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Introduction

Here is a further attempt at investigating classical notions/results such as
transvections, Witt’s theorem for symplectic vector spaces, the characteri-
zation of singular symplectomorphisms of symplectic vector spaces of finite
(even) dimension within the context of Abstract Differential Geometry (à
la Mallios), [10, 11]. This endeavor, as already signalled in [14], is for the
purpose of rewriting and/or recapturing a great deal of classical symplectic
(differential) geometry without any use (at all !) of any notion of “differen-
tiability” (differentiability is here understood in the sense of the standard
differential geometry of C∞-manifolds).

Now, we take the opportunity to review succinctly the basic notions of
Abstract Geometric Algebra which we are concerned with in this paper. Most
of the concepts in this paper are defined on the basis of the classical ones; see
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to this effect, Artin [2], Berndt [4], Crumeyrolle [6], Deheuvels [7], Lang [9].
Our main reference is Mallios [10].

We also recall some notions, which may be found in our recent papers
such as [12], [13], [14], and [15]. Let F and E be A-modules and φ : F⊕E −→
A an A-bilinear morphism. Then, we say that the triple ((F , E ;φ);A) ≡
(F , E ;φ) ≡ (F , E ;A) forms a pairing of A-modules or an A-pairing. The sub-
A-module F⊥ of E such that, for every open subset U of X, F⊥(U) consists
of all r ∈ E(U) with φV (F(V ), r|V ) = 0 for any open V ⊆ U , is called the
right kernel of the pairing (F , E ;A). In a similar way, one defines the left
kernel of (F , E ;A) to be the sub-A-module E⊥ of F such that, for any open
subset U of X, E⊥(U) is the set of all (local) sections r ∈ F(U) such that
φV (r|V , E(V )) = 0 for every open V ⊆ U .

If (E , φ) is a self A-pairing with φ symmetric or skew-symmetric, the
kernel E⊥ is called the radical sheaf (or sheaf of A-radicals, or simply A-
radical) of E . If F is a sub-A-module of E , the radical of F consists of those
sections of F⊥ that are also sections of F . In other words, rad F = F ∩F⊥.
In general, if (F , E ;A) is a pairing of free A-modules, then rad E := E ∩ E⊥,
and similarly rad F := F ∩ F>. An A-module E such that rad E 6= 0 (resp.
rad E = 0) is called isotropic (resp. non-isotropic); E is totally isotropic if φ
is identically zero. For any open U ⊆ X, a non-zero section r ∈ E(U) is called
isotropic if φU (r, r) = 0.

N.B. We assume throughout the paper, unless otherwise mentioned,
that the pair (X,A) is an algebraized space, where A is a unital C-algebra
sheaf such that every nowhere-zero section of A is invertible. (Consider for
example sheaves of continuous, smooth and holomorphic functions.)

1. Symplectic A-transvections

By analogy to the classical notion of hyperplane, we call A-hyperplanes of a
free A-module E free sub-A-modules of E of corank 1 (cf. [12]).

We notice that if E is a free A-module and F an A-hyperplane of E ,
then every A-endomorphism φ of E that leaves F stable induces on the line
A-module E/F an A-homothecy, which we denote by φ̃. More explicitly, if
U is open in X and s a section of E/F over U , then

φ̃(s) ≡ φ̃U (s) = aUs ≡ as
for some aU ≡ a ∈ A(U). The coefficient sections aU are such that aV = aU |V
whenever V is contained in U . The global section aX ≡ a is called the ratio
of the A-homothecy φ̃.

Lemma 1.1. Let E be a free A-module, and F a proper free sub-A-module of
E. Then, the following assertions are equivalent.
(1) F is an A-hyperplane of E.
(2) For every (local) section s ∈ E(U) such that s|V /∈ F(V ) for every open

V ⊆ U ,
E(U) = A(U)s⊕F(U).
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(3) For every open U ⊆ X, there exists a section s ∈ E(U) with s|V /∈ F(V ),
where V is any open subset contained in U , such that

E(U) = A(U)s⊕F(U).

(4) The free sub-A-module F is a maximal sub-A-module in the inclusion-
ordered set of proper free sub-A-modules of E.

Proof. (1) ⇒ (2): For every open U ⊆ X and section s ∈ E(U) such that
s|V /∈ F(V ) for any open V ⊆ U , it is clear that A(U)s + F(U) is a direct
sum. On the other hand, the equivalence class containing s is a nowhere-zero
section of E/F ; it spans E(U)/F(U) since E(U)/F(U) has rank 1. It thus
follows that E(U) = A(U)s+ F(U).

(2)⇒ (3): Evident.
(3) ⇒ (1): Since rank(E/F)(U) = rank(E(U)/F(U)) = rank(A(U)s) =

1 for every open U ⊆ X and s ∈ E(U) with s|V /∈ F(V ), where V is any open
subset contained in U .

(2) ⇒ (4): Let F ′ be a free sub-A-module of E containing F and such
that rank F ′ > rank F . For every open U there exists a section s ∈ F ′(U)
such that s|V /∈ F(V ) for every open V ⊆ U . By (2), for every open U ⊆ X,
E(U) = A(U)s ⊕ F(U); but A(U)s ⊕ F(U) is contained in F ′(U), therefore
F ′ = E .

(4)⇒ (2): Let U be an open set in X. There exists a section s ∈ E(U)
with s|V /∈ F(V ) for any open V ⊆ U ; then A(U)s⊕ F(U) contains strictly
F(U), thus A(U)s⊕F(U) = E(U), since F is maximal. �

Lemma 1.1 will be referred to in the proof of Theorem 1.4, which charac-
terizes the kind of A-transvections dealt with in the course of this paper. For
the classical notion of transvection, see [2], [5, p. 152, Proposition 12.9], [6],
[7, p. 419 ff], [8], [9, p. 542- 544]. To this end, we require some preparations.

Definition 1.2. (Mallios) Let E be an A-module. An element φ ∈ End E ≡
EndAE := HomA(E , E) is called a homothecy of ratio α ∈ A if

φ = α · I.

It goes without saying that I, in Definition 1.2 above, stands for the
identity element of the A-algebra sheaf End E . That is,

I ≡ IE := IdE ∈ End E .

We notice that
A ' HomA(A,A) ≡ End A,

hence,
A• ' (End A)• ≡ Aut A.

Therefore, a homothecy of E of ratio α ∈ A• is an A-isomorphism of E , viz.
an element of Aut E .

Now, suppose that F is a sub-A-module of an A-module E such that

E/F ' A. (1.1)



4 P.P. Ntumba and A.C. Anyaegbunam

(F is an A-hyperplane of E). Moreover, let φ ∈ End E such that

φ(F) ⊆ F ; (1.2)

then, φ gives rise to an element, say φ̃, of End(E/F); viz.

φ̃ ∈ End(E/F),

such that, in view of (1.2),

φ̃ ◦ q = q ◦ φ,
with q : E −→ E/F , the canonical A-epimorphism. However, due to (1.1),
one gets

φ̃ ∈ End(E/F) ' End A ' A, (1.3)

viz. one obtains
φ̃ = α ∈ A ' End A,

or even
φ̃ = α ≡ α · I,

with α the ratio of φ̃. Thus, φ induces a homothecy of E/F(' A) of ratio α.
In particular, if F is a free sub-A-module of a free A-module E , by the rank
(dimension) formula (cf. [17]), viz.

rank(Imφ̃) + rank(ker φ̃) = rank(E/F) = rank A = 1,

one sees that α is either zero or nowhere zero.

Definition 1.3. (Mallios) Let E be an A-module. An element φ ∈ End E is
called an A-transvection if the following conditions hold true:

(i) There exists an H ⊆ E , sub-A-module, with

E/H ' A.

(ii) φ|H = I.
(iii) im(φ− I) ⊆ H.

According to Definition 1.3, it is clear that an element φ ∈ End E , where
E is an A-module, is an A-transvection if and only if it is locally so.

In the light of [2, p. 160, Definition 4.1], Definition 1.3 can be rephrased
as follows. An A-transvection (with respect to an A-hyperplane H, par abus
de language) of an A-module E is an A-endomorphism of E , which keeps every
section of H fixed and moves any other section s ∈ E(U) by some section of
H(U), namely φ(s)− s ∈ H(U).

Theorem 1.4. Let E be a free A-module, H an A-hyperplane of E, φ an A-
endomorphism of E that fixes every section of H, and φ̃ the A-homothecy, of
ratio α, induced by φ on the line A-module E/H. Then,

(1) If α is nowhere 1, there exists a unique line A-module L ⊆ E such that
E = H⊕L and L is stable by φ, i.e. φ(L) ∼= L.
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(2) If α = 1, then for every A-morphism θ ∈ HomA(E ,A) with ker θ ∼= H,
there exists, for every open subset U ⊆ X, a unique section r ∈ H(U)
such that

φ(s) = s+ θ(s)r (1.4)

for every s ∈ E(U).

Proof. Assertion (1). Uniqueness. Let L be a line A-module satisfying the
hypotheses of the assertion, and s a nowhere-zero global section of L (such
a section s does exist because L ∼= A and A is unital). Therefore, there
exists b ∈ A(X) such that φ(s) = βs. Next, assume that q is the canonical
A-morphism of E onto E/H. It is clear that φ̃X(qX(s)) = βqX(s) ≡ βq(s);
thus φ̃X is a homothecy of ratio α = b, hence, by hypothesis, β is nowhere 1.
Now, let u be an element of E(X) such that u /∈ H(X); then there exists a
non-zero λ ∈ A(X) and an element t ∈ H(X) such that

u = λs+ t.

It follows that
φ(u) = λβs+ t.

Of course, φ(u) and u are colinear if and only if t = 0. Thus, we have proved
that every section u ∈ E(X) which is colinear with its image φ(u) belongs
to L(X). A similar argument holds should we consider the decomposition
E(U) = H(U) ⊕ L(U), where U is any other open subset U of X. Hence, L
is the unique complement of H in E , up to A-isomorphism, and stable by φ.

Existence. Since α is nowhere 1 on X, there exists a nowhere-zero section
s ∈ E(X) such that

φ̃U (qU (s|U )) := φ̃U (qU (sU )) 6= qU (sU ) =: qU (s|U )

for any open U ⊆ X. As φ̃◦q = q◦φ, it follows that rU := φU (sU )−sU does not
belong to H(U), for any open U ⊆ X. The line A-module L := [rU ]X⊇U, open

clearly complements H. It remains to show that L is stable by φ: To this end,
we first observe that every sU does not belong to the corresponding H(U),
and, by Lemma 1.1, E(U) ∼= A(U)sU ⊕H(U). So, since rU /∈ H(U) for every
open U ⊆ X, there exists for every rU sections αU ∈ A(U) and tU ∈ H(U)
such that

rU = αUsU + tU . (1.5)

We deduce from (1.5) that

φU (rU ) = (αU + 1)rU ,

and the proof is complete.
Assertion 2. Uniqueness. Let us fix an open set U in X. The uniqueness

of r such that (1.4) holds is immediate, as θU (s) ≡ θ(s) 6= 0 for some s ∈ E(U).
Relation (1.4) also shows that if s ∈ E(U) and θ(s) is nowhere zero, then
necessarily

r = (θ(s))−1(φ(s)− s).
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Existence. Suppose given a section s0 ∈ E(U) such that s0|V /∈ H(V )
for any open V ⊆ U . Let us consider the section r = (θ(s0))−1(φ(s0) − s0).
Clearly, r ∈ H(U); indeed

(q ◦ φ)(s0)− q(s0) = (φ̃ ◦ q)(s0)− q(s0) = 0.

The two A(U)-morphisms s 7−→ φ(s) and s 7−→ s + θ(s)r are equal, since
they take on, on one hand, the same value at s0, and, on the other hand, the
same value at every s ∈ H(U). �

In the course of this paper, we are interested in A-transvections of free
A-modules of finite rank E such that locally for Condition (iii) of Definition
1.3, one has one and only one section sU

0 ∈ H(U) such that

φU (s) := s+ θU (s)sU
0 ,

for every s ∈ E(U), and where θ ∈ HomA(E ,A) is such that ker θ is A-
isomorphic to H. Such A-transvections shall be called A-transvections of
classical type.

So, assume E is free of rank n and (e1, . . . , en) a basis for E(U), where
U is a fixed open subset of X, such that (e1, . . . , en−1) is a basis for H(U).
The matrix representing φU is given by

(φij
U ) :=


1 0 · · · 0 0 λs10
0 1 · · · 0 0 λs20
...

...
...

...
...

0 0 · · · 0 1 λsn−1
0

0 0 · · · 0 0 1

 ∈Mn(A(U)) 'Mn(A)(U),

where λ := θU (en) ∈ A(U) and sU
0 ≡ s0 := s10e1 + · · · + sn−1

0 en−1. If we
consider the determinant A-morphism ∂et : Mn(A) −→ A (cf. [10, p. 294]),
it follows that

∂etU (φij
U ) ≡ ∂etU (φij

U ) =: det U (φij
U ) = 1

(we have assumed that ∂et : Γ(Mn(A)) −→ Γ(A) is the Γ(A)-morphism of
complete presheaves of sections of sheaves Mn(A) and A that corresponds to
∂et); hence, A-transvections are invertible.

Keeping with the notations above, the inverse of an A-transvection φ is
the A-transvection φ−1 such that

φ−1
U (s) := s− θU (s)sU

0

for every open U ⊆ X and section s ∈ E(U).
Fix an open subset U of X and let φ ∈ EndAE be an A-transvection.

If s0 ≡ sU
0 ∈ E(U) is nowhere zero, we may assume it to be one of the

basis elements of H(U); therefore the matrix of φU will just be the identity
natrix with one non-zero element off the main diagonal. Conversely, any A-
endomorphism φ of a free A-module of finite rank E such that, for every open
U ⊆ X, the matrix representing φU with respect to some basis is the identity
matrix with one non-zero entry off the main diagonal is an A-transvection.

We formalize the above argument in the following
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Corollary 1.5. Let E be a free A-module of rank n, H an A-hyperplane of E,
and φ an A-transvection of classical type. Then, for every open U ⊆ X, there
exists a basis of E(U) such that the matrix (φU ) of φU in this basis is of the
form

(φU ) = In + λM ij , i 6= j, (1.6)

where λ ∈ A(U) and (M ij)1≤i,j≤n represents a canonical basis of Mn(A(U)).
Matrix (1.6) is called an A(U)-transvection matrix.

For the need of Proposition 1.8 below, we make the following impor-
tant observation (cf. Lemma 1.10), concerning symplectic A-modules of finite
rank, the proof of which is based on the concept:

Definition 1.6. Let E and E ′ be A-modules, φ and φ′ non-degenerate A-
bilinear forms on E and E ′, respectively. Moreover, let ψ be an A-morphism
of E into E ′. An A-morphism θ ∈ HomA(E ′, E) such that

φ′ ◦ (ψ, Id) = φ ◦ (Id, θ). (1.7)

is called an adjoint of ψ, and is denoted ψ∗.

Section-wise, Equation (1.7) means that for every open subset U ⊆ X
and sections s ∈ E(U), t ∈ E ′(U),

φ′(ψ(s), t) ≡ φ′U (ψU (s), t) = φU (s, θU (t)) ≡ φ(s, θ(t)).

Keeping with the notations of Definition 1.6 above, we have

Proposition 1.7. θ is unique whenever it exists.

Proof. Suppose that θ1 and θ2 are adjoint of ψ, so given any open subset
U ⊆ X and sections s ∈ E(U), t ∈ E ′(U),

φL
U (θ1,U (t))(s) = φL

U (θ2,U (t))(s),

where φL ∈ HomA(E , E ′∗) is given by

φL
U (u)(v) ≡ (φL)U (u)(v) := φV (u|V , v)

for sections u ∈ E(U) and v ∈ E ′(V ). Since s is arbitrary in E(U),

φL
U (θ1,U (t)) = φL

U (θ2,U (t)).

But φL is injective, therefore

θ1,U = θ2,U .

Finally, since U is arbitrary, θ1 = θ2. �

Let us now enquire on the existence of the adjoint of an A-morphism
ψ ∈ HomA(E , E ′), where E and E ′ are A-modules equipped with A-bilinear
forms φ and φ′, respectively.
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Proposition 1.8. Let E and E ′ be A-modules, equipped with non-degenerate
A-bilinear forms φ and φ′, respectively. If E is free and of finite rank, then
for every A-morphism ψ ∈ HomA(E , E ′) there exists an adjoint, denoted ψ∗,
which is given by

ψ∗ = (φL)−1 ◦ tψ ◦ φ′L,
where tψ : (E ′)∗ −→ E∗ is the transpose of ψ.

Proof. Let U be an open subset of X, s ∈ E(U) and t ∈ E ′(U). Using the
right insertion A-morphism φ′

L
, one has

φ′U (ψU (s), t) = φ′
L
U (t)(ψU (s)) = (tψ)U (φ′LU (t))(s). (1.8)

Since E has finite rank and φ is non-degenerate, φL is an A-isomorphism of
E onto E∗; so tψ ◦ φ′L may be written

tψ ◦ φ′L = φL ◦ ((φL)−1 ◦ tψ ◦ φ′L).

It follows from (1.8) that

φ′U (ψU (s), t) = [φL
U (((φL

U )−1 ◦ (tψ)U ◦ φ′LU )(t))](s)
= φU (s, ((φL

U )−1 ◦ (tψ)U ◦ φ′LU )(t)),

which ends the proof. �

Corollary 1.9. Adjoints commute with restrictions.

Proof. Let E and E ′ be A-modules, φ and φ′ non-degenerate A-bilinear forms
on E and E ′, respectively. Assume that ψ ∈ HomA(E , E ′). Let U be an open
subset of X, and s, t be sections of E and E ′ on U , respectively. By Definition
1.6, we have

φ′U (ψU (s), t) = φU (s, (ψ∗)U (t)).
On the other hand, since φU and φ′U are non-degenerate and

ψU ∈ HomA(U)(E(U), E ′(U)),

then by virtue of [5, pp. 385, 386], we have

φ′U (ψU (s), t) = φU (s, (ψU )∗(t)).

On account of uniqueness of adjoints, we have

(ψ∗)U = (ψU )∗,

as desired. �

Lemma 1.10. Let (E , ω) be a symplectic A-module of finite rank, and f an
A-endomorphism of E. Then, if f satisfies two of the three following con-
ditions, it satisfies all of them three, and Id + f is called a singular A-
symplectomorphism of (E , ω):
(1) Id + f is an A-automorphism of E;
(2) f is ω-skewsymmetric, i.e., for any open U ⊆ X and sections s, t ∈
E(U),

ωU (fU (s), t) + ωU (s, fU (t)) = 0;
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(3) Im f ≡ f(E) is totally isotropic, i.e.,

ω|f(E) = 0.

Proof. Using the equality

ωU (s+ fU (s), t+ fU (t))− ωU (s, t) = ωU ((fU + f∗U )(s), t) + ωU (fU (s), fU (t)),

where U is any open subset ofX, s and t sections of E over U , one easily checks
the implications: (1), (2)⇒ (3); (1), (3)⇒ (2); and (2), (3)⇒ (1). �

On account of Lemma 1.10, we have the following. Let (E , ω) be a sym-
plectic orthogonally convenient A-module of finite rank, and φ ∈ End E a
(symplectic) A-transvection of (E , ω). Suppose that

φ = I + ψ,

where I = IdE and ψ ∈ End E . Then, necessarily, if Im ψ is a free sub-A-
module of E , then rank ψ := rank Im ψ = 1, i.e., φ is a nowhere-identity A-
transvection. This necessary condition for nowhere-identity A-transvections
is not sufficient, for if H is the sub-A-module of E defining φ, one must have

ψ(E/H) = 0,

i.e.
ψ2 = 0.

Using Lemma 1.10, we thus obtain

Corollary 1.11. Let (E , ω) be a symplectic orthogonally convenient A-module
of finite rank. There is a bijection between A-symplectomorphisms of the form
I + ψ such that Im ψ is a free sub-A-module of E and the nowhere-identity
symplectic A-transvections.

We shall now describe precisely such A-symplectomorphisms. We recall
the following definition and subsequent remarks, due to A. Mallios: A given
algebra sheaf A is said to be a PID algebra sheaf if, given a free A-module
and a sub-A-module F ⊆ E, one has that F is section-wise free (i.e. for every
open U ⊆ X, A(U) ≡ Γ(U,A) is a PID algebra). An important example here
is, of course, the sheaf of C-valued polynomials (in one variable, with respect
to the constant sheaf CX [10, p. 17ff]). See also [14, p. 192, Definition 12].

So, let us fix an open subset U of X and suppose that rank ψU = 1: it
follows that ψU (s) = αU (s)sU

0 , for every s ∈ E(U) and where αU is an A(U)-
morphism E(U) −→ A(U). It is clear that α ∈ HomA(E ,A). The necessary
and sufficient condition, according to Lemma 1.10, for IdE(U) + ψU to be
symplectic is that

ωU (ψU (s), t) + ωU (s, ψU (t)) = ωU (sU
0 , αU (s)t− αU (t)s) = 0, (1.9)

for all s, t ∈ E(U). Since ω is nondegenerate, we may associate with αU a
section r ∈ E(U) such that

αU (s) = ωU (r, s), s ∈ E(U);
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therefore (1.9) becomes

ωU (sU
0 , ωU (r, s)t− ωU (r, t)s) = 0. (1.10)

If A is a PID algebra sheaf, it follows that the symplectic free A-module
(E , ω) is a generalized (or locally) orthogonally convenient, cf. [17, Definition
3.2]; hence, by [17, Corollary 4.1], if G is a free sub-A-module of E , then

rank G + rank G⊥ω = rank E .
Consequently, r⊥ωU is a hyperplane of E(U); whence it follows that if we take
t in r⊥ωU , (1.10) reduces to

ωU (sU
0 , t) = 0.

Applying [17, Corollary 4.1] here as well and since ω is non-degenerate, one
has

sU
0 ∈ (r⊥ωU )⊥ωU ;

therefore there exists λU ∈ A(U) such that

r = λUs
U
0 .

Thus, the symplectic A(U)-automorphism φU = IdE(U) + ψU is of the form:

φU (s) = s+ λUωU (sU
0 , s)s

U
0

for every s ∈ E(U).
So, we have proved the following

Theorem 1.12. Let A be a PID algebra sheaf, (E , ω) a sympletic A-module
of finite rank, and φ a symplectic A-transvection of E. Then, for every open
subset U of X,

φU (s) = s+ λUωU (sU
0 , s)s

U
0

for every s ∈ E(U).

2. Witt’s theorem and symplectic orthogonally convenient
A-modules

As suggested in the title of this section, our first aim is to find an analogue
of Witt’s theorem (cf. [19, pp. 46-48]) for symplectic A-modules. For this
purpose, we refer the reader to [14] and [15] for useful details regarding sym-
plectic A-modules and symplectic bases (of sections). Sheaves of symplectic
groups arise in a natural way when one considers A-isomorphisms between
symplectic A-modules which respect the symplectic structures involved, see
[14]. For some other versions of Witt’s theorem, see [13] and [16]. Finally, the
section ends with a characterization of singular A-symplectomorphisms of
symplectic orthogonally convenient A-modules of finite rank. Orthogonally
convenient A-modules were introduced in [17].

For the classical Witt’s theorem, see [1, pp. 368-387], [2, pp. 121, 122],
[4, p. 21], [19], [6, pp. 11, 12], [7, pp. 148- 152], [9, pp. 591, 592], [18, p. 9].
But, first we need the following definition (cf. [16]).



A-transvections and Witt’s theorem in symplectic A-modules 11

Definition 2.1. A pairing (F , E ;A) of free A-modules F and E into the C-
algebra sheaf A is called an orthogonally convenient pairing if given free
sub-A-modules F0 and E0 of F and E , respectively, their orthogonal F⊥0 and
E⊥0 are free sub-A-modules of E and F , respectively.

Definition 2.2. Let (E , ω) be a symplectic orthogonally convenient A-module
of finite rank.

(i) A free sub-A-module F ⊆ E with ω|F non-degenerate is called a sym-
plectic orthogonally convenient sub-A-module of E .

(ii) A free sub-A-module F ⊆ E with F⊥ isotropic is called coisotropic.
(iii) A free sub-A-module F ⊆ E which is both isotropic and coisotropic is

called a Lagrangian sub-A-module.

From [17, Corollary 4.1], if F is Lagrangian, then

rank F = rank F⊥.

Theorem 2.3. Let A be a PID algebra sheaf, E a symplectic free A-module of
rank 2n (ω is the symplectic structure on E), F a Lagrangian (free) sub-A-
module of E and G any sub-A-module of E such that F and G are supplemen-
tary. Then, using G we can construct a Lagrangian sub-A-module H of E such
that E ' F ⊕H.

Proof. The restriction ω′ of ω to F⊕G ⊆ E⊕E is also non-degenerate. In fact,
let F⊥ω′ and G⊥ω′ denote the kernels of F and G respectively. More precisely,
for every open U ⊆ X,

F⊥ω′(U) = {r ∈ G(U)| ω′(F(V ), r|V ) = 0 for any open V ⊆ U}

and similarly

G⊥ω′(U) = {r ∈ F(U)| ω′(r|V ,G(V )) = 0 for any open V ⊆ U}.

Analogously we denote by F⊥ω and G⊥ω the kernels of F and G respectively
with respect to the A-bilinear morphism ω : E ⊕ E −→ A, i.e. for every open
U ⊆ X,

F⊥ω (U) = {r ∈ E(U)| ω(F(V ), r|V ) = 0 for any open V ⊆ U}

and

G⊥ω (U) = {r ∈ E(U)| ω(G(V ), r|V ) = 0 for any open V ⊆ U}.

It is obvious that F⊥ω = F>ω and G⊥ω = G>ω . By hypothesis, we are given that
F = F⊥ω . Clearly, for every open U ⊆ X, F⊥ω′(U) ⊆ F⊥ω (U) and G⊥ω′(U) ⊆
G⊥ω (U). But since F⊥ω (U) = F(U) and F(U) ∩ G(U) = 0, F⊥ω′(U) = 0.
Thus, F⊥ω′ = 0. On the other hand, let r ∈ G⊥ω′(U) ⊆ F(U) ∩ G⊥ω (U). As
E(U) = F(U) ⊕ G(U), we deduce that r ∈ rad E(U) = 0, therefore r = 0.
Hence, G⊥ω′ = 0. Since ω′ : F ⊕ G −→ A is non-degenerate, the A-morphism
ω̃′ : F −→ G∗ such that for every open U ⊆ X, and sections r ∈ F(U) and
s ∈ G(U), ω̃′(r)(s) := ω′(r, s) is bijective.
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Let us construct the sought Lagrangian complement H of F in E . For
every open U ⊆ X, we let

H(U) := {r + φ(r)| r ∈ G(U)},

where φ : G −→ F is some A-morphism. It is clear that H is a sub-A-module
of E . For H to be Lagrangian, it takes the following: For every open U ⊆ X
and sections r, s ∈ G(U)

ω(r + φ(r), s+ φ(s)) = 0

i.e.
ω(r, s) = ω̃′(φ(s))(r)− ω̃′(φ(r))(s). (2.1)

Let φ′ := ω̃′ ◦ φ : G −→ G∗, so that (2.1) becomes

ω(r, s) = φ′(s)(r)− φ′(r)(s). (2.2)

Clearly, by taking φ′(r) = − 1
2ω(r,−) for every r ∈ G(U), (2.2) is satisfied.

By setting φ := (ω̃′)−1 ◦ φ′, we contend that the claim holds. In fact, fix
an open subset U of X, and suppose that (r1, . . . , rn) is a basis of G(U). If
a1, . . . , an ∈ A(U) such that

a1(r1 + φ(r1)) + . . .+ an(rn + φ(rn)) = 0,

one has that

a1r1 + . . .+ anrn︸ ︷︷ ︸
∈G(U)

= −φ(a1r1 + . . .+ anrn)︸ ︷︷ ︸
∈F(U)

.

Since F(U) ∩ G(U) = 0, it follows that

φ(a1r1 + . . .+ anrn) = 0.

As the chosen φ′ is injective and ω̃′ is an A-isomorphism, φ is injective; thence

a1r1 + . . .+ anrn = 0;

so that a1 = · · · = an = 0. Now, let us show that F(U) ∩H(U) = 0. For this
purpose, suppose that r ∈ F(U) ∩H(U). Then for some s ∈ G(U)

r = s+ φ(s).

It follows that
r − φ(s)︸ ︷︷ ︸
∈F(U)

= s︸︷︷︸
∈G(U)

from which we deduce that s = 0, and hence r = 0. That E(U) ∼= F(U)⊕H(U)
is now clear. Since U is arbitrary, E ∼= F ⊕H as desired. �

Theorem 2.4. (Witt’s Theorem) Let A be a PID algebra sheaf, let E be a
free A-module of rank 2n, equipped with two symplectic A-morphisms ω0 and
ω1, and finally let F be a sub-A-module of E, Lagrangian with respect to both
ω0 and ω1. Then, there exists an A-symplectomorphism φ : (E , ω0) −→ (E , ω1)
such that φ|F = IdF .
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Proof. Let G be any complement of F in E . By Theorem 2.3, given symplectic
A-morphisms ω0 and ω1, there exist Lagrangian complements G0 and G1 of
F respectively. Again by the proof of Theorem 2.3, the restrictions ω′0, ω′1
of ω0, ω1 to G0 ⊕ F and G1 ⊕ F respectively are nondegenerate and yield
A-isomorphisms ω̃′0 : G0 −→ F∗ and ω̃′1 : G1 −→ F∗ respectively. Since G0

and G1 are free and of the same finite rank, there exists an A-isomorphism
ψ : G0 −→ G1 such that ω̃′1 ◦ ψ = ω̃′0, i.e. for any sections r ∈ G0(U) and
s ∈ F(U)

ω0(r, s) = ω1(ψ(r), s).
Let us extend ψ to the rest of E by setting it to be the identity on F :

φ := IdF ⊕ ψ : F ⊕ G0 −→ F ⊕ G1

and we have for any sections r, r′ ∈ G0(U) and s, s′ ∈ F(U)

ω1(φ(s+ r), φ(s′ + r′)) = ω1(s+ ψ(r), s′ + ψ(r′))
= ω1(s, ψ(r′)) + ω1(ψ(r), s′)
= ω0(s, r′) + ω0(r, s′)
= ω0(s+ r, s′ + r′).

�

We are now ready for a characterization of an A-symplectomorphism of
the form I + f of a symplectic orthogonally convenient A-module E , where
f is a skewsymmetric A-endomorphism of E . For this purpose, we require
the following result: Given a free A-module of finite rank E, equipped with an
A-bilinear form φ, every non-isotropic free sub-A-module F of E is a direct
summand; viz. (see [13])

E = F⊥ F⊥.
We deduce from the afore-cited result that F⊥⊥ ' F . Moreover, if φ

is non-degenerate, then F⊥(U) ' F(U)⊥, for every open U ⊆ X. Indeed,
since F⊥(U) ⊆ F(U)⊥, then if F(U) ∩ F(U)⊥ 6= 0, rad E(U) 6= 0, which
contradicts the hypothesis that E is non-isotropic.

Theorem 2.5. Let (E , ω) be a symplectic orthogonally convenient A-module
of rank 2n, and f a A-endomorphism of E. If f is skewsymmetric and Id + f
an A-automorphism of E, then
(1) f2 = 0;
(2) ker f ' (Im f)⊥;
(3) For every open subset U ⊆ X, there exists a symplectic basis of E(U),

whose first k elements (sections), k ≤ n, form a basis of (Im f)(U) :=
Im fU ≡ fU (E(U)), with respect to which the A(U)-morphism

(Id + f)U := IdU + fU

is represented by the matrix(
In H
0 In

)
with tH = H.
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Proof. (1) From Lemma 1.10, Imf is totally isotropic. Therefore, for any
open subset U of X and sections s, t ∈ E(U),

ωU (fU (s), fU (t)) = 0.

Since

ωU ((f∗)UfU (s), t) = ωU ((fU )∗fU (s), t)
= ωU (fU (s), fU (t))
= 0

and ω is symplectic, it follows that

(f∗)UfU = (f∗U )fU = 0.

Thus,
f∗f = 0;

since f∗ = −f, one reaches the desired property that f2 = 0.
(2) Fix an open set U in X and s ∈ (ker f)(U) = ker fU , see [20, p. 37,

Definition 3.1]. Moreover, let t ∈ E(U); then

ωU (s, fU (t)) = −ωU (fU (s), t) = 0.

Thus,
s ∈ (Imf)(U)⊥ ≡ fU (E(U))⊥

and hence

(ker f)(U) = ker fU ⊆ (Imf)(U)⊥ = (Imf)⊥(U)

or
ker f ⊆ (Imf)⊥ ≡ f(E)⊥.

Conversely, let t ∈ (Imf)⊥(U) = (Imf)(U)⊥. Then, for any s ∈ (Imf)(U) ≡
ImfU := fU (E(U)) ≡ f(E)(U), one has

ωU (t, s) = 0.

But s = fU (r) for some r ∈ E(U), therefore

ωU (t, fU (r)) = −ωU (fU (t), r) = 0. (2.3)

Since (2.3) is true for any r ∈ E(U),

fU (t) = 0,

i.e.
t ∈ (ker f)(U) := ker fU .

Hence,
(Imf)⊥(U) ⊆ (ker f)(U)

or
(Imf)⊥ ⊆ ker f.

(3) As Imf ⊆ ker f = (Imf)⊥, so the sub-A-module Imf is totally
isotropic. Therefore, for any open U ⊆ X,

rank(Imf)(U) := rank ImfU ≤ n.



A-transvections and Witt’s theorem in symplectic A-modules 15

Now, let us fix an open set U in X and consider a basis (s1, . . . , sk), k ≤ n,
of (Imf)(U) ≡ ImfU . By [13, Lemma 7], there exists a totally isotropic sub-
A(U)-module S of E(U), equipped with a basis, which we denote

(sk+1, . . . , sn+k)

such that
ωU (si, sn+j) = δij , for i, j = 1, . . . , k.

Clearly,
S ∩ (Imf)⊥(U) = S ∩ (ker f)(U) = 0. (2.4)

As a result of (2.4), the sum S + ImfU is direct and S ⊕ ImfU is non-
isotropic; therefore, one has

E(U) = (S ⊕ ImfU )⊥F
for some sub-A(U)-module F of E(U), (cf. [13, Theorem 1]). Since F =
(S ⊕ ImfU )⊥, F is contained in (ImfU )⊥ = (Imf)⊥(U) = (ker f)(U) and

F⊥ = (Imf)(U) := ImfU ;

i.e. F is an orthogonal supplementary of (Imf)(U) in (ker f)(U). Since F is
free, non-isotropic and of rank 2n− 2k, it can be equipped with a symplectic
basis, say (sk+1, . . . , sn, sn+k+1, . . . , s2n), see [15]. As s1, . . . , sn ∈ (ker f)(U),
it follows that

(IdU + fU )(sj) = sj , j = 1, . . . , n.

Therefore, if H is the matrix representing fU , IdU + fU is represented by the
matrix (

In H
0 In

)
,

and this is a sympletic matrix if and only if tH = H, ie. H is symmetric. �
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