
Cyclominae sp. 1 3 2 2
Hoplitotrachelus spinifer Schoenherr, 1848 1

Microcerus costalis Fahraeus, 1871 1 2 4

Microcerus fallax Fahraeus, 1871 2 4 4
Spartecerus sp. 1 11 11 3 4
Histeridae

Hister tropicus Paykull, 1811 3 10 6

Pactolinus gigas (Paykull, 1811) 1
Hybosoridae

Hybosorus cf. rufieofnis 4 2

Meloidae

Ceroctis delagoensis 8 46 7 37
Scarabaeidae

Adoretus cf. ictericus 2

Adoretus cf. punctipennis 1

Adoretus tessulatus Burmeister,1855 3 1 2 2
Anachalcos convexus Boheman, 1857 154 71 44 8
Copris amyntor Klug, 1855 11 6 3 6
Copris elphenor Klug, 1855 1 3 3 1
Copris mesacanthus Harold, 1878 50 30 12 25
Garetta nitens (Olivier 1789) 10 9 9 2
Gymnopleurus ignitus Klug, 1855 6 2 20
Gymnopleurus sp. 1 1 1 1
Heteronychus arator Burmeister, 1847 1
Leucocelis amethystina (McLeay,1838) 2 2

Onitis crenatus Reiche, 1847 2 2

Onitis uncinatus Klug, 1855 1
Onthophagus tersidorsis D’Orbigny, 1902 2 7 5
Onthophagus bicavifrons D’Orbigny, 1902 5
Onthophagus gazella Fabricius, 1787 3
Onthophagus sp. 1 41 17 80 9
Phalops ardea Klug, 1855 1

Philoserica vittata Blanchard, 1850 8
Pseudolinteria cincticollis 1

Scaptobius sp. 1 2 1 2 5
Scarabaeus nigroaeneus Boheman, 1857 29 26 53 3
Sisyphus costatus Thunberg, 1818 2 1 3

Trochallus sp. 1 3 2 1
Tenebrionidae

Amachla sp. 1 108 113 69 21
Anomalipus carinatus Oertzen, 1897 94 36 51 41
Anomalipus elephas Fahraeus, 1870 2 2 1
Aspidomorpha prona 3 1 1 4
Distretus amplipennis Féhraeus, 1870 14 5 1 6
Drosochirini sp. 1 3 4 2

Drosochirini sp. 2 15 1 1 2
Micranterus scaberrimus Fairmaire 2 5 1 1
Psammodes striatus Fabricius, 1775 2

Serrichora fahraei 2 7 2 6
Somaticus cf. angulatus 1 2 4

Strongylini sp. 1 1 3
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Species

High
infestation

Medium
infestation

Surrounded

Control

Zophisini sp. 1

Zophisini sp. 2

Trogidae

Omorgus squalidus Olivier, 1789

12

27
2

Total Coleoptera/treatment
Total Coleoptera

757
2162

560

530

315

ORDER ARANEAE

Agelenidae
Agelena sp. 1*
Benoitia ocellata (Pocock, 1900)*

Araneidae

Argiope australis (Walckenaer, 1805)
Argiope lobata (Pallas, 1772)*

Caerostris sexcuspidata (Fabricius, 1793)
Chorizopes sp. 1*

Cyphalonotus larvatus (Simon, 1881)
Cyrtophora citricola (Forsskal, 1775)
Hypsosinga lithyphantoides Caporiacco, 1947*
Isoxya stuhlmanni (Bésenberg & Lentz, 1885)
Neoscona blondeli (Simon, 1885)
Pararaneus cyrtoscapus (Pocock, 1898)*
Prasonica albolimbata Simon, 1895

Singa albodorsata Kauri, 1950

Caponiidae

Caponia natalensis (O.P.-Cambridge, 1874)
Corinnidae

Castianeira sp. 1

Copa flavoplumosa Simon, 1885*
Corinnomma semiglabrum (Simon, 1896)*
Merenius alberti Lessert, 1923

Messapus martini Simon, 1898*

Ctenidae
Anahita sp. 1
Ctenus gulosus Des Arts, 1912

Cyrtaucheniidae

Ancylotrypa barbertoni (Hewitt, 1913)
Ancylotrypa brevipalpis (Hewitt, 1916)*
Ancylotrypa sp. 1*

Ancylotrypa sp. 2*

Ancylotrypa sp. 3*

Dictynidae

Mashimo leleupi Lehtinen, 1967
Eresidae

Paradonea sp. 1*

Gnaphosidae

Aphantaulax inornata Tucker, 1923
Asemesthes ceresicola Tucker, 1923*
Asemesthes numisma Tucker, 1923
Asemesthes purcelli Tucker, 1923

(S SN
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Species High Medium Surrounded  Control
infestation infestation

Asemesthes sp. 1* 12 10 22
Drassodes masculus Tucker, 1923 4 1
Drassodes splendens Tucker, 1923* 1
Drassodes stationis Tucker, 1923*

Pterotricha auris (Tucker, 1923) 4

Ibaba arcus (Tucker, 1923) 3

6
4
Setaphis browni (Tucker, 1923) 1
4
2
1

N = 01 = N
N

Xerophaeus bicavus Tucker, 1923
Zelotes corrugata (Purcell, 1907)

Zelotes natalensis Tucker, 1923*

Zelotes scrutatus (O.P. Cambridge 1872)*
Zelotes tuckeri Roewer 1951* 3 4 7 1
Zelotes sp. 1 1

—_

Idiopidae
Segregara mossambicus (Hewitt, 1919)* 1

Lycosidae

Arctosa transvaalana Roewer, 1960

Geolycosa natalensis Roewer, 1960 5 4 5

Hippasa australis Lawrence, 1927 8 10 11

Hogna sp. 1 13 20 4 1
Hogna transvaalica (Simon, 1898) 67 45 19 39
Lycosa sp. 1 1

Lycosidae sp. 1 58 47 12 34
Ocyale guttata (Karsch, 1876)

Pardosa crassipalpis Purcell, 1903* 2 3 4
Pardosa sp. 2* 5 1 5
Trabea purcelli Roewer, 1951

N © w =

—_ N O =

Miturgidae
Cheiracanthium furculatum Karsch, 1879 1
Cheiramiona krugerensis Lotz, 2002 1 4 1

Oxyopidae

Oxyopes falconeri Lessert, 1915* 1 1 2
Oxyopes hoggi Lessert, 1915* 1 2

Oxyopes jacksoni Lessert, 1915

Oxyopes longispinosus Lawrence, 1938 1

Oxyopes pallidecoloratus Strand, 1906 1
Oxyopes schenkeli Lessert, 1927 1 1 1
Oxyopes sp. 2

Peucetia viridis (Blackwall, 1858) 1

Palpimanidae

Diaphorocellus biplagiatus Simon, 1893 2
Palpimanus transvaalicus Simon, 1893 5 4 3 2

N =N =N =

'y

Philodromidae

Hirriusa variegata (Simon, 1895) 3 2
Philodromus sp. 1 1 1 1

Suemus punctatus Lawrence, 1938 1 2 3 4

Pholcidae
Smeringopus natalensis Lawrence, 1947 1
Spermophora sp. 1* 1
Pisauridae

Afropisaura rothiformis (Strand, 1908)
Euprosthenops australis Simon, 1898 5 2

—_
-
N
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Species

High
infestation

Medium
infestation

Surrounded

Control

Euprosthenopsis pulchella (Pocock, 1902)*
Maypacius bilineatus (Pavesi, 1895)*

Prodidomidae
Austrodomus zuluensis Lawrence, 1947*

Salticidae

Aelurillus sp. 1

Baryphas ahenus Simon, 1902

Evarcha dotata (Peckham & Peckham, 1903)
Hyllus argyrotoxus Simon, 1902*

Hyllus treleaveni Peckham & Peckham, 1902~
Langelurillus sp. 1*

Langona manicata Simon, 1901*

Mexcala rufa Peckham & Peckham, 1902 sp. 1*
Natta chionogastra (Simon, 1901)*
Stenaelurillus guttiger (Simon, 1901)*
Stenaelurillus nigricaudus Simon, 1885*
Stenaelurillus sp. 3*

Stenaelurillus sp. 4*

Thyene coccineovittata (Simon, 1885)
Thyenula aurantiaca (Simon, 1902)*

Scytodidae

Scytodes constellata Lawrence, 1938*
Scytodes trifoliata Lawrence, 1938*
Sicariidae

Loxosceles spiniceps Lawrence, 1952
Sparassidae

Olios correvoni Lessert, 1921

Olios machadoi Lawrence, 1952*
Olios tuckeri Lawrence, 1927*
Panaretella zuluana Lawrence, 1937*
Panaretella sp. 1

Tetragnathidae
Leucauge festiva (Blackwall, 1866)

Theraphosidae

Augacephalus breyeri (Hewitt, 1919)
Ceratogyrus darlingi Pocock, 1897
Ceratogyrus dolichocephalus Hewitt 1919
Idiothele nigrofulva (Pocock, 1898)
Pterinochilus lugardi Pocock, 1900*

Theridiidae

Argyrodes convivans Lawrence, 1937
Chorizopella tragardhi Lawrence, 1947*
Dipoena sp. 1*

Euryopis sp. 1

Latrodectus geometricus C.L. Koch, 1841
Thomisidae

Diaea puncta Karsch, 1884*

Heriaeus fimbriatus Lawrence, 1942*
Monaeses pustulosus Pavesi, 1895
Monaeses quadrituberculatus Lawrence, 1927
Runcinia flavida (Simon, 1881)

2
1
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Species

High
infestation

Medium
infestation

Surrounded Control

Simorcus cotti Lessert, 1936
Stiphropus bisigillatus Lawrence, 1952*
Thomisops pupa Karsch, 1879
Thomisus daradioides Simon, 1890
Thomisus granulatus Karsch, 1880
Xysticus lucifugus Lawrence, 1937*

Uloboridae
Miagrammopes longicaudus (O.P.-Cambridge, 1882)

Zodariidae

Capheris decorata Simon, 1904
Cydrela schoemanae Jocqué, 1991
Cydrela sp. 1*

Ranops caprivi Jocqué, 1991

_ a O,

—_

Total Araneae/treatment
Total Araneae

304
1051

284

170 293

Total arthropods

3213
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