Inferring ecological and behavioral drivers of African elephant movement using a linear filtering approach

ALISTAIR N. BOETTIGER, GEORGE WITTEMER, RICHARD STARFIELD, FRITZ VOLRATH, IAIN DOUGLAS-HAMILTON, AND WAYNE M. GETZ

Abstract. Understanding the environmental factors influencing animal movements is fundamental to theoretical and applied research in the field of movement ecology. Studies relating fine-scale movement paths to spatiotemporally structured landscape data, such as vegetation productivity or human activity, are particularly lacking despite the obvious importance of such information to understanding drivers of animal movement. In part, this may be because few approaches provide the sophistication to characterize the complexity of movement behavior and relate it to diverse, varying environmental stimuli. We overcame this hurdle by applying, for the first time to an ecological question, a finite impulse–response signal-filtering approach to identify human and natural environmental drivers of movements of 13 free-ranging African elephants (Loxodonta africana) from distinct social groups collected over seven years. A minimum mean-square error (MMSE) estimation criterion allowed comparison of the predictive power of landscape and ecological model inputs. We showed that a filter combining vegetation dynamics, human and physical landscape features, and previous movement outperformed simpler filter structures, indicating the importance of both dynamic and static landscape features, as well as habit, on movement decisions taken by elephants. Elephant responses to vegetation productivity indices were not uniform in time or space, indicating that elephant foraging strategies are more complex than simply gravitation toward areas of high productivity. Predictions were most frequently inaccurate outside protected area boundaries near human settlements, suggesting that human activity disrupts typical elephant movement behavior. Successful management strategies at the human–elephant interface, therefore, are likely to be context specific and dynamic. Signal processing provides a promising approach for elucidating environmental factors that drive animal movements over large time and spatial scales.

Key words: African elephant; landscape dynamics; Loxodonta africana; movement ecology; NDVI; prediction; radio-tracking; signal processing; spatiotemporal landscape; Weiner filter.

INTRODUCTION

Linking movements of animals to underlying landscape features is critical to identify factors motivating animal spatial behavior (Lima and Zollner 1996) and resulting population spatial distributions (Turchin 1991, Johnson et al. 1992). However, traditional approaches, such as the well-established framework of Lagrangian random walk and Eulerian diffusion processes, are typically applied on either featureless or minimally structured landscapes (Kareiva and Shigesada 1983, Bergman et al. 2000, Edwards et al. 2007, Bartumeus et al. 2008). Beyond simply relating movement to landscape characteristics, current research calls attention to the importance of relating movement to temporal and spatial dynamics of landscape features (Bowler and Benton 2005, Mueller and Fagan 2008).

Understanding the relationship between landscape dynamics and movement is particularly important to wide-ranging species whose mobility can be critical for persistence in the face of high temporal variability of local food resources (Fryxell et al. 2005, 2008, Hebblewhite et al. 2008). Generally, foraging resources are recognized as a predominant factor influencing movement (Berger 2004), which for herbivores is increasingly investigated using spatially and temporally specific vegetation productivity indices (e.g., normalized difference vegetation index, NDVI; see Fryxell et al. 2005,
Pettorelli et al. 2005, Hebblewhite et al. 2008, Mueller and Fagan 2008). In addition to dynamics in forage availability and quality, other landscape features may shape movement and population distributions. Numerous welfare factors are critical to animal population persistence and strongly shape distributions (Simpson et al. 2006, Holdo et al. 2009). At the same time, human activity is increasingly a dominant feature of most ecosystems (Sanderson et al. 2002), with roads frequently being identified as major barriers to animal movement (Forman and Alexander 1998). Assessing the influence of the variety of ecosystem components encountered by mobile species is critical to gaining holistic understanding of the determinants of animal movement and resulting population distributions.

In this study, we explore the importance of multiple static and dynamic landscape features for predicting movement of free-ranging African elephants (Loxodonta africana). African elephants range widely and can exhibit multiple movement strategies within the same ecosystem (Wittemyer et al. 2007a, 2008). Habitat fragmentation and human incursions into historic ranges is a critical conservation issue impacting the species across its range (Blanc et al. 2007). Yet little analysis of the diversity of potential factors influencing elephant movement strategies has been conducted (but see Loarie et al. 2009). Here we investigate movement paths collected over a seven-year period for 13 wild African elephants that were the principal members of social groups ranging in size from six to 19 individuals. We use the ~0.5 million GPS positions that characterize the movement tracks to study the influence of landscape covariates including spatially and temporally dynamic NDVI and proximity to static landscape features of water, roads, and park boundaries.

Recent analytical advances that incorporate landscape features directly in models of animal movement are being applied more frequently (Preisler et al. 2004, Dalziel et al. 2008, Getz and Saltz 2008, Patterson et al. 2008, Schick et al. 2008), though accounting for dynamics at a fine scale is still relatively rare. Here we introduce a novel approach using a signal-filtering framework that allows study of the relationship between animal movement and ecological landscape dynamics. The approach is based on easy-to-interpret linear correlations among model inputs, a construction similar to movement path reconstruction using a Kalman filter (Sibert et al. 2003, Lam et al. 2008, Royer and Lutcavage 2008). Rather than focusing on error correction, we construct a linear time series model that predicts future movement pathways from a finite set of past movement data and current values of pertinent landscape covariates by minimizing the mean square error (MSE) between the predicted (i.e., filtered) second-order data statistics and observed second-order statistics (Hayes 1996). Such models (also known as finite impulse response Wiener filters) assess the relative importance of past movement patterns and landscape covariates to determine future movement pathways by quantifying the strength of different signal components for movement pattern prediction.

Application of linear filtering to movement data, as presented here, tackles several fundamental questions in the field of movement ecology (Patterson et al. 2008). (1) To what extent do models that account for landscape factors outperform simpler correlated random walk (CRW) models, whether Gaussian or Lévy (Edwards et al. 2007)? (2) What factors on the landscape influence the movement of individuals at localized times and points in space and how are they functionally related? (3) How differentiated are individual movement responses to landscape characteristics? (4) What new information is gained through predictive modeling of movement that serves wildlife and biodiversity management and conservation goals?

Methods

Study site

Our analyses focus on the movements of elephants inhabiting the Samburu and Buffalo Springs National Reserves in northern Kenya. This semiarid region is dominated by Acacia-Comniphora savanna and scrub brush and the reserves are focused on the major permanent water source in the region, the Ewaso N’gig River (Barkham and Rainy 1976). Over the past 40 years, rainfall has averaged ~350 mm/yr, with the majority falling during biannual rainy seasons generally taking place in April and November (G. Wittemyer, unpublished data). The reserves are not fenced and the study elephants are free-ranging, moving in and out of the reserves year round (Douglas-Hamilton et al. 2005, Wittemyer et al. 2007a). Thus the movement paths analyzed here are not restricted by fences or impassable geographic barriers. The 13 elephants tracked represent 13 distinct social groups ranging in size from 6 to 19 individuals, and represent >25% of the resident elephants using the study area (Wittemyer et al. 2009b). Separate analysis demonstrated that group members are consistently in direct proximity (Wittemyer et al. 2009b); therefore the movements of the tracked individuals are assumed to represent the group’s movements.

Movement data

Elephant movements were tracked using global positioning system (GPS) collars, which collected GPS positions at 15-min, 1-h, or 3-h time intervals (the latter to conserve power during the last few weeks of a collar’s life). GPS failures, low sampling resolution during power-saving modes, and erroneous fixes accounted for <10% of expected hourly positions. Accuracy of locations from GPS tracking data is typically within 5–20 m, representing <5% of the distance covered during average hourly movements.

To obtain a measure of daily location, thereby ameliorating differences in GPS sampling frequency...
and failures, we used the smallest ellipse that contained all GPS points over the previous 24 h. These ellipses are characterized by the longitude and latitude of the centroid or center of motion (CoM), the lengths of the major and minor axes, and the orientation (direction of major axis: see Appendix: Fig. A1). For computational efficiency, we omitted fitting the least informative parameter: the minor axis. Because our analysis emphasizes the average daily quality of behavior rather than individual hour-to-hour movements, it is useful for detecting seasonal or landscape factors that affect the extent or direction of daily movements.

Data on landscape features

The underlying landscape features that we assessed as drivers of movement behavior (question 2) were: digitized locations of static features (protected area boundaries, permanent watercourses, and major roads converted to “distance from feature” raster maps at a resolution of ~550 m or 0.005°); NASA digital elevation data (Shuttle Radar Topographic Mission) at a spatial resolution of 90 m (<0.001°); 10-day (three times per month) composite time-specific NDVI values (Satellite Probatoire d’Observation de la Terre systems); and a location-specific seasonal index inferred from average regional NDVI (Wittemyer et al. 2007b). In the model, time-specific NDVI averages were computed over a 1-km circle centered on the CoM location, and NDVI averages over eight directional segments filling the area between this inner 1 km and an outer 6-km circle were computed (Appendix: Fig. A2).

In summary, the elephant movement data were assumed to depend on the following 17-dimensional landscape feature vector: (1) CoM latitude, (2) CoM longitude, (3) length of long ellipse axis, (4) orientation of ellipse axis, (5–13) one inner and eight outer NDVI sectors, (14) distance to permanent water, (15) distance to roads, (16) distance to protected area boundary, and (17) ecosystem average NDVI (seasonal signal). Because tracking data were not continuous for any single elephant over the seven-year study, all time-dependent data (NDVI or season) were collated to match each elephant’s GPS data such that sections lacking position data were excluded from these other time series data. Finally, before any filtering, all data were normalized to a common interval, [−1, 1]. This was necessary to facilitate the subsequent analysis of the filter structure and comparison across individuals (question 3).

Signal-processing framework

Signal processing is a well-established data analysis tool focusing on the predictive performance of model input variables (Hayes 1996). We recorded the values of the 17 signal inputs, represented by \(s[n] \), where the square brackets indicate that the vector is sampled in discrete time, in this case 500 hourly intervals indexed by \(n \); \(n \) is always a variable, so \(f[n] \) is a function of time, where \(f[n=k] \) is the single scalar value that the function \(f \) takes when evaluated at \(n = k \). We selected 500 h (4 h short of 3 weeks) for reasons elaborated in the Appendix (Insights from model structure and Appendix: Fig. A3). The approach also requires that we select a parameter \(p \) that is the number of consecutive time points from the signal \(s[n] \) (i.e., \(s[n = k], s[n = k + 1], \ldots, s[n = k + p + 1] \)) to predict a vector \(d[n = k + 500] \) 500 h later. In our case, \(d[n] \) is a four-dimensional characterization (CoM longitude, CoM latitude, length of major axis, and orientation of major axis) of the smallest ellipse that contains all the movement data for the 24-h period starting at time \(n \). Mathematically, \(d[n=k+500] \) is an estimate of \(d[n=k+500] \) (i.e., we use the superscript asterisk to emphasize that we use data at time \(k = p + 1, \ldots, k \), to predict data at \(k + 500 \)) computed from \(s[n] \) by convolving \(s[n] \) with a finite impulse response filter, \(W[n] \):

\[
d^*_n[k] = \sum_{i=1}^{N} \sum_{k=0}^{p-1} s_i[n-k]W_{ij}[k]
\]

where \(j = 1, \ldots, 4 \) indexes the different elements of \(d^*_n[n] \); \(i = 1, \ldots, N \) indexes the different elements of \(s[n] \); and the sum over \(k \) performs the time convolution of the signal component \(s_i \) with the appropriate component of the filter \(W[n] \). We write \(i \) going up to \(N \) because, in general, we may use a variable number of signals in order to make our predictions (e.g., to see if anything is lost by excluding a given signal). The filter \(W[n] \) is determined from the second-order statistics of \(s[n] \) and \(d[n] \), chosen to minimize the squared difference between the prediction, \(d^*[n=k] \), and the actual future, \(d[n=k+500] \). This calculation of filter coefficients from statistical properties > of the signal and the data is a standard method in stochastic signaling processing and is described in detail in the Appendix. It assumes that the autocorrelation and cross-correlation do not change during the 500-h sampling interval, and that the output data depend only on the difference in time between when the signal is measured and the time for which a prediction will be made.

Due to both computational constraints and to avoid over-fitting filter coefficients, it is desirable to keep \(p \) as small as possible. It is important, however, not to overly constrain the model to an arbitrarily recent past if longer timescale correlations are a driving component in the underlying system. A systematic exploration of our data indicated that \(p = 5 \) (i.e., using the last five hours of movement data) was sufficient for reasonable prediction. For this choice of \(p \), the dimensionality of the filter is still two orders of magnitude smaller than the dimension of the data, and prediction accuracy is similar to that achieved with higher dimensional filters. All results presented in the text use this value. Thus, in summary, we use five consecutive hourly points of movement (i.e., the movement ellipse) and landscape data contained in the 17-dimensional vector \(s[n] \) at times \(n = k − 4, \ldots, k \) to predict the four-dimensional movement data vector \(d[n] \) alone at time \(n = k + 500 \), where the movement data vector is the smallest ellipse that contains the actual
position point data of that individual for the 24-h period starting at time $n = k$. Therefore, we are predicting the general location of the individual over a 24-h period of time, not the actual GPS location on the landscape at a specific hour.

Error calculation

Signal statistics are computed empirically from the data in order to solve for the filter $W[k]$ in Eq. 1. The time histories of the 17 signal input parameters over 500 h were fed into the filter to predict the complete trajectory of movement ellipses for the subsequent 500 h. Performance was assessed by taking the mean of the squared difference between the recorded movement ellipses and the predicted ellipses. Information regarding further error normalization is provided in the Appendix.

Null model comparison and filter performance analyses

The performances of filters using various signal inputs and applied across time and elephants were compared with that of a correlated random walk (CRW) model (addressing question 1); i.e., a stochastic process that had the same “distance moved” and correlated direction of heading statistics as the time-specific data being fitted, but without reference to landscape data or past position. Specifically, $x[n] = Ax[n - 1] + w$, where x is the two-dimensional displacement vector, w is a two-dimensional white Gaussian random number (with x and y variance chosen to match the behavior of the elephant being represented), and A is a diagonal matrix containing the x and y correlation coefficients for displacement. The MSE performance of this CRW model provided the baseline against which the MSE estimates (a measure of the predictive capabilities) of the various filters were compared.

The MSE performances of the CRW null model were also compared to the MSE performances of (1) filters applied to noncontiguous sections of data from the same elephant (e.g., filter fitted to movements from April applied to predict movements in November), an objective associated with question 2; and (2) filters applied across different elephants (e.g., filters fitted to the movement of one elephant applied to predict the movement of another elephant), an objective associated with question 3. For predictive performance comparison of filters fitted to statistics of a particular period and applied to predict movements at noncontiguous periods, application was restricted in the following manner in order to investigate underlying properties influencing predictive performance: (1) no restrictions: any noncontiguous data; (2) time < 3: data within 3 months of the original data; (3) time > 3: data beyond 3 months of the original data; (4) similar season: during seasonally similar periods (defined from ecosystem average NDVI) as periods when average NDVI was within 0.2 of the normalized range of values during the time when the filter was fitted), and (5) nearby: data within a normalized distance of 0.2 of the original location of data (see Appendix for details). In addition, MSE for filter application across all possible combinations of these restrictive categories was assessed. Direct analysis of the possible relationship between landscape context and filter performance was assessed by mapping the locations of high prediction error (see Appendix for details).

Results

Predictive performance of different Weiner filters

As a fundamental assessment of the efficacy of the Weiner filter approach, we compared the predictive power of a correlated random walk (CRW) model (lacking any information on landscape context) to that of Weiner filters with different signal inputs, thereby addressing question 1 posited in the Introduction. Regardless of signal input structure, the predictive power of Weiner filters had median MSE fits that, on average (across 13 elephants with fits in different seasons and years), were more than an order of magnitude smaller than fits of the CRW null model (Table 1).

Over large sections of the data set, our Weiner filter provided credible predictions of actual 24-h movement behaviors by filtering the signal variables from the previous three weeks (Fig. 1). MSE estimates resulting
from the full Weiner filter were similar across elephants (Appendix: Table A1); this indicated that, on average, differences in home range size and extent of tracking data did not affect predictive performance. In order to calculate actual spatial accuracy of predictions, a parallel analysis was conducted focusing exclusively on non-normalized CoM estimation to allow calculation of MSE in spatial units. Results showed that typical predictions were off by \(0.88–1.43\) km or \(\approx 20\%\) of a daily movement (Table 1). However, it is important to note that predicting movement behavior from CoM alone performs significantly worse than when using all
four movement ellipse parameters (Wilcoxon rank sum: $Z = 4.3, n = 13, P < 0.001$).

To address question 2 and evaluate the influence of landscape features (i.e., filter signal inputs) on movement prediction, MSE estimates of predictions made using different filters were assessed independently and compared (Fig. 2). The relative performance of the three classes of signal inputs, previous movements (i.e., relying on autocorrelation signatures in movements), static landscape features (permanent rivers, major roads, and park boundaries), or NDVI provided similar predictive performance (i.e., MSE values across inputs were not significantly different) when averaged over time (Appendix: Table A1); median results are presented in Table 1. For any given set of predictions, however, the MSE can vary considerably among these three signals (see Appendix: Fig. A4), with periods when NDVI, past movement, or landscape features are the predominant correlate of movements and other periods when these features do not independently exert any measurable influence on movement behavior.

Predictive performance increased as multiple inputs were combined, indicating that elephants react to a combination of multiple sources of information on landscape characteristics. For instance, performance of the static landscape features decreased when human-created landscape features (protected area boundaries and major roads) and natural features (distance from permanent water) were separated (Table 1). Also predictive performance based on NDVI was not simply a function of elephants moving to areas of higher NDVI (Appendix: Fig. A5). In contrast to expectations and results derived from different methods (Loarie et al. 2009), no significant differences were found in the propensity to move to local locations with higher, rather than lower, NDVI (Wilcoxon signed-rank test: $W = 1, n = 13, P = 0.954$).

Applying filters across time, seasons, locations, and elephants

To test the general applicability of filter structure across time (addressing aspects of question 2), filters fitted to statistics of a particular period were applied to predict movements at all other noncontiguous periods in an elephant’s data set (i.e., unmatched filters). Such analysis provides a measure of the degree to which patterns captured by a given filter are temporally specific. Noncontiguous filters performed significantly worse than contiguous filters, with an order of magnitude greater MSE (Fig. 3; see Appendix: Fig A6 and Table A2). Noncontiguous filter performance (MSE = 2.78; Appendix: Table A2) was slightly, but not significantly, better than that of the null CRW model (MSE = 3.51; Table 1); it should be noted that equitable comparison is difficult, given that the null model performance is calculated for statistics from data of contiguous periods rather than across noncontiguous periods.

To address question 3, filters fitted to one elephant were used to predict the movements of each other elephant. MSE values of filters applied across different elephants were significantly greater than MSE of noncontiguous filters fitted to the parent elephant (Wilcoxon signed-rank test: $W = 91, n = 13, P = 0.0016$; Fig. 3). This suggests that there are elephant-specific response behaviors captured by each filter. If we restricted comparisons to the same season (conditions within 20% of the seasonal NDVI signals during origination), the same approximate time (applying the filter to data occurring within 3 months), or a similar location (i.e., “nearby” defined as within 20% of the elephant’s range) improvement in performance resulted. Across such constraints, prediction error was consistently lowest for filters applied to data from the parent elephant (in contrast to a different elephant; Fig. 3), indicating that elephant-specific behaviors captured by the filter are not purely due to similarities in range or...
temporal overlap. Simultaneous constraint of location, season, and time resulted in the greatest reduction.

Spatial analysis of errors

Small intervals in which filter predictions were completely inconsistent with actual movements occurred infrequently. The locations of individuals during such “high error” intervals, however, were not randomly distributed in space (Fig. 4). After normalizing for density (correcting for the proportion of time that animals spend in or out of the governmentally designated protected areas), ~70% of high errors occurred outside protected areas (PA) (Fig. 4). Using a binomial test, high errors were significantly ($P < 0.01$) more likely to occur outside PA boundaries for six elephants. One elephant demonstrated significantly more error within protected areas, while the remainder showed higher error outside the park, but not significantly (see Appendix: Fig. A7 for error maps of individual elephants). More strikingly, high errors clustered near the park boundaries, and especially in regions immediately neighboring villages. Most of the villages were never entered by the elephants (see “no-data” regions in black; Fig. 4), but the greatest clustering of inaccurate predictions was found to occur in the area overlapping with a particular village that was traversed by elephants moving in and out of the protected areas.

In addition to regions associated with human activity, low prediction accuracy coincided with areas of increased elevation and infrequent use. These results indicate that, in addition to avoiding areas with steep slopes (Wall et al. 2006), elephants exhibit qualitatively different movement behavior when ascending or descending and when traversing less familiar or avoided areas. It is likely that incorporating local elevation as a signal input would further improve prediction accuracy.

Discussion

Predicting elephant movement

Although autocorrelation in movements was found to dominate the variability in hourly movements (Wittemyer et al. 2008), this study demonstrates that external stimuli exert greater influence over movement behaviors on larger timescales (weeks). The diurnal rhythms of elephants can be interpreted as somewhat constrained (due to movement and rest cycles), but the weekly excursion patterns resulting from varying environmental motivations are more complex. Such complexity limits the utility of CRW models to provide realistic predictions of animal movements. In answer to question 1, a filtering approach incorporating some information on landscape context or past behavior offers predictive power superior to that of a CRW model.

Elephant responses to the landscape

Addressing question 2, our approach provided a powerful method to discern temporal and spatially
specific relationships between movements and their ecological context. Importantly, our filtering approach is adept at assessing the predictive power of both static and dynamic features. Individual responses to landscape features were found to vary across space and time, as demonstrated by the relatively strong, but variable, predictive power of NDVI, the dynamic covariate signal input that has been shown to be a critical correlate of migratory behavior in other systems (Fryxell et al. 2005). Considering that areas with high NDVI are likely to have greater forage abundance or quality than areas with lower NDVI (Pettorelli et al. 2005), optimal elephant foraging strategies are hypothesized to result in chasing relatively high NDVI regions (Loarie et al. 2009). Therefore, it was surprising that individual strategies of movement in relation to NDVI varied dramatically across the 13 elephants studied (Appendix: Fig. A5) and movements were not significantly directed to areas with relatively higher NDVI. The utility of pursuing higher NDVI probably depends on dietary focus (Cerling et al. 2009, Wittemyer et al. 2009a) and vegetative structure (Young et al. 2009). Additionally, foraging strategies and spatial use are known to vary in relation to social factors (Wittemyer et al. 2007a, Wittemyer et al. 2008), making the creation of a general predictive framework complex.

Among static landscape features, distance to human features (protected area boundaries and roads) provided more information on movements than distance to permanent water. Human activities and roads are recognized to have dramatic effects on animal spatial behavior (Forman and Alexander 1998), with elephant-specific movement studies showing strong influences of roads (in central Africa; Blake et al. 2008) and protected area boundaries (Wittemyer et al. 2007a, 2008). The relatively weak predictive power of distance to water may relate more to the preprocessing of movements into 24-h summaries, subsuming the daily movements to and from water, as the distribution and movement of water-dependent elephants in the semiarid study system are strongly shaped by water (Wittemyer et al. 2007a).

Differentiated individual movement strategies

The assessment of the uniformity of individual behavior is critical to a predictive framework. Although results from this study give insight to the relative importance of covariates for predicting elephant movement, information critical for in situ management, a general elephant movement predictive filter is unlikely to be effective. Specific to question 3, individual responses to the same features varied in time and space, rendering performance of a general filter weak, even when derived...

Fig. 4. A composite map of the relative error of filter predictions across the 13 elephants in the study ecosystem, providing insight to regions where unrecorded ecological features significantly impact elephant movements or nonlinear relationships between movements and signal inputs exist. The color key shows relative frequency of error (MSE > 1.5). Interestingly, areas with high error (warmer colors) typically occur near the unfenced protected area boundaries (green-outlined polygons) and in proximity to human settlements (red open circles). Typically, elephants do not move directly through human settlement areas (black background denotes no location data), with one exception where error rates were high. Areas with high human activity were correlated with poor model predictions, suggesting that abnormal movements were associated with human encounters. Thin blue lines indicate the permanent rivers, and red lines indicate the roads.
from and applied to the same individual. Application of a filter derived from one elephant to another provided even less predictive utility. Elephants are complex animals (Moss 1988, Shoshani 1998, Wittemyer et al. 2005), which probably results in the observed differentiation in their responses to the same stimuli across time and space. Considering that the 13 tracked elephants in this study were part of larger groups, heterogeneity in behavioral influences from the myriad of group participants adds further complication to general predictions. Species with greater constraints on their movement strategies (e.g., navigation to a common target) or that are reliant on interspecific coordination (e.g., selfish herding) may be more amenable to general predictive monitoring using this framework (Codling et al. 2007).

Insights from exploring properties of predictive error

Despite the inability to derive a general filter for predicting elephant movement, mapping out error values provided insight to important aspects of the ecosystem not included in our model (e.g., topography) and helped to identify factors, including human habitation, that disrupt otherwise locally characterizeable movement patterns. Although the largest errors appeared to be well-distributed in time, they were spatially clustered near, but outside, protected area boundaries in the open (unfenced) ecosystem. Previous work has demonstrated shifts to nocturnal access of permanent water outside protected areas in contrast to midday use, when elephants are within protected areas, presumably to avoid interference with humans and livestock (Wittemyer et al. 2007a). Here we found that movements of elephants in these human-dominated landscapes were much more difficult to predict, probably because movement behavior was reactive to the presence, movements, and threats of humans and livestock in such areas. This suggests that analysis of predictive model error is a potentially powerful tool for identifying areas in which a population faces threats (important for land use planning and reserve design) or for identifying factors that may be perturbing individuals.

A model framework that advances movement ecology

This study demonstrates that linear filtering offers a statistically robust framework for addressing the ecological questions posited in the Introduction that are critical to understanding the connections between environmental factors and movement behavior. The approach also provides a general framework for exploiting very large, multidimensional data sets in a computationally efficient manner to probe such interactions. Although state-space models, which explicitly infer relationships through a process model, have been lauded as the most promising approach for movement ecological research (Patterson et al. 2008, Schick et al. 2008), signal processing as applied here provides a correlative-based approach (bearing in mind that $[\theta]$ represents a movement state vector) that is able to reinforce and expand our understanding of movement properties and their relationship to landscape variables without any ab initio assumptions about the relevance or effects of those landscape variables (necessary in the state-space models described by Patterson et al. 2008). By their ability to distinguish dominant environmental covariates from peripheral ones, the signal-processing class of models can provide a rigorous approach to identifying factors that may then help to formulate more mechanistically detailed state-space models in the future.

Acknowledgments

A. N. Boettiger and G. Wittemyer contributed equally to this work. This research was supported by NSF GRFP (A. N. Boettiger) and NIH grant GM083863-01 and USDI FWS Grant 98210-8-G745 to W. M. Getz. Fieldwork was hosted by the Save the Elephants Research Centre in Samburu, and movement data came from the Save the Elephants Tracking Animals for Conservation Program. We thank the Kenyan Office of the President, the Kenya Wildlife Service (KWS), and the Samburu and Buffalo Springs National Reserve’s County Council, wardens, and rangers for their support of our work.

Literature Cited

APPENDIX

Computational implementation of data preprocessing, signal-processing framework, error calculation, and assessment of filter performance across individuals and models, and discussion of biological insights from evaluation of model structure (Ecological Archives E092-139-A1).

SUPPLEMENT

MATLAB analysis code (Ecological Archives E092-139-S1).