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Abstract

In this paper D- and V-optimal population designs for the quadratic regression model with a random intercept term and with
values of the explanatory variable taken from a set of equally spaced, non-repeated time points are considered. D-optimal
population designs based on single-point individual designs were readily found but the derivation of explicit expressions for
designs based on two-point individual designs was not straightforward and was complicated by the fact that the designs now
depend on ratio of the variance components. Further algebraic results pertaining to d-point D-optimal population designs where
dZ3 and to V-optimal population designs proved elusive. The requisite designs can be calculated by careful programming and
this is illustrated by means of a simple example.
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Introduction

This paper is concerned with optimal population designs for the quadratic regression model with a random
intercept term and with observations constrained to be taken at equally spaced time points. The essential problem is
that of choosing the numbers of individuals to be allocated to various groups or cohorts and of choosing the times
for taking measurements on the individuals within each group. The article is a follow up to the paper by Debusho
and Haines (2008) in which V- and D-optimal population designs for the simple linear regression model with a
random intercept term were discussed.

The construction of optimal population designs for longitudinal models has been extensively studied in the
design literature in various contexts. In particular Cheng (1995) and Atkins and Cheng (1999) presented results on
optimal population designs for the quadratic regression model with a random intercept over the design space [-1,1].
Their results cannot, however, be directly translated to design spaces comprising a finite number of time points,
especially when the number of such points is small. In addition Abt et al. (1998) studied optimal designs for the
precise estimation of the linear and quadratic coefficients and for growth prediction in the quadratic regression
model with a random intercept numerically. However, they only considered a limited number of individual designs
on which to base the population designs and did not apply the Equivalence Theorem to check the global optimality
or otherwise of the designs.

The aim of the present paper is to develop explicit expressions for optimal designs for the quadratic regression
model with a random intercept term and with values of the explanatory variable taken from a set of equally spaced
time points. Attention is restricted to two criteria, D-optimality for which the generalized variance of the estimates
of the fixed effects
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is minimized and V-optimality for which the average variance of estimates of the mean marginal responses over a given set
of time points is minimized. The model, some basic ideas and notation, and an appropriate equivalence theorem are
introduced in Section 2. The construction of one- and two-point D-optimal population designs for the model of interest,
based on individual designs for which the time points are not repeated, is discussed in Section 3. In Section 4 some further
results, in particular relating to D-optimal population designs over the space of all individual designs and to V-optimal
population designs, are discussed. An illustrative example taken from an experiment on the foraging times of honeybees is
presented in Section 5 and some broad conclusions are given in Section 6. The notation and terminology introduced in
Debusho and Haines (2008) will be used throughout. The proofs of the theorems presented in the paper are intricate and
algebraically tedious and are therefore relegated to a technical report (Debusho and Haines, 2010).

2. Preliminaries

Suppose that a study comprises K individuals and that di observations are taken on the ith individual, i=1,y,K. Then,
within this context, the quadratic regression model with a random intercept term can be expressed as

yij ¼ b0þb1tijþb2t2
ijþbiþeij, j¼ 1, . . . ,di, i¼ 1, . . . ,K , ð2:1Þ

where yij is the jth observation on the ith individual at time point tij, b0, b1 and b2 are fixed effects, bi is a random effect
associated with the ith individual and eij represents a measurement error. The random terms are taken to be distributed as
bi �N ð0,s2

bÞ and eij �N ð0,s2
e Þ with bi and eij independent both within and between individuals and with s2

b and s2
e

comprising the variance components. Furthermore, in this study, the time points are assumed to be taken without
replacement from a set of equally spaced values, represented for clarity and without loss of generality as {0,1,y,k}. Note
that the variance structure of model (2.1) is invariant to linear transformations of the explanatory variables since only the
intercept term of that model is random (Longford, 1993, Section 4.2.2). Note also that this invariance extends to design
criteria based on the information matrix.

Consider an individual design for model (2.1) which comprises non-repeated time points. Then the d-point design
t=(t1,y,td), with tj 2 f0,1, . . . ,kg and 0rt1ot2o � � �otdrk, which puts equal weight on each point is termed a d-point
individual design. The space of all such designs can thus be defined as the set

Sd,k ¼ ft : t¼ ðt1,t2, . . . ,tdÞ,tj 2 f0,1, . . . ,kg, j¼ 1, . . . ,d, 0rt1ot2o � � �otdrkg:

and comprises Nd ¼ ð
kþ1

d Þ designs. The information matrix for the fixed effects b¼ ðb0,b1,b2Þ at the vector of time points
t=(t1, y, td) is readily derived as a special case of a more general result presented in Schwabe and Schmelter (2008) and is
given by

IbðtÞ ¼
1

s2
e ð1þdgÞ

d
Pd

j ¼ 1 tj

Pd
j ¼ 1 t2

jPd
j ¼ 1 tj A1 A2Pdi

j ¼ 1 t2
j A2 A3

0
BBB@

1
CCCA, ð2:2Þ
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j �g

Xd

j ¼ 1

t2
j

0
@

1
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,

with g¼ s2
b=s

2
e . The information matrix for b at a population design comprising K individuals with associated sets of time

points ti, i=1,y,K, is thus given by
PK

i ¼ 1 IbðtiÞ and corresponds, at least approximately, to the inverse of the variance matrix
of the ML and the REML estimates of b (Verbeke and Molenberghs, 2000, p. 64).

Consider now a population design comprising r distinct individual designs with ni individuals allocated to the design
with time points ti ¼ ðti1, . . . ,tidi

Þ for i=1,y,r. Suppose further that the cost incurred in taking a single observation is
constant and that no extra costs are incurred on recruiting the

Pr
i ¼ 1 ni individuals to the study. Then the information

matrix for b at this population design on a per observation basis is given by

1

N

Xr

i ¼ 1

niIbðtiÞ ¼
Xr

i ¼ 1

nidi

N
MbðtiÞ,
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where N¼
Pr

i ¼ 1 nidi is the total number of observations taken and MbðtiÞ ¼ 1=diIbðtiÞ is the standardized information
matrix at the individual design ti, i=1,y,r. Now consider relaxing the condition that ni be an integer and introducing the
approximate population design

x¼
t1, . . . ,tr ,

w1, . . . ,wr ,

(

with wi replacing nidi=N and thus with 0owio1 and
Pr

i ¼ 1 wi ¼ 1. Then the weight wi represents the proportion of the
total number of observations taken at the individual design ti and the information matrix for b at the population design x is
given by

MbðxÞ ¼
Xr

i ¼ 1

wiMbðtiÞ:

Note that if the individual designs within the population design comprise the same number of time points, that is di=d,
then the proportion of individuals allocated to the design ti is equal to the weight wi and that otherwise this proportion can
immediately be recovered as vi ¼wi=di=

Pr
i ¼ 1 wi=di for i=1,y,r.

Interest in the present study centres in particular on the construction of D-optimal population designs for the fixed
effects b in model (2.1). Specifically the D-optimal criterion is defined in the usual way as

CDðxÞ ¼�lnjMbðxÞj ¼�ln
Xr

i ¼ 1

wiMbðtiÞ

�����
�����

and clearly depends on the variance components s2
b and s2

e through their ratio g¼ s2
b=s

2
e . In order to accommodate this

dependence, designs which are locally optimal in the sense of Chernoff (1953), that is designs which are based on a ‘‘best
guess’’ for the ratio g, are considered. The General Equivalence Theorem relating to approximate D-optimal population
designs follows from the results presented in Debusho and Haines (2008) and, more fundamentally, is a special case of the
Equivalence Theorem for multivariate design settings given in Fedorov (1972, p. 212). The theorem is based on the notion
of individual designs t taken from a space of designs T and on the fact that the directional derivative of CDðxÞ ¼�lnjMbðxÞj
at x in the direction of an individual design t is given by

fðt,xÞ ¼ 3�trfMbðxÞ�1MbðtÞg

and is stated without proof as follows.

Theorem 2.1. For the random intercept model (2.1) and individual designs taken from a space of designs T, the following three

conditions on the D-optimal population design x� are equivalent:

(1) The design x� minimizes �lnjMbðxÞj.
(2) The design x� minimizes maxt2T trfM�1

b ðxÞMbðtÞg.
(3) The directional derivative fðt,x�Þ attains its minimum at the support designs of x� and maxt2T trfM�1

b ðx
�
ÞMbðtÞg ¼ 3.

The theorem is important in that it can be invoked to confirm the global optimality or otherwise of candidate D-optimal
population designs and also in that it forms the basis for algorithmic design construction. Finally note that the D-efficiency
of a design x1 relative to a design x2 is given by fjMbðx1Þj=jMbðx2Þjg

1=3 (Atkinson et al., 2007, p. 151).

3. D-optimal population designs based on individual designs with non-repeated time points

3.1. Individual one-point designs

Consider first population designs comprising a set of individual one-point designs. Then it follows immediately that in
this particular case the random intercept model (2.1) reduces to the quadratic regression model

yi ¼ b0þb1tiþb2t2
i þei, i¼ 1, . . . ,K , ð3:3Þ

with ti 2 f0, . . . ,kg and ei �Nð0,s2
eþs2

bÞ and with s2
e and s2

b therefore not identifiable. Thus the D-optimal population
designs for model (2.1) coincide with the D-optimal designs for model (3.3). In particular it follows from Atkinson et al.
(2007, p. 123) that for k even the D-optimal population design is given by

x�De
¼

ð0Þ
k

2

� �
ðkÞ

1

3

1

3

1

3

8>>><
>>>:

9>>>=
>>>;
:
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No analogous designs for the case of k odd appear to have been reported in the literature, however, and these designs are
presented for completeness in the following theorem.

Theorem 3.1. Consider the random intercept model (2.1) and the set of all one-point designs S1,k taken from {0,1,y,k} where k

is an odd integer greater than or equal to 3 or, equivalently, the quadratic regression model (3.3) with time points taken from the

set {0,1,y,k}. Then the D-optimal population design for the fixed effects b over the space of all one-point designs and for all

values of gZ0 is given by

x�Do
¼

ð0Þ
k�1

2

� �
kþ1

2

� �
ðkÞ

w
1

2
�w

1

2
�w w

8>>><
>>>:

9>>>=
>>>;

,

where w¼ k2�2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k4�k2þ1
p

=6ðk2�1Þ.

Certain points relating to the results of Theorem 3.1 are of interest. Specifically, it can be shown by some
straightforward algebra that the weight w increases monotonically from 0.3238 at k=3 to 1

3 as k approaches infinity and is
thus, in effect, close to 1

3 for all values of k. Furthermore, if the discrete time points 0,1,y,k are scaled to lie between �1
and 1, then the D-optimal population design x�Do

is given by

~x
�

Do
¼

ð�1Þ �
1

k

� �
1

k

� �
ð1Þ

w
1

2
�w

1

2
�w w

8>>><
>>>:

9>>>=
>>>;

and, as k-1, approaches the design

~x
�

A ¼

ð�1Þ ð0Þ ð1Þ

1

3

1

3

1

3

8<
:

9=
;,

which coincides with the approximate D-optimal design for model (3.3) based on the design space [�1, 1]. Note that the
D-efficiency of ~x

�

Do
relative to ~x

�

A is given by the expression

ð1þk2þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2þk4
p

Þð1�4k2þk4þð1þk2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�k2þk4
p

Þ

4k6

( )1=3

and is high, increasing monotonically as k increases from a value of 94.20% for k=3.

3.2. Individual two-point designs

Consider now D-optimal population designs based on the space of two-point designs S2,k for the precise estimation of
the parameters b in the random intercept model (2.1). These designs can be constructed for specified ranges of the ratio g
and are presented in the following suite of theorems. Results presented here are for k even.

Theorem 3.2. Consider the random intercept model (2.1) and the set of all individual two-point designs S2,k with k an even

integer greater than or equal to 2. Then the D-optimal population design for the fixed effects b over the space of designs S2,k is

given by

x�D0
¼

0,
k

2

� �
ð0,kÞ

k

2
,k

� �
1

3

1

3

1

3

8>>><
>>>:

9>>>=
>>>;

provided

(i) k=2 or k=4 and gZ0 and

(ii) kZ6 and 0rgrgc where gc ¼ 3ðkþ2Þ=ðk2�3k�6Þ.

Note that the optimal design x�D0
presented in this theorem has an intuitively appealing form and provides a valuable

benchmark in that it is optimal for g¼ 0, that is for the case of no correlation between observations within individuals.
Note also that the upper bound gc decreases to 0 monotonically as k increases. This result can be explained by observing
that as k increases so there are many more designs t=(t1,t2) for which the condition fðt,x�D0

ÞZ0 must be satisfied and thus
that the degree of correlation within individuals, as reflected in g, becomes increasingly important.
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Theorem 3.3. Consider the random intercept model (2.1) and the set of all individual two-point designs in S2,k with k an even

integer greater than or equal to 6. Let g0k and g1k denote the only positive roots of the cubic equations

ðk2�3k�6Þðk2þ9kþ2Þg3þðk4�61k2�116k�52Þg2�ðkþ2Þð2k2þ21kþ26Þg�3ðkþ2Þ2 ¼ 0 ð3:4Þ

and

ðk2�8k�4Þðk2þ16kþ12Þg3þðk4�4k3�192k2�368k�144Þg2 4ðk3þ21k2þ64kþ36Þg�12ðkþ2Þ2 ¼ 0, ð3:5Þ

respectively. Then the D-optimal population design for the fixed effects b over the space of designs S2,k is given by

x�D1
¼

0,
k

2
þ1

� �
ð0,kÞ

k

2
�1,k

� �
w 1�2w w

8<
:

9=
;,

where w¼ B�
ffiffiffi
A
p

=3ðk�2Þfðkþ2Þþgð3kþ2Þg with

A¼ ðk�2Þ2ð3kþ2Þ2g4þ2ðk�2Þð3kþ2Þð3k2�4k�8Þg3þð15k4�28k3�60k2þ96kþ96Þg2

þ2ðkþ2Þð3k3�8k2þ16Þgþðk4�4k2þ16Þ

and

B¼ ðk�2Þð3kþ2Þg2þ2ð3k2�2k�4Þgþ2ðk2�2Þ

provided

(i) k=6, 8 and gZg0k and

(ii) kZ10 and g0krgrg1k.

A more stringent result than that of Theorem 3.3 was in fact obtained for k=10, 12, 14, 16, 18 and 20 and is summarized
as follows.

Theorem 3.4. Consider the random intercept model (2.1) and the set of all individual two-point designs in S2,k with k an even

integer. Let g2k denote the only positive root of the cubic equation

ðk3�9k2�46k�24Þðk3þ27k2þ122kþ72Þg3þðk6�437k4�4188k3�13316k2�15072k�5184Þg2

�3ðkþ2Þðkþ4Þð2k3þ63k2þ314kþ216Þg�27ðkþ2Þ2ðkþ4Þ2 ¼ 0: ð3:6Þ

Then the D-optimal population design for the fixed effects b of model (2.1) over the space of designs S2,k is given by x�D1
provided

(i) k=10, 12 and gZg0k and

(ii) k=14, 16, 18, 20 and g0kogrg2k.

The proof of this result developed in the present study was particularly intricate in that it required, inter alia,
demonstrating that an expression comprising terms of degree 12 in k and of degree 9 in g is less than or equal to zero for
each specific value of k. A more general proof encompassing all even values of kZ10 could not be found, however,
although numerical studies suggest that such a result does indeed hold.

A number of issues arise immediately from the results presented in Theorems 3.2–3.4. In particular the form of the
D-optimal population designs is governed by the bounds gc ,g0k,g1k and g2k and selected values for these limits for
k=6,8,y,20 are summarized in Table 1. Furthermore it can be shown that gc is strictly less than g0k and it thus follows that
neither x�D0

nor x�D1
separately are optimal within these bounds. In fact for kZ14 and gc ogog0k the D-optimal population

design based on the space of designs S2,k is a mixture of the two designs x�D0
and x�D1

. This result is summarized formally in
the following theorem.

Theorem 3.5. Consider the random intercept model (2.1) and the set of all two-point individual designs S2,k for k an even integer

greater than or equal to 6. Then the D-optimal population design for the fixed effects b over the space of designs S2,k is given by

x�DM
¼

0,
k

2

� �
0,

k

2
þ1

� �
ð0,kÞ

k

2
�1,k

� �
k

2
,k

� �
w1 w2 1�2w1�2w2 w2 w1

8><
>:

9>=
>;,

where

w1 ¼
1

32k2g2
f3ðkþ2Þ2þðkþ2Þð2k2þ21kþ26Þg�ðk4�61k2�116k�52Þg2�ðk2�3k�6Þðk2þ9kþ2Þg3g
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and

w2 ¼
1

32ðk�2Þðkþ2Þg2
f�3ðkþ2Þ2�ðkþ2Þð2k2þ21kþ42Þgþðk4�45k2�180k�180Þg2þðkþ3Þðkþ6Þðk2�3k�6Þg3g

provided that gc ogog0k, where gc and g0k are defined in Theorems 3.2 and 3.3, respectively.

A further issue emanating from Theorem 3.4 is the construction of D-optimal population designs based on the space of
two- point designs S2,k with kZ14 and gZg2k. From the results presented above it is not unreasonable to conjecture that
designs of the form

x�Da
¼

0,
k

2
þa

� �
ð0,kÞ

k

2
�a,k

� �
w 1�2w w

8<
:

9=
; ð3:7Þ

for some positive integer a and weight w are appropriate. However, as already indicated, the proof of Theorem 3.4 is
algebraically tedious and essentially incomplete. For this reason attempts to demonstrate that candidate D-optimal
population designs of the form (3.7) with aZ2 are globally optimal for kZ14 and ranges of g with gZg2k were not made.
From a practical point of view the required D-optimal population designs can always be constructed numerically.

The results presented thus far hold for k even. Since the scope of these results is limited corresponding theorems for k

odd were not fully explored. In fact numeric studies indicate that the D-optimal population designs for k odd mirror those
for k even and are based on support points of the form ð0,ðkþ1Þ=2þaÞ,ð0,kÞ and ððk�1Þ=2�a,kÞ for integers a=0, 1, 2,y. The
weights on the points of these designs necessarily coincide with those for population designs based on the points
(0, k+1+2a), (0, 2k) and (k�1�2a, 2k) and, in the case of a=0, can be obtained immediately from the formulae given in
Theorem 3.3. However, values of g which define bounds between D-optimal population designs with differing values of a

for k odd cannot be deduced directly from those for 2k even.
It is interesting to relate the results developed here to those reported by Atkins and Cheng (1999) for the corresponding

D-optimal population designs with time points taken from the interval [�1,1]. Their designs can be readily translated into
designs with points taken from the interval [0, k]. It then follows that D-optimal population designs on the continuous
design space [0, k]� [0, k] are of the same form as those based on the set of integer time points {0, 1, y, k} and correspond
to the design (3.7) but with a positive, not necessarily integer, and given for specified k and g by ak,g ¼ kar=2 where ar is the
unique solution to the quartic equation

3x4þ2ð3þ7rÞx3þ3ð1þ4rþ5r2Þx2þ2rð1�r�2r2Þx�r2 ¼ 0 ð3:8Þ

with x 2 ð4r=17,r=3Þ and r¼ g=ð1þgÞ (Atkins and Cheng, 1999). The population designs on [0,k] � [0,k] can be ‘‘rounded’’
to give designs based on the time points {0,1,y,k} which are expected to be near-D-optimal. Specifically, for given values
of k and g, the scalar ak,g calculated from (3.8) can be replaced by the integer a satisfying a�1

2 rak,goaþ1
2, that is a can be

taken to be ak,gþ
1
2

� �
, and the weights on the support points can be taken as unchanged. The calculation of near-D-optimal

population designs in this way is particularly useful for values of g which exceed the upper limit of g2k specified in
Theorem 3.4.

4. Further results

4.1. D-optimal population designs

Consider now the construction of D-optimal population designs for the precise estimation of the fixed effects b in the
quadratic model (2.1) which are based on d-point individual designs with dZ3. It follows immediately from the results of
Atkins and Cheng (1999) that for d=3 and k even, the requisite population design comprises the single design ð0,k=2,kÞ.
More generally, however, since the proofs of theorems relating to one- and two-point designs given in the previous section

Table 1
Values of gc ,g0k ,g1k and g2k for even values of k from 6 to 20.

k gc g0k g1k g2k

6 2.000 2.249 n n

8 0.882 0.956 n n

10 0.563 0.595 4.673 n

12 0.412 0.429 1.975 n

14 0.324 0.335 1.236 8.457

16 0.267 0.274 0.893 3.197

18 0.227 0.232 0.697 1.953

20 0.198 0.201 0.570 1.398

The symbol n indicates that no positive root of the associated cubic equation exists.
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are intricate and in essence incomplete, no attempt was made to extend these proofs to cases where dZ3. Rather such
designs can be readily obtained numerically for given values of k, d and g.

4.2. V-optimal population designs

Suppose now that interest centres on the estimation of the mean marginal responses at a given vector of time points tg,
where the elements of tg are taken without repetition from the set {0,1,y,k}. Suppose also that the elements of tg, together
with the squares of those elements, are appropriately assembled in the design matrix Xg and thus that the population mean
response at tg is given by mg ¼ Xgb. The V-optimality criterion, which is proportional to the average of the variances of the
estimators of the population mean responses at tg, can then be formulated as the concave function

CV ðxÞ ¼ trfXgM�1
b ðxÞX

T
g g ¼ trfM�1

b ðxÞX
T
g Xgg

and a V-optimal design can in turn be defined as a design for which CV ðxÞ is minimized over the space of possible
population designs. The Equivalence Theorem for this V-criterion is given in the paper by Debusho and Haines (2008) and
in essence states that a population design x�V is V-optimal if and only if the directional derivative of CV ðxÞ at x�V in the
direction of an individual design t is such that

fV ðt,x�V Þ ¼ trfM�1
b ðx

�

V ÞXgu Xgg�trfM�1
b ðx

�

V ÞXgu XgM�1
b ðx

�

V ÞMbðtÞgr0boo

with equality holding at the support designs of x�V . Furthermore the V-optimality criterion of interest here, namely CV ðxÞ, is
invariant to a linear transformation of the explanatory variables. This invariance follows directly from the fact that both the
population mean responses Xgb and the variance structure of the random components are themselves invariant to such a
transformation. Finally note that the V-efficiency of the design x1 relative to the design x2 can be defined straightforwardly
as the ratio CV ðx2Þ=CV ðx1Þ.

4.2.1. One-point individual designs

Consider again population designs for model (2.1) which comprise individual one-point designs. Then it follows
immediately from the arguments presented in the case of D-optimality in Section 3.1 that the V-optimal population
designs do not depend on the parameters of the model, and specifically on g, and indeed coincide with those for the
quadratic regression model (3.3). For k even, the requisite V-optimal design is readily derived and is presented in the
following theorem.

Theorem 4.1. Consider the random intercept model (2.1) and the set of all one-point individual designs S1,k taken from

{0,1,y,k} where k is an even integer greater than or equal to 2. Then the V-optimal population design for the mean responses mg

at tg=(0,1,y,k) over the space of all one-point designs and for all values of gZ0 is given by

x�Ve
¼
ð0Þ

k

2

� �
ðkÞ

w 1�2w w

8<
:

9=
;,

where w¼ ðkþ2Þð4k2þ3k�2Þ�2
ffiffiffi
B
p

=30k2 with B¼ ðk�1Þð2þkÞð1þk2Þð4k2þ3k�2Þ.

The weight w specified equals 1
3 at k=2 and decreases monotonically with increasing k, approaching 1

4 as k approaches
infinity. In other words, as k increases, the V-optimal population design x�Ve

converges to a design which puts 25% of the
weight at the designs with extreme time points 0 and k, and the remaining 50% at the design with time point k=2.

For k odd, numerical studies suggest that the V-optimal population design for the mean responses mg at tg=(0,1,y,k)
over the set of all one-point individual designs S1,k and for all gZ0 is given by

x�Vo
¼

ð0Þ
k�1

2

� �
kþ1

2

� �
ðkÞ

w
1

2
�w

1

2
�w w

8>>><
>>>:

9>>>=
>>>;

,

where 0owo1=2. However, a proof of this observation did not appear feasible, specifically since the optimal weight w for
the design x�Vo

is the root of a quartic equation. It would seem from numerical investigations that w increases
monotonically with increasing k and that as k approaches infinity so x�Vo

converges to a design which puts equal weights of
1
4 on the individual one-point designs.

4.2.2. Individual d-point designs with dZ2
Algebraic results for V-optimal population designs for model (2.1) based on the set of d-point individual designs with

dZ2 proved elusive. The requisite designs can, however, be readily obtained numerically and, within this context, it is
interesting to examine some related results that have been reported in the literature. Specifically, Abt et al. (1998)
considered model (2.1) with explanatory variables taken to be the integers which, in the present setting, fall in the interval
[0,k] with k even, and derived V-optimal population designs based on the single-point designs (0), ðk=2Þ and (k) and the
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(k+1)-point design ð0, . . . k=2 . . . kÞ. In particular, they demonstrated that for g values below a cut-off point of 1.5, the
V-optimal population design comprises only the single point designs but that for g41:5 the requisite optimal design also
includes the (k+1)-point design. In the present study designs which are V-optimal over all individual d-point designs
where 1rdrkþ1 were constructed for selected k and g and were found to be based on individual one- and two-point
designs, with the form of the two-point designs depending on g. For example, it is interesting to note that for k=10 and
g¼ 3 the best V-optimal population design comprises the single point designs (0), (5) and (10) with weights 0.085, 0.349
and 0.085 and the two-point designs (0, 10), (0, 6) and (4, 10) with weights 0.165, 0.158 and 0.158, respectively, and that
the corresponding design given in Abt et al. (1998) is approximately 84% efficient relative to this design.

5. An example

A survey on the foraging behaviour of honeybees was undertaken on a commercial farm near Bela–Bela in Limpopo,
South Africa (Bezabih, 2009). Specifically, honeybees entering a hive were counted over a five minute period at a series of
12 different equally spaced time points during day time, that is at 7:00, 8:00, 9:00, 10:00, 11:00, 12:00, 13:00, 14:00, 15:00,
16:00, 17:00 and 18:00 hours. The experiment was run over nine hives giving a total of 108 observations. The counts were
high, were therefore assumed to be normally distributed and were modelled against time with hives as a random effect.
The quadratic regression model (2.1) provided a good fit to the data, with the REML estimate of the ratio of variance
components given by ĝ ¼ 0:115.

Consider now redesigning the experiment in order to estimate the model parameters b, or some function of them, as
precisely as possible. Assume, as in the original experiment, that only 108 observations can be taken in total, that at most
one measurement can be taken on each hive at each time of day and that the ratio g is given by its REML estimate of 0.115.
Assume also that the cost of each observation is constant and that no extra costs are incurred on introducing the hives.
Then, more specifically, the problem posed is that of establishing how many hives should be used in the experiment and at
which of the equally spaced times the number of honeybees at each hive should be counted in order to achieve the
required optimal precision. For example, should the researcher take two counts on each of 54 hives, with an equal
allocation of hives to the designs based on time points 7:00 and 13:00, on time points 12:00 and 18:00 and on time points
7:00 and 18:00, or should the researcher rather take some other allocation based on say 18, 27 or 36 hives?

D- and V-optimal population designs based on d-point individual designs and on the set of all possible individual
designs were obtained using the results of Theorems 3.1 with k=11 for d=1 and otherwise numerically. Exact designs were
constructed directly from the resultant approximate designs by rounding and are summarized, together with values of the
appropriate optimality criteria, for selected values of d in Table 2. It is interesting to note that the D-optimal criterion

Table 2
Exact population designs. The time points 7:00, y, 18:00 hours are denoted by 0, y, 11, the numbers associated with each individual design refer to the

numbers of hives allocated to that design and B indicates the best design over the set of all individual designs.

d Exact design (xn) CDðxnÞ CV ðxnÞ

(a) D-optimal

1 ð0Þ ð5Þ ð6Þ ð11Þ

36 18 18 36

�2921.67 33.3404

2 ð0,11Þ ð0,6Þ ð5,11Þ

18 18 18

�3017.99 33.4759

3 ð0,5,11Þ ð0,6,11Þ

18 18

�3010.09 34.0442

4 ð0,5,6,11Þ ð0,5,10,11Þ ð0,1,6,11Þ

23 2 2

�2359.39 33.5883

12 ð0,1,2,3,4,5,6,7,8,9,10,11Þ

9

�556.89 44.6196

B ð0,6Þ ð5,11Þ ð0,11Þ ð0,5,11Þ ð0,6,11Þ

13 13 13 5 5

�3019.24 33.5664

d Exact design, xn CV ðxnÞ CDðxnÞ

(b) V-optimal

1 ð0Þ ð5Þ ð6Þ ð11Þ

29 25 25 29

30.9570 �2641.08

2 ð0,11Þ ð0,6Þ ð5,11Þ

4 25 25

31.2349 �2743.75

3 ð0,5,11Þ ð0,6,11Þ ð0,5,6Þ ð5,6,11Þ

11 11 7 7

32.2861 �2592.85

4 ð0,5,6,11Þ

27

33.4215 �2350.17

B ð5Þ ð6Þ ð0,11Þ

25 25 29

30.6644 �2667.53
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values for the designs in Table 2(a) increase with increasing d for dZ2 and that the V-optimal values for the designs in
Table 2(b) increase with increasing d for all d. The D- and V-optimal designs are, however, very different in form. Thus, if
the number of observations taken at each hive is fixed, then the best D-optimal population design comprises two-point
individual designs, while the best V-optimal design comprises single-point designs. Also, the best D-optimal population
design over the set of all individual designs is a mixture of 2- and 3-point designs, while the corresponding V-optimal
design is based on two single-point designs and one 2-point design. More generally, it can be argued that the best D- and
V-optimal population designs of those presented in Table 2 are disappointing in a practical sense in that they require
experiments with large numbers of hives and very few observations taken on each hive. As a counter to this, it can be
argued that the original design comprising observations at 12 distinct times on each of nine hives has a D-efficiency of
56.92% and a V-efficiency of 58.34%, both of which are alarmingly low.

6. Conclusions

The aim of this paper has been to investigate the construction of D- and V-optimal population designs for the quadratic
regression model with a random intercept term and with values of the explanatory variable taken from a set of equally
spaced, non-repeated time points, 0,1,y,k. Algebraic results proved somewhat elusive. D-optimal population designs
based on single-point individual designs were readily found and are independent of the choice of the ratio g¼ s2

e=s2
b .

However, the derivation of explicit expressions for D-optimal population designs based on two-point individual designs
was not straightforward and was complicated by the fact that the designs now depend on g. The theorems presented in this
study are intricate, involve tedious algebra and are limited in that they only pertain to certain values of k and g. The
approach to the proofs of the theorems draws heavily on the work of Cheng (1995) and Atkins and Cheng (1999) but is
complicated by the fact that the candidate support designs form a lattice rather than a continuum. From the limited results
obtained it is tempting to conjecture that D-optimal population designs for k even based on two-point individual designs
are of the form

0,
k

2
þa

� �
ð0,kÞ

k

2
�a,k

� �
w 1�2w w

8<
:

9=
;,

for a=0,1,yand weight w or comprise a mixture of such designs. But this is only a conjecture. No attempt was therefore
made to extend the theory to cases of d-point D-optimal population designs where dZ3 and, more generally to population
designs which are D-optimal over the set of all possible individual designs. Furthermore V-optimal population designs
proved very much more difficult to derive than their D-optimal counterparts, even for the case of d=1. These findings and
limitations for the quadratic regression model with a random intercept term are in sharp contrast to the compact algebraic
results obtained by Debusho and Haines (2008) for the corresponding simple linear model. It should of course be
emphasized that D- and V-optimal population designs for the quadratic model with random intercept can be constructed
numerically by some careful programming, at least for moderate values of d and k, and a suite of gauss routines to do this is
available from the authors on request. Finally the example of honeybee foraging presented here involves k=11 and
d=1,y,12 and was introduced in order to illustrate the nature of the D- and V-optimal population designs that can be
obtained, albeit numerically. So the challenge of obtaining explicit general formulations for D- and V-optimal population
designs for polynomial regression models with a random intercept remains and innovative approaches other than the one
introduced here could well be sought.
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