TABLE 6.5 - TRAVEL TIMES SIMULATED BY THE MST (IN SECONDS) OF THE VEHICLES BETWEEN STATIONS 4 AND 5 OF TEST SECTION no. 568 (PRIMARY LANE)

VEHICLE CLASS	RANGE		ME 444	STANDARD	VADTANCE	COEFFICIENT OF	No. OBSERVATIONS
	MINIMUM	MAXIMUM	MEAN	DEVIATION	VARIANCE	VARIATION	NU. UBSERVATIONS
1	20.54	33.52	24,78	3,39	11.49	13.7	13
2	21.57	34.31	25,91	3.73	13,91	14.4	13
3	-	-	-	-	-	-	-
4	25.63	44.74	35,44	5,58	31.14	15.7	14
5	-	-	-	-	-	-	-
6	33.76	36.04	35.15	1.00	1.00	2,8	3

TABLE 6.6 - TRAVEL TIMES SIMULATED BY THE MST (IN SECONDS) OF THE VEHICLES BETWEEN STATIONS 3 AND 2 OF TEST SECTION No. 568 (OPPOSITE LANE)

VEHICLE CLASS	RANGE	RANGE		STANDARD		COEFFICIENT OF	
	MINIMUM	MAXIMUM	MEAN	DEVIATION	VARIANCE	VARIATION	No. OBSERVATIONS
1	23.55	41.05	28.03	4.19	17.55	14.9	13
2	26.80	36.04	30.71	3.11	9.67	10,1	12
3	-	-	-	-	-	-	-
4	26.06	44.25	36.31	5.14	26.41	14.2	23
5	28.84	37.40	33.56	3.06	9.36	9.1	5
6	25.03	41.18	33.34	5.86	34.33	17.6	5
					5		

The vehicle classes are as follows:

k	= 1 - cars
k	= 2 - utilities
k	= 3 - light trucks
k	= 4 - medium trucks
k	= 5 - buses
k	= 6 - heavy trucks

 Y_{1kj} and Y_{2kj} are respectively defined as being:

 $Y_{1kj} = X_{1kj} - \overline{X}_{1k}$

and

$$Y_{2kj} = X_{2kj} - \overline{X}_{2k}$$

The Bartlett method, presented in Table 6.7, uses the following notations as definitions of the variances of each sample:

$$s_{1k}^{2} = \sum_{j=1}^{n_{1k}} Y_{1kj}^{2} / (n_{1k}^{-1})$$

and
$$s_{2k}^{2} = \sum_{j=1}^{n_{2k}} Y_{2kj}^{2} / (n_{2k}^{-1})$$

The results of the Bartlett test are presented in Table 6.8. Comparing the corrected statistic χ^2 , which was calculated in Table 6.8 with the χ^2 from the table for the eight vehicle classes (3 in the primary lane and 5 in the opposite lane), the conclusion is drawn that the variances of the speeds observed and those obtained

62

TABLE 6.7 - BARTLETT TEST OF HOMOGENEITY OF VARIANCES OF TWO SAMPLES

SAMPLE	Σ Y ² ik	DEGREES OF FREEDOM (d.f.)	1/d.f.	S² ik	log S ² ik	(d.f.) log S ² ik
1	ⁿ ik Σ Y ² j=1 ^{1kj}	n _{1k} - 1	1/(n _{1k} -1)	S ² 1k	log S ² 1k	(n _{1k} - 1) log S ² 1k
2	ⁿ 2k Σ Y ² j=1	n _{2k} - 1	1/(n _{2k} -1)	S² 2k	log S ² 2k	(n _{2k} - 1) log S ² _{2k}
SUM	W _{YY}	2 Σ (n _{ik} - 1) i=1	2 Σ 1/(n _{ik} -1) i=1			2 Σ (n _{ik} -1)log S ² ik i=1

Notes: (1) The estimate of combined variance is given by:

$$s_{ik}^{2} = W_{YY} / \sum_{k=1}^{2} (n_{ik} - 1)$$

(2) The test uses the statistic χ_1^2 described below:

$$X_{1}^{2} = (ln \ 10) \left[B - \sum_{i=1}^{2} (n_{ik} - 1) \log S_{ik}^{2}\right]$$

Where: B

(3) The following correction factor can be used:

$$C = 1 + [1/3 (2-1)] \left\{ \sum_{i=1}^{2} [1/(n_{ik} - 1)] - 1 \right\} / \sum_{i=1}^{2} (n_{ik} - 1)$$

(4) Finally,
$$\chi_1^2$$
 corrected = (1/C) χ_1^2

If
$$\chi_1^2 \stackrel{>}{\xrightarrow{}} \chi_1^2$$
 (1-k)2, i.e. , χ^2 from the table, the hypothesis

 $H_0: \sigma_1^2 = \sigma_2^2$ will be rejected.

through simulation are not statistically different, for the majority of the classes.

6.4.2 Test of Equality of Two Means

In the test of equality of two means (Hamburg, 1974), there are two hypotheses:

$$H_{0} : \mu_{1k} - \mu_{2k} = 0$$
$$H_{1} : \mu_{1k} - \mu_{2k} \neq 0$$

where:

- µ = mean of the travel times of the vehicle population
 of class k;
- $\mu_{2\,k}$ = mean of the simulated travel times of the vehicles of class k.

To test the null hypothesis, the statistic t_k is used:

$$t_{k} = \frac{(\overline{x}_{1k} - \overline{x}_{2k}) - 0}{S(\overline{x}_{1k} - \overline{x}_{2k})} = \frac{\overline{x}_{1k} - \overline{x}_{2k}}{S(\overline{x}_{1k} - \overline{x}_{2k})}$$

where:

 $S(\overline{x}_{1k}-\overline{x}_{2k})$ is the standard deviation of the difference between the two means.

Contrary to what occurs in the case of large samples, in this case it is necessary to admit the equality of the variances of the two populations. The hypothesis of this equality was submitted to the Bartlett test and could not be rejected.

An aggregate estimate of the variance is obtained by combining the variances of the two samples in a weighted mean, using as weights the numbers of degrees of freedom n_{1k} -1 and n_{2k} -1. This aggregate estimate of variance, designated by S_k^2 , is given by:

						((continued)
VEHICLE CLASS	COMPARED SAMPLES 0=OBSERVED S=SIMULATED	ΣY ² ik	DEGREE OF FREEDOM (d.f.)	1/(d.f.)	S² ik	log S ² ik	d.f. (log S ²)
		PRI	MARY LANE				-
1 SUM	D S	125.48 137.88 263.36	9 12 21	0.111 0.083 0.194	13.942 11.49	1.144 1.060	10.299 12.720 23.019
2 SUM	D S	461.07 166.92 627.99	9 12 21	0.111 0.083 0.194	51.23 13.91	1.710 1.143	15.385 10.287 25.672
3 SUM	D S	582.66 - 582.66	9 - 9	0.111 - 0.111	64.74 -	1.811 -	16.300 - 16.300
4 SUM	D S	1769.44 404.82 2174.26	8 13 21	0.125 0.076 0.201	221.18 31.14	2.345 1.493	18.758 19.409 38.167
5	D S	368.78	9	0.111	40.976	1.613	14.513
SUM	5	368.78	9	0.111	40.976	- 1.613	14.513
6 SUM	D S	- 2.00 2.00	- 2 2	- 0.50 0.50	- 1.00	- 0.00	0.00
		OPPOS	ITE LANE				
1 SUM	D S	201.75 210.60 412.35	9 12 21	0.111 0.083 0.194	22.417 17.55	1.351 1.244	12.155 14.928 27.083
2 SUM	D S	73.23 106.37 179.60	9 11 20	0.111 0.090 0.201	8.137 9.67	0.910 0.985	8.194 10.835 19.029
3 SUM	D S	153.79 - 153.79	9 - 9	0.111 - 0.111	17.088 - 17.088	1.233 - 1.233	11.094 - 11.094
4 SUM	D S	92.02 581.02 673.04	9 22 31	0.111 0.045 0.156	10.224 26.41	1.010 1.421	9.087 31.262 40.349
5 SUM	D S	357.49 37.44 394.93	9 4 13	0.111 0.25 0.361	39.721 9.36	1.599 0.971	14.389 3.884 18.273
6 SUM	D S	128.45 137.32 265.77	9 4 13	0.111 0.25 0.361	14.272 34.33	1.154 1.535	10.390 6.14 16.530

TABLE 6.8 - APPLICATION OF THE BARTLETT TEST OF EQUALITY OF TWO VARIANCES -TEST SECTION No. 568

TABLE 6.8 - APPLICATION OF THE BARTLETT TEST OF EQUALITY OF TWO VARIANCES - TEST SECTION No. 568

				(Conclusion)
VEHICLE CLASS	ESTIMATE OF COMBINED VARI- ANCE (S ² _k)	B=(log S _k)Σ (n _{ik} -1) i=1	² X _(i-1) =log _e 10∫B- ²∑ _{∑1} (n _{ik} -1)log S²]	$C=1+\{1/3(2-1)\left[\sum_{i=1}^{2} 1/(n_{ik}-1)-1/\sum_{i=1}^{2} (n_{ik}-1)\right]\}$	2 X CORRECT- ED
			PRIMARY LANE		
1	12.54	23.06	0.094	0.987	0.095
2	29.90	30.99	12.246	0.987	12.407
3	-	-	-	-	-
4	103.54	42.32	9.563	0.987	9.689
5	-	-	-	-	-
			OPPOSITE LANE		
1	19.636	27.153	0.161	0.987	0.163
2	8.98	19.066	0.085	0.987	0.086
3	-	-	-	-	-
4	21.711	41.437	2.505	0.991	2,528
5	30.379	19.273	2.303	0,984	2,340
6	20.444	17.373	1.941	0,984	1.973
				I	

66

$$S_{k}^{2} = \frac{\binom{n_{1}k^{-1}}{5k} + \binom{n_{2}k^{-1}}{2k}}{\binom{n_{1}k^{+1}}{2k} - 2}$$

The estimate of the standard deviation of the difference between the two means is therefore:

$$S_{\overline{x}_{1k}} = \sqrt{\frac{S_{k}^{2} + S_{k}^{2}}{n_{1k}}} = S_{k} \sqrt{\frac{1}{n_{1k}} + \frac{1}{n_{2k}}}$$

The results of the application of this test are found in Table 6.9.

The test of equality of the means indicates that there are no significant differences between the mean travel times observed and those simulated.

On the basis of the tests carried out (equality of means and variances), the conclusion can be drawn that the MST adequately simulates the behavior of the vehicles and constitutes a valid model for all classes of vehicles.

TABLE 6.9 - TEST OF EQUALITY OF TWO MEANS - TEST SECTION No. 568

	CALCU	LATED DATA			TABLES		
CLASS (k)					t _k FROM THE TABLE	LEVEL OF SIGNIFICANCE	
	n _{1k}	• ⁿ 2k					
			PRIMARY LANE	•			
1	10	13	+ 0.216	23	1.714	0.10	
2	10	13	+ 0,588	23	1.714	0.10	
3	10	-	-	-	-	-	
4	9	14	+ 0.492	23	1.714	0.10	
5	10	-	-	-	-	-	
6	-	3		-	-	-	
		1	OPPOSITE LANE		1	1	
1	10	13	+ 0,150	23	1.714	0,10	
2	10	12	- 0,874	22	1.717	0,10	
3	10	-	-	-	-	-	
4	10	23	- 0.753	33	1.693	0.10	
5	10	5	- 0.376	15	1.753	0.10	
6	10	5	- 0,503	15	1.753	0.10	