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INTRODUCTION

The theory and implementation of response 

sensitivity analysis in dynamic struc-

tural analysis has been discussed by several 

authors (such as Zhang & Der Kiureghian 

1993, Roth 2001, Conte 2001, Conte et 

al 2003). This paper illustrates potential 

earthquake engineering applications of the 

method to structures of realistic scale and 

complexity. A demonstration project, con-

sisting of a hospital structure and associated 

piping network, is used to demonstrate the 

potential applications.

RESPONSE SENSITIVITY ANALYSIS 

PROBLEM STATEMENT

A dynamic earthquake engineering problem 

consists of a ground motion or input, which 

passes through the system, and results in 

an output such as a displacement response. 

Values for some of the parameters of the 

input and/or the system may be well known, 

while others may be uncertain. For example, 

the magnitude of the earthquake is highly 

uncertain and can be described probabilisti-

cally by seismic hazard analysis. Material 

parameters such as steel yield strength are 

less uncertain, but can also more accurately 

be described by probability distributions 

than by single deterministic values.

Let x be a vector whose elements consist 

of all of the uncertain parameters in both 

the input and the system. As the properties 

of the input and the system depend on x, the 

output u(t, x) will also be a function of x as 

well as time t. Response sensitivity analysis 

determines the effect on the output u of 

changing the parameters in x. It is useful to 

introduce a quantitative measure of the sen-

sitivity of u to an arbitrary element xi of x. 

One fairly intuitive measure is the sensitivity 

factor, defined as the derivative of u with 

respect to xi and denoted by vi :

vi(t) = 

v1i(t)

v2i(t)

vmi(t)

 = 

∂u1(t)

δxi   x = x0
∂u2(t)

∂xi   x = x0

  
∂um(t)

∂xi   x = x0

 = 
∂u(t,x)

∂xi   x = x0 

(1)

where x0 is the nominal value of x. 

This paper will illustrate some of the practi-

cal uses of sensitivity factors defined in this 

manner.

GOVERNING EQUATIONS

The types of system under consideration are 

civil engineering structures such as buildings, 

piping systems and bridges. It will be assumed 

that the system is mathematically modelled by 

discrete elements. The model is characterised 

by a mass matrix m, a damping matrix c and 

a restoring force vector r, and is subjected 

to an applied load vector f. For linear elastic 

structures the vector r is simply ku, where k 

is the stiffness matrix. The definitions here 

are common in structural dynamics (Chopra 

1995). It will be assumed that the mass matrix 

m is fixed, but that c, r and f may depend on 

uncertain parameters contained in x. For 

example, x may contain the damping coef-

ficients and/or the yield stress of a material. 

The assumption that m is fixed is reasonable 

as it is typically easier to accurately determine 

the mass of a structure than it is to determine 

the damping, restoring force or applied load. 

For a general nonlinear structure r may also 

be a function of displacement u, velocity u̇ 

and certain path- or history-dependent vari-

ables, such as amount of plastic strain, which 

will be stored in vector z.

Applications of response 
sensitivity analysis in 
earthquake engineering
C P Roth, M D Grigoriu

Response sensitivity analysis as a part of dynamic finite element structural analysis has 
many applications to structures of realistic scale and complexity in earthquake engineering. 
A demonstration project, consisting of a hospital structure and piping network, is used to 
demonstrate the potential applications of the method to practical problems. Nonlinear finite 
element analysis is done to determine displacements, stresses, etc, as well as sensitivity 
information by the direct differentiation method. The response sensitivity analysis is used 
for the identification of critical parameters of the systems, optimisation, calibration and the 
generation of fragility curves.
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The governing equation of u with x at its 

nominal value x0 is: 

mü(t,x0) + c(x0)u̇(t,x0) + 

r(u(t,x0),u̇(t,x0),z(t,x0),x0) = f(t,x0) (2)

This is the equation that is solved by com-

mon existing structural dynamics programs 

to determine the displacement of a structure 

subjected to a ground motion. It is a second-

degree, nonhomogenous differential equation. 

For general nonlinear restoring force functions, 

it is also a nonlinear differential equation.

Several methods can be used to determine 

the sensitivity factors, with the direct differ-

entiation method used here being one of the 

most suitable. By this method, the governing 

equation of vi is obtained by differentiating 

Equation (2) with respect to xi. After changing 

the order of differentiation with respect to t 

and xi and rearranging, it becomes: 

mv·i(t) + 
⎤
⎥⎥
⎦
c(x0) + 

∂r

∂u  
(t,x0)

⎤
⎥⎥
⎦
v̇i(t) + 

∂r

∂u
(t,x0)vi(t) 

= 
∂f

∂xi  
(t,x0) – 

∂c

∂xi  
(x0)u̇(t,x0) – 

⎤
⎥⎥
⎦

∂r

∂xi  u,u̇,z

(t,x0) + 
∂r

∂z
(t,x0)

∂z

∂xi

(t,x0)
⎤
⎥⎥
⎦
 (3)

Equation (3) is similar in form to Equation 

(2) in that it is a second-degree, nonhomo-

genous differential equation. However, as the 

coefficients of v·i, v̇i and vi and the right-hand 

side of Equation (3) do not depend on vi, it 

is a linear differential equation with time-

varying coefficients. This is true even if the 

structure is nonlinear in a structural engi-

neering sense. Numerical methods are gener-

ally used to solve Equation (2). The Newmark 

method is one of the most commonly used 

methods. The same method can be extended 

to solve Equation (3) for the sensitivity 

factors (Roth 2001). The formulation given 

here is from Roth (2001) and is similar to 

that in Conte et al (2003). However, here the 

history-dependent variables z are explicitly 

included in the governing equation as this 

may be clearer to follow and to implement.

COMPUTER IMPLEMENTATION

The governing equations described in the 

previous section need to be implemented in 

computer software to allow the calculation of 

displacement and response sensitivity informa-

tion for realistic systems. Two programs have 

been developed to perform the calculations:

a new MATLAB program that calculates 1. 

both displacement and sensitivity factors, 

intended for a relatively simple, beam-

element level of analysis; and

an existing finite element analysis pro-2. 

gram, DIANA, adapted with new subrou-

tines to calculate the sensitivity factors, 

allowing more detailed analysis.

DEMONSTRATION PROJECT

A demonstration project will be used to 

illustrate some applications of the response 

sensitivity factors. The example chosen is a 

hospital in Buffalo, United States. Both pri-

mary and secondary systems in the hospital 

will be considered: the primary system is the 

hospital structure itself, while the secondary 

system is the piping system that supplies 

water for fire suppression.

Ground motion

As insufficient real earthquake records exist 

for the Buffalo area, artificial motions are used 

as the input ground motions to the primary 

system. The ground motions are realisations 

of a Gaussian stochastic process with the 

amplitude modulated through time by an 

envelope function. The power spectral density 

g(ω) of the process is based on the specific bar-

rier model for simulating earthquake ground 

motion (Papageorgiou & Aki 1983). Required 

parameters are the moment magnitude M and 

distance r of the earthquake event causing 

the motion, and the average soil shear wave 

velocity to a depth of 30 m at the site, V30. The 

values selected are M = 6, r = 50 km and V30 

= 255 m.s-1. This magnitude-distance pair has 

a return period of 10 000 years at the site. The 

average shear wave velocity is for a typical soil.

To illustrate the use of the sensitivity fac-

tors, only one ground motion sample will be 

considered (Figure 1). However, for real analy-

sis, design or selection of retrofit strategies, a 

suite of ground motions should be used. Each 

ground motion in the suite can be used in the 

same manner as the single ground motion 

used here, and all the results considered when 

making the necessary decisions.

Primary system

The hospital is a 14-storey steel frame 

structure. A DIANA computer model of the 

structure with 10 678 beam elements was 

prepared for the analysis. Figure 2 shows 

the model and the location of a node on the 

roof selected as the critical node. This node 

was selected as peak roof displacement in an 

earthquake can be used as an indicator of 

damage suffered by the building. Suggested 

maximum values are provided by the Federal 

Emergency Management Agency (2009). The 

calculated displacement of the critical node 

Figure 1 Ground motion

A
cc

e
le

ra
ti

o
n

 (
m

/s
2
)

–0,8

–1,0

–0,4

–0,6

0

–0,2

0,4

0,2

0,8

0,6

1,0

106 7 8 94 5320 1

Time (s)

Figure 2 Primary system and critical node

x
y

z

Critical node



Journal of the South African Institution of Civil Engineering • Volume 52 Number 2 October 201014

is shown in Figure 3. Rayleigh damping of the 

form c = am + bk was used for the analysis, 

where k is the initial global stiffness matrix.

Secondary system

The secondary system is the hospital fire 

suppression piping system. It is a steel piping 

system that runs from a tank in the basement 

to a standpipe on the roof. On floors 6 to 14, 

branches split off from the main riser pipe to 

supply water to ceiling-mounted sprinklers in 

the hospital wards. To reduce the size of the 

model, only two of the branches were ana-

lysed: the branch on the top floor, where the 

maximum displacement and damage to piping 

is expected (OSHPD 1995), and the branch 

at a typical intermediate floor. The system 

is shown in Figure 4. It was modelled in 

MATLAB using linear pipe elements for the 

straight pipe runs and nonlinear elbow hinge 

elements for the pipe elbows. The assumed 

boundary conditions were:

Tank: ■  The pipe was assumed to be fully 

fixed to the tank on the basement level.

Pipe clamps: ■  The vertical pipe sections 

were assumed to be attached to the 

primary system at each floor by means of 

pipe clamps constraining translation of 

the pipe in all directions.

Pipe hangers: ■  The horizontal pipes were 

assumed to be suspended from pipe 

hangers from the floor beams. The pipe 

hangers provide only vertical support.

The input to the secondary system is the 

motion of the hospital structure. As the 

structure does not move as a rigid body, the 

motion is different at each support point of 

the second ary system. The motions were 

determined from the time-history analysis 

of the primary system. The critical output 

was assumed to be the relative displacement 

between the structure and the pipe at the 

critical node indicated in Figure 4. This 

Figure 3 Primary system: displacement of critical node
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Figure 5 Secondary system: displacement of critical node
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Figure 7 Sensitivity factor with respect to coefficient of stiffness in damping b

S
e

n
si

ti
v

it
y

 f
a

c
to

r

–1,5E–01

0,0E+00

–5,0E–02

1,5E–01

106 7 8 94 5320 1

Time (s)

5,0E–02

1,0E–01

–1,0E–01

Figure 6 Sensitivity factor with respect to Young’s modulus E
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output was selected as sprinkler damage due 

to relative motion between the pipe and hard 

ceilings was found to be a common problem 

for hospital piping systems in the Northridge 

earthquake (Ayres and Ezer Associates 

1996). The relative displacement is plotted in 

Figure 5.

IDENTIFICATION OF 

CRITICAL PARAMETERS

The effect of a small change in the param-

eter values can be approximated using the 

sensitivity factors and a first-order Taylor 

expansion. If xi is varied by a small amount 

Δxi, then:

u(t,x0 + Δxi ei) ≈ u(t,x0) + vi(t)Δxi (4)

where ei is the i-th unit vector.

A critical parameter is one for which the 

product of the sensitivity factor (vi) and the 

uncertainty or variation in the parameter 

(Δxi) is large. The uncertainty in a parameter 

value is the amount by which the value may 

reasonably be expected to vary from the 

nominal value. It is clear from Equation 4 

that the critical parameters will have the 

greatest influence on the response. These 

parameters need to be determined accurately 

for satisfactory modelling of the system. 

They should also be considered first when 

selecting optimum retrofit strategies.

Consider the primary system. Suppose that 

we wish to evaluate which of the following 

parameters are more critical to the displace-

ment of the critical node: the Young’s modulus 

E of the steel sections in the structure, the 

coefficient b of the stiffness matrix in the spec-

ification of Rayleigh damping, the earthquake 

magnitude M, or the soil shear wave velocity 

V30. The sensitivity factors for the displace-

ment of the critical node with respect to each 

of the parameters were calculated by DIANA 

and are shown in Figures 6 to 9. The assumed 

uncertainties in the parameter values for the 

demonstration project are described below.

The Young’s modulus  ■ E of the steel 

is usually known within 3% (Mirza & 

MacGregor 1979).

The damping of the structure is less  ■

accurately known. An uncertainty of 20% 

is assumed (Chopra 1995).

The average soil shear wave velocity  ■ V30 

can typically only be estimated within 

20% given the soil conditions at the site.

The earthquake magnitude  ■ M is highly 

uncertain. However, for illustration an 

uncertainty of 20% is assumed.

The effects on the displacement of the 

critical node of increasing the parameters 

by the assumed uncertainties are shown in 

Figure 10. The figure suggests that the output 

is more sensitive to the input parameters V30 

and M than to the system parameters E and 

b. Without the use of response sensitivity 

analysis, preparing this graph would require 

a separate time-history analysis for each 

uncertain parameter, whereas using the sen-

sitivity factors, only one time-history analysis 

is required. The information can be used 

to determine which parameters should be 

changed to improve the safety of the building.

Another way of presenting the same 

information about the parameters is to con-

sider them to be random and to calculate the 

contribution of each to the variance of the 

response. Using upper case letters for random 

variables, assume that the parameter vector X 

Figure 8 Sensitivity factor with respect to earthquake magnitude M
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is a random vector with mean μx and that 

element Xi has variance σ
i
2, i = 1,2,3,…,m. 

Using the generalised first-order Taylor 

expansion for a general displacement uj,

uj(t,x0 + Δx) ≈ uj(t,x0) + 
m
∑
i=1

vji(t)Δxi (5)

it can be shown that the variance of uj can be 

approximated by

Var[uj(t,X)] ≈ 
m
∑
i=1

v
j
2
i
(t)σ

i
2 (6)

provided that the nominal parameter vector 

value at which the sensitivity factors are 

calculated is equal to the mean μx and the 

variables are uncorrelated. One possible 

assumption about the coefficients of variation 

of the random parameters is that they are the 

same as the uncertainties defined previously, 

that is, 0,03 for E, 0,2 for b, 0,2 for V30 and 

0,2 for M. This assumption is followed here. 

Figure 11 shows the variance of the displace-

ment of the critical node, calculated by 

Equation 6. The total variance is subdivided 

into different bands showing the contribution 

of each term on the right side of Equation 6 

to the total. A critical parameter is one which 

has a large contribution to the total variance. 

Examination of Figure 11 shows that the 

earthquake magnitude M is the most critical 

parameter. Among the system parameters, it 

is clear that b is more critical than E.

It should be noted that one other method 

of comparison that has been suggested is to 

multiply the sensitivity factors by the nominal 

parameter values (Zhang & Der Kiureghian 

1993). This is shown in Figure 12. The result is 

a factor that indicates the sensitivity of the out-

put to changes in the percentage of the param-

eter values. For example, if the factor in Figure 

12 with respect to b is larger than that with 

respect to E, this indicates that the output is 

more sensitive to a 1% change in b than to a 1% 

change in E. In fact, multiplying the factor by 

0,01 gives an estimate of the difference between 

the original displacement and the displacement 

found after changing the parameter value by 

1%. However, this method of comparison is 

valid only if the uncertainty in the parameter 

value is the same percentage of the nominal 

value for each parameter. In general, the uncer-

tainties in the parameters are very different so 

the method is not valid. For example, in this 

case a reasonable uncertainty in E is 3% while a 

reasonable uncertainty in b is 20%.

The sensitivity factors can also be used to 

identify the most critical elements of the sys-

tem. Consider the line of columns in Figure 13. 

It may be useful to identify the column in that 

line to which the critical displacement is most 

sensitive. This information can be used to select 

columns for retrofit, to improve the design, or 

just to give insight into the behaviour of the 

structure. The sensitivity factors with respect to 

the initial stiffnesses of four of the ten columns 

are plotted in Figure 14. Interestingly, the roof 

displacement is most sensitive to the stiffness of 

the top column. It appears to be roughly equally 

sensitive to the stiffnesses of the two columns 

in the middle, and less sensitive to the stiffness 

of the bottom column.

OPTIMISATION AND CALIBRATION

Among the most useful applications of the 

sensitivity factors are the calibration of the 

parameters of the structural model to match 

Figure 12 Sensitivity factors scaled by nominal parameter values
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experimental data, or the selection of an opti-

mal value of one of the parameters. Both tasks 

can be accomplished by nonlinear program-

ming methods. To formulate the problem, con-

sider a scalar objective function of the displace-

ment of the structure, g(u(t,x)). We wish to find 

the value of x that minimises the value of this 

function. This can be accomplished by a suit-

able nonlinear programming algorithm. Such 

algorithms are typically iterative, starting at a 

given point in x-space and at each iteration tak-

ing a “step” in a direction such that the objec-

tive function is reduced. Different algorithms 

use different methods to select the direction 

and size of the “step”, and often use the gradient 

of g with respect to x. The iterative nature of 

the algorithm means that g(u(t,x)) will have to 

be evaluated at several values of x before the 

minimum is found. Each evaluation requires a 

time-history analysis of the system, which may 

be time-consuming. The usefulness of the sen-

sitivity factors is in calculating the gradients of 

g with respect to x, which otherwise have to be 

calculated by finite difference methods requir-

ing additional evaluations of g(u(t,x)).

As an example of a typical objective 

function, consider the common problem of 

calibrating a simple computer model of a 

structure against either experimental data or 

data from a more accurate but also computa-

tionally intensive model. More specifically, the 

problem is to find values of the parameters of 

the simple model so that the calculated time-

history of displacement of a selected degree 

of freedom of the structure, say uj(t), 0 < t < τ, 

matches a given time history η(t), 0 < t < τ. A 

commonly used objective function for this 

problem is the integral of the square of the 

difference between the two time histories:

g(u(t,x)) = 
τ

∫
0
[uj(t,x) – η(t)]2dt (7)

Minimising this objective function will tend 

to draw uj(t,x) closer to η(t) over the whole 

period under consideration.

The derivative of g is given by

∂g(u(t,x))

∂xi

 = 
τ

∫
0
2[uj(t,x) – η(t)]vji(t)dt (8)

A second typical objective function is often 

found in seismic retrofit problems. The 

problem is to find the parameter values that 

minimise the peak absolute value of the 

displacement of a critical degree of freedom. 

The objective function for this problem is:

g(u(t,x)) = max|uj(t,x)| (9)

      t

The derivative of g is:

∂g(u(t,x))

∂xi

 = vji(t*)sign(uj (t*,x)) (10)

where

t* = arg maxt|uj(t,x)|, the time at which the 

maximum displacement occurs.

Consider the secondary system. Suppose 

that the peak displacement of 39 mm in Figure 

5 is too high and that a suitable retrofit strate-

gy has to be found to reduce the displacement. 

One possible strategy is to replace the rigid 

pipe clamp connections between the structure 

and the riser section of the pipe by snubbers. 

Snubbers are hydraulic or mechanical devices 

used as flexible supports for piping systems. 

A snubber can be modelled as a spring and a 

dashpot in series; however, for simplicity it is 

modelled here as a spring (Sharma et al 1985). 

For design, the spring stiffness that minimises 

the displacement of the critical node needs to 

be determined. This is an optimisation prob-

lem that can be solved using the sensitivity 

factors and the objective function in Equation 

9. A nonlinear programming algorithm, the 

BFGS method, is included in the MATLAB 

program used to analyse the piping system. 

After 12 steps the routine indicates that the 

optimum stiffness is 560 N/m, which reduces 

the peak displacement from 39 to 16 mm.

FRAGILITY CURVES

Consider a system with random properties 

subjected to a random input motion, and 

a failure criterion that determines if the 

response of the system to the input is satisfac-

tory. Fragility curves are used to indicate the 

safety of the system as a function of the size 

of the input. More specifically, the curves 

show the probability that the system response 

exceeds the failure criterion, or in other words 

the system failure probability, as a function of 

a parameter or parameters of the input.

This section illustrates the generation 

of fragility curves for the secondary system. 

The failure criterion assumed is a relative 

Y-direction displacement of the critical node of 

45 mm. The system parameters are assumed 

to be random and are stored in vector X. The 

random input motion is again a Gaussian 
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process with a power spectral density from the 

specific barrier model. The parameters of the 

power spectral density are the magnitude M 

and distance r of the earthquake event causing 

the motion, and it is logical to plot the fragility 

curves as a function of both M and r. However, 

to illustrate the method it will be assumed that 

the distance r is fixed at 50 km and the fragility 

curves will be plotted against magnitude M.

One possible procedure for generating the 

fragility curve is the following, referred to 

here as the full Monte Carlo method:

Select a value of 1. M.

Generate one sample of the input and a 2. 

predetermined number Ns of samples of 

the parameter vector X.

Perform a time-history analysis of the 3. 

primary system using the generated input 

sample.

Perform a time-history analysis of the 4. 

secondary system using one of the sam-

ples of the parameter vector X, and the 

results from the primary system analysis. 

Check the failure criterion for the sec-

ondary system.

Repeat step 4 for each of the 5. Ns samples 

of X.

If the number of failures in the 6. Ns sam-

ples is Nf, the probability of failure at this 

value of M is approximately Nf /NS.

Repeat steps 2 to 6 for several different 7. 

values of M.

Fit a regression curve through the result-8. 

ing points. The curve must be monotoni-

cally increasing over the range [0, 1].

The probability of failure at each M value is 

conditional on the particular ground motion 

realisation used. However, a different realisa-

tion is used at each M value, so the final fitted 

fragility curve will reflect the average prob-

ability of failure of all of the realisations.

An alternative method using the 

sensitivity factors, referred to here as the 

approximate first-order Monte Carlo meth-

od, replaces steps 4 to 5 with the following:

4a.  Perform a time-history analysis of the 

secondary system using the mean value 

μx for the parameter vector X, and the 

results from the primary system analy-

sis. Calculate the sensitivity factors as 

well as the displacement.

4b.  Calculate u(ti,x) ≈ u(ti,μx) + v(ti)(x–μx) 

for i = 1,2,3,… for one of the samples x 

of X and check the failure criterion after 

each step.

5.   Repeat step 4b for each of the Ns samples 

of X.

The system parameters that are assumed 

to be random are the diameter and Young’s 

modulus of the pipes, and the damping. The 

coefficients of variation used are 0,2 for the 

pipe diameters, 0,06 for the Young’s modulus 

and 0,5 for the damping.

The fragility curves calculated by the full 

Monte Carlo and approximate first-order 

Monte Carlo methods are shown plotted 

against M in Figure 15. Fragility curves 

of the following form were fitted by the 

weighted least squares method:

y = 1 – exp(–aMb) (11)

where y is the fragility, and a and b are 

regression constants.

In Figure 15, the curves generated by the full 

Monte Carlo and approximate first-order 

Monte Carlo methods are reasonably similar 

and the approximate curves may be accurate 

enough for most applications. 

The curves indicate the failure probabil-

ity of the system. For example, at M = 4,8 the 

probability of failure is 0,3 while at M = 5,0 it 

is 1,0, indicating that the system will almost 

certainly fail in an M = 5,0 earthquake.

The advantage of the approximate method 

is in the time taken. To illustrate the order of 

magnitude difference, the total time required 

for a 256 MHz computer to complete the 

calculations was less than one minute for the 

approximate method compared with two days 

for the full Monte Carlo method.

CONCLUSIONS

Response sensitivity analysis has many practi-

cal applications in earthquake engineering. 

The use of the method has been demonstrated 

here for structural (primary) and piping 

(secondary) systems. Critical parameters of 

the system can be identified after only one 

analysis. Optimisation of parameter values 

and calibration of models can be done in fewer 

steps than with traditional methods. Fragility 

curves indicating the safety of the system can 

be generated. The response sensitivity analysis 

allows the determination of results in less time 

than other traditional methods. 
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