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Detecting Land Cover Change Using an Extended
Kalman Filter on MODIS NDVI Time Series Data

W. Kleynhans, J.C. Olivier, K.J. Wessels, B.P. Salmon, F. van den Bergh and K. Steenkamp

Abstract—A method for detecting land cover change using
NDVI time series data derived from 500m MODIS satellite
data is proposed. The algorithm acts as a per pixel change
alarm and takes as input the NDVI time series of a 3x3 grid
of MODIS pixels. The NDVI time series for each of these
pixels was modeled as a triply (mean, phase and amplitude)
modulated cosine function, and an Extended Kalman Filter was
used to estimate the parameters of the modulated cosine function
through time. A spatial comparison between the center pixel
of the the 3x3 grid and each of its neighboring pixel’s mean
and amplitude parameter sequence was done to calculate a
change metric which yields a change or no-change decision after
thresholding. Although the development of new settlementsis
the most prevalent form of land cover change in South Africa,
it is rarely mapped and known examples amounts to a limited
number of changed MODIS pixels. Therefore simulated change
data was generated and used for preliminary optimization of
the change detection method. After optimization the methodwas
evaluated on examples of known land cover change in the study
area and experimental results indicate a 89% change detection
accuracy, while a traditional annual NDVI differencing method
could only achieve a 63% change detection accuracy.

Index Terms—change detection, extended Kalman filter, time-
series

I. I NTRODUCTION

Anthropogenic land cover change has a major impact on
hydrology, climate and ecology [1]. Remote sensing satellite
data provide researchers with an effective way to monitor
and evaluate land cover changes [2], [3]. Operator-dependent
image to image comparison is still the most prevalent way of
operationally mapping change, but is time consuming and re-
source intensive. Automated change detection reduces human
interaction and enables large datasets to potentially be pro-
cessed in a fraction of the time. Using multi-temporal coarse
resolution satellite imagery to perform automated land cover
change detection has however proved challenging [4]. Change
detection using coarse resolution data could potentially be used
as a first step in alerting and tasking high resolution satellites
of potential change events within the envisaged autonomous
Earth Observation sensor web [5]. Fully supervised change
detection methods using temporal satellite data have shown
potential, but require a considerable amount of training data
to be useful [6], [7], [8], [4]. The dearth of regional land
cover training data makes unsupervised change detection a
more attractive solution.
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Unsupervised methods make use of a change metric that
indicates the level of change. In many cases, Univariate
Image Differencing (UID) is used [9]. Two spatially registered
high resolution images acquired at two different instancesare
subtracted on a pixel basis. Each pixel is classified as either
belonging to the change or no change class by comparing
the difference of two co-located pixels to a threshold value
[10],[11]. The selection of this threshold value is howevernot
a trivial task [12], [13]. The problem with the comparison
of only two images is that similar land cover types can
appear significantly different at various stages of the natural
growth seasonal cycle [14]. The temporal frequency of the
remote sensing data acquisitions should thus be adequate
to distinguish change events from phenological cycles [15],
[16]. The high temporal frequency of course spatial resolution
imagery makes it very attractive for change detection [17].
Recently, a method proposed in [14] explored the use of
multi-temporal Moderate-resolution Imaging Spectroradiome-
ter (MODIS) Normalized Difference Vegetation Index (NDVI)
data to provide an automated change detection alarm.

It was proposed in [18] that the MODIS 8-day NDVI time
series be modeled as a single, but triply modulated cosine
function, where the meanµ, amplitudeα and the phaseφ
values are a function of time. The parameters of the triply
modulated cosine function were estimated using a non-linear
extended Kalman filter (EKF) and the consequent EKF derived
parameter sequences of the mean and amplitude were found
to be highly separable for natural vegetation and settlement
land cover types [18]. This paper extended this methodology
to the change detection case by calculating a change metric
by means of spatial comparison of the EKF derived mean and
amplitude parameter sequences of any given pixel with that of
its neighboring pixels (hereafter referred to as the EKF change
detection method). The underlying idea is that if the center
pixel’s parameter sequences change significantly relativeto
the parameter sequences of its neighboring pixels, a changeis
detected. It should also be noted that a change can be detected
in the event that the neighboring pixels change concurrently
with the center pixel, as this influences the neighborhood
statistics.

The objective was to demonstrate that by making use of the
spatial, EKF-derived change metric and a threshold optimized
using simulated land cover change, an unsupervised change
detection method can be formulated that accurately detects
change using MODIS NDVI time series data. In particular,
the approach was used to detect new settlement developments
in a timely and effective manner, being able to detect change
affecting but a few MODIS pixels.

Making use of simulated or synthetic data is a well known
concept in the remote sensing community [12], [19], [20].
In this paper, the use of simulated change data is twofold.
Firstly, during development of the new method the simulated
change data was used to optimize the method and to tentatively
evaluate the performance of the algorithm. Simulation was
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Fig. 1. 500m MODIS Pixel covering Natural Vegetation and Settlement land
cover in close proximity (courtesy of GoogleTM Earth)

opted for during the optimization phase, since new settlements
are infrequently mapped on an ad hoc basis in South Africa
and the data on known settlement development amount to a
relatively small number of MODIS pixels. Second, the start
date and rate of the land cover change could be controlled in
the simulated or synthetic data which greatly facilitates the
development and evaluation phases. After the method was op-
timized and performing well on simulated (synthetic) change
data, it was evaluated by applying it to examples of known new
settlement development in South Africa. The change detection
accuracy of the EKF method was also compared with that of
an annual MODIS NDVI differencing method introduced by
Lunetta et al. [14].

II. DATA DESCRIPTION

A. Study Area
The study area is located in northern South Africa and is
mostly covered by natural vegetation which predominantly
consist of grassland, savanna and shrubland. A large num-
ber of informal settlements are however rapidly expand-
ing throughout the area. The study area covers an ap-
proximate 25000 km2 having an upper left coordinate of
(23◦20′12.09′′S ;28◦35′25.18′′E) and a lower right coordinate
of (25◦00′14.59′′S ; 30◦06′58.30′′E).

A total of 1497 examples of natural vegetation 500m
MODIS pixels and1735 examples of settlement 500m MODIS
pixels were identified within the study area. Each of these
pixels were evaluated using SPOT5 high resolution data to
ensure that none of them have experienced any land cover
change during the study period.

Of the available 1479 natural vegetation and 1735 settlement
pixels identified in the study area, a subset of 750 natural
vegetation and 750 settlement pixels were used in the develop-
ment phase to create a simulated change and no-change dataset
used to tentatively evaluate the change detection method. The
remaining pixels where used together with the examples of
real change to determine the accuracy of the change detection
method.

B. MODIS Data
The 250 m MODIS NDVI (MOD13) data was initially con-
sidered for this application, but the bidirectional reflectance
distribution function (BRDF) effects caused a high degree
of noise. The NDVI time series data was therefore derived
from 8 daily composite MCD43 BRDF-corrected, MODIS
data with a spatial resolution of 500 m [21] for the period

Fig. 2. NDVI time series of natural vegetation, settlement and simulated
change pixels where the simulated change time series had blending periods
of 6, 12 and 24 months respectively.

2001/01 to 2008/01. As the majority of traditional change
detection methods using time series data is based on NDVI
[14], it was used in this paper to maximize comparability. The
use of Enhanced Vegetation Index (EVI) was considered but
preliminary results showed an insignificant performance gain
over NDVI for the proposed method.

C. Simulated Change Data
Simulated change data were created by linearly blending a
time series of a pixel covered by natural vegetation with that
of a pixel of a settlement which is in close proximity to ensure
that the rainfall, soil type and local climate was similar. Figure
1 shows a typical MODIS pixel covered by natural vegetation
and a settlement pixel in close proximity. Figure 2 shows the
corresponding NDVI time series from 2001/01 to 2008/01 for
each of these pixels as well as the simulated time series where
the blending period was set at 6, 12 and 24 months respectively
with the midpoint of the blending period being 2004/04. The
exact date of change does not affect the method as long as
the change does not occur within the first two years of the
NDVI time series. The reason for this is that an initial two
year period should be allowed for the EKF to effectively track
the parameters of the triply modulated cosine model for each
NDVI time series [18]. As will be described in section III, the
algorithm uses a 3x3 pixel grid with the center pixel being
compared to all neighboring pixels. It is however not realistic
to assume that only the center pixel has changed with all
neighboring pixels remaining unchanged. For this reason, the
center pixel together with a range of neighboring pixels (zero
to all eight) were subjected to a simulated land cover change.
The simulated change for each of the neighboring pixels was
done in a similar manner ensuring that the initial state of each
neighboring pixel is in a vegetated state and gradually blends
to a settlement state.

D. Known Change Data
Examples of confirmed settlement development were obtained
by means of visual interpretation of high resolution Landsat
and SPOT images in 2000 and 2008 respectively. All settle-
ments identified in 2008 were referenced back to the same
physical area in 2000 and all the new settlement polygons were
mapped and the corresponding MODIS pixels (n=117) were
so identified. At least 70% of the pixel had to have changed
for inclusion into the real change dataset. The data on known
settlement development were used to obtain experimental
results using the EKF change detection method developed and
optimized with the aid of the simulated data set.
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III. M ETHODOLOGY

A. EKF framework
The NDVI time series for a given pixel was modeled by a
triply modulated cosine function given as

yk = µk + αk cos(ωk + φk) + vk, (1)

where yk denotes the observed value of the NDVI time-
series at timek and vk is the noise sample at timek. The
cosine function is based on the angular frequencyω, mean
µ, amplitudeα and the phaseφ. The angular frequency can
be explicitly computed asω = 2πf wheref is based on the
annual vegetation growth cycle. Given the 8 daily composite
MCD43 MODIS data,f was calculated to be 8/365. The
values of µk, αk and φk are functions of time, and must
be estimated givenyk for k ∈ 1, . . . , N . An EKF was used
to estimate these parameters for every increment ofk. The
estimated values forxk = [µk αk φk]T over timek effectively
results in a time series for each of the three parameters [18].

B. EKF Change Detection Method
Having the parameter sequence forµk, αk and φk for k ∈
1, . . . , N for a given pixel, a change detection method was
formulated by comparing the parameter sequences of the pixel
with that of its direct neighboring pixels. This effectively
means focusing on the center pixel of a3×3 grid of pixels and
examining each neighboring pixel’s EKF parameter sequence
relative to the center pixel. It was previously established
that theφ parameter sequence does not yield any significant
separability between natural vegetation and settlement land
cover types and consequently only theµ and α parameter
sequences were considered [18]. Theµ and α parameter
sequence difference between the center pixel and an arbitrary
neighboring pixel at timek can be written as

Dk
µ(n) = |µk − µn

k | n ∈ 1, . . . , 8, (2)

Dk
α(n) = |αk − αn

k | n ∈ 1, . . . , 8, (3)

whereDk
µ(n) is the distance between theµ parameter sequence

of a selected pixel (µk) with its n’th neighboring pixel (µn
k )

at time k. Dk
α(n) is the distance between theα parameter

sequence of a selected pixel (αk) with its n’th neighboring
pixel (αn

k ) at timek. Equation 2 and 3 can be combined as

Dk
n = Dk

µ(n) + Dk
α(n) n ∈ 1, . . . , 8. (4)

Having obtained the distance of the center pixel’s parameter
sequences relative to each of the neighboring pixel’s parameter
sequences, these could be combined at timek by simply
adding all the values ofDk

n n ∈ 1, . . . , 8 at timek

Dk =

8∑

n=1

Dk
n k ∈ 1, . . . , N. (5)

Having vectorD = [D1 D2 D3 . . . DN ], a change metric
was derived by firstly determining how the relative distance
of the parameter sequences between the center pixel and its
neighboring pixel changes through time. This was done by
differentiating the vectorD. A single change metric was then
derived by summing all the values of the differentiatedD
vector to yield

δ =

N∑

k=2

|Dk − Dk−1|, (6)

whereδ is a single valued change metric for the center pixel
of the 3x3 pixel grid. The change metric for each of the pixels
in the study area was thus calculated by sliding a 3x3 pixel
grid over the entire study area and calculatingδ for the center
pixel in each case.

C. Annual NDVI Differencing Method

The EKF change detection method was compared to a com-
putationally simple change detection method proposed by
Lunettaet al. [14]. Using this method, the NDVI time series
was firstly filtered and cleaned using Fourier transformation
filtering, thereafter the cumulative annual NDVI for each of
the pixels in the study area were calculated and differenced
for consecutive years. A normal distribution is estimated for
the difference values of each year. Using standard normal
distribution statistics, the pixels exhibiting the largest reduction
in total annual NDVI are labeled as changed pixels [14].

IV. RESULTS AND DISCUSSION

A. Optimizing the Method Using Simulated Change

The algorithm was firstly run on examples of natural vege-
tation pixels known not to have changed within the seven year
study period. The value ofδ as calculated in Equation 6 was
recorded for each pixel. Next, the algorithm was run on the
simulated changed pixels as described in section II-C where
the blending period was 6, 12 and 24 months respectively. The
value ofδ was again calculated and recorded for each pixel.

The change detection accuracy of the change detection
method having a varying blending period (6,12 and 24 months)
as well as varying number of pixels having changed within the
3x3 pixel grid is shown in table I. The true positive (TP) and
true negative (TN) values, which corresponds to the change
detection accuracy and false alarm rate respectively, together
with the optimal decision threshold (δ∗) is shown for each
instance. The optimal threshold was calculated by considering
the probability density function ofδ in the case of change and
no-change respectively and calculating the decision boundary
that minimized the total probability of error. It is evidentfrom
the results shown in table I that the overall accuracy of the
algorithm decreases as the number of changed pixels within
the 3x3 grid increases. This is to be expected as the spectral
signatures of settlement pixels in close proximity (i.e. the
final state of all the changed pixels in the 3x3 grid), are very
similar. The pixels subjected to change within the 3x3 pixel
grid would thus be correlated. This implies that the average
distance between the center and neighboring pixel’s parameter
stream would decline, which effectively reduces separability
of the distribution ofδ for the change and no-change case
respectively. These results using the simulated change data
provides an optimization method for establishing threshold
values of the change metric. The ability of the proposed
method to detect real change was tested next.

B. Change Detection Accuracy for Known Change

As with most unsupervised change detection methods, the
selection of a suitable threshold is a non-trivial task [10]. As
was shown in the simulated change experiment results (table
I) , the optimal thresholdδ∗ varied between depending on the
rate of change as well as the number of pixels changing in the
3x3 pixel grid. By lowering the threshold, the change detection
rate increases at the cost of increasing the number of false
alarms. The approach in selecting the threshold for real change
detection was to firstly determine the range of the thresholdby
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TABLE I
TRUE POSITIVE (TP), FALSE POSITIVE (FP)AND OPTIMAL THRESHOLD

δ∗ FOR EACH BLEND PERIOD AND NUMBER OF PIXELS HAVING CHANGED

# of pixels
changed in
3x3 grid

6 month
blend

12 month
blend

24 month
blend

1
TP = 92%
FP = 8%
δ
∗

= 1.68

TP = 92%
FP = 8%
δ
∗

= 1.68

TP = 100%
FP = 13%
δ
∗

= 1.51

2
TP = 92%
FP = 8%
δ
∗

= 1.66

TP = 92%
FP = 8%
δ
∗

= 1.66

TP = 100%
FP = 13%
δ
∗

= 1.51

3
TP = 92%
FP = 8%
δ
∗

= 1.65

TP = 93%
FP = 9%
δ
∗

= 1.64

TP = 100%
FP = 13%
δ
∗

= 1.51

4
TP = 92%
FP = 9%
δ
∗

= 1.63

TP = 92%
FP = 10%
δ
∗

= 1.62

TP = 100%
FP = 13%
δ
∗

= 1.51

5
TP = 93%
FP = 10%
δ
∗

= 1.6

TP = 93%
FP = 11%
δ
∗

= 1.58

TP = 88%
FP = 16%
δ
∗

= 1.44

6
TP = 93%
FP = 11%
δ
∗

= 1.56

TP = 93%
FP = 12%
δ
∗

= 1.54

TP = 85%
FP = 19%
δ
∗

= 1.4

7
TP = 93%
FP = 13%
δ
∗

= 1.52

TP = 92%
FP = 13%
δ
∗

= 1.51

TP = 82%
FP = 23%
δ
∗

= 1.36

8
TP = 92%
FP = 15%
δ
∗

= 1.47

TP = 90%
FP = 15%
δ
∗

= 1.46

TP = 72%
FP = 24%
δ
∗

= 1.34

9
TP = 90%
FP = 17%
δ
∗

= 1.42

TP = 90%
FP = 19%
δ
∗

= 1.4

TP = 64%
FP = 23%
δ
∗

= 1.36

anticipating the rate and area of change that is characteristic of
the type of change that is expected. New settlement formations
in the study area where found to typically (more than 90%
of the time) be between 0.25 and 1 km2 which relates to
between one and four 500m MODIS pixels. Therefore, the
3x3 neighborhood analysis should be very effective for this
type of land cover change.

The rate of real land cover change is very difficult to
determine with only two satellite images (one Landsat image
in 2000 and one SPOT image in 2008), and may vary from
6 months to 24 months. From simulation results shown in
table I, the optimal threshold ranged between1.68 for a one
pixel change with a land cover transition of 6 months and
1.51 for a four pixel change with a land cover transition of 24
months. The best change detection rate will be achieved by
selecting a lower threshold with the trade-off being a higher
false alarm rate. The corresponding false alarm rates for the
aforementioned threshold values are 8% and 13% respectively.
The task at hand is thus to select the maximum allowable false
alarm rate in this range keeping in mind that the highest false
alarm rate would yield the best change detection accuracy.
Unfortunately, the optimal threshold will vary in this range of
values based on the number of pixels changing and duration
of the change and can not be explicitly inferred (Table I). In
our case, a 13% threshold was selected as this was found to
be a tolerable false alarm rate given the fact that the change
detection accuracy would not be compromised.

The proposed algorithm was then deployed in the detection
of new settlement formations using real change data. Figure
3 shows theµ parameter sequence for a center pixel that was

Fig. 3. Mean parameter sequence comparison of a 3x3 pixel grid with the
center pixel experiencing a real change.

known to have changed. It is evident seen that as with the
simulated change experiment, the real change center pixelµ
parameter stream deviates from that of its neighboring pixels.

To directly compare the performance of the EKF and annual
NDVI differencing change detection methods, the correspond-
ing negative threshold (z value) was chosen so that the false
alarm rate for the method in [14] would also be13%. The false
alarm rate could easily be determined by considering a set of
no-change pixels in the study area, the availability of which
is typically not problematic given the ratio between change
and no-change pixels in a regional landscape. It is evident
from table II that the change detection accuracy of the annual
NDVI differencing method [14] at a false alarm rate of13%
was63% whereas the change detection accuracy of the EKF
change detection method is89% which corresponds with the
change detection accuracy for the simulated change data as
shown in table I.

To demonstrate that the selection of a13% false alarm
rate did not significantly disadvantage either algorithm, the
performance of each algorithm at the optimal threshold was
also reported in table II from which it is clear that the pre-
selected threshold was within10% of the optimal threshold
of each algorithm. A possible explanation for the difference
in the performance of the two methods could be that the
EKF method considers a 3x3 grid of pixels whereas the
annual NDVI differencing method uses a statistical approach
that considers all the pixels in the study area. The latter
approach could have difficulty in detecting land cover change
when the study area is inhomogeneous (for example due to
rainfall variations etc.) and the difference in annual NDVIof
some no-change areas in the study area is comparable with
changed pixels. The NDVI differencing method reduces the
eight day composited time series over the seven year period
to an effective seven observations by only considering the total
annual NDVI value for each year. The EKF method, on the
other hand, makes use of the entire time series by updating
the mean and amplitude parameter sequence for each eight day
observation and spatially comparing the parameter sequences
with all the neighboring pixels. This allows for real time spatial
comparison of the model parameters, which was shown in [18]
to be separable for settlement and vegetation land cover types.

To demonstrate that the accuracy of the proposed EKF
change detection method lies in combining the spatial ap-
proach with the EKF derived parameter sequences, an exper-
iment was done using the spatial comparison of the NDVI
time-series of the 3x3 pixel grid. The methodology proposed
in section III-B was used in the exact same way, the only
difference being that instead of the EKF parameter sequences
being compared, the actual NDVI time-series for each pixel
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TABLE II
REAL CHANGE DETECTION

Algorithm

#
Real

Change
Pixels

TP FP Threshold

Optimal Threshold
EKF method 117 94% 18% δ

∗

= 1.4

NDVI Diff. method [14] 117 75% 23% z
∗

= 1.9

Fixed false alarm rate
EKF method 117 89% 13% δ = 1.5

NDVI Diff. method [14] 117 63% 13% z = 2.1

was used. A change detection accuracy of 72% was obtained
at a false alarm rate of 13%. Although this approach did
perform better than the NDVI differencing method, a further
improvement was obtained by using the EKF change detection
method as was shown in Table II.

V. CONCLUSION

In this paper, a new land cover change detection method
is proposed and tested. The method models an NDVI time
series as a triply modulated cosine function and estimates
the mean, amplitude and phase for each time increment
using an EKF. A change index was derived by comparing
each pixel’s mean and amplitude parameters with that of its
neighboring pixels, effectively considering the center pixel of
a 3x3 grid of pixels. The threshold that determined whether the
change index associated with each pixel should be classified
as change or no-change was determined by means of land
cover change simulation. The algorithm was tested on new
settlement developments in South Africa using examples of
known settlement development. A change detection accuracy
of 89% with a 13% false alarm rate was achieved, which was
a significant improvement on computationally simple annual
NDVI differencing.

Many multi date image change detection methods are not
true time series analysis methods as a pixel’s time series isnot
considered as a sampled data stream. True time series analysis
is often overlooked when considering change detection meth-
ods [22]. The proposed EKF method makes full use of the
NDVI time series by considering each eight day observation
when updating the mean, amplitude and phase parameters of
the cosine model and is inherently resilient to noise in the
time series [18]. As opposed to annual NDVI differencing and
image to image comparison, this allows the EKF method to
give an accurate indication of when a pixel started to deviate
relative to neighboring pixels (Figure 3) by comparing the
center pixel’s parameter sequences with that of its neighboring
pixels.

The use of MODIS data for land cover change detection
using various methods has been widely pursued since the
inception of MODIS (e.g. [4], [17], [14], [23]). Although
some MODIS change detection products do exist (such as
MODIS burn-scar detection [24]), there are currently no oper-
ational MODIS change detection products tailored specifically
for the change detection problem discussed in this paper.
This required the development of a custom change detection
method. The change detection method proposed in this paper
shows promising results, as its unsupervised nature lends itself
to operational viability. Even though the change detection
method was evaluated for the case of detecting new settlement
developments, the method shows potential to be extended to

detect other forms of land cover change, and is currently under
investigation.
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