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ABSTRACT Knowledge of the range, behavior, and feeding habits of large carnivores is
fundamental to their successful conservation. Traditionally, the best method to obtain feeding
data is through continuous observation, which is not always feasible. Reliable automated
methods are needed to obtain sample sizes sufficient for statistical inference. Identification of
large carnivore kill sites using Global Positioning System (GPS) data is gaining popularity. We
assessed performance of generalized linear regression models (GLM) versus classification trees
(CT) in a multi-predator, multi-prey African savanna ecosystem. We applied GLMs and CTs to
various combinations of distance travelled data, cluster durations, and environmental factors to

predict occurrence of 234 female African lion (Panthera leo) kill sites from 1,477 investigated
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GPS clusters. Ratio of distance moved 24 hours before versus 24 hours after a cluster was the
most important predictor variable in both GLM and CT analysis. In all cases, GLMs
outperformed our cost-complexity-pruned CTs in their discriminative ability to separate kill from
non-kill sites. Generalized linear models provided a good framework for kill site identification
that incorporates a hierarchal ordering of cluster investigation and measures to assess trade-offs
between classification accuracy and time constraints. Implementation of GLMs within an
adaptive sampling framework can considerably increase efficiency of locating kill sites,

providing a cost-effective method for increasing sample sizes of kill data.

KEY WORDS Global Positioning System (GPS), Kruger National Park, Panthera leo,

predation, predator-prey interactions

Understanding prey-predator interactions is essential for managing African wildlife to mitigate
human-wildlife conflict and to conserve prey populations (Hemson 2003, Sinclair et al. 2003,
Owen-Smith et al. 2005, Grange and Duncan 2006). It is well understood that carnivore
abundance is dependent upon prey availability (Smuts 1978, Gasaway et al. 1992, Mills and
Funston 2003, Packer et al. 2005), which is strongly linked to climate (Ogutu and Owen-Smith
2003, 2005; Ogutu et al. 2008), and predators can regulate prey populations (Tambling and du
Toit 2005, Grange and Duncan 2006, Owen-Smith and Mills 2008). However, determining
relative importance of predation in regulating prey populations is challenging because predator-
prey datasets commonly lack the depth and detail required for statistically rigorous analyses

(Franke et al. 2006).
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Hunting habits, prey selection, and range use of large African carnivores is best studied
through continuous observation (Henschel and Skinner 1990, Mills 1992, Funston et al. 2001,
Broomhall et al. 2003, Bissett and Bernard 2007). In African lions (Panthera leo, hereafter
lions), continuous observation data have been used to assess factors that influence both hunting
behaviour (Stander 1992a, b; Stander and Albon 1993) and success (van Orsdol 1984, Stander
and Albon 1993, Funston et al. 2001), but such methods are time-consuming, labour intensive,
or logistically unrealistic. Alternative techniques include opportunistic carcass location (Pienaar
1969, Schaller 1972, Mills et al. 1995, Radloff and du Toit 2004), stomach content analysis
(Smuts 1979), spoor tracking (Eloff 1984), and scat analysis (Purchase 2004). All of these
approaches bias the dietary results in some manner, usually by the increased detection of larger
prey items (Mills 1992). Nonetheless, long term datasets have proved useful in investigating
trends in lion diets in the Serengeti (Hopcraft et al. 2005), Kruger National Park (KNP; Pienaar
1969, Mills et al. 1995), and in private reserves surrounding KNP (Radloff and du Toit 2004),
and methods have been suggested to correct biases (Owen-Smith and Mills 2008).

Global Positioning System (GPS) technology enables collection of high resolution
spatio-temporal movement data that then can be used to locate kill sites, identify prey species,
and thereby determine species-specific kill rates (Anderson and Lindzey 2003, Sand et al. 2005,
Franke et al. 2006). However, this application of GPS technology is still not well developed and
we know of published examples on only 2 species: pumas (Puma concolor: Anderson and
Lindzey 2003) and wolves (Canis lupus: Sand et al. 2005, Franke et al. 2006, Webb et al. 2008).
The primary analytic focus of these studies has been on GPS cluster aggregations in time,
although an alternative could be the rate or occurrence of multiple trips to a specific location

(Stotyn 2005). Technical failures of collars and time lags between event recording and data
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downloading have hampered utility of GPS data in locating kills (Hemson 2002, Anderson and
Lindzey 2003), although with remotely accessible data the approach is showing considerable
promise in northern temperate regions (e.g., Franke et al. 2006, Webb et al. 2008).

In African savannas, where multiple predator species co-exist with multiple prey species
(Hayward and Kerley 2005), complexity is added to the data and analysis because, for a given
predator, residence time at a kill varies considerably with size and type of prey as well as
intraguild aggression. Here we aim to develop and test models that increase the efficiency of
locating lion kills from remotely accessed GPS data. These models can then be incorporated as

research tools in an adaptive resource management framework (Kendall and Gould 2002).

STUDY AREA

We conducted our study in a 1,000-km? area in the central region of the KNP, South Africa,
centred on Satara rest camp (31.77° E, 24.39° S). The study area was mainly open-tree savanna
with a moderate to sparse shrub layer and a dense grass layer. Dominant tree species were
marula (Sclerocarya birrea) and knobthorn (Acacia nigrescens) with red grass (Themeda
triandra) and stinking grass (Bothriocloa radicans) dominating the grass layer (Gertenbach
1983, Venter et al. 2003). The area comprised the northern component of wildebeest
(Connochaetes taurinus) and zebra (Equus quagga) migrations, resulting in high densities of
these species in the wet months (Gertenbach 1983). Buffalo (Syncerus caffer), kudu
(Tragelaphus strepsiceros), giraffe (Giraffa camelopardalis), and waterbuck (Kobus
ellipsiprymnus) occurred in large numbers, providing a high prey density and consequently a

high lion density (Gertenbach 1983, Mills and Funston 2003).
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METHODS

GPS Collars and Cluster Investigation

We collared 5 female lions with GPS/global system for mobile communications (GSM) units
(i.e., GPS/GSM, GPS units with mobile phone capabilities; Hawk105 units, African Wildlife
Tracking “, Pretoria, South Africa) between May 2005 and April 2007. Lions were captured
using standard techniques by South African National Parks (SANParks) veterinarians (Smuts et
al. 1977). Collars recorded GPS locations on 2 schedules: a) once per hour every night between
1800—0600 hours and during the day at 0900 hours, 1200 hours, and 1500 hours (16 fixes
attempted) and b) once per hour over the full 24-hour period (24 fixes attempted). Collar
schedules were therefore identical at night (1800—0600 hr) but differed during the day. Due to
the high rate of GPS location recordings, collars had a reduced battery life and we replaced some
during the study. We deployed 9 collars during the study, 4 of which attempted fixes 24
hours/day and 5 of which attempted fixes 16 hours/day. Lions in the KNP are active
predominantly at night so most kills are nocturnal, with daylight hours spent resting (Mills and
Biggs 1993). The combination of datasets using both collar schedules incorporated balanced
sets of hourly readings at night (when lions are most active) across the entire dataset, but missed
some data points during the day. The unbalanced daytime schedules should not have created any
significant error due to inactivity of lions during daytime. We nevertheless performed all
analyses with both schedules separately as well as with the entire pooled dataset. We
downloaded data remotely via the GSM network when each collared individual entered an area
of GSM coverage. We calculated distances between successive locations using the Animal
Movements Extension (Hooge et al. 1999) in ArcView® 3.2 and treated missed GPS locations

as stationary locations. We defined a GPS aggregation cluster (hereafter a cluster) as >2
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consecutive recorded fixes with each consecutive pair of fixes <100 m apart. We used 100 m as
the cut-off because over a trial period the maximum GPS error was 82 m, recorded in a riverine
area. Thus, any movement >100 m can be ascribed to actual movement of lions and not GPS
error. If a GPS location was not recorded and distance to the following location was >100 m, a
GPS cluster was not created (even though measurement of the intervening missing points may
have resulted in definition of a cluster being met).

We uploaded cluster coordinates onto a hand held GPS unit and investigated clusters on
foot. We investigated an area of approximately 20-m radius around GPS points (mean GPS
error prior to deployment was <20 m for all vegetation types) that encompassed all GPS points
for that cluster. Therefore, we included any GPS point outside the 20-m radius of the first GPS
point as the center of a new search radius so that we investigated all GPS points at the cluster.
We attempted to investigate as many clusters as possible, however to maximize number of
clusters investigated, we investigated clusters occurring near each other first. By conducting
investigations based on proximity of many clusters, we may have biased cluster investigation to
areas readily accessible by roads. We assessed this possible bias by comparing distance that
clusters with or without a kill occurred from a road, as well as distance that checked and
unchecked clusters occurred from a road using Wilcoxon rank sum tests. We identified
predation events at clusters from presence of prey stomach contents, teeth, bones, horns, or hair
and determined prey species, age, and sex when possible. The GSM coverage in the study area
was not uniform and areas existed without coverage; therefore, collared females re-entered areas
of coverage sporadically, resulting in an irregular pattern of cluster investigation over time (i.e.,
time between cluster occurrence and investigation depended on when the female moved into

GSM coverage).
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We separated field observations into 2 investigative periods; initially (Jun 2005 — Feb
2006) we only noted number of days between cluster occurrence and cluster investigation for
kills, but subsequently (Mar 2006 — Apr 2007) we recorded number of days between cluster
occurrence and cluster investigation for clusters with and without kills. During this second
period, we investigated clusters between 0—671 days (x = 54.2 days, median = 6 days) after
cluster occurrence. Using Wilcoxon rank sum tests, we investigated our ability to identify
species, age, and sex of the kill as time between cluster occurrence and investigation increased.
Statistical Methods
We measured 8 predictor variables for each GPS cluster. 1) Hours: length of time (hr) lions
spent at a cluster from the first point of the cluster until they left the cluster for the last time.
Hours was an indication of total time spent at on a carcass. 2) Return: a categorical variable
describing a return visit to a cluster within 12 movement steps of leaving that cluster indicating
the possibility that lions returned to carcass sites following initial movements away from the
carcass site. 3) Ratio 24: ratio of distance moved during the 24 hours prior to the cluster
beginning against distance moved during the 24 hours following termination of the cluster,
where cluster duration included all return events. We based the variable ratio 24 on the premise
that lions predominantly search for prey when hungry and rest following a kill, therefore
resulting in higher ratios for successful hunts. 4) Dist 1: distance moved by lions during the first
GPS interval of a cluster (i.e., between the first and second recorded GPS coordinate); a short
dist_1 indicates that the female remained close to the carcass at the beginning of a cluster and
did not move around the cluster site. 5) Dist 2: distance moved by lions during the second GPS
interval of a cluster (i.e., between the second and third recorded GPS coordinate); a short dist 2

indicates that the female remained at the carcass, as appose to moving away from the carcass
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while remaining at the cluster. 6) Drain: distance from the cluster to the nearest drainage line
(classes 1-4, S.MacFadyen, KNP Scientific Services GIS department), which we calculated
using ArcMap 9.0 and treated as a continuous variable, giving a measure of distance to available
cover for hunting lions. 7) Road: distance from the cluster to the nearest road (S. MacFadyen,
KNP Scientific Services GIS department), which we calculated as for drain, giving a measure of
bias of investigating clusters near roads. 8) Dark: a 5-valued categorical variable that accounted
for the combined effect of the sun and moon at the start of the cluster. The 5 categories were: 1
= daytime clusters, 2 = twilight clusters, 3 = night-time clusters with the moon up and full, 4 =
night-time clusters with the moon up and in the first or third quarter, and 5 = night-time clusters
with the moon up in the new moon phase or night-time clusters when the moon was down, as
lions have been shown to have a greater kill success on dark nights

We used generalized linear models (GLMs) to investigate variables related to probability
of a binary response (kill = 1, no kill = 0) occurring at a GPS cluster (Hosmer and Lemeshow
2000). We identified 2 possible time delays between cluster occurrence and cluster investigation
that suggested declines in our ability to identify kills at cluster sights (see results). Therefore, we
developed models based on data from clusters investigated during the first 4 weeks and first 16
weeks following a cluster occurrence. We used a forward stepwise a-to-enter approach (Quinn
and Keough 2002) with a cut-off of a = 0.05 as the criteria for entering parameters into the
model. We tested parameters for collinearity and found that hours and return were correlated (c
= 0.52), and subsequent investigation revealed that refurn was not an important variable if hours
was already included in the model. We assessed model discrimination using the area under the
curve (AUC) based on the receiver operator characteristic (ROC) curve, which is a plot of the

proportion of true positives (i.e., sensitivity of discrimination) as a function of the proportion of
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false positives (i.e., one minus the specificity of discrimination). With this definition the AUC
score represents the percentage of time that a true positive will have a higher probability of being
a kill than a true negative when both are drawn at random (Zweig and Campbell 1993, Fielding
and Bell 1997). We assessed the relative individual predictors’ influence on the response
variable using hierarchal partitioning analysis (MacNally 2000).

Classification trees (CTs) use a hierarchal splitting criterion that separates binary
responses to predictor variables based on sets of rules (Breiman et al. 1984, Ripley 2007).
Threshold criteria for each variable divide responses into homogenous groups based on prior
probabilities of the input data, a splitting criterion (the Gini index), and a loss matrix (Breiman et
al. 1984, Ripley 2007). Although large complex trees fit the data better than small trees, large
trees are not always better at predicting new data because they often over fit the data.
Consequently, the construction of a best tree involves development of large trees, followed by
cost-complexity pruning (Breiman et al. 1984, Ripley 2007) of branches based on honest
estimates of misclassification error obtained by cross-validation (See De'ath and Fabricius
2000). As recommended by De’ath and Fabricious (2000), we ran 50 10-fold cross-validations
for each tree and selected the tree that corresponded to a) the minimum relative misclassification
error and b) the 1-standard error rule. Due to the unbalanced nature of our data (84% of cases
were negative) we implemented a loss matrix to increase costs of a false negative error (Breiman
et al. 1984). We assessed tree discrimination using AUC values for both minimum error and 1-
standard error trees.

We assessed GLM and CT validation by randomly partitioning the complete dataset into
independent training and testing sets and calculating their associated AUC values (Fielding and

Bell 1997, Manel et al. 1999). We developed 5 model validation sets based on the k-fold
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partitioning with £ = 2 (Fielding and Bell 1997) and re-developed new GLMs and CTs (as
described above) for each training set. We then tested these re-developed GLMs and CTs on the
independent testing dataset. We restricted data partitioning to a 2-fold k partitioning to adhere to
the suggested M/10 number of predictors, where M is the fewest number of cases in the binomial
response (Harrell et al. 1996).

Implementation of a GLM or CT approach will be dependent on field time available for
cluster investigation (i.e., more field time will enable investigation of more clusters, whereas less
field time will require investigation of clusters with a higher kill probability). Therefore, we
investigated the percent correct classification (PCC, all positive and negative clusters correctly
identified), sensitivity (probability that a kill is correctly classified), and the specificity
(probability that a non-Kkill is correctly classified) across a range of threshold values that enabled
number of clusters investigated to vary (Fielding and Bell 1997). The threshold value converted
the probability output from the model to a binary value for each cluster. Additionally, to assess
how they influenced prediction success, we investigated 2 types of threshold values: 1) a default
of 0.5 as the threshold and 2) the prevalence in the data as the threshold.

As part of an adaptive framework for kill-site prediction we developed GLMs and CTs
using cumulative monthly cluster data between March 2006 and April 2007 (adaptive training
datasets), and then predicted the location of kill sites for clusters investigated during the
following month (adaptive testing datasets). For example, we used GLMs and CTs constructed
using cluster data between March 2006 and September 2006 to predict the state of clusters
investigated during October 2006. We then calculated AUC values for the testing sets. Finally,
we used GLMs developed on the 5 training sets to assess effectiveness of using the resulting

probability of finding a kill in the testing sets as a hierarchal means to order cluster investigation

10
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in the field. We compared the cumulative number of kills located with each additional cluster
investigated to the cumulative number of kills found by searching clusters at random and
averaged it across the 5 data sets. We conducted all presence-absence and AUC analyses using
the ‘Presence Absence’ package and all classification tree implementations in ‘rpart’ using

R2.7.0 (R Development Core Team 2008).

RESULTS

Fix rate for GPS collars ranged from 65% to 88% (x = 77%). We investigated 59.5% (1,447
out of 2,433) of clusters and found 234 kills. Collared lions moved away and then returned to a
cluster at 8.5% of checked clusters. Investigated clusters tended to occur closer to roads than
unchecked clusters (checked clusters: 661 m, unchecked clusters: 756 m, Wilcoxon W =
747,710, p < 0.05), potentially reducing the chance of locating kills, especially because kills
occurred on average farther from roads than did non kills (kills: 737 m, non-kills 647 m,
Wilcoxon W= 125,383, p <0.005). We investigated more clusters and found more kills during
the first 4 weeks following cluster occurrence (673 clusters, 171 kills). Rate of clusters checked
per kill remained constant during the subsequent 12 weeks. Following a 16-week interval
between cluster occurrence and investigation, kills located per checked cluster declined even
though sampling intensity remained the same (Fig. 1). During the 16-week subset, we found 222
kills by investigating 1,070 clusters. We found that number of days that elapsed between kills
and cluster investigation did not influence our ability to confirm identification of the killed
species (species confirmed: n = 228, species unconfirmed: n = 6, Wilcoxon W =495, p =0.25)
or age classification of the prey item (confirmed: » = 190, unconfirmed: n = 38, Wilcoxon W =

3,247.5, p = 0.33). However, we did find that checking clusters sooner after cluster occurrence

11
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Figure 1: Number of Global Positioning System (GPS) clusters investigated, number of kills found, and associated
relative percentage of clusters investigated per kill during 4-week periods following occurrence of GPS clusters for

female lions between May 2005 and April 2007 in Kruger National Park, South Africa.
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increased our ability to classify sex of the kill, excluding juvenile kills (confirmed: » = 50,
unconfirmed: n = 104, Wilcoxon W = 2,026, p < 0.05).

Preliminary model development revealed that there was no substantial improvement in
model fit when the individual females were included as a random variable in a mixed-effect
GLM, so we used standard GLMs for the development of predictive models. For both the 4- and
16-week datasets, 4 predictor variables were included in the final model, the most important
being Ratio 24, explaining 51% and 48%, respectively, of the response outcome. Variables
hours and dark explained 30-31% and 10-17%, respectively, of the response variable depending

on dataset used, and the 3 variables collectively explained 94-95% of variation in the model
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attributed to whether a kill occurred at a cluster. The final variable contributing to the
explanation of kill sites was distance moved in the first GPS interval (dist I = 5-6%). When we
developed GLMs using the 2 different recording schedules the same 4 variables were selected by
the a-to-enter approach and each response variable still explained a similar percentage of the
response outcome.

We present CT results for the 16-week dataset only because trees developed for the 4-
week dataset were similar in structure and composition. Both the 1-standard error and minimum
error trees were composed of 2 splits. Ratio 24 was the variable responsible for the main split in
both CTs with kills separated from resting with a ratio >1.5. Using the variable Ratio 24 alone
resulted in location of 64% (142/222) of kills while investigating 36% (384/1,070) of clusters,
therefore locating a kill every 3 clusters checked (142 kills from 384 checked clusters). By
adding the second split (min. length of a cluster >21 hr) when Ratio 24 was <1.5, we would
have located 75% (166/222) of kills while investigating 40% (426/1,070) of clusters. Addition
of a third split, which suggests investigating clusters with Ratio 24 >0.99 when length of the
cluster is <21 hours in addition to the criteria for the 2 previous splits, results in 88% (196/222)
of kills located while investigating 58% (624/1,070) of clusters. As we increased number of
branches our ability to locate future kills increased, but total number of clusters checked and
therefore kills found declined, increasing the risk of overfitting when predicting kill sites with
novel data.

The GLMs showed good discrimination with AUC values between 0.81 and 0.83 (Table
1). When we ran GLMs on the data from the 2 recording schedules AUC values remained
around 0.8. Area under the curve results for the cost-complexity-pruned CTs were lower than

those for the GLMs for both minimum error and 1-standard error trees, respectively (Table 1).
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Table 1: Discriminative ability (area under the curve [AUC] of the receiver operating characteristic curve) of the
generalized linear regression models (GLMs) and classification trees (CTs: including the 1-standerd error tree and
min. error tree [Min]) to predict location of female lion kill sites in Kruger National Park, South Africa, between
May 2005 and April 2007. Results show the discriminative ability for the full dataset against itself and the average

of randomly drawn testing datasets against their associated training dataset from which we developed the models.

Data Subset GIM SD CT:Min SD CT:1-SE SD
4-week dataset Complete 0.83 0.73 0.73

Testing 0.82 0.01 0.68 0.02 0.69 0.02
16-week dataset Complete 0.81 0.72 0.72

Testing 0.80  0.02 0.67 0.04 0.66 0.03

Fitting the GLM of the 16-week dataset, the PCC closely followed the specificity curve
in approaching the respective asymptotes above a threshold of 0.3 (Fig. 2). The PCC for a
threshold value of 0.5 was 83% compared with 73% for a threshold value of 0.21 (equal to
prevalence in the data). The sensitivity, however, increased from 34% to 77% when we reduced
the threshold value from 0.5 to 0.21 (Fig. 2). Results for models constructed using the 4-week
dataset were again similar to the 16-week dataset and we do not present them here.

Area under the curve values for testing partitions of the GLM was similar to those for the
complete dataset, outperforming the cost-complexity-pruned CTs (Table 1). Similarly, from an
adaptive perspective the GLM had better discriminatory ability for the following month’s cluster
predictions, although there was month-to-month variation (Fig. 3). Use of a hierarchal
probability-based search pattern was considerably more efficient than a random search pattern
for locating kill sites, locating twice as many kills after the first 200 investigated clusters (Fig.

4).

14
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Figure 2: Sensitivity (i.e., finding a kill when a kill occurred), specificity (i.e., not finding a kill when a kill did not
occur), percent correctly classified (PCC), and number of Global Positioning System (GPS) clusters we investigated
for female lions between May 2005 and April 2007 in Kruger National Park, South Africa, along a range of
threshold values that could be used to convert probabilities from generalized linear regression models (GLMs) to
presence absence values. Two commonly used threshold points are shown by dashed lines (threshold = prevalence,

0.21: black dotted line; threshold = 0.5: grey dotted line).
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DISCUSSION

Although continual observation is the best method to investigate predator-prey relationships for
large carnivores in open habitats such as African savannas (Mills 1992), it is often impossible in
most other habitats (e.g., mountainous terrain, dense forests) and researchers need to use
alternative methods. We found that GLMs and CTs predicted occurrence of kills at GPS clusters
for female lions better than investigating clusters at random. It remains unavoidable however,

that some small kills (prey items <100 kg) are missed (impala [Aepyceros melampus] and
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warthog [ Phacochoerus africanus] by 50%, C.J. Tambling, Mammal Research Institute,
University of Pretoria, unpublished data), which is in accordance with previous studies
investigating kill site detection using GPS collars (Franke et al. 2006, Webb et al. 2008).

During cluster investigation, time constraints may limit investigation to areas near roads,
which could reduce number of kills located, especially in cases where predators and prey
respond negatively to disturbances caused by roads (Spellerberg 1998, Kerley et al. 2002).
Despite the distance to roads being non-important during model development, we did find a
significant difference between distance of checked and unchecked clusters to roads. In addition,
we found that clusters with kills were farther from roads than clusters without kills, therefore
potentially reducing number of kills we located. We suggest that, even if time is limited, equal
effort be given to investigating clusters with a high probability of being a kill at all distances
from roads or access points. We expect that with increased time between cluster occurrence and
investigation, false negative clusters (i.e. no kill where a kill occurred) will increase, influencing
the model’s predictive abilities (Vaughan and Ormerod 2005). Increasing availability of real
time GPS data will assist in rapid investigation of clusters (Anderson and Lindzey 2003, Stotyn
2005). We found no difference however, in model results based on clusters investigated within
4 weeks and 16 weeks following cluster occurrence. One observer investigated >95% of all
checked clusters and experience gained by this investigator enabled detection of kills that may
have been missed by observers with less experience. We therefore advocate that clusters be
investigated as soon as possible after they occur, as kills will be easier to locate. Because
investigating clusters at random is time consuming, our results support use of a statistical model

to search sites more likely to contain kills, thereby reducing field time and increasing efficiency.
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Previous research suggests that hidden Markov models could be used to uncover hidden

states (kill sites, bedding sites, and transit modes) from basic movement parameters (step length

and turning angle) in telemetry data (Franke et al. 2006). In contrast, our analysis based on ratio

of distance moved 24 hours before and 24 hours after a cluster of points proved to be the largest

contributor to reliable discrimination between kill and non-kill sites. Use of this ratio as the only

predictor variable however, may result in non-detection of opportunistic kills or kills made by

lions employing an ambush hunting strategy (see Hopcratft et al. 2005).

Figure 3: Discriminative (area under the curve [AUC] of the receiver operating characteristic [ROC] curve) ability

of the generalized linear regression model (GLM) and minimum cost-complexity classification trees (CT) to predict

the following months kill sites for female lions from March 2006 until April 2007 in Kruger National Park, South

Africa.
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Logistic regression models have been used to predict presence or absence of kills in

North American carnivores, with minimum length of time at a cluster an important predictor
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variable (Anderson and Lindzey 2003, Sand et al. 2005, Stotyn 2005, Webb et al. 2008). Our
analysis revealed that, although important, length of time at a cluster alone was not enough to
predict presence or absence of a kill. Handling time will undoubtedly vary between study sites
(Sand et al. 2005, Webb et al. 2008) and this should be noted when developing models for new
areas. Time spent at a kill site will be dependent on size of the prey item, as well as size of the
group monitored. Previous investigations also suggest that occurrence of a return event to a
cluster indicates presence of a kill. A low frequency of returns (8%) led to the variable return
playing a minor role in our study, although its collinearity with overall length of time lions spent
at a carcass was important, especially for large kills like adult giraffe.

Lions in KNP hunt and kill predominantly at night and hunting success tends to increase
in absence of moonlight (van Orsdol 1984, Mills and Biggs 1993, Stander and Albon 1993,
Funston et al. 2001). The significant influence of the darkest period in our regression models, as
well as its individual importance in the hierarchal partitioning analysis, indicates its usefulness in
kill site determination. However, we anticipate that incorporation of cloud cover, if known, on
moonlight nights could lead to some improvement in our model.

The low importance of the GPS interval movement distances (dist 1 and dist 2) might
be due to the definition of the variables. Our use of the distance between the first and second,
and the second and third, recorded fix of a cluster may stretch these distances on some occasions
as the second and third recorded fix are not always one hour after the previous recorded GPS fix
as a result of missed fixes. A stricter definition of a 1-hour movement distance at the start of the
cluster, with clusters that have a missed GPS fix at the end of the first hour deleted from the

dataset, may have a stronger effect on the model but will also reduce the sample size of usable
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clusters. How missing data is handled needs to be carefully considered when deciding on

variable use.

Figure 4: Cumulative number of kills located if we searched Global Positioning System (GPS) clusters based on
probability output of the fitted GLM for all k-partitioned test datasets (grey lines represent the standard deviation for
each cluster checked) relative to cumulative number of kills located if we used a random search pattern to

investigate clusters for female lions in Kruger National Park, South Africa, between May 2005 and April 2007.
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We used ROC curves to assess model discrimination because they are independent of
threshold determination and data prevalence and provide a way of comparing among diagnostic
systems (Hanley and McNeil 1982, Swets 1988, Zweig and Campbell 1993, Fielding and Bell
1997, Manel et al. 2001). The AUC values from the GLM indicated a good discriminative
ability, whereas the cost-complexity-pruned CTs did not perform as well, indicating superiority

of the GLM approach over CTs for predicting states associated with clusters.
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The PCC of 83%, associated with a threshold of 0.5, corresponded to specificity (i.e.
correct negative classification) of 96%. However, at this threshold we only investigated 10% of
clusters with an expectation of finding only 34% of kills. Similarly, previous studies concerning
species distribution modelling have shown an omission of known presence sites with low
prevalence associated with a threshold of 0.5 (Liu et al. 2005, Jimenez-Valverde and Lobo
2007). To find more kills requires use of a lower threshold even though the resulting PCC
declines. For example, when we used prevalence of the data (0.21) as a threshold, although
overall PCC declined to 73%, we found an estimated 77% of all possible kills even though we
only investigated 38% of clusters. Thus, in contrast to general practice (Manel et al. 2001, table
2), our study reiterates that maximizing PCC is not necessarily a good strategy. Rather, an
analysis of the trade off between sensitivity and effort is needed to meet the conflicting goals of

obtaining as many kills as possible within certain logistical constraints.

MANAGEMENT IMPLICATIONS

For the above approach to be properly implemented, both absence data and confirmed kills are
needed for GLMs to be developed for kill site detection. To obtain absence data, we suggest
investigation of low probability clusters near high probability clusters coupled with an initial
period of high intensity random searching (Sand et al. 2005). From this initial data collection,
models can be developed, which can improve as new data are collected from investigated
clusters (Webb et al. 2008). The resulting GLM, with a sliding scale in investigative ability of
researchers and a hierarchal order of cluster investigation, proved useful and therefore has merit
as part of an adaptive research framework. Any combination of this approach with continual

observation methods or scat collection, where possible, would refine model parameters and
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increase sample sizes of kills located, resulting in increased statistical power. With advances in
technology related to the study of large mammals, researchers have increasing opportunities to
update traditional techniques and thus enhance efficiency of field research, thereby refining

investigations of predator-prey interactions in particular.
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