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This work describes the effect of steady-state laminar forced convection on multiscale rotating cylinders
in cross-flow. The objective was to numerically maximise the heat-transfer-rate-density from the multi-
scale cylinder assembly under a prescribed pressure drop. Two main configurations were studied, the
first was with two different-sized cylinders aligned along the same centreline, and the second configura-
tion was that in which the axis of rotation of the two cylinders was not on the same centreline but the
leading edges of the cylinders were on the same line. In both configurations, the cylinders were subjected
to two types of rotations, counter-rotation and co-rotation. Numerical solutions for stationary and rota-
tional cylinders were solved to determine the optimum cylinder diameter, spacing and the corresponding
maximum heat transfer rate density. The effects of different centres of rotation and the dimensionless
pressure drop on the cylinder-to-cylinder spacing, optimal diameter of the cylinder and the maximum
heat transfer rate density were reported. Results show that the optimal smaller cylinder diameter was
robust with respect to the dimensionless pressure drop number, for both configurations. Results further
showed that rotation was only beneficial for cylinders with the same axis of rotation and the effect was
minimal when the axis of rotation is different.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Due to the need for more effective heat removal from heat gen-
erating equipment such as heat sinks, research has been and is still
being conducted on this subject with the aim of removing more
and more heat from a given heat generating volume. The research
assists in the design, manufacture and operation of such equip-
ment. Modern electronic systems produce high amounts of heat
due to the power-to-volume ratio employed in such systems. An-
other example of high heat transfer to volume ratio is from a rotat-
ing solid to a moving fluid. This is used in different applications
from the cooling of rotating machinery to re-entry space vehicles.

Badr and Dennis [1] considered the problem of laminar forced
convective heat transfer from an isothermal cylinder rotating on
its own axis and located in a uniform stream. Their results empha-
sised the effect of the rotation on the thermal boundary layer and
the local Nusselt number distribution. Contradictory to expecta-
tion, they found that the overall heat transfer coefficient tended
to decrease as the speed of rotation increased. They attributed this
to the existence of a rotating fluid layer that acted as insulation
from the main-stream coolant, Chiou and Lee [2] also investigated
convection from a rotating cylinder cooled by an air jet. The results
confirmed that at lower rotational velocities, the overall heat trans-
fer was enhanced and at higher rotational velocities, the effect be-
ll rights reserved.
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came reversed, which they attributed to the presence of a layer of
dead air circling the cylinder and thus reducing the heat transfer.
Similar research includes the works of Mahfouz and Badr [3], Ozer-
dem [4], Gschwendtner [5], Sanitjai and Goldstein [6], Misirlioglu
[7], Paramane and Sharma [8,9], and Yan and Zu [10].

Optimisation of the spacing between cylinders has been con-
ducted by Stanescu et al. [11], who found conclusively that with
an increase in the Reynolds number, the spacing between the cyl-
inders consequently decreased. Mohanty et al. [12]compared the
flow around a rotating cylinder with the model of transport from
the leading edge of a turbine blade. Comparisons were made be-
tween the heat transfer coefficient of pure cross-flow across the
cylinder and the heat transfer coefficient of pure rotation of the
cylinder. Experiments showed that the heat transfer from the stag-
nation point under pure rotation was lower than that of pure cross-
flow. Additionally, the heat transfer coefficient of pure cross-flow
was seen to undergo a huge drop, attributable to laminar separa-
tion. The drop of the heat transfer coefficient of a rotating cylinder
was much less, leading to a higher average heat transfer coefficient
for a rotating cylinder than that seen on a stationary cylinder. It
was also noted by Mohanty et al. [12] that the heat transfer is high-
er for rotational convection than it is for pure cross-flow. This view
is somewhat contradicted by Tzeng et al. [13] who found that at
higher Reynolds numbers the cooling efficiency was increased on
high-velocity rotating machines.

Jones et al. [14] studied mixed convection with the goal of
determining the overall heat transfer rate dependence on the
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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Nomenclature

Be Bejan number
cP heat capacity, J kg�1 K�1

D diameter of large cylinder, m
d diameter of small cylinder, m
k thermal conductivity, W m�1 K�1

L length of numerical domain
S tip-to-tip distance between two consecutive cylinders,

m
P pressure, N m�2

Pr Prandtl number
q0 heat transfer rate per unit length, W m�1

q000 heat-transfer-rate-density, W m�3

T temperature, K
U velocity
u, v velocity components, m s�1

x, y Cartesian coordinates, m

Greek symbols
d boundary layer thickness, m
l viscosity, kg m�1 s�1

m viscosity, m2 s�1

h angle, rad
q density, kg m�3

x angular velocity, rad s�1

Subscripts/superscripts
CL centreline
d downstream
dt boundary layer, small cylinder
Dt boundary layer, big cylinder
LE leading edge
opt optimum
u upstream
w wall
1 inlet
� dimensionless
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free-stream Reynolds number, the rotational Reynolds number and
the Rayleigh number. Their work presents three mechanisms
through which convection transports heat, namely forced convec-
tion from the free-stream coolant, forced convection due to rota-
tion and natural convection. Part of the assumptions made in this
work disregard the third mechanism mentioned above. It was fur-
ther stated by Jones et al. [14] and confirmed by Joucaviel et al. [15]
that rotation does enhance heat transfer, ‘‘viscous forces acting in
the fluid due to rotation cause mixing of the fluid and augment
heat transport in a way similar to turbulence’’.

Bejan and Morega [16] investigated, by analytical means, the
optimal spacing of stacked plates which emit heat and are cooled
by free-stream flow of the ambient fluid. Their work helps in defin-
ing the rationale behind the optimisation of space among heat-
generating materials. Optimisation was conducted for a single-
scale structure, with the said scale being the distance between
the plates. Bejan and Morega further state that the optimal spacing
in a turbulent flow increases as the Prandtl number and the width-
to-length ratio increases.

In the words of Bello-Ochende and Bejan [17], ‘‘Strategy and
systematic search mean that architectural features that have been
found beneficial in the past can be incorporated and compounded
into more complex flow structures of the present’’. This work in-
volves the addition of more length scales to those of Joucaviel
et al. [15]. The length scales are the number of cylinders, the differ-
ence in diameters of subsequent cylinders and the spacing be-
tween the cylinders.

This study builds on prior research conducted by Bello-Ochende
and Bejan [17] and more recently added to by Joucaviel et al. [15],
in which it could be seen that the optimal spacing between the
rotating cylinders decreased when the Bejan number is increased
while the heat transfer rate density increased with an increase in
Bejan number. It was also shown that rotational effects increased
the heat-transfer-rate density for single-scale cylinders.

This study focuses on the optimisation of the heat-transfer-rate
density of multiscale cylinders cooled by cross-flow fluid in the
laminar regime. The flow is driven by a fixed pressure difference
across the domain in consideration. In the first part of this paper
the maximization of the heat transfer rate density is studied with
the cylinders aligned along the same centreline and in the second
part of the paper the maximization of the heat transfer rate density
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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is studied with the cylinders aligned along the same leading edge,
in the final part of the paper, the effects of different mode of rota-
tion on the optimal configurations is studied. Applications of heat
transfer from rotating cylinders are found in rotating machineries,
heat exchangers, viscous pumps, rotating electrodes, spinning pro-
jectiles as well as contact cylinder dryers in the paper industry.
2. Models and mathematical formulation

We start by considering a case where the cylinders are aligned
along the same centre-line. Fig. 1 depicts the model which repre-
sents a multiscale array of cylinders set along the same centreline,
and due to the repetitive nature of the stack, a domain containing
two different-sized cylinders is chosen to represent the numerical
region of interest. The figure further shows that the flow across the
domain is driven by a fixed pressure drop DP. The tip-to-tip dis-
tance between the cylinder being S, and is assumed equal for a case
with no eccentricity. The cylinders rotate with an angular velocity
x. The fluid inlet temperature T1 is fixed and lower than the tem-
perature of the wall of the cylinders, Tw, which is assumed
constant.

Additional assumptions include steady, laminar, incompress-
ible and two-dimensional flow, negligible heat transfer due to
radiation and negligible viscous dissipation due to the nature of
the flow. It is thus assumed that the tube length is long in com-
parison to the tube diameters. All the thermophysical properties
are assumed constant. In this set-up, two types of rotation are
investigated, that is, the cylinders that are rotating in the same
direction and secondly, the cylinders that are rotating in coun-
ter-directions to each other and this would be discuss later in this
paper. The domain upper and lower walls are chosen as periodic
with the rotational direction reversed for cases of counter-rota-
tion. The heat flux q

0
removed from the assembly per unit length

perpendicular to the above figure can be written in the following
form,

q0 ¼ D
Z 2p

0
qwdhþ d

Z 2p

0
dh ð1Þ

The volume per unit depth occupied by the modelled assembly
is D � (D + d + 2S). The ensuing heat transfer rate density is
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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Fig. 2. Heat transfer rate density at Be = 103 as function of small diameter size and
spacing between cylinders.

Table 1
Grid independence study with ~Lu ¼ 4; ~Ld ¼ 7 , Be = 103 and ~S ¼ 1.

Nodes Cells ~q ~qi�~qiþ1
~qi

��� ���
4013 3864 19.90 –
6960 6692 19.64 0.013
9665 9309 19.74 0.005
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Fig. 1. Cylinders aligned along the same centreline.

T. Bello-Ochende et al. / International Journal of Heat and Mass Transfer xxx (2011) xxx–xxx 3
q000 ¼ q0

DðDþ dþ 2SÞ ð2Þ

This represents the total heat transfer rate per unit volume.
The governing equations of the fluid flow for the multiscale

rotating and stationary cylinders are the conservation of mass,
momentum and energy equations. The computational domain is
in two dimensions as shown in Figs. 1 and 2 and the assumptions
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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made with respect to its solution were given in the previous
section.

The equations, which represent the conservation of mass,
momentum and energy equations are given in its dimensionless
form as

@~u
@~x
þ @

~v
@~y
¼ 0 ð3Þ

Be
Pr

~u
@~u
@~x
þ ~v @

~u
@~y

� �
¼ � @

~P
@~x
þr2~u ð4Þ

Be
Pr

~u
@~v
@~x
þ ~v @

~v
@~y

� �
¼ � @

~P
@~y
þr2 ~v ð5Þ

Be ~u
@~T
@~x
þ ~v @

~T
@~y

 !
¼ r2~T ð6Þ

The non-dimensionalised variables used are:

ð~x; ~y; ~dÞ ¼ ðx; y; dÞ
D

; ð~u; ~vÞ ¼ ðu;vÞ
DPD=l

~T ¼ T � T1
Tw � T1

; P ¼
~P

DP

ð7Þ

where the Bejan and Prandtl numbers are Be ¼ DPD2=la and Pr = m/
a.

The flow boundary conditions are: ~P ¼ 1 at the inlet plane, and
zero normal stress at the outlet plane. The thermal boundary con-
ditions are ~T ¼ 0 at the inlet plane and ~T ¼ 1 on the cylinders sur-
faces. The upper and lower horizontal surfaces of the domain
correspond to periodic conditions due to the rotations of the mul-
ti-scale cylinders. The cylinders are rotating at ~x, and therefore an
angular velocity is imposed as a boundary condition on the cylin-
der surfaces,

~x ¼ xl
2DP

ð8Þ

The objective function (i.e. heat transfer rate density), Eq. (2), can be
written in dimensionless form as

~q ¼ q000D2

kðTw � T1Þ
¼ 1

ð1þ ~dþ 2~SÞ

Z 2p

0
�r~T þ dð�r~TÞn
h i

dh ð9Þ
3. Numerical method and grid analysis

A finite volume, computational fluid dynamics code [18] was
employed to solve Eqs. (3)–(6). The domain was discretised using
a second-order discretisation scheme. The pressure–velocity cou-
pling was done with the SIMPLE algorithm. Numerical convergence
can be obtained in two ways, firstly, convergence was obtained
when the scaled residuals for mass and momentum equations
were smaller than 10�4 and the energy residual was less than
10�7. In the second option, numerical convergence was obtained
when there was no further change in the value of residuals for con-
secutive iterations in terms of the specified criteria such as conser-
vation of mass flow rate in the domain.
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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Table 2
Domain independence study with ~Lu ¼ 4, Be = 103 and ~S ¼ 1.

Ld ~q ~qi�~qiþ1
~qi

��� ���
5 19.93 –
7 19.90 0.0015

10 19.84 0.003

Table 3
Domain independence study with Ld = 7, Be = 103 and ~S ¼ 1.

Lu ~q ~qi�~qiþ1
~qi

��� ���
3 19.93 –
4 19.90 0.0015
5 19.83 0.0035
7 19.91 0.004
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Fig. 3. Optimal spacing, optimal smaller cylinder diameter and maximum heat
transfer rate density of stationary cylinders aligned on the centreline.
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An additional method used to ensure accuracy of the results
was to perform grid refinement tests. The key quantity monitored
in this regard was the overall heat transfer rate density. This was
done by placing or concentrating the mesh in the region closest
to the cylinders, where the thermal gradient was high. Table 1
shows the grid independence study performed for the case where
Be ¼ 103, ~Lu ¼ 4; ~Ld ¼ 7 and ~S ¼ 1.

Virtual extensions, ~Lu and ~Ld, had been added to the numerical
domain at the downstream and the upstream of the physical do-
main to adequately handle the pressure boundary conditions.
The length of the virtual extension was chosen long enough so that
with any further increase in length, the resultant change in heat
transfer rate density between two iterations i, and i + 1, is smaller
than 1%. Tables 2 and 3 shows a domain independence study per-
formed for the case where Be ¼ 103 and ~S ¼ 1.

4. Optimal configurations for cylinders with the same axis of
rotation

In order to maximise the heat transfer rate density from the
assembly shown in Fig. 1, the smaller cylinder diameter is first
optimised under stationary conditions. The optimisation search
was conducted using the following criteria, the diameter of the
big cylinder, D, which was used as the global length scale and
was set at 1, while that of the smaller cylinder was investigated
in the range of 0:1 6 ~d 6 0:7. The range of parameter considered
for this study is 10 6 Be 6 104;0 6 ~x 6 0:1 and Pr ¼ 0:71.

Fig. 2 illustrates the heat transfer rate density for Be ¼ 103 ob-
tained by considering different smaller cylinder diameters as func-
tion of the spacing between the cylinders. It shows an optimum
spacing and diameter exists. The optimisation procedures was re-
peated for Be numbers in the range of 10 6 Be 6 104. Fig. 3 sum-
marises these results and shows the effect of dimensionless
pressure drop number on the optimal spacing and the optimal
diameter of the smaller cylinder. It shows that as Be increases
the optimal spacing between the cylinders decreases. The result
for the optimal diameter is much more different. For Be in the
range of 102

6 Be � 104 the optimal diameter is invariant with
Be, and the value of ~d at 0.5 was found to be the optimal diameter.
The optimal diameter for Be = 10 was found to be 0.1, and this re-
sults can be attributed to thickening of the thermal boundary layer
and hence for Be 6 10 the model breakdown.

The results also show that the optimal spacing decreases with
an increase in Be. In the range of 10 6 Be 6 104, the optimal spac-
ing can be correlated as:

~Sopt ¼ 2:99Be�0:22 ð10Þ
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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Fig. 3 also shows the effect of the dimensionless pressure drop
on the maximum heat transfer from the array of cylinders. As the
Bejan number increases, so does the maximum heat transfer rate
density. The relationship between the heat transfer rate density
and the Bejan number is correlated as:

~qmax ¼ 0:32Be0:37 ð11Þ
5. Optimal configurations for cylinders aligned along the same
leading edge

In this configuration, we considered the case in which the cylin-
ders share the same leading edge as is shown in Fig. 4. This allows
both cylinders to receive the effect of the incoming coolant at the
same time. The numerical procedure is the same as in the case of
the cylinders having the same centreline.

The numerical procedures start by optimising the smaller cylin-
der diameter within the range of 0.1 6 ~d6 1 for Be ¼ 103 and the
optimal diameter was found to be 0.25 as shown in Fig. 5 and as
also obtained from Bello-Ochende and Bejan [17]. The above proce-
dure was repeated in the Be range of 10 6 Be 6 104. Fig. 6 depicts
the optimal spacing between the cylinders as well as the optimal
smaller cylinder diameter. It can be noticed that the smaller cylin-
der diameter is independent of the Bejan number. However, the
optimal spacing between the cylinders decreases as the Bejan
number increases, and are correlated with the power law
~Sopt ¼ 6:85Be�0:39 ð12Þ

Fig. 6 shows the relationship between the heat transfer rate
density and the dimensionless pressure drop number of the sta-
tionary cylinder configuration. This is correlated by:

~qmax ¼ 0:34Be0:43 ð13Þ

As found in the case of cylinders located on the same centreline,
the heat transfer rate density increases as the dimensionless pres-
sure drop number increases.

6. Scale analysis for multi-scale cylinder in cross-flow

The results of Eqs. (10)–(13) are all in agreements with the con-
structal theory, this means that optimal packing is achieved when
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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the cylinders are brought close enough so that their thermal
boundary layers just touch. The thermal boundary layers of a cyl-
inder with laminar flow and Prandtl number of order 1 has the
thickness of order, for the larger cylinder as

dDt � DRe�1=2Pr�1=3 ð14Þ

and, for the smaller cylinder

ddt � d1=2D�1=2Re�1=2Pr�1=3 ð15Þ

and
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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dDt

ddt
� ðd=DÞ�1=2 ð16Þ

Assuming that the presence of the boundary layer of the smaller
cylinder does not affect that of the bigger cylinder we can predict
that the boundary layer thickness of the smaller cylinder increases
as � ðd=DÞ1=2. From [19–22] we expect that the boundary layer of
the smaller cylinder and that of the bigger cylinder to merge at a
length scale of d=D � 1=4 for cylinder with the same leading edge
and d=D � 1=2 for cylinder with the same centre of rotation. These
correspond to the optimal diameter of the smaller cylinder in both
case and are in agreement with the results obtained in Fig. 3 and 6.
Also, from [19] the corresponding optimal spacing scale as

S � 0:5dDt � DRe�1=2Pr�1=3 ð17Þ

Now the velocity scale that appear in the in the Reynolds number,
Re ¼ UD=m is determined from the longitudinal control volume that
contain the smaller and bigger cylinder is given as

DPS � F ð18Þ

where F is the drag force

f � sðDþ dÞ ð19Þ

where the shear stress scale is s � lU=S. Combining Eq. (18) and
(19) we find

Re � eBe1=2Pr�5=6 ð20Þ

where e is a constant that depend on the diameter of the cylinders,
and for D > d, e � 1. The range 10 6 Be 6 104 for Pr � 1, correspond
to 2 6 Re 6 100. By setting S � Sopt in Eq. (17) and using Eq. (20) and
we find that

~S � Be�1=4Pr�1=12 ð21Þ

which for Pr � 1 predict very well the numerical correlation (10)
and (12). Using the same scaling argument the heat transfer rate
can be predicted. The cylinders heat flux scales as qPrime �
kðTw � T1ÞðdDt þ ddtÞ=dDtddt , and since dDt � ddt then
ðdDt þ ddtÞ=dDtddt � 1=S. Because S < D, cf. Eq. (21) for Be >> 1, the
heat transfer rate density is q000 � q00=D hence the dimensionless heat
transfer rate density is
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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~q � q000D2

kðTwT1Þ
� Be1=4Pr1=12 ð22Þ

and for Pr � 1, this prediction agrees with the numerical optimiza-
tion obtain from Eqs. (11) and (13).
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1 

optS
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7. Effects of rotation on cylinders with the same axis of rotation

For this configuration simulations were conducted while the
diameter of the smaller cylinder was kept constant at ~dopt ¼ 0:5
while rotating the cylinders at different angular velocities. In this
section, the effects of rotation on the heat transfer rate density
are considered.
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Fig. 8. Optimal spacing for co-rotating cylinders ð~dopt ¼ 0:5Þ as function of Bejan
number.
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7.1. Co-rotation

Fig. 7 shows that an optimal spacing exists when the cylinder
are aligned along the centreline and co-rotating for the dimension-
less pressure drop of Be ¼ 103. The figure also shows that in the
range of 0 6 ~x 6 0:1, the angular velocity ~x ¼ 0:01 gives the high-
est heat transfer rate density. Fig. 8 shows the summary of the re-
sults obtained for the optimal spacing between the cylinders in the
range of 10 6 Be 6 104 and for ~dopt ¼ 0:5. The result shows that as
the dimensionless pressure drop number increases, the spacing be-
tween the cylinders decreases for the rotational velocity in the
range of 0 6 ~x 6 0:1. The trend is the same for all the rotational
velocities, and the optimal spacing is of the same order of magni-
tude. Fig. 9 shows the maximum heat transfer rate density ob-
tained in the range of 10 6 Be 6 104. From the figure, two values
of angular velocity are considered against the stationary configura-
tion that is ~x equals 0.01 and 0.1. It shows that as the dimension-
less pressure drop number increases, the heat transfer rate density
also increases. The trend is the same for all rotational velocities
considered. In the region of 10 6 Be 6 103, the results show that
rotating the cylinder in co-rotational mode results in an increase
in heat transfer over a stationary cylinder, ( ~x ¼ 0). In the range
of 103–104, rotation of cylinders is only beneficial at ~x ¼ 0:01. In
this range, there is heat transfer suppression when the rotational
velocity, ~x, is equal to 0.1 and this can be attributed to the thermal
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Fig. 7. Heat transfer rate density and co-rotating cylinder velocities as function of
spacing at Be = 103, and ~dopt ¼ 0:5.
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Fig. 9. Heat transfer rate density of co-rotating cylinders compared with stationary
cylinders as function of Bejan number.
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fluid creating a wall around the cylinder and thus acting as a form
of insulation against the possible transfer of heat. It can therefore
be concluded that the optimal rotational velocity for co-rotation
is ~xopt ¼ 0:01. And the maximum heat transfer for the case where
~x ¼ 0:01, as shown in Fig. 9, can be correlated as ~qmax ¼ 0:39Be0:4
7.2. Counter rotation

In this section, the effect of counter-rotating the cylinders and
cylinder spacing on the heat transfer rate density is studied.
Fig. 10 shows that an optimum exists for the case where Be =
103. The figure shows that counter-rotation does increase the heat
transfer rate density. From the figure, it can further be seen that
the highest heat transfer rate density is obtained when ~x ¼
0:01 ð~dopt ¼ 0:5Þ.

Fig. 11 shows the optimal spacing between the cylinders in
the range of 10 6 Be 6 104, the trend is similar to the case of co-
rotating cylinders. It is observed that as the pressure drop number
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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Fig. 13. Counter-rotation compared with stationary cylinders.
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increases, the optimal distance between the cylinders decreases. In
the range of 103

6 Be 6 104, the graph of optimal spacing at ~x ¼ 0
and ~x ¼ 0:01 coalesces. This means that at a higher Be, the optimal
spacing is not affected by rotation.

Fig. 12 shows the heat transfer rate density in the range of
10 6 Be 6 104. The behaviour is similar to what is observed for
the case of co-rotation where rotating the cylinders produces a bet-
ter heat transfer and this trend is only broken in the range of
103
6 Be 6 104, when the cylinders are rotating at ~x ¼ 0:1. At this

point, the heat transfer rate remains constant and becomes smaller
than the heat transfer of the stationary cylinder array.

Figs. 7–12 lead to the conclusion that angular rotation is at its
optimum when it is approximately equal to 0.01 for ~dopt ¼ 0:5,
and at this rotational velocity there is an improvement in the heat
transfer rate density but the optimal spacing between the cylinders
remains the same. No major difference in heat transfer is observed
between the different modes of rotation for the case where the cyl-
inders are located on a plane across the same centrelines.
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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8. Effects of rotation on cylinders aligned along the leading edge

Based on the choice of the optimal smaller cylinder diameter of
~dopt of 0.25 as obtained from stationary cylinders on the leading
edge, this optimal smaller cylinder diameter size was used to sim-
ulate the heat transfer rate density on the cylindrical array when
rotation is implemented.
8.1. Co-rotation

The cylinders are firstly rotated in the same direction; in a sim-
ilar manner to the study conducted for cylinders which have the
same centreline. The configuration of the cylinders in this case en-
ables comparison with results obtained from the stationary config-
uration of Bello-Ochende and Bejan [17] and Joucaviel et al. [15]
(that is with, ~x ¼ 0). Fig. 13 shows the heat transfer and the opti-
mal spacing obtained at Be ¼ 103. Co-rotation provides minimal
improvement in heat transfer. This was observed when the angular
velocity, ~x, is 0.01. And when the angular velocity is 0.1, there is a
suppression of heat transfer. Fig. 13 also shows that co-rotation of
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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the cylinder does not produce a significant enhancement of heat
transfer.

Fig. 14 shows the optimal spacing of the cylindrical array of dif-
ferent dimensionless pressure drops in the range of 10 6 Be 6 104

and for the angular velocity in the range of 0 � ~x 6 0:1. With co-
rotation, the optimal spacing follows the trend of the optimal spac-
ing observed for stationary cylinders, however, when the angular
velocity, ~x is equal to 0.1, the spacing is larger and results are only
obtained in the range of 10 6 Be 6 103.

When the dimensionless pressure drop number is greater than
103, the results become non-physical because the laminar assump-
tion of the flow disintegrates due to the wake and consequent tur-
bulence, which dominates the flow behind the rotating cylinders. It
can be seen that in general the stationary cylinder array allows the
most compact packing of heated cylinders. However, at Be ¼ 104,
the optimal spacing for the stationary cylinders coalesces with that
of cylinder rotating at ~x ¼ 0:01.

The effect of co-rotation at ~x ¼ 0:1 and Be P 103 could not be
investigated due to the reasons adduced (breakup of laminar flow
assumption due to wake behind the cylinders) in the investigation
of rotation on the optimal spacing. To enable comparisons in the
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
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subsequent section, the optimal spacing (cf. Fig. 14) for the maxi-
mum heat transfer rate density of co-rotating cylinders at
~x ¼ 0:01 is correlated by ~Sopt ¼ 5:59Be�0:36.

Fig. 15 shows the maximum heat transfer rate density for the
cylindrical array when the cylinders are co-rotating. It can be ob-
served that with co-rotation there is no significant increase in
the heat transfer rate density over the heat transfer obtained from
stationary cylinders ( ~x ¼ 0). When the cylinders are co-rotating at
~x ¼ 0:01, the maximum heat transfer rate density coalesces with
the heat transfer rate density of stationary cylinders. At the angular
velocities, ~x, of 0.005, 0.05 and 0.1 the heat transfer rate density in
the range of 102

6 Be 6 104 is less than that obtained for ~x ¼ 0 and
~x ¼ 0:01. And from Fig. 15, the maximum heat transfer rate den-
sity is correlated as ~qmax ¼ 0:36Be0:42.
8.2. Counter rotation

It is suspected that with counter-interacting flows from the cyl-
inders, the heat transfer would be better than that observed with
co-rotating flows. The heat transfer for such an array is in this sec-
tion further compared with heat transfer from stationary flows.
iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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The optimal spacing between the cylinders is shown in Fig. 16,
and the trend is similar to that of co-rotating cylinders. In the case
where ~x ¼ 0:01 and at Be ¼ 103, the optimal spacing is marginally
higher than the optimal spacing obtained for stationary cylinders.
When the cylinders are rotating at 0.005, the optimal spacing is
the same as cylinders rotating at 0.01 in the range of
102
6 Be 6 103. However, when the Bejan number is greater than

103, the spacing obtained for cylinders rotating at 0.005 becomes
equal to the spacing obtained for cylinders rotating at 0.05. The
optimal spacing obtained for both these rotational velocities is
consequently larger than the spacing observed for cylinders rotat-
ing at 0.01 and stationary cylinders. For cylinders rotating at
~x ¼ 0:1, the optimal spacing is equal to that of stationary cylinders
only in the range of 10 6 Be 6 102. When Be > 102, the spacing in-
creases and results cannot be obtained for flows with Be > 103.
This is due to the occurrence of wake behind the cylinders and a
consequent breakdown of the assumption of laminar flow at such
pressure drop. The optimal spacing for rotating cylinders is thus
correlated for ~x ¼ 0:01 as ~Sopt ¼ 5:59Be�0:36, which is the same
for co-rotating cylinder.

Fig. 17 shows the summary of counter-rotation on the array of
cylinders in the range of 10 6 Be 6 104 It can be observed that
there is no improvement in heat transfer when the cylinders are
counter-rotating. At ~x ¼ 0:01, the heat transfer is in exact agree-
ment with the heat transfer obtained from stationary cylinders.
Fig. 17 further shows that the maximum heat transfer rate density
of cylinders rotating at 0.005 and 0.5 is less than the maximum
heat transfer rate density of those that are stationary or rotating
at 0.01. In the range of 102

6 Be 6 103, the heat transfer rate den-
sity of cylinders rotating at ~x ¼ 0:1 becomes less than that of cyl-
inders rotating in the range of 0 6 ~x 6 0:01. However, when the
dimensionless pressure drop number is greater than 103, the
numerical simulation cannot converge due to errors in the
assumption of a laminar flow from the wake generated in the do-
main by the magnitude of rotation of the cylinders. The maximum
heat transfer rate density is correlated by ~qmax ¼ 0:36Be0:42 which is
the same for co-rotating cylinder for ~x ¼ 0:01.

It should be noted that the above correlations are virtually the
same as those obtained for the co-rotating array of cylinders,
which means that in the case where the cylinders are aligned along
the leading edge, there is no noticeable advantage of one means of
rotation over the other. The above correlations enable the compar-
isons of the case considered here with results obtained from earlier
studies (cylinders that have aligned centrelines) and also with re-
sults that exist in available literature [15,17].
9. Comparison between multi-scale stationary cylinders with
cylinders with different modes of rotation

Due to the nature of the results obtained in Sections 7 and 8, the
results obtained for counter-rotating cylinders for ~x ¼ 0:01 were
ntreline rotating at ~x ¼ 0:01, (b) Cylinders aligned along the centreline rotating at
aligned along the leading edge rotating at ~x ¼ 0:1.

iscale cylinders rotating in cross-flow, Int. J. Heat Mass Transfer (2011),
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Fig. 21. Temperature contours of counter-rotating cylinders (a) Cylinders aligned along the centreline rotating at ~x ¼ 0:01, (b) Cylinders aligned along the centreline rotating
at ~x ¼ 0:1, (c) Cylinders aligned along the leading edge rotating at ~x ¼ 0:01, (d) Cylinders aligned along the leading edge rotating at ~x ¼ 0:1.
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chosen for comparison against the results obtained for stationary
cylinders, this was done for both configurations investigated.

Fig. 18 compares the results obtained from cylinders that are
aligned along the centreline with the configuration of cylinders
that are aligned along the leading edge. Cylinders aligned on the
leading edge dissipate a higher heat transfer than cylinders which
are centreline aligned, however rotation does increase the heat
transfer from centreline-aligned cylinders to become equivalent
to those of cylinders which are leading edge aligned. The optimal
spacing of both configurations is presented in Fig. 19 where the
spacing from cylinders on the same centre-line is less than that
of leading-edge-aligned cylinders in the range of 10 6 Be 6 102

and from Be > 102, cylinders aligned on the leading edge have a
considerably more compact configuration than centreline-aligned
cylinders.

Figs. 20 and 21 shows the temperature distributions of multi-
scale cylinder with rotation for the two different cylinder configu-
rations, of particular importance is the changes in the temperature
profile as the rotational velocities changes for different mode of
rotation (counter rotation and co-rotation) for Be ¼ 103 and
Pr = 0.71. The temperature profile in above figures ranges between
two colours, red ð~T ¼ 1Þ and blue (~T ¼ 0).
10. Conclusion

In this paper, the effect of rotation is investigated on two differ-
ent configurations of cylinder arrays. The cylinders are cooled by
laminar forced convection. Numerical optimisation was performed
to determine the optimal spacing between the cylinders as well as
the maximum heat transfer rate density from different arrays. In
the range considered, rotation is beneficial in terms of increase of
heat transfer for the configuration where the cylinders are aligned
on the centreline. In the leading-edge-aligned configuration, i.e.,
where the cylinders are aligned along the leading edge, the effect
of rotation is insignificant. It can, however, be seen that leading-
edge-aligned cylinders dissipate more heat than centreline-aligned
cylinders. It was also found that with an increase in the dimension-
less pressure drop number, there is a commensurate increase in
the heat transfer rate density while the optimal spacing between
the cylinders decreases. Theoretical analyses predict correctly the
numerical trend for stationary configurations. Future work may
also consider the optimisation of arrays of cylinders with more
than two cylinders as well as relaxing the use of the smaller cylin-
der diameter under conditions of rotation. Other possible future
works, entails extending the model to three-dimensional and a
more efficient solution model should be investigated via the imple-
mentation of a numerical optimisation algorithm into the finite
volume solver; also, the work done in pumping the coolant would
be calculated to enable an economic perspective; and lastly the
simultaneous analysis of the increased heat transfer and pumping
Please cite this article in press as: T. Bello-Ochende et al., Constructal mult
doi:10.1016/j.ijheatmasstransfer.2011.02.004
work should be investigated through the calculation of the assem-
bly’s entropy generation rate.
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