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Using Large Data Sets to Forecast House Prices:

A Case Study of Twenty U.S. States
Rangan Gupta, Alain Kabundi, and Stepben M. Miller

Several Bayesian and classical models are used to forecast house prices in 20 states in
the United States. There are two approaches: extracting common factors (principle
components) in a factor-augmented vector autoregressive or factor-augmented Bayesian
vector autoregressive models or Bayesian shrinkage in a large-scale Bayesian vector
autoregressive models. The study compares the forecast performance of the 1976:Q1 to
1994:Q4 in-sample period to the out-of-sample horizon 1995:Q1 to 2009:Q1 period. The
findings provide mixed evidence on the role of macroeconomic fundamentals in
improving the forecasting performance of time-series models. For 13 states, models that
include the information of macroeconomic fundamentals improve the forecasting
performance, while for seven states they do not.

This paper considers the dynamics of real house prices and the ability of different pure
time-series models to forecast real house prices with two main foci. First, it considers
how the researcher can incorporate large data sets into forecasting equations, using
dynamic factor analysis or shrinking large-scale Bayesian vector autoregressive (BVAR)
models. Second, it also considers the role of spatial priors in the BVAR models. The
process is illustrated using house prices from the 20 most-populous states in the United
States: Arizona, California, Florida, Georgia, Illinois, Indiana, Massachusetts, Maryland,
Michigan, Missouri, North Carolina, New Jersey, New York, Ohio, Pennsylvania,
Tennessee, Texas, Virginia, Washington, and Wisconsin.'

While the paper focuses largely on forecast performance of various time-series models,
the specific application proves important for macro and regional economists when
considering the business cycle. That is, the housing sector provides a key factor in
predicting the business cycle in the post World War II period. Leamer (2007, p. 149)
argues that “Housing és the Business Cycle.” He performs a battery of empirical analyses
on the business cycle, which he calls the consumer cycle because of the importance of
residential investment and durable consumption spending in explaining the onset of
recessions. Excluding the most recent Great Recession that he did not consider,
residential investment and durable consumption experienced significant problems before
the beginning of eight of the ten post World War II recessions.

Leamer (2007) argues that the characteristics of the housing market make it a crucial
factor in explaining recessions. Basically, the stock-flow nature of the housing market and
the reluctance of home owners to lower their prices in a weak market provide the setting
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for cyclical movement in sales volume. And the cyclical movement in sales volume implies
cyclical movements in housing construction and employment. When the economy booms,
construction and employment in the housing sector expand, along with increases in
nominal house prices. During the contraction, nominal house prices fall sluggishly and
most of the adjustment arises through decreases in sales volume and, thus, construction
and employment activity in housing. The Great Recession proved the exception as
nominal house prices dropped dramatically around the U.S. Although nominal house
prices typically fall sluggishly, real house prices do fall during recessions as general
inflationary trends reduce real house prices even with sticky nominal house prices. The
analysis here focuses on forecasting real house prices.

In sum, during a boom period, developers overbuild the supply of new housing. The size
of the excess building, which depends on the strength and length of the boom, will help
to determine the length of the next recession. Good monetary policy requires action
before the overbuilding goes too far and necessitates central bank intervention early in
the boom period, when political pressure probably weighs against monetary policy
restraint. That is, understanding and forecasting movements in the housing market plays
a critical role for monetary policy authorities.

Further, movements in real housing prices at the regional level can provide important
information regarding the regional business cycle, as well as can assist in predicting shifts
in housing construction and employment activity between regions due to changes in
relative regional house price. Regions with rising relative housing prices will attract
construction and employment resources from regions with falling relative house prices.?
Developers and builders can benefit from good information on the future movements in
house prices.

This paper examines the explanatory power of including information from a large set of
economic variables that potentially affect house prices, using dynamic factors or Bayesian
shrinkage approaches. It compares the out-of-sample forecasting performance of various
time-series models: vector autoregressive (VAR), factor-augmented VAR (FAVAR), and
various Bayesian time-series models with spatial priors. The spatial priors assume that
spillover effects between contiguous states exert more influence than spillover effects
between non-contiguous states. Spatial Bayesian VAR (SBVAR), spatial Bayesian FAVAR
(SFABVAR), and spatial large-scale BVAR (SLBVAR) models are estimated (LeSage, 2004;
Gupta and Miller, forthcoming b). The first set of tests compares the out-of-sample
forecasting performance of the various models, using the root-mean-squared-error (RMSE)
criteria. The second set of tests performs recursive forecasts to see if the best models can
forecast the turning points—peaks and troughs—observed in most states over the 2005
to 2009 period at the end of the sample.

The spatial factor-augmented models perform the best across the half of the 20 states,
using the average root-mean-squared-error (RMSE) criteria. The models that exclude the
information from the large data set (i.e., SBVAR models) perform the best in seven states.
Large-scale models perform the best in the final three states. The FAVAR models do not
achieve the best forecasting performance for any of the 20 states. The recursive forecasts
mimic the movement in actual house prices, but generally do not anticipate turning points
(peaks or troughs).
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The rest of the paper is organized as follows. Section 2 provides a brief review of the
literature on using large data sets in forecasting models. Section 3 discusses the literature
on forecasting house prices. Section 4 specifies the various time-series models estimated
and used for forecasting. Section 5 discusses the data and the results. Section 6 concludes.

Forecasting with Large Data Sets

Time-series models generally perform as well as or better for forecasting purposes than
dynamic structural econometric specifications. Zellner and Palm (1974) provide the
theoretical rationalization.> An important issue involves determining how additional
information can or cannot improve the forecasting performance over a simple univariate
autoregressive or autoregressive-moving-average representation.

A simple approach uses an autoregressive distributed lag (ARDL) model (Stock and
Watson, 1999, 2003, 2004). That is, the researcher runs an ARDL, or transfer function,
model, where the variable to forecast enters as an autoregressive process and one driver
variable enters as a distributed lag. The researcher compares the baseline model, the pure
autoregressive specification forecasts with the forecasts for the ARDL specification.
Extending this further, the researcher can repeat the process for a whole series of
potential driver variables. In this extended case, one aggregates across all of the individual
forecasts to generate the combined forecast. Combination forecasts range from simple
means or medians to more complicated principal-components- or mean-square-forecast-
error-weighted forecasts.

Another method uses ‘‘atheoretical” VAR models. These models do not impose
exogeneity assumptions on the included variables. Unlike the single-equation ARDL
model, the VAR approach assumes that the lagged values of each variable may provide
valuable information in forecasting each endogenous variable. VAR models, however, face
problems of over-parameterization, since the number of parameters used in the estimation
increases dramatically with additional variables or additional lags in the system. Given this
problem, one approach for using more data in the VAR model involves the extraction of
common factors from a large data set that researchers can then add to a more compact
VAR specification (Bernanke, Boivin, and Eliazs, 2005; Stock and Watson, 2002, 2005).
Adding a couple of common factors from the large dataset to a VAR system economizes
on the number of new parameters to estimate.

BVAR models address the over-parameterization problem by specifying a small number
of hyper-parameters that provide linkages between all the parameters in the system. Since
the Bayesian approach already solves the over-parameterization problem, researchers can
add a large set of variables to the estimation of a BVAR system, obviating the need to
extract common factors. Nothing prevents, however, the extraction of common factors
from the large set of macroeconomic variables to include in a factor-augmented VAR
system, which is done in models presented here.

The ADRL method uses information in the large dataset one variable at a time and then
aggregates across all forecasts. As a result, this approach does not differentiate between
common factors and non-common factors in the large dataset. Each exhibits the same
effect on the forecast, over and above the autoregressive part of the model. Different
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weighting schemes for the combination forecasts can increase or decrease the relative
importance of the variables, however. In the factor-augmented approach, the researcher
potentially leaves information on the table by only extracting the common factor
information and leaving the remaining information out of the analysis. On the other hand,
the Bayesian approach, includes all the information from the large set of data, but restricts
the estimation by imposing conditions on the parameters of the estimating equation. In
sum, all methods introduce restrictions on the way information from the large dataset
affects the estimation process. Thus, any of the individual approaches may lead to better
forecasts, a priori.

This paper considers the factor-augmented and large-scale Bayesian methods for
incorporating the information from a large dataset. These methods provide the natural
extension of the VAR and BVAR models. The ARDL model involves a single-equation,
whereas the VAR and BVAR models involve multiple equations. Thus, the ARDL approach
is excluded from the analysis.

Note that the use of fundamentals in the factor-augmented (FAVAR and SFABVAR) and
SLBVAR models does not imply structural modeling. Rather, the factor-augmented
approach extracts principle components from the large data set that is used in a time-
series modeling exercise. The large scale model takes advantage of Bayesian shrinkage to
estimate huge numbers of variables that the standard VAR model cannot handle because
of degrees of freedom issues. In sum, this paper compares the forecasting performance
of different time-series models that include a large set of macroeconomic variables and
use spatial priors.

Forecasting House Prices

The housing market and its cycle play important roles in understanding the business cycle.
Several authors argue that asset prices help forecast both inflation and output (Forni,
Hallin, Lippi, and Reichlin, 2003; Stock and Watson, 2003; Gupta and Das, 2008, 2010;
and Das, Gupta, and Kabundi, 2009, 2010, 2011). Since homes imbed much individual
wealth, house price movements may provide important signals for consumption, output,
and inflation. Thus, housing market adjustments play an important role in the business
cycle (Iacoviello and Neri, 2010), not only because housing investment proves a volatile
component of demand (Bernanke and Gertler, 1995), but also because house price
changes generate important wealth effects on consumption (International Monetary Fund,
2000) and investment (Topel and Rosen, 1988). Leamer (2007) states an even stronger
case, as we noted above, arguing that housing is the business cycle.

Models that forecast real house prices can give policymakers and other stake holders an
idea about the future direction of the overall macro or regional economies, and hence,
can provide important information for designing better and more-appropriate policies.
Leamer (2007) notes that the housing market predicted 8 of the 10 post World War II
recessions. If he wrote his paper today, the analysis probably would argue that the
housing market predicted 9 of the 11 post World War II recessions. In other words, the
housing sector acts as a leading indicator for the real sector of the economy. The recent
world-wide credit crunch began with the collapse of the house-price bubble, which, in
turn, led the real sector of the world’s economy toward an economic slump.
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A large number of economic variables affect house prices (Abraham and Hendershott,
1996; Cho, 1996; Johnes and Hyclak, 1999; and Rapach and Strauss, 2007, 2009). For
instance, income, interest rates, construction costs, labor market variables, stock prices,
industrial production, consumer confidence index, and so on act as potential predictors.

Rapach and Strauss (2007, 2009) consider forecasting house prices in states, using a large
data set of economic variables. Rapach and Strauss (2007) use an autoregressive
distributed lag (ARDL) model framework, containing 25 determinants, to forecast real
house price growth for the individual states of the Federal Reserve’s Eighth District:
Arkansas, Illinois, Indiana, Kentucky, Missouri, Mississippi, and Tennessee. Given the
difficulty in determining a priori the particular variables that prove the most important
in forecasting real house price growth, the authors also use various methods to combine
the individual ARDL model forecasts, which result in better forecast of real house price
growth. Rapach and Strauss (2009) perform the same analysis for the 20 largest U.S. states
based on ARDL models containing 29 to 35 potential predictors, including state, regional,
and national level variables. Once again, the authors reach similar conclusions on the
importance of combining forecasts.

Vargas-Silva (2008a) uses a FAVAR model, containing 120 monthly series, to analyze the
effect of monetary policy actions on the housing sector of four different regions of the
U.S. This is the first attempt to look into the ability of FAVARs in forecasting regional real
house prices.? Das, Gupta, and Kabundi (2010) consider the forecasting performance of
regional real house price growth rates in the nine U.S. Census regions, using FAVAR and
LBVAR models. They find that the FAVAR models generally outperform the LBVAR
models.

The current paper extends the above mentioned studies, in the sense that it uses large-
scale models that allow for not only the role of a wide possible set of fundamentals to
affect the housing sector, but also spatial influences amongst the prices of the 20 largest
U.S. states. The forecasting exercise includes the dramatic run up and collapse in house
prices in recent years.

VAR, BVAR, FAVAR, BFAVAR, and LBVAR Specifications and Estimation®

VAR, BVAR, and LBVAR. An unrestricted VAR model, following Sims (1980), is written
as follows:

v, =A, + ALy, + ¢, ¢))

where y equals a (n X 1) vector of variables to forecast; 4, equals an (7 X 1) vector of
constant terms; A(L) equals an (n X n) polynomial matrix in the backshift operator
L with lag length p,° and & equals an (n X 1) vector of error terms. It is assumed that
e ~ N, o), where I, equals an (n X n) identity matrix.

The VAR method typically uses equal lag lengths for all variables, which implies that the
researcher must estimate many parameters, including many that prove statistically
insignificant. This over-parameterization problem can create multicollinearity and a loss
of degrees of freedom, leading to inefficient estimates, and possibly large out-of-sample
forecasting errors. Some researchers exclude lags with statistically insignificant
coefficients. Alternatively, researchers use near VAR models, which specify unequal lag
lengths for the variables and equations.
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Litterman (1981), Doan, Litterman, and Sims (1984), Todd (1984), Litterman (1986), and
Spencer (1993) use the BVAR model to overcome the over-parameterization problem.
Rather than eliminating lags, the Bayesian method imposes restrictions on the coefficients

across different lag lengths, assuming that the coefficients of longer lags may more closely
approach zero than the coefficients on shorter lags. If, however, stronger effects come
from longer lags, the data can override this initial restriction. Researchers impose the
constraints by specifying normal prior distributions with zero means and small standard
deviations for most coefficients, where the standard deviation decreases as the lag length
increases and implies that the zero-mean prior holds with more certainty. The first own-
lag coefficient in each equation typically proves the exception with a unitary mean.

Finally, Litterman (1981) imposes a diffuse prior for the constant. The ‘‘Minnesota prior”’
is used in the analysis discussed here, where Bayesian variants of the classical VAR models
@)

are employed.”
where (B, equals the coefficients associated with the lagged dependent variables in each
equation of the VAR model (i.e., the first own-lag coefficient), while Bj equals any other

coefficient. The prior specification reduces to a random walk with a drift model for each

Bl’ ~ N(17 O’f%,) and B] -~ N(Oa a-zﬁj)v
variable, if all variances are set to zero. The prior variances, a'fgl_ and a’f;j, specify

Formally, the means of the Minnesota prior take the following form:

uncertainty about the prior means, 8; = 1, and ; = 0.
depend on a small numbers of hyper-parameters: w, d, and a weighting matrix f(7, j) to
reduce the over-parameterization in the VAR models. This approach specifies individual
prior variances for a large number of coefficients, using only a few hyper-parameters. The

specification of the standard deviation of the distribution of the prior imposed on variable

7 in equation (3) at lag m, for all 7, j, and m, equals S(Z, j, m), defined as follows:

Doan, Litterman, and Sims (1984) propose a formula to generate standard deviations that
€)

>

’

S

SG, j, m) = [w X gm) X [(G, p]
J

where f(i, j) = 1, if i = j and k,; otherwise, with (0 = &,; = 1), and g(m) = m~“, with
d > 0. The estimated standard error of the univariate autoregression for variable 7 equals
0;. The ratio G,/0; scales the variables to account for differences in the units of
measurement and, hence, causes the specification of the prior without consideration of
the magnitudes of the variables. The term w indicates the overall tightness, with the prior
getting tighter as the value falls. The parameter g(m2) measures the tightness on lag m
with respect to lag 1, and equals a harmonic shape with decay factor d, which tightens
the prior at longer lags. The parameter f(7, j) equals the tightness of variable j in equation
i relative to variable 7, and by increasing the interaction (i.e., the value of R, the prior
is loosened.® The overall tightness (w) and the lag decay (d) hyper-parameters equal 0.1
and 1.0, respectively, in the standard Minnesota prior, while £,; = 0.5, implying a 20 X
20 weighting matrix (F) for the 20 states with ones down the diagonal and 0.5 in all the

off-diagonal positions.
Since researchers believe that the lagged dependant variable in each equation proves most

important, the diagonal elements of F impose 3; = 1 loosely. The S; coefficients, however,
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- Exhibit 1. United States

that associate with less-important variables receive off-diagonal elements (i.e., k,; = 0.5)
in the weighting matrix (F) that impose prior means of zero more tightly. Since the
Minnesota prior treats all variables in the VAR, except for the first own-lag of the
dependent variable, in an identical manner, several researchers attempt to alter this fact.
Usually, this means increasing the value for the overall tightness (w) hyper-parameter
from 0.10 to 0.20, so that more influence comes from other variables in the model. In
addition, Dua and Ray (1995) introduce a prior that imposes fewer restrictions on the
other variables in the VAR model (i.e., w = 0.30 and d = 0.50).

Alternatively, LeSage and Pan (1995) propose spatial BVAR (SBVAR) models. They adopt
a weight matrix that uses the first-order spatial contiguity (FOSC) prior, implying a non-
symmetric F matrix with more importance given to variables from neighboring states
than those from non-neighboring states. Exhibit 1 maps the locations of the 20 states.
They impose a value of one for both the diagonal elements of the weight matrix, as in
the Minnesota prior, as well as for place(s) that correspond to variable(s) from states with
which the specific state shares a common border(s). For the elements in the F matrix
that correspond to variable(s) from states that do not share common borders, Lesage and
Pan (1995) impose a weight of 0.1. The 0.5 weights in the specification of the 20 X 20
weighting matrix () become 1.0 for neighbors and 0.1 for non-neighbors.

In the current application, the large data set of national and regional variables includes
171 quarterly series, house prices in the 20 largest states, as well as 151 macroeconomic
variables.” Logic and prior research argues that state-level variables should exert minimal,
if any, effect on national indicators, while the latter set of variables surely influences the
former. Thus, setting &, = 0.5 seems unrealistic. Hence, borrowing from the BVAR
models used for regional forecasting, involving both regional and national variables, such
as Kinal and Ratner (1986), Shoesmith (1992), Dua and Ray (1995), Das, Gupta, and



168 RANGAN GUPTA, ALAIN KABUNDI, AND STEPHEN M. MILLER

Kabundi (2009, 2010), and Gupta and Kabundi (2010, forthcoming), the weight of a
national variable is set in a national equation, as well as a state equation, at 0.6. The
weight of a state variable is set in other state equation at 0.1 and in a national equation
at 0.01. Finally, the weight of the state variable is set in its own equation at 1.0. These
weights implement Litterman’s circle-star structure. Star (national) variables affect both
star and circle (state) variables, while circle variables primarily influence only other
circle variables.'” Thus, the large-scale BVARs are estimated with asymmetric priors,
incorporating spatial influences, as well as unequal influences amongst the state- and
national-level variables.

The alternative BVARs are estimated, based on 20 or 171 variables, using Theil’s (1971)
mixed estimation technique. Essentially, the method involves supplementing the data with
prior information on the distribution of the coefficients. The number of observations and
degrees of freedom increase artificially by one for each restriction imposed on the
parameter estimates. Thus, the loss of degrees of freedom from over-parameterization in
the classical VAR models does not emerge as a concern in the alternative BVAR
specifications.

FAVAR and BFAVAR. This paper also uses the Dynamic Factor Model (DFM) to extract
common components between macroeconomic series and then uses these common
components to forecast real house prices of the 20 largest U.S. states, adding the extracted
factors to the 20-variable VAR model to create a FAVAR in the process. Furthermore, an
idiosyncratic component is estimated (see below) with AR(p) processes, as suggested by
Boivin and Ng (2005).

The DFM expresses individual times series as the sum of two unobserved components: a
common component driven by a small number of common factors and an idiosyncratic
component for each variable. The DFM extracts the few factors that explain the co-
movement of the U.S. economy. Forni, Hallin, Lippi, and Reichlin (2005) demonstrate
that for a small number of factors relative to the number of variables and a heterogeneous
panel, the factors can be recovered from present and past observations.

Consider a # X 1 covariance stationary process Y, = (¥,,,..., ¥,,,)’- Suppose that X, equals
the standardized version of Y, (i.e., X, possesses a mean zero and a variance equal to
one). Under DFM, X, can be written as the sum of two orthogonal components as follows:

X, = AP, + &, €))

where P, equals a » X 1 vector of static factors, A equals an n X r matrix of factor
loadings, and &, equals a n X 1 vector of idiosyncratic components. In a DFM, P, and
& are mutually orthogonal stationary process, while x, = AP, equals the common
component.

Since dynamic common factors are latent, they must be estimated. The estimation
technique used matters for factor forecasts. This paper adopts the Stock and Watson
(20022) method, which employs the static principal component approach (PCA) on X,.
The factor estimates, therefore, equal the first principal components of X,, (i.e., 13t =
A’X,, where A equals the n X r matrix of the eigenvectors corresponding to the r largest
eigenvalues of the sample covariance matrix i).
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A 20-variable VAR augmented by extracted common factors using the Stock and Watson
(2002b) approach is used for forecasting purposes. This approach is similar to the
univariate Static and Unrestricted (SU) approach of Bovin and Ng (2005). Therefore, the
forecasting equation to predict Y, is given by:

Yin | = g Y,

[ Pz+h:| D(L) [ Pt:| ) 6
where b equals the forecasting horizon and @®(I) equal lag polynomials, which are
estimated with and without restrictions. VAR models are special cases of equation (5), as
Boivin and Ng (2005) clearly note. The FAVAR approach should produce smaller mean
squared errors with the known factors and parameters. In practice, however, one does
not observe the factors and they must be estimated. Moreover, the forecasting equation
should reflect a correct specification. Two DFM specifications are considered: (1) FAVAR,
which includes the real house prices of the 20 states and the common static factors; and
(2) BFAVAR, which is the FAVAR specification with Bayesian restrictions on lags of the
real house prices based on the alternative types of priors outlined above.

Data Description, Model Estimation, and Results

Data

While the small-scale VAR model includes data of only the annualized real house prices
of the 20 largest U.S. states, the large-scale BVAR models and the DFMs also include the
151 quarterly national and regional series. Nominal house prices come from the Freddie
Mac database, the Conventional Mortgage Home Price Index (CMHPI). The CMHPI uses
matched transactions on the same property over time to account for quality changes and
consists of both purchase and refinance-appraisal transactions on over 33 million homes.
The state-level nominal CMHPI house price is deflated by the personal consumption
expenditure (PCE) deflator from the Bureau of Economic Analysis (BEA) to generate the
real house price series.

The remaining 151 macroeconomic variables include national and regional series.'! The
data series was collected from various sources such as the Bureau of Labor Statistics, the
Conference Board, the Global Insight database, the FREDII database of the St. Louis
Federal Reserve Bank, the U.S. Census Bureau, and the National Association of Realtors.'?

All data were transformed to induce stationarity for the FAVAR-type models before
extracting the four factors, with the number of factors determined by tests suggested by
Bai and Ng (2002) and Alessi, Barigozzi, and Capasso (2010). Non-stationary data,
however, can be used with the BVAR. Sims, Stock, and Watson (1990) indicate that with
the Bayesian approach entirely based on the likelihood function, the associated inferences
do not require special treatment for non-stationarity, since the likelihood function exhibits
the same Gaussian shape regardless of the presence of non-stationarity. Following
Banbura, Giannone, and Reichlin (2010) for the variables in the panel that are
characterized by mean-reversion, however, a white-noise prior is established (.e., Ei =
0); otherwise, the random walk prior (i.e., E,. = 1) is used. In the data set, including the
20 real house prices, there are 143 I(1) variables, which are transformed to induce
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stationarity, while the remaining 28 variables are left untransformed, since they are 1(0).
The Appendix lists these variables, as well as the transformations used prior to analyzing
the data.

The real activity group consists of variables such as industrial production, capacity
utilization, retail sales, real personal consumption, real personal income, new orders,
inventories, new housing starts (national and regional), housing sales (national and
regional), employment, average working hours, and so on. The price and inflation group
consists of variables such as the consumer price index, the producer price index, real
housing prices (national and regional), the personal consumption expenditure deflator,
average hourly earnings, exchange rates, and so on. The monetary sector group consists
of variables such as monetary aggregates, various interest rates, credit outstanding, and
so on. Amongst the 151 national and regional macroeconomic indicators, 87 variables
relate to real activity, 36 relate to prices or inflation, and 28 relate to the monetary sector.
Finally, in addition to the 20 state real house prices, the large data set also includes
national and regional (i.e., the Northeast, South, Midwest, and West) data on housing
starts and permits, home sales, real house prices, and national mobile home manufacturer
shipments.

Estimation and Results

This section reports the econometric findings. The optimal model for forecasting each
market’s house price is selected, using the minimum average root mean squared error
(RMSE) across the one-, two-, three-, and four-quarter-ahead out-of-sample forecasts.

The data sample for all 20 states runs from 1975:Q1 through 2009:Q1. First, the out-of-
sample forecasting experiment covers 1995:Q1 through 2009:Q1. Second, the recursive
forecasts begin four quarters before the peak in the house price in the 2005 to 2008
period in each state and continue to the end of the sample in 2009:Q1.

One- to Four-Quarter-Abead Forecast Accuracy Given the specification of priors in
Section 4, the alternative small- and large-scale models are estimated for the 20 states in
the sample over the period 1976:Q1 to 1994:Q4 using quarterly data. Out-of-sample one-
to four-quarters-ahead forecasts are then created for the period of 1995:Q1 to 2009:Q1,
and then forecast accuracy relative to the forecasts generated by an unrestricted 20-
variable VAR is examined. Note that the choice of the in-sample period, especially the
starting date, depends on data availability. The starting point of the out-of-sample period
follows Rapach and Strauss (2007, 2009), who observe marked differences in house price
growth across U.S. regions since the mid-1990s.

The multivariate versions of the classical VAR, spatial versions of the classical and Bayesian
FAVARSs, and spatial versions of the large-scale spatial BVARs are estimated over the period
1976:Q1 to 1994:Q4, and then a forecast is created for 1995:Q1 through 2009:Q1. Since
there are two lags, the initial two quarters from 1976:Q1 to 1976:Q2 feed the lags. The
models are re-estimated for each quarter over the out-of-sample forecast horizon in order
to update the estimate of the coefficients, before producing the four-quarters-ahead
forecasts. This iterative estimation and the four-quarters-ahead forecast procedure is
iterated for 57 quarters, with the first forecast beginning in 1995:Q1. This produced a
total of 57 one-quarter-ahead forecasts, ..., up to 57 four-quarters-ahead forecasts.'* Root
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mean squared errors (RMSE)'* were calculated for the 57 one-, two-, three-, and four-
quarters-ahead forecasts for the 20 annualized real house prices of the models. The
average of the RMSE statistic for one-, two-, three-, and four-quarters ahead forecasts are
examined over the 1995:Q1 to 2009:Q1 period.

The SBVAR, SFABVAR, and SLBVAR models are initially examined using a value of w =
0.1 and d = 1.0, and then the value is increased to w = 0.2 to account for more influences
from variables other than the first own lags of the dependant variables of the model. In
addition, as in Dua and Ray (1995), Gupta and Sichei (2006), Gupta (2006), and Gupta
and Miller (forthcoming a, forthcoming b), the SBVAR, SFABVAR, and SLBVAR models are
also estimated with w = 0.3 and d = 0.5; d = 2 is introduced to increase the tightness
on lag m. The model that produces the lowest average RMSE values is selected as the
‘optimal’ specification for a specific state.

Exhibit 2 reports the average of the one-, two-, three-, and four-quarter-ahead RMSEs across
all 20 states. The benchmark for all forecast evaluations is the VAR model forecast RMSEs.
Thus, the average RMSE for the Arizona FAVAR model of 0.973 means that the RMSE for
the FAVAR model equals only 97.3% of the RMSE for the VAR model. Several observations
emerge. First, based on the average performance across the 20 states, the spatial Bayesian
VAR models (SBVAR) exhibit the steadiest performance. They achieve the lowest average
RMSE, falling just under one, across all specifications. Moreover, the standard deviation
of the RMSEs across states also achieves the lowest values, except for the FAVAR model.
Second, although the SFABVAR models do not achieve performance on average better
than the VAR models, they do achieve the best performance in 10 of the 20 states. The
SBVAR models provide the best performance in seven states. The SLBVAR model performs
the best in three states and the FAVAR model never achieves the best performance in
any of the 20 states.”

Second, although the spatial BVAR models show the best performance on average across
the 20 states as well as the lowest standard deviation, these models only provide the best
performance in seven states: Massachusetts, Michigan, Missouri, New Jersey, New York,
Texas, and Wisconsin. The spatial factor-augmented BVAR models produce the best
performance in minimum average RMSEs in 10 states: California, Florida, Georgia, Illinois,
Indiana, North Carolina, Ohio, Pennsylvania, Tennessee, and Virginia. Although the worst
performing on average of the various models, the spatial large-scale BVAR models still
provide the best performance in three states: Arizona, Maryland, and Washington. Finally,
the factor-augmented VAR model performs almost in exact synchronization with the VAR
model; however, this model never achieves the best forecast performance for any of the
20 states.'®

Overall, different specifications yield the lowest RMSE in different states. No common
pattern emerges. Comparing the forecasting performance across states, however, the five
best performing forecast models in order from best to worst include Arizona (9.8% of the
VAR RMSE), Pennsylvania (13.7%), California (17.3%), Georgia (30.5%), and Indiana
(13.7%). The five worst performing forecast models, although the best in each state, in
order from worst to best include Missouri (97.5% of the VAR RMSE), New York (94.7%),
New Jersey (90.2%), Massachusetts (79.0%), and Michigan (73.1%). The five worst
performing forecast models are spatial BVAR models while four of the best performing
models are spatial factor-augmented BVAR models.



- Exhibit 2. One-to-Four-Quarter Ahead RMSE Forecast Errors

Model SBVAR SFABVAR SLBVAR

w=03 w=02 w=01 w=02 w=01 w=03 w=02 w=01 w=02 w=01 w=03, w=02 w=01 w=02 w=01,
Parameters VAR FAVAR d=05 d=1 d=1 d=2 d=2 d=05 d=1 d=1 d=2 d=2 d=05 d=1 d=1 d=2 d=2

AZ 0.028 0.973 1.039 1.017 1.046 1.039 1.078 0.294 0.324 0.313 0.395 0.318 0.098° 0.166 0.153 0.353  0.332
CA 0.021 0.954 0.936 0.996 1.134 1.123 1.317 0.173* 0.267 0.254 0.319 0.306 0.174 0.196 0.205 0.197 0.218
FL 0.023 0.848 1.003 1.058 1.085 1.107 1.120 1.099 0.416 0.402* 0.436 0.586 5.256 5.656 5.5650 6.324  6.113
GA 0.007 0.978 1.201 1.285 1.290 1.336 1.298 0.305* 0.486 0.861 0.832 1.095 1.371 1.661 1.661 1.826 1.855
IL 0.008 0.998 1.217 1.354 1.387 1.468 1.461 0.797 0.688 0.609 0.439* 0.570 3.472 3.738 3.738 4350 4.233
IN 0.006 1.038 1.123 1.103 1.074 1.033 0.984 0.518 0.5635 0.465 0.484 0.342° 3.747 3.685 3.662 3.167 3.286
MA 0.015 0.990 0.790° 0.807 0.944 0.811 0.984 1.198 1.526 1.563 1.510 1.5647 4.880 5.005 4.943 5.875  5.683
MD 0.016 0.977 1.033 1.064 1.124 1.110 1.219 1.745 2.323 2.864 2.040 2.803 1.188 0.862 0.651* 1.879 1.887
Mi 0.010 1.035 0.731° 0.807 0.820 0.897 0.865 1.607 1.607 1.107 1.857 1.571 7.571 7.500 7.750 7.357  7.929
MO 0.010 1.039 1.000 1.023 0.975% 1.053 0.981 2.336 2.528 2.701 2.484 2.496 6.551 4.823 4.605 3.876  3.659
NC 0.007 0.881 1.041 1.122 1.147 1.133 1.156 0.857 0.954 0.906 0.718 0.686" 1.022 1.188 1.238 1.416 1.416
NJ 0.013 1.049 0.924 0.895 0.902* 0.905 0.929 1.974 1.705 1.629 1.612 1.504 6.530 6.5643 6.480 7.131 7.082
NY 0.016 1.003 0.947° 0.983 1.027 0.987 1.029 1.649 1.049 1.114 1.598 1.549 4.475 5.042 4.768 6.150  5.376
OH 0.009 0.998 0.790 0.799 0.748 0.790 0.723 0.699 0.620* 0.651 0.658 0.631 0.731 0.771 0.665 0.790  0.693
PA 0.013 1.051 0.694 0.679 0.683 0.662 0.677 0.1372 0.218 0.275 0.316 0.312 0.837 0.945 0.964 0.957 0.975
TN 0.010 1.023 0.946 0.979 0.927 0.968 0.894 0.544 0.555 0.519 0.442% 0.445 1.764 2.097 2.124 2275  2.279
™> 0.014 1.073 0.788 0.730 0.680 0.727 0.676" 5.333 4.646 3.640 3.676 2.458 6.217 4.974 4.992 4213  4.224
VA 0.014 1.000 0.879 0.908 0.909 0.928 0.937 0.778 0.630 0.673 0.509* 0.570 0.696 0.692 0.717 1.147 1.092
WA 0.012 1.035 0.979 0.932 0.843 0.936 0.865 1.177 1.276 1.378 1.263 1.275 0.542° 0.979 0.947 1.366 1.335
Wi 0.020 1.091 0.708 0.703 0.607 0.695 0.5681* 0.807 4.211 6.209 7.345 7.494 8.668 8.838 7.786 12.346  9.939
Average 0.014 1.002 0.938 0.962 0.968 0.985 0.989 1.201 1.328 1.407 1.447 1.428 3.290 3.268 3.180 3.650 3.475
Std. Dev. 0.006 0.059 0.153 0.180 0.204 0.203 0.231 1.152 1.252 1.467 1.646 1.628 2.784 2.655 2.555 3.112 2.776

Notes: Prior to forecasting, the variables were transformed by taking the base 10 logarithm of the price index divided by the personal consumption deflator
from the national income and product accounts. The average value of the transformed variable across all states and time equals 0.242. The actual RMSE
appears in the VAR column. All other columns report the RMSE of the model forecasts relative to the RMSE of the VAR model. Thus, the value of 0.973 for
Arizona and the FAVAR model means that the FAVAR model’s RMSE equals 97.3% of the RMSE of the VAR (i.e., 0.028).

2The minimum relative root mean square error (RMSE) across the various specifications.
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Finally, if researchers want to adopt a common methodology to forecast, then the best
performing model, on average, across the 20 states is the spatial BVAR model with w =
0.3 and d = 0.5. On average, it performs at 93.8% of the VAR model, but does not achieve
the lowest variability across states. The factor-augmented VAR achieves the lowest
variability, but on average does not outperform the VAR model. That is, a common
methodology choice could choose either the VAR, factor-augmented VAR, or spatial BVAR
model. But different models achieve the best performance in different states.

Recursive Turning Point Forecasts. Nearly all of the housing markets in the 20 states
experienced a dramatic run up in prices followed by an equally dramatic fall near the
end of the sample period. In addition, near the end of the sample period most states
experienced a trough in the real house price and saw house prices rise for a few quarters.
Texas provides the exception to this pattern, where its real house price rose modestly
through the end of the sample period. The optimal forecast models were exposed to the
acid test—predicting these specific turning points (peaks and troughs), in each of the 20
states. The findings in this section are exploratory and illustrative, since only two turning
points are examined in each real house price series. More definitive turning point analysis
requires many more actual turning points to determine a success rate with some statistical
confidence.

The optimal models in Exhibit 3 use data through the fourth quarter prior to the peak in
house prices in each state and then house prices are forecasted one-quarter ahead. The
data were then updated with the new quarter and then forecasted again one-quarter
ahead. This updating and forecasting one-quarter ahead is continued through the end of
the sample in 2009:Q1.'7 The results of this forecasting experiment appear in Exhibit 3.
Exhibit 4 plots the forecast and actual real house prices in the 20 states over the recursive
forecasting period for each state.

North Carolina and Texas are excluded from an examination of the forecasting results
for the peaks in the real house price series because they experienced peaks too near the
end of the sample to draw inferences. Nevertheless, the actual and forecast values for
these states are reported in Exhibit 3 and the graphs are included in Exhibit 4. Of the
remaining 18 states, five states (Arizona, Florida, New Jersey, Tennessee, and Virginia)
saw the forecast peak occur ahead of the actual peak, usually by one quarter. Another
five states (Massachusetts. New York, Ohio, Pennsylvania, and Washington) experienced
the forecast peak simultaneously with the peak in the actual real house price. Finally, the
remaining eight states (California, Georgia, Illinois, Indiana, Maryland, Michigan, Missouri,
and Wisconsin) identified the forecast peak after the peak in the actual real house price,
usually one-quarter after.'®

Turning now to the troughs in the real house price series, Maryland, North Carolina, and
Texas are excluded either because they did not experience a trough before the end of
the sample period (Maryland) or their peaks occurred too near the end of the sample
period (North Carolina and Texas). Arizona, California, and Washington saw the forecast
of the trough occur at the same quarter as the trough in the actual house price series.
For the remaining 15 states (Florida, Georgia, Illinois, Indiana, Massachusetts, Michigan,
Missouri, New Jersey, New York, Ohio, Pennsylvania, Tennessee, Virginia, and
Wisconsin), the forecasted trough came after the actual trough in the house price series,
typically one quarter later.



Exhibit 3. Recursive Forecasts

Arizona California Florida Georgia lllinois Indiana Massachusetts
Date Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast
2004:Q4 211.6 210.3 249.0 256.8
2005:Q1 211.8 211.3 252.9 253.9
2005:Q2 212.7 210.5 257.0 258.3
2005:Q3 439.1 439.6 213.72 2115 258.1*  261.8°
2005:04 455.5 453.2 212.6 212.4° 258.0 260.6
2006:Q1 311.0 326.1 463.8 469.7 358.8 365.8 225.9 225.9 308.2 307.2 211.8 211.3 257.5 259.5
2006:Q2 316.4 318.6 465.6°  470.9 364.3 381.4 226.2 228.2 309.4 311.8 210.3 210.5 253.0 258.9
2006:03 317.2 329.2° 465.1 471.3° 365.5 383.0° 227.0 228.6 310.3 311.2 210.4 208.8 249.4 252.6
2006:04 319.9° 320.5 462.5 464.1 368.6° 3745 231.4* 2283 3145 3119 212.5 208.2 250.2 247.5
2007:Q1 316.4 326.3 453.2 455.5 363.6 373.9 231.4 230.9 3141 316.8% 2115 211.0 246.0 251.4
2007:Q2 3113 319.4 444.2 442.3 356.7 360.1 230.9 228.8 311.4 314.8 210.5 209.8 240.8 245.8
2007:Q3 303.8 314.9 430.0 432.0 3441 349.9 229.0 231.7° 308.5 310.8 208.8 208.7 235.4 238.9
2007:Q4 296.7 295.9 409.3 407.6 333.7 329.5 228.7 227.8 307.2 303.7 207.3 206.7 233.1 231.7
2008:Q1 285.1 288.5 381.8 387.9 317.5 319.2 228.0 226.5 304.0 304.8 207.7 204.6 230.2 229.5
2008:Q2 267.4 266.0 349.6 355.1 294.8 301.1 223.5 224.9 296.6 301.4 204.6 206.1 220.8 226.0
2008:03 246.7 236.4 320.5 319.2 271.0 272.0 216.8° 219.4 286.0°  287.1 199.6°  202.1 213.5°  214.0
2008:04 243.0° 231.3° 315.4>  290.9° 261.2° 2449 219.6 213.5° 290.6 275.4° 202.7 196.0° 217.6 207.6°
2009:Q1 243.8 244.9 319.5 305.4 268.2 239.3 225.7 226.5 292.7 289.5 207.1 208.7 219.8 216.4
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Exhibit 3. Recursive Forecasts (continued)

Maryland Michigan Missouri North Carolina New Jersey New York Ohio
Date Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast
2004:Q2 273.2 271.2
2004:Q3 275.4 273.2
2004:Q4 276.3 273.4 235.4 235.3
2005:Q1 276.92 272.6 236.3 234.3
2005:Q2 276.8 277.12 237.1 2355
2005:Q3 276.6 277.12 237.1*  237.5°
2005:Q4 273.4 273.8 235.8 236.9
2006:Q1 350.4 361.4 271.6 269.8 224.4 226.4 285.7 287.8 235.2 233.2
2006:Q2 355.5 352.0 265.7 268.3 223.6 228.0 287.7 291.1° 299.0 308.2 233.0 232.9
2006:Q3 358.2 364.5 262.1 261.8 2245 2275 288.0 290.1 298.0 307.3 231.3 230.0
2006:04 362.5* 356.6 263.7 256.7 227.1* 2284 290.0°  288.3 302.9 303.3 2325 229.1
2007:Q1  360.7 370.92 259.6 261.3 226.6 231.8° 288.0 290.8 303.0°  308.7% 230.5 231.8
2007:Q2 358.9 361.4 253.1 255.9 225.2 230.7 284.0 285.7 300.4 305.8 228.1 229.5
2007:Q3 353.4 359.3 244.8 249.1 2235 229.1 280.4 280.3 295.5 302.0 224.9 228.1
2007:Q4 347.9 341.0 242.2 239.5 222.7 226.4 276.8 2755 295.2 294.4 223.0 2235
2008:Q1 338.9 343.6 240.6 237.4 2211 224.2 2725 272.0 294.0 2925 223.3 220.6
2008:02 325.8 3211 229.7 236.3 216.9 222.6 232.4 232.9° 263.0 267.4 287.3 289.8 218.2 221.7
2008:03 311.1 317.2 219.3>  224.6 211.7°  216.6 228.1°  230.9 253.7°  254.7 277.9>  279.3 211.4° 21741
2008:04 311.2 293.6 2211 210.9° 216.0 209.4° 232.1 225.0° 255.8 244.3° 280.8 271.3° 215.6 208.8°
2009:Q1 309.9° 279.4° 228.2 219.3 219.2 218.2 235.1%  228.9 256.1 253.5 284.7 281.4 221.6 215.8
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Exhibit 3. Recursive Forecasts (continued)

Pennsylvania Tennessee Texas Virginia Washington Wisconsin

Date Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast Actual Forecast
2006:Q1 319.4 322.2 287.7 292.6
2006:Q2 274.2 273.1 323.1 327.7 285.8 295.9
2006:Q3 275.8 272.9 219.3 217.7 323.4 331.12 285.5 294.8
2006:Q4 279.4 273.8 223.9 220.1 328.0° 327.0 430.5 423.0 289.4° 296.1
2007:Q1 279.92 279.6° 223.7 223.6° 326.4 330.3 434.5 436.7 287.8 301.6°
2007:Q2 279.2 276.6 225.1° 223.2 325.0 325.8 436.9 434.3 285.4 298.5
2007:Q3 277.4 2745 2245 223.6° 320.6 323.7 437.32 444.6° 283.1 295.4
2007:Q4 276.0 270.3 224.0 223.3 316.4 313.9 436.0 428.0 282.1 290.2
2008:Q1 275.8 2711 223.9 2215 312.0 311.7 430.7 426.3 280.8 288.1
2008:Q2 270.2 2725 221.2 219.7 178.0 177.5 301.6 303.7 420.2 414.7 274.6 286.2
2008:Q3 264.0° 264.5 216.3° 217.4 176.2 175.8 292.1° 289.6 406.1° 399.9° 267.8° 276.4
2008:Q4 268.5 256.3° 2215 210.8° 179.9 173.1 294.7 279.7° 409.1 402.6 273.0 265.6°
2009:Q1 271.6 268.6 224.0 219.4 182.6° 178.32 297.1 287.6 405.9 421.6 276.2 274.3

Notes: The forecasts begin four quarters prior to the actual peak in the house price series in each state and continues through 2009:Q1. Plots of the actual and
recursive forecasts appear in Exhibit 4.
aThe peak in the real house price index.
®The trough in the real house price index.
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Exhibit 4. Recursive Forecasts
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Exhibit 4. Recursive Forecasts (continued)
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Exhibit 4. Recursive Forecasts (continued)
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- Exhibit 4. Recursive Forecasts (continued)
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The recursive forecasts track the movements in the real house price indexes rather
closely. Sometimes the forecast series leads the turning points in the actual series. But
more frequently the forecast series turns at or later than the actual series.

Conclusion

House prices in 20 U.S. states are forecasted here using the VAR and BVAR models, both
with and without the information content of 151 additional quarterly national and regional
economic series. Two approaches exist for incorporating information from a large
number of data series: extracting common factors (principle components) in a factor-
augmented vector autoregressive (FAVAR) or factor-augmented Bayesian vector
autoregressive (FABVAR) models or Bayesian shrinkage in a large-scale Bayesian vector
autoregressive (LBVAR) models. In addition, spatial or causality priors are introduced to
augment the forecasting models.

Using the period of 1976:Q1 to 1994:Q4 as the in-sample period and 1995:Q1 to 2009:
Q1 as the out-of-sample horizon, the forecast performance of the alternative models is
compared for one- to four-quarters ahead forecasts. There are mixed results based on the
average root mean squared error (RMSE) for the one-, two-, three-, and four-quarter-ahead
forecasts. The spatial factor-augmented models outperform the other models in 10 of the
20 states examined. In three states, the spatial large-scale BVAR models provide the best
forecasts. The spatial BVAR models that do not include the information for the 151-
variable data set of national and regional variables perform the best in seven states.

Averaging across the 20 states, however, suggests that the spatial BVAR models perform
the best in terms of average RMSE, as well as exhibiting the second lowest variability of
those RMSEs across states. That is, the spatial BVAR models prove the most-steady in their
overall performance. The factor-augmented VAR model achieves the lowest variability
across states, but it does not outperform the VAR model in forecast ability, although it is



USING LARGE DATA SETS TO FORECAST HOUSE PRICES 181

a close call. That is, if a researcher wants to use a common methodology to forecast, then
either the VAR, the factor-augmented VAR, or the spatial BVAR (w = 0.3, d = 0.5) are
reasonable choices.

The findings provide mixed evidence on the role of macroeconomic fundamentals in
improving the forecasting performance of time-series models. For 13 states, models that
include the information of macroeconomic fundamentals improve the forecasting
performance, but for seven states they do not.

Table A1. Variables

Data Code Variable Name Format
a0dm052 PERSONAL INCOME (AR, BILL. CHAIN 2000 $) 5
AO0MO051 PERSONAL INCOME LESS TRANSFER PAYMENTS (AR, BILL. CHAIN 2000 $) 5
AO0OM224_R REAL CONSUMPTION (AC) AOM224/GMDC 5
AO0MO057 MANUFACTURING AND TRADE SALES (MIL. CHAIN 1996 $) 5
AO0MO059 SALES OF RETAIL STORES (MIL. CHAIN 2000 $) 5
IPS10 INDUSTRIAL PRODUCTION INDEX — TOTAL INDEX 5
IPS11 INDUSTRIAL PRODUCTION INDEX — PRODUCTS, TOTAL 5
IPS299 INDUSTRIAL PRODUCTION INDEX — FINAL PRODUCTS 5
IPS12 INDUSTRIAL PRODUCTION INDEX — CONSUMER GOODS 5
IPS13 INDUSTRIAL PRODUCTION INDEX — DURABLE CONSUMER GOODS 5
IPS18 INDUSTRIAL PRODUCTION INDEX — NONDURABLE CONSUMER GOODS 5
IPS25 INDUSTRIAL PRODUCTION INDEX — BUSINESS EQUIPMENT 5
IPS32 INDUSTRIAL PRODUCTION INDEX — MATERIALS 5
IPS34 INDUSTRIAL PRODUCTION INDEX — DURABLE GOODS MATERIALS 5
IPS38 INDUSTRIAL PRODUCTION INDEX — NONDURABLE GOODS MATERIALS 5
IPS43 INDUSTRIAL PRODUCTION INDEX — MANUFACTURING (SIC) 5
IPS307 INDUSTRIAL PRODUCTION INDEX — RESIDENTIAL UTILITIES 5
IPS306 INDUSTRIAL PRODUCTION INDEX — FUELS 5
IPDM INDUSTRIAL PRODUCTION: DURABLE MANUFACTURING (NAICS) 5
IPNDM INDUSTRIAL PRODUCTION: NONDURABLE MANUFACTURING (NAICS) 5
IPM INDUSTRIAL PRODUCTION: MINING 5
IPGEU INDUSTRIAL PRODUCTION: ELECTRIC AND GAS UTILITIES 5
PMP NAPM PRODUCTION INDEX (PERCENT) 1
A0mMO082 CAPACITY UTILIZATION (MFG) 2
LHEL INDEX OF HELP-WANTED ADVERTISING IN NEWSPAPERS (1967 = 100; SA) 2
LHELX EMPLOYMENT: RATIO; HELP-WANTED ADS: NO. UNEMPLOYED CLF 2
LHEM CIVILIAN LABOR FORCE: EMPLOYED, TOTAL (THOUS., SA) 5
LHNAG CIVILIAN LABOR FORCE: EMPLOYED, NONAGRIC. INDUSTRIES (THOUS., 5
SA)
LHUR UNEMPLOYMENT RATE: ALL WORKERS, 16 YEARS & OVER (%, SA) 2
LHU680 UNEMPLOY. BY DURATION: AVERAGE (MEAN) DURATION IN WEEKS (SA) 2
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Table A1. Variables (continued)

Data Code Variable Name Format
LHU5 UNEMPLOY. BY DURATION: PERSONS UNEMPL. LESS THAN 5 WKS 5
(THOUS., SA)
LHU14 UNEMPLOQOY. BY DURATION: PERSONS UNEMPL. 5 TO 14 WKS (THOUS., SA) 5
LHU15 UNEMPLOQOY. BY DURATION: PERSONS UNEMPL. 15 WKS + (THOUS., SA) 5
LHU26 UNEMPLOY. BY DURATION: PERSONS UNEMPL. 15 TO 26 WKS (THOUS., 5
SA)
LHU27 UNEMPLOY. BY DURATION: PERSONS UNEMPL. 27 WKS + (THOUS, SA) 5
AOMO005 AVERAGE WEEKLY INITIAL CLAIMS, UNEMPLOYMENT INSURANCE 5
(THOUS.)
CES002 EMPLOYEES ON NONFARM PAYROLLS — TOTAL PRIVATE 5
CES003 EMPLOYEES ON NONFARM PAYROLLS — GOODS-PRODUCING 5
CES006 EMPLOYEES ON NONFARM PAYROLLS — MINING 5
CES017 EMPLOYEES ON NONFARM PAYROLLS — DURABLE GOODS 5
CES033 EMPLOYEES ON NONFARM PAYROLLS — NONDURABLE GOODS 5
CES046 EMPLOYEES ON NONFARM PAYROLLS — SERVICE-PROVIDING 5
CES049 EMPLOYEES ON NONFARM PAYROLLS — WHOLESALE TRADE 5
CES053 EMPLOYEES ON NONFARM PAYROLLS — RETAIL TRADE 5
CES140 EMPLOYEES ON NONFARM PAYROLLS — GOVERNMENT 5
CESNRM ALL EMPLOYEES: NATURAL RESOURCES & MINING 5
CEML MINING & LOGGING EMPLOYMENT 5
CEC CONSTRUCTION EMPLOYMENT 5
CEM MANUFACTURING EMPLOYMENT 5
CETTU TRADE, TRANS. & UTIL. EMPLOYMENT 5
CEFA FINANCIAL ACTIVITIES EMPLOYMENT 5
CEPBS PROF & BUS. SERV. EMPLOYMENT 5
CELH LEISURE & HOSPITALITY EMPLOYMENT 5
CEOS OTHER SERVICES EMPLOYMENT 5
CES151 AVERAGE WEEKLY HOURS: MANUFACTURING 1
CES155 AVERAGE WEEKLY HOURS: OVERTIME: MANUFACTURING 2
PMEMP NAPM EMPLOYMENT INDEX (PERCENT) 1
HSFR HOUSING STARTS: TOTAL (THOUS. U.S.A.) 4
HSNE HOUSING STARTS: NORTHEAST (THOUS. U.S.A)) 4
HSMW HOUSING STARTS: MIDWEST (THOUS. U.S.A.) 4
HSSOU HOUSING STARTS: SOUTH (THOUS. U.S.A) 4
HSWST HOUSING STARTS: WEST (THOUS. U.S.A.) 4
HSBR HOUSING AUTHORIZED: TOTAL NEW PRIV HOUSING UNITS (THOUS,, 4
SAAR)
HSBNE HOUSES AUTHORIZED BY BUILD. PERMITS: NORTHEAST (THOU. U.S.A.) 4
HSBMW HOUSES AUTHORIZED BY BUILD. PERMITS: MIDWEST (THOU. U.S.A.) 4
HSBSOU HOUSES AUTHORIZED BY BUILD. PERMITS: SOUTH (THOU. U.S.A.) 4
HSBWST HOUSES AUTHORIZED BY BUILD. PERMITS: WEST (THOU. U.S.A.) 4
HPNE REAL HOUSE PRICE NORTHEAST 6
HPMW REAL HOUSE PRICE MIDWEST 6
HPS REAL HOUSE PRICE SOUTH 6
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Table A1. Variables (continued)

Data Code Variable Name Format
HPW REAL HOUSE PRICE WEST 6
HPUS REAL HOUSE PRICE US 6
SNE HOME SALES NORTHEAST 6
SMW HOME SALES MIDWEST 6
SS HOME SALES SOUTH 6
SW HOME SALES WEST 6
SuUs HOME SALES US 6
HMOB MOBILE HOMES: MANUFACTURERS’ SHIPMENTS (THOUS. OF UNITS, 4
SAAR)
PMI PURCHASING MANAGERS’ INDEX (SA) 1
PMNO NAPM NEW ORDERS INDEX (PERCENT) 1
PMDEL NAPM VENDOR DELIVERIES INDEX (PERCENT) 1
PMNV NAPM INVENTORIES INDEX (PERCENT) 1
AOMO08 MFRS’ NEW ORDERS, CONSUMER GOODS AND MATERIALS (BILL. CHAIN 5
1982 $)
AO0MO007 MFRS’ NEW ORDERS, DURABLE GOODS INDUSTRIES (BILL. CHAIN 2000 $) 5
AOMO027 MFRS’ NEW ORDERS, NONDEFENSE CAPITAL GOODS (MIL. CHAIN 1982 $) 5
ATMO092 MFRS’ UNFILLED ORDERS, DURABLE GOODS INDUS. (BILL. CHAIN 2000 $) 5
AOMO070 MANUFACTURING AND TRADE INVENTORIES (BILL. CHAIN 2000 $) 5
AOMO77 RATIO, MFG. AND TRADE INVENTORIES TO SALES (BASED ON CHAIN 2000 2
$)
FM1 MONEY STOCK: M1 (CURR,TRAV.CKS,DEM DEP.OTHER CK’ABLE DEP) (BILS, 6
SA)
FM2 MONEY STOCK: M2 (M1 + O'NITE RPS, EURO$, G/P&B/D 6
MMMFS&SAV&SM TIME DEP (BILS,
FM3 MONEY STOCK: MZM (BIL$, SA) 6
FM2DQ MONEY SUPPLY — M2 IN 2005 DOLLARS (BCI) 5
FMFBA MONETARY BASE, ADJ FOR RESERVE REQUIREMENT CHANGES (MIL$, SA) 6
FMRRA DEPOSITORY INST RESERVES: TOTAL, ADJ FOR RESERVE REQ CHGS (MIL$, 6
SA)
FMRNBA DEPOSITORY INST RESERVES: NONBORROWED, ADJ RES REQ CHGS (MILS, 6
SA)
FCLNQ COMMERCIAL & INDUSTRIAL LOANS OUSTANDING IN 1996 DOLLARS (BClI) 6
FCLBMC NET CHANGE IN BUSINESS LOANS 1
CCINRV CONSUMER CREDIT OUTSTANDING — NONREVOLVING (G19) 6
AO0MO095 RATIO, CONSUMER INSTALLMENT CREDIT TO PERSONAL INCOME (PCT.) 2
FSPCOM S&P’'S COMMON STOCK PRICE INDEX: COMPOSITE (1941-43 = 10) 5
FSPIN S&P’'S COMMON STOCK PRICE INDEX: INDUSTRIALS (1941-43 = 10) 5
FSDXP S&P’'S COMPOSITE COMMON STOCK: PRICE-DIVIDEND RATIO (%NSA) 5
FSPXE S&P’'S COMPOSITE COMMON STOCK: PRICE-EARNINGS RATIO (%NSA) 5
FYFF INTEREST RATE: FEDERAL FUNDS (EFFECTIVE) (% PER ANNUM, NSA) 2
CP90 COMMERCIAL PAPER RATE (AC) 2
FYGM3 INTEREST RATE: U.S. TREASURY BILLS, SEC MKT, 3-MO. (% PER ANN, NSA) 2
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- Table A1. Variables (continued)

Data Code Variable Name Format
FYGM6 INTEREST RATE: U.S. TREASURY BILLS, SEC MKT, 6-MO. (% PER ANN, NSA) 2
FYGT1 INTEREST RATE: U.S. TREASURY CONST MATURITIES, 1-YR. (% PER ANN, 2
NSA)
FYGT5 INTEREST RATE: U.S. TREASURY CONST MATURITIES, 5-YR. (% PER ANN, 2
NSA)
FYGT10 INTEREST RATE: U.S. TREASURY CONST MATURITIES, 10-YR. (% PER ANN, 2
NSA
FYAAAC BOND )YIELD: MOODY’S AAA CORPORATE (% PER ANNUM) 2
FYBAAC BOND YIELD: MOODY’S BAA CORPORATE (% PER ANNUM) 2
scp90 CP90-FYFF 1
sfygm3 FYGM3-FYFF 1
sFYGM®6 FYGM®6-FYFF 1
sFYGT1 FYGT1-FYFF 1
sFYGT5 FYGT5-FYFF 1
sFYGT10 FYGT10-FYFF 1
sFYAAAC FYAAAC-FYFF 1
sFYBAAC FYBAAC-FYFF 1
EXRUS UNITED STATES; EFFECTIVE EXCHANGE RATE (MERM) (INDEX NO.) 5
EXRSW FOREIGN EXCHANGE RATE: SWITZERLAND (SWISS FRANC PER U.S.$) 5
EXRJAN FOREIGN EXCHANGE RATE: JAPAN (YEN PER U.S.$) 5
EXRUK FOREIGN EXCHANGE RATE: UNITED KINGDOM (CENTS PER POUND) 5
EXRCAN FOREIGN EXCHANGE RATE: CANADA (CANADIAN $ PER U.S.$) 5
PWFSA PRODUCER PRICE INDEX: FINISHED GOODS (82 = 100, SA) 6
PWFCSA PRODUCER PRICE INDEX:FINISHED CONSUMER GOODS (82 = 100, SA) 6
PWIMSA PRODUCER PRICE INDEX:INTERMED MAT.SUPPLIES & COMPONENTS (82 = 6
100, SA)
PWCMSA PRODUCER PRICE INDEX:CRUDE MATERIALS (82 = 100, SA) 6
PSCCOM SPOT MARKET PRICE INDEX:BLS & CRB: ALL COMMODITIES (1967 = 100) 6
NFS NON-FERROUS SCRAP (1982 = 100) 6
PMCP NAPM COMMODITY PRICES INDEX (PERCENT) 1
PUNEW CPI-U: ALL ITEMS (82-84 = 100, SA) 6
PU83 CPI-U: APPAREL & UPKEEP (82-84 = 100, SA) 6
PU84 CPI-U: TRANSPORTATION (82-84 = 100, SA) 6
PU85 CPI-U: MEDICAL CARE (82-84 = 100, SA) 6
PUC CPI-U: COMMODITIES (82-84 = 100, SA) 6
PUCD CPI-U: DURABLES (82-84 = 100, SA) 6
PUS CPI-U: SERVICES (82-84 = 100, SA) 6
PUXF CPI-U: ALL ITEMS LESS FOOD (82-84 = 100, SA) 6
PUXHS CPI-U: ALL ITEMS LESS SHELTER (82-84 = 100, SA) 6
PUXM CPI-U: ALL ITEMS LESS MIDICAL CARE (82-84 = 100, SA) 6
PUE CPI-U: ALL ITEMS LESS ENERGY (82-84 = 100, SA) 6
GMDC PCE, IMPL PR DEFL:PCE (1987 = 100) 6
GMDCD PCE, IMPL PR DEFL:PCE; DURABLES (1987 = 100) 6
GMDCN PCE, IMPL PR DEFL:PCE; NONDURABLES (1996 = 100) 6
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Table A1. Variables (continued)

Data Code Variable Name Format

GMDCS PCE, IMPL PR DEFL:PCE; SERVICES (1987 = 100) 6

CES275 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY 6
WORKERS ON PRIVATE NO

CES277 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY 6
WORKERS ON PRIVATE NO

CES278 AVERAGE HOURLY EARNINGS OF PRODUCTION OR NONSUPERVISORY 6
WORKERS ON PRIVATE NO

HHSNTN U. OF MICH. INDEX OF CONSUMER EXPECTATIONS (BCD-83) 2

Notes: For BVAR models: 1, 2 = No transformation; 4, 5 and 6 = Log(data) X 100; For FAVAR models: 1 =
No transformation; 2 = First-difference of data; 4 = Log(data) X 100; 5. 6: Growth rate of data in percentage.
We collected the data as monthly series and converted to quarterly data through temporal aggregation
(flow variables) or systematic sampling of the third month (stock variables).

Endnotes

! The results for all 50 states are available on request from the authors. Where relevant, the
findings for all 50 states are reported as a counterpoint to the results reported in this paper
for the 20 largest states.

Housing experts in the United Kingdom found a ““ripple” effect of house prices that begins
in the Southeast UK. and proceeds toward the Northwest. Meen (1999) outlines four
different theories to justify the ripple effect: migration, equity conversion, spatial arbitrage,
and exogenous shocks with different timing of spatial effects. The migration explanation
requires that households move from one metropolitan area to another to take advantage
of regional house price differences. The equity conversion explanation requires that
residents of one region sell their home and move to a lower cost region where they can
buy a similar quality home for a lower price and pocket the residual equity. The spatial
arbitrage explanation means that investors acquire properties in lower priced regions,
where higher anticipated return on housing investment exists. The exogenous shocks
explanation implies that if the determinants of house prices in different regions experience
a correlated movement, then house prices will also exhibit the same correlated movement.
The ripple effect receives little support in the U.S. For example, most analyses relate to a
given geographic housing market, such as a metropolitan area (Tirtiroglu, 1992; Clapp and
Tirtiroglu, 1994; and Gupta and Miller, forthcoming b). More recent evidence across census
regions also exists, which may reflect the fourth of Meen’s explanations (Pollakowski and
Ray, 1997; Meen, 2002). Gupta and Miller (forthcoming a) find evidence of a ripple effect
from Los Angeles to Las Vegas and from Las Vegas to Phoenix, which they attribute to the
first three of Meen’s (1999) rationalizations.

Any dynamic structural model implicitly generates a series of univariate time-series models
for each endogenous variable. The dynamic structural model, however, imposes restrictions
on the parameters in the reduced-form time-series specification. Dynamic structural models
prove most effective in performing policy analysis, albeit subject to the Lucas critique.
Time-series models prove most effective at forecasting. That is, in both cases errors creep
in whenever the researcher makes a decision about the specification. Clearly, more
researcher decisions relate to a dynamic structural model than a univariate time-series
model, suggesting that fewer errors enter the time-series model and allowing the model to
produce better forecasts.
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4

11

12

13

14

15

16

17

Note that Dua and Smyth (1995), Dua and Miller (1996), and Dua, Miller, and Smyth (1999)
used coincident and leading indexes in BVAR models to forecast home sales for the
Connecticut and the overall U.S. economy, respectively. Coincident and leading indexes
incorporate information from component series, using the procedures established by the
Department of Commerce and described in U.S. Department of Commerce (1977, 1984)
and in Niemira and Klein (1994).

The discussion in this section relies heavily on LeSage (1999), Gupta and Sichei (2000),
Gupta (2006), Gupta and Miller (forthcoming a; forthcoming b), and Das, Gupta, R. and
Kabundi (2010).

That is, AL) = A\L + A,L* + ... + A,I".
The Minnesota prior assumes that variables approximate a unit-root process and sets the
expected value of the first own lag equal to one. Alternatively, for data that exhibit mean

reversion, assume that the expected value of the first own lag equals zero (Banbura,
Giannone, and Reichlin, 2010).

For an illustration, see Dua and Ray (1995).

The analysis of the 50 states uses 201 quarterly series, house prices in the 50 states, as well
as 151 macroeconomic variables.

Higher and lower interaction values were also examined, in comparison to those specified
above, using the star variables in both the star and circle equations. The rank ordering of
the alternative forecasts remained the same.

An earlier version of this paper used 308 quarterly macroeconomic variables to forecast
real house prices of the 20 states. The data, however, only ran until 2003:Q4, and hence
did not include the recent crisis. Thus, one referee suggested that the sample include the
crisis (i.e., through 2009:Q1). The number of variables in the data set was also reduced.
Interestingly, for the forecasting exercise, the results based on the larger data set proved
similar to those in the current paper. These results are available from the authors.

The data were collected as monthly series and converted to quarterly data through temporal
aggregation (flow variables) or systematic sampling, where the third month value is used
as the corresponding quarterly data (stock variables).

For this, the algorithm in the Econometric Toolbox of MATLAB, version R2009a, was used.

Note that if 4,,, denotes the actual value of a specific variable in period ¢ + n and ,F,,,
equals the forecast made in period ¢ for £ + n, the RMSE statistic equals the following:

VIEN(F,,, — A,.,)*/N], where N equals the number of forecasts.

The story changes slightly the results for the 50-state analysis are examined. Now, the
spatial factor-augmented BVAR models prove the steadiest with the lowest average and
standard deviation across all 50 states. None of the models, however, outperforms the VAR
benchmark model on average across the 50 states. The spatial large-scale BVAR model still
proves the worst performing model with much higher averages and standard deviations
across the 50 states. The FAVAR and spatial BVAR models perform a little worse than the
spatial factor-augmented BVAR models.

The findings for the 50-state analysis are as follows. For six states— Alabama, Kansas, North
Carolina, North Dakota, Oklahoma, and Wyoming—the VAR model does that best in
forecasting. Excluding these six states, the spatial factor-augmented BVAR models perform
the best in 18 states. Then the spatial BVAR model performs the best in 12 states. The
spatial large-scale model performs the best in eight states. Finally, the FAVAR model
performs the best in six states. Compared to the findings for the 20-state analysis, the
ranking of the models in terms of best performance does not change. The FAVAR models,
however, do on average perform better in the 50-state analysis.

Note that the model selection relies on the forecasting performance of the various models

in the out-of-sample forecasts over the 1995:Q1 to 2009:Q1 period based on in-sample
estimates for 1976:Q1 to 1994:Q4.
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8 One referee asked whether the data appear in a timely fashion so that the information and
forecasts can be updated before the forecast period arrives. Two points need to be
considered on this issue. First, Freddie Mac releases the house price index data at the end
of the second month into the next quarter. For example, the data for the fourth quarter
of 2010 were released on February 28, 2011. Thus, a two-month delay exists in the release
of the house price index data. Second, all 151 data series on national and regional
macroeconomic variables appear monthly, where we convert the data to quarterly
frequency. Most monthly data appear with a two-month lag. In sum, the data needed to
carry out the forecast exercise should appear with a three month, one quarter lead on the
house price index that the model forecasts. Here, a pseudo out-of-sample forecasting
exercise is discussed that assumes that all data are available at the end of every in-sample,
as is done in the forecasting literature. The recent research, however, now incorporates
actual real-time forecasting by accounting for dates of data releases. This literature, called
“nowcasting,”’ is gaining prominence (see Giannone, Reichlin, and Small, 2008).
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