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A continuous family of excess Gibbs free energy expressions is derived based on the double-weighted power
mean mixture model and concepts from cubic equations of state. This family has two types of parameters:
The model form is determined by two power indices, whereas the matrix of binary coefficients characterizes
pure component behavior and binary interactions. It is shown that the Porter, Margules, and Wassiljewa
composition dependence are but special forms of this more general expression. In particular, the Wassiljewa
Gibbs free energy form turns out to have the same composition dependence as the nonrandom two-liquid
(NRTL) equation.

Introduction

The Gibbs free energy of an n-component liquid mixture can
be partitioned as follows:

G ) GE + ∑
i)1

n

xiGi + RT ∑
i)1

n

xi ln xi (1)

Here, Gi is the Gibbs free energy of pure component i, GE is
the excess Gibbs free energy, and the xi is the mole fraction of
component i in the mixture. It is convenient to rewrite eq 1 in
dimensionless form by scaling with respect to RT:

g ≡ G
RT

) gE + ∑
i)1

n

xigi + ∑
i)1

n

xi ln xi (2)

The dimensionless excess Gibbs energy gE ) gE (T, P, x)
expresses the nonideal behavior of liquid mixtures as a function
of temperature, pressure, and mixture composition. At low to
medium pressures, the pressure dependence is usually weak and
frequently ignored.1 gE reflects the effect of differences between
the intermolecular interactions in the pure components and in
the mixture and also the structural changes that accompany
mixing.2 Knowledge of its temperature, pressure, and composi-
tion dependence provides a complete description of the ther-
modynamic properties of the mixture. Unfortunately, thermo-
dynamics does not provide an explicit functional form for the
temperature and composition dependence of the excess Gibbs
free energy. Consequently one has to turn to empirical and
semirational approaches.1 Early significant gE empirical descrip-
tions were provided by Margules,3 van Laar,4 Porter,5 Wohl,6

and Redlich and Kister.7 The most important semitheoretical
equations are based on the theoretical concept of local composi-
tions. They include the Wilson,8 NRTL,9 and UNIQUAC10

equations. However, Flemr11 and McDermot and Ashton12

showed that the local composition theory, as implemented in
these equations, is actually inconsistent for nonrandom mixtures.

The composition dependences of the Porter,5 Margules,3 and
NRTL equations differ ostensibly. Nevertheless, this com-
munication intends to show that these classic gE expressions
are just special cases of a more general mixing rule recently
developed for fluid physical properties.13,14 Toward this end,
suitable expressions for the following function will be devel-
oped:

g# ) G
RT

- ∑
i)1

n

xi ln xi )
GE

RT
+ ∑

i)1

n ( Gi

RT
xi) ) gE + ∑

i)1

n

xigi

(3)

It will be shown that an equation with NRTL-like composition
dependence can be obtained without invoking the local com-
positions concept.

Weighted-Power-Mean Mixture Model (WPM3)13

A liquid is a condensed phase characterized by a degree of
short-range molecular order and the absence of any long-range
order.2 Accordingly, the local liquid structure about a central
reference molecule may be defined by the cell formed by the
shell of nearest neighbors.15,16 The molecular size and shape
as well as the strength of the intermolecular interactions
determine the cell size and the relative spatial orientations of
the adjacent molecules.2,17 Orientation structuring is important
when the molecules possess a dipole moment. For example,
liquid water is highly structured. A strong preference is shown
for tetrahedral orientation of hydrogen atoms about oxygen
atoms owing to directional hydrogen bonding.2

Additional complications arise when liquid mixtures are
considered.8,18 Differences in the shape or size of the unlike
molecules are expected to affect the molecular arrangement in
the mixture.19,20 Differences in the attractive forces between
like and unlike molecules are especially important.8 Competition
among the various molecular species, in their interaction with
the central molecule, results in local compositions that may differ
from the bulk concentrations. Wilson8 used a Boltzmann-type
distribution function to describe the relocation of molecules in
the shell of nearest neighbors.

The fact that intermolecular interactions have an extremely
short range justifies the assumption that only binary interactions
need to be considered. This allows a fluid mixture to be viewed
as an assembly of hypothetical fluid clusters defined by the
nature of a central molecule together with its nearest neighbors.8,9

Every fluid physical property is then ultimately determined by
the binary interactions between the central molecules and their
cluster neighbors. Focke et al.13 postulated that the effect of
these interactions, on the values that a given physical property
will assume, can be captured by a matrix of binary coefficients
C ) [cij]. In their notation, the subscript i specifies the nature
of the central molecule of the cluster and j the nature of a
neighboring molecule. In a pure component i fluid, all of the
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interactions are identical and their effect on the fluid physical
property is described by the parameter cii. It immediately follows
that cii is equivalent to the fluid physical property of pure
component i, that is cii ) ci.

In the above framework, a mixture rule is defined by
prescriptions for (i) estimating fluid cluster properties and (ii)
how to combine them to yield the overall mixture property value.
A particularly flexible form is obtained when both prescriptions
entail global composition-weighted power means.13 This yields
the weighted-power-mean mixture model of orders r and s,
which for r, s * 0 reads:

f (C, x) ) [∑
i)1

n

xi(∑
j)1

n

xjcij
s)r/s]1/r

(4)

Equation 4 features two types of adjustable parameters: The
cij are adjustable binary coefficients while the model constants
r and s determine the nature of the composition dependence.
For preselected (r, s) values, the resulting model predicts, in
principle at least, multicomponent behavior from knowledge of
pure component and binary mixture data. The choice r ) 1
reduces eq 4 to the neural network mixture model proposed by
Focke.14

Consider the physical interpretation of the model constants r
and s. In essence, s defines the averaging process for calculating
cluster property values. The parameter r prescribes the averaging
process for determining the mixture property value in terms of
the cluster values. For instance, when these indices take on the
special values 1, 0, or -1, the corresponding averaging processes
correspond to composition weighted arithmetic, geometric, and
harmonic means. In both cases, the weighing is done with
respect to bulk compositions.

Before eq 4 can be applied as a mixing rule for the Gibbs
free energy, it is necessary to find suitable interpretations for
the coefficients cij and to postulate a link between the functions
g# and f(C, x). The possibility that g# ) -ln f(C, x) will be
considered in a separate communication but in this study it is
simply assumed that:

g# ≡ f (C, x) ) [∑
i)1

n

xi(∑
j)1

n

xjcij
s)r/s]r

(5)

Again, choosing r ) 1 implies that the composition depen-
dence of the function g# is defined by Focke’s neural network
mixture model.14

Equation 4 is homogeneous of order one in the coefficients
cij, that is for all λ:

f ([λcij], x) ) λf ([cij], x) ) λf (C, x) (6)

The homogeneity property ensures that the model is dimen-
sionally homogeneous and guarantees that it is intrinsically well-
conditioned with respect to all the adjustable binary coefficients
cij.

14 Furthermore, the choice λ )-1 shows that it is permissible
for all of the coefficients of the matrix C to be negative:

f ([-cij], x) ) -f ([cij], x) ) -f (C, x) (7)

However, except for special values for r and s, the model is
not invariant with respect to arbitrary scale translations, that is

f ([cij - R], x) * f ([cij], x) - R (8)

Thus, eq 4 applies only to properties with well-defined
absolute values. This clearly poses a dilemma when the Gibbs
free energy is considered as it is usually defined with respect
to some (arbitrary) reference state. Fortunately it is possible to

find an unambiguous absolute representation, suitable for use
in this formalism, from cubic equations of state (EoS).

Excess Gibbs Energy Expressions from Cubic Equations
of State

Huron and Vidal21 proposed a generalized form for the van
der Waals-type cubic equation of state with φ1 and φ2 as
numerical constants:

P ) RT
(V - b)

- a
(V + �1b)(V + �2b)

(9)

For pure components, the attraction parameter a ) a (T)
and the covolume b can be evaluated from critical properties
and vapor pressure data. For mixtures, appropriate mixing rules
are required to describe the composition dependence of the
parameters amix and bmix.

1,22,23 For example, the classic van der
Waals rules read:

amix ) ∑
i

∑
j

aijxixj and bmix ) ∑
i

bixi (10)

Here, the aii and bi are pure component EoS parameter values.
Wong and Sandler24 postulated that the excess Helmholtz free

energy of mixing is pressure independent. This implies that the
excess Helmholtz free energy of an equation of state (EoS),
evaluated at infinite pressure, provides a reasonable approxima-
tion for the excess Gibbs free energy in the liquid state:

GE(T, xi) ) GE(T, P ≈ 0, xi) ≈ AEOS
E (T, P f 0, xi) ≈

AEOS
E (T, P f ∞, xi) (11)

The infinite pressure state corresponds to a situation where
there is no free volume. Thus, as P f ∞, ν f b, and νii f bii,
that is the molar volume of the mixture and the molar volumes
of the pure components respectively equal the covolume
parameters b and bi.

23,24 With these conditions, the excess
Helmholtz energy at infinite pressure, that is the excess Gibbs
energy, reduces to:21,23

gE ≈
A∞

E

RT
) - Φ

RT

amix

bmix
- ∑

i)1

n (- Φ
RT

aii

bi
)xi (12)

Φ is a characteristic constant of the cubic equation of state
used.21 For φ1 ) φ2, Φ ) 1/(1 + φ1), whereas Φ ) ln [(1 +
φ1)/(1 + φ2)]/(φ1 - φ2) when φ1 * φ2.

From eq 12, it is inferred that

g# ) gE + ∑
i)1

n

xigi ) gE + ∑
i)1

n (- Φ
RT

aii

bi
)xi ) - Φ

RT

amix

bmix

(13)

Comparing eq 5 with eq 12 or with eqs 10 and 13 at a
composition limit xi f 1 (i.e., corresponding to pure component
i) reveals the following rational link between EoS parameters and
the constants cii of the weighted-power-mean mixture model:

cii ) - Φ
RT

aii

bi
(14)

Because aii, bi > 0, it follows that cii < 0 when Φ > 0.

Wassiljewa or Two-Parameter NRTL Model

Renon and Prausnitz9 derived the nonrandom two-liquid
(NRTL) model. To account for the nonrandomness of liquid
mixtures, the classic NRTL model invokes Scott’s two-liquid
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model17 and Wilson’s “local compositions” concept.8 The
intermolecular interactions, gij, are construed as Gibbs free
energies with the gii as the Gibbs free energy of the pure
substance i.1 It is further assumed that gij ) gji. The local
distribution of molecules in the immediate vicinity of another
molecule is then expressed in probabilistic terms by a Boltz-
mann-type distribution based on the differences in the interaction
energies. This endows the model parameters with the following
implicit temperature dependence:

Gij ) exp (-Rτij) and τij ) (gij - gjj)/RT (15)

Renon and Prausnitz9 considered R to be an empirical
constant. In the context of Guggenheim’s quasichemical theory
R ) 1/z, that is it should be inversely proportional to the
coordination number in the liquid state. Walas1 recommends a
value of R ) 0.4 for aqueous organic mixtures and R ) 0.3 for
nonaqueous mixtures. Marina and Tassios25 found that setting
R ) -1 provided good representations of binary mixture
behavior. In general, the NRTL equation represents highly
nonideal multicomponent equilibrium data, for example aque-
ous-organic systems, quite well.1,26 For a binary mixture, the
NRTL model is given by:

gE ) x1x2[ τ21G21

x1 + G21x2
+

τ12G12

G12x1 + x2
] (16)

The Wilson and UNIQUAC models form the bases for the
ASOG and UNIFAC activity coefficient prediction by group
contribution methods. NRTL usually gives better data fits than
UNIQUAC and unlike Wilson it can predict liquid-liquid phase
separation.1 A possible handicap of NRTL is that three
adjustable parameters must be fixed for each pair of constituents.
This could be the reason why a predictive NRTL, based on
group contribution methods, was never developed. Raal and
Muhlbauer26 state that, despite the fact that the NRTL model
has a reasonable basis in theory, the link is insufficient to fix
the values of the parameters on the basis of molecular
considerations. It will now be shown that eq 4 predicts the same
composition dependence as the NRTL equation when r ) 1
and s ) -1:

g# ) ∑
i)1

n xi

∑
j)1

n

xj/cij

(17)

Setting Λij ) cii/cij in eq 17 and rewriting it in terms of gE

yields the following revised two-parameter NRTL-like expres-
sion for multicomponent mixtures:

gE ) ∑
i)1

n

ciixi[ ∑
j)1

n

(1 - Λij)xj

∑
k)1

n

Λikxk ] (18)

Because Λii ) 1, eq 18 reduces to the following expression
for a binary mixture:

gE ) x1x2[c11(1 - Λ12)

x1 + Λ12x2
+

c22(1 - Λ21)

Λ21x1 + x2
] (19)

The equivalence with the NRTL composition dependence
becomes clearer when eq 19 is first recast in the following
alternative form

gE ) x1x2[Λ12(c12 - c11)

x1 + Λ12x2
+

Λ21(c21 - c22)

Λ21x1 + x2
] (20)

Renon and Prausnitz9 used a reverse index notation for their
model parameters. Thus the conventional binary mixture NRTL
form, eq 16, obtains when one sets

τ12 ) c21 - c22; τ21 ) c12 - c11; G12 ) Λ21 ) c22/c12

and G21 ) Λ12 ) c11/c12 (21)

It can be shown that eq 18 also features the same composition
dependence as the multicomponent NRTL equation. Thus, the
standard expressions for activity coefficients that are available
for the classic equation can also be used for the two-parameter
per binary version through the links defined by eq 21.

Note that, in the present context, the NRTL composition
dependence corresponds to the prescriptions that cluster proper-
ties be evaluated as a weighted harmonic mean and the mixture
property as a weighted arithmetic mean over the cluster
properties. In each case, the weighing is based on bulk mole
fractions, that is to say, “local compositions” did not enter the
argument at all. Interestingly Wassiljewa27 first derived this
NRTL-type composition dependence as a theoretical mixture
model for the thermal conductivity of dilute hard-sphere gas
mixtures.

Whereas the present two-parameter formulation and the
original three-parameter NRTL have a specific excess Gibbs
energy composition dependence in common, that is eq 16, they
are not identical. The difference lies in the way the model
parameters τij and Gij are linked. Renon and Prausnitz9 derived
the relation given by eq 15, whereas in the present formulation

Gij )
cjj

τij + cjj
(22)

In addition, the present formalism defines the τij and the Gij

in terms of the corresponding EoS parameters. This implies that
the parameter temperature dependence can be linked to the
temperature dependence of the EoS parameters. Figure 1
compares typical variations of Gij with changes in τij.

Preliminary testing of the data correlating capability of the
Wassiljewa-NRTL formulation revealed that, while it excels for
some systems, it holds no particular advantage over the
conventional NRTL model. In part, this is due to the additional
flexibility imparted by the additional adjustable parameter.

Composition Order

Equation 5, with the cii, defined by eq 14, describes a
continuum of activity coefficient models in the (r, s) Cartesian

Figure 1. Illustrating the relationship between Gij and τij for the classic
NRTL Gij ) exp(-Rτij) with (i) R ) 1/3 (-O-), (ii) R ) -1 (-0-), and
(iii) Gij ) cjj/(cjj + τij) with cjj ) 10 ( · ·2 · · ).
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plane.13 The Porter, two-parameter Margules and Wassiljewa-
NRTL models are special cases of eq 5 that have r ) 1 in
common. This means that they are actually subsets of the neural
network mixture model.14 Inspection reveals that choosing s )
1 delivers the Porter5 model, whereas s ) 1/2 generates a two-
parameter Margules equation.13 Thus, these three equations, and
other yet to be explored functional forms, are simply special
cases of a more general Gibbs energy model defined by eq 5.

The nature of the composition dependence of the various
models is succinctly quantified by its order. Inspection reveals
that the Gibbs function g# is of order

n ) 1
r
+1

s
(23)

in composition, that is mole fractions. Figure 2 shows contour
plots of constant composition order n in the (r, s) Cartesian
plane. The coordinates of the Porter, two-parameter Margules,
and Wassiljewa-NRTL models are also shown. The Porter model
has a quadratic composition dependence (n ) 2), whereas the
Margules is third order in composition (n ) 3). The origin in
this plot (s ) r ) 0) is an attractor as contours of all orders
have this point in common. It corresponds to a double-weighted
geometric mean mixture model of infinite order in composition.
Taking logarithms, it can be shown that the composition
dependence ln f(C, x) follows the quadratic Scheffé form:28,29

ln f (C, x) ) ∑
i)1

n

xi(∑
j)1

n

xj ln cij) (24)

Hajra30 previously proposed excess Gibbs free energy models
containing exponential functions of composition.

Conclusions

The derivation of the weighted-power-mean mixture model
(WPM3) is based on the following concepts: (i) multicom-
ponent mixtures can be viewed as a hypothetical collection
of fluid clusters, and (ii) global composition-weighted power
means define the prescriptions needed for estimating fluid
cluster properties and combining them to yield an overall
mixture property. Whereas the WPM3 predicts multicompo-
nent properties from knowledge of pure component and
binary mixture data, it only applies to absolute physical
properties. This posed a problem for free energies as they
are usually measured relative to some reference state. A main

finding of this communication is that a suitable absolute
format for the Gibbs free energy can be constructed by
considering limiting forms of a cubic equation of state. The
end result is eq 5 with the pure component parameters defined
by eq 14. This model defines a continuous family of Gibbs
free energy expressions featuring two types of parameters:
The model form is determined by two power indices, whereas
the matrix of binary coefficients characterizes pure component
behavior and binary interactions. It was further shown that
the composition dependences shown by the classic Porter,
Margules, and NRTL activity coefficient models are just
special forms of this more general expression. The classic
models differ primarily with respect to the order of the
composition dependence, which is zero, two, and three for
the NRTL, Porter, and Margules models respectively. Inter-
estingly, a model that is of infinite order in composition was
identified.
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