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Abstract

The study of the noncentral matrix variate beta type distributions has been sidelined because the
final expressions of the densities depend on an integral that has not been resolved in an explicit way. We
derive an exact expression for the nonnull distribution of the Wilks’s statistic and precise expressions for
the densities of ratio and product of two independent components of matrix variates where one matrix
variate has the noncentral matrix variate beta type I distribution and the other has the matrix variate
beta type I distribution. We provide the expressions for the densities of the determinant of the ratio
and product of these two components. These distributions play a fundamental role in various areas of
statistics for example in the criteria proposed by Wilks.
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1. INTRODUCTION

Let A and B be two independent (p x p) Wishart matrices, i.e. A ~ W, (n,X) and B ~ W, (m, %, ),
and n,m > p. The noncentral beta matrix U can be defined as U = (A + B)fé A(A+ B)fé, denoted

as U ~ Bf) (n,m, Q) . The Wilks’s statistic is defined as A = = |U|. It is known that the

A+ B

Wilks’s statistic plays the same role in multivariate analysis as the|F statis|tic plays in univariate analysis.
In a recent paper, Pham-Gia [31] established the exact expression of the density of the generalized Wilks’s
statistic, and those of the product and ratio of two independent such statistics. However, the noncentral
case was not attended to. The study of the noncentral matrix variate beta type distributions has been
sidelined because the final expressions of the densities depend on an integral that has not been resolved
in an explicit way. Diaz-Garzia and Gutiérrez-Jamez [9, 10] defined the nonsymmetrised matrix variate
beta density, by using a procedure equivalent to finding the symmetrized density defined by Greenacre
[14] (see also [3] and [12]). In this paper, we propose an exact expression for the nonnull distribution of
the Wilks’s statistic by using this nonsymmetrised density function of the noncentral matrix variate beta
type I distribution. The nonnull distribution of A will be useful in investigating the power of the Wilks’s
test.

Furthermore, Pham-Gia [30] and Pham-Gia and Turkkan [32] pioneered the study of products and
ratios of independent beta random variables, while Nadarajah [27] extended these results to the noncentral
beta distribution. Those papers, however, have focussed on the univariate case and Bekker et al [2]
examined operations on matrix variate beta type I variates. We will in this paper extend these ideas to
the case using the nonsymmetrised matrix variate beta type I density. Therefore, this paper deals with
exact expressions for the densities of the ratio (R) and product (P) of two independent matrix variates
where one has the matrix variate beta type I density and the other has the nonsymmetrised matrix variate
beta type I density. As well as the latter, we provide expressions for the densities of the determinant of the
ratio and product of these two independent components. These density functions of the aforementioned
determinants are derived in terms of Meijer’s G-functions by inverse Mellin transforms.



The uniqueness property of the Mellin transform, for statistical distributions with bounded domain,

arises from the fact that for a given density function f(-) if /f(t)dt = 1 and /f(t)dt = 1 then
Ql Q?

f(®)dt =1 and f = 0 a.s. for other strips, note that S should be bounded. See Zemanian [34]
5=01N2
for the uniqueness theorem in general frameworks.

The expressions are expressed in terms of Meijer’s G-function, zonal polynomials, hypergeometric
functions with matrix argument, or homogeneous invariant polynomials with two or more matrix argu-
ments. The reader is referred to the papers [4, 5, 6, 7, 8, 11, 19, 20, 21] on these functions; as well
as the reference books [17, 24, 26]. There are some algorithms available for calculating such functions
and facilitating the use of these distributions (see [18] and [22]). Currently, there are also mathematical
packages, such as MAPLE or MATHEMATICA for the computing and drawing of densities in terms of
Meijer’s G-function.

We find the nonnull distribution of the Wilks’s statistic in section 2. In section 3 the results are
presented for the densities of the ratio and its determinant of two independent matrix variates, one being
matrix variate beta type I distributed and the other component has the nonsymmetrised matrix variate
beta type I density; while the outcome of the product case is dealt with in section 4. Several numerical
examples show that the densities can now be computed.

2. THE NONNULL DISTRIBUTION OF A

Let the columns of a p X m matrix X and a p x n matrix Y be distributed independently in a p-
variate normal distribution with a common positive definite covariance matrix ¥ and let E(X) = M,
YY'| EY
|IXX'+YY'| |A+B|
used as a likelihood ratio criterion for testing whether the matrix mean M is equal to zero or not (see
[29, 33]). In this regard, deriving the non-null distribution plays an important role in determining the
power of the test. There is a vast variety work concerning this phenomenon in the literature. Asoh and
Okamoto [1] and Gupta [15, 16] derived the nonnull distribution proposed in Theorem 1 as a product of
noncentral beta variates for some special cases. None of the mentioned references derived an analytically
exact density function. The present work proposes the distribution of Wilks’s statistic based on Meijers’

G-function in a numerical feasible form.
To derive the nonnull distribution of the Wilks’s statistic we need the definition of the nonsymmetrised
density of the noncentral matrix variate beta type I distribution (see [9]).

If A~ W, (n,X)and B ~ W, (m, X, Q) are independent, n,m > p, then U = (A + B)fé A(A+ B)fé
is said to have a noncentral beta type I distribution, denoted as U ~ Bé (n,m, Q) , with nonsymmetrised
density function given by

E(Y) = 0. The presented Wilks’s statistic A =

(see Theorem 1) can be

NN T YPEY -1 1 (n—i—m).@.l
{Bp(z’z)} Ul 1T, — Ul etr | =592 11| —5—i555(,=0) ), 0<U<I,
(1)

T | )
where 1 /1 (+) is the confluent hypergeometric function of matrix argument, 3, (a,b) = % de-
P
notes the multivariate beta function, and I') (a) is the multivariate gamma function, defined as Ty, (a) =
Jasoctr(—A) |A|“7%(p+1) dA (Re(a) > % (p— 1) and etr(-) = exp(¢r(+))). The multivariate gamma func-
tion can be expressed as

Fp(a)znﬂ"rllf[lr(a—igl). (2)



(Here C < D means that the matrix D— C is positive definite; C 7 is the unique positive definite square
root of C)

If © = 0, then U has the well known matrix variate beta type I distribution.
THEOREM 1

Let A ~ W, (n, 3) and B ~ W), (m, X, Q) be independently distributed, n,m > p, and
U=(A+B) 7A (A+mﬁ B! (n,m, Q) .

A
Then the density of A = |U| = ﬁ is given by
et’f‘(*%ﬂ) > 1 (n4+m) 1 < C1,...,C )
—_— —T, (5™ k) C, (2Q) GEY [ |U LR I 3
o en (TR amen (v g ®
0<|Ul <1

where ¢; = "'H" + k; — % (i+1),i=1,...,pand d; = § — % (i+1),i=1,...,p, G(-) denotes Meijer’s
G-function (see [24]) and Cj (+) is the zonal polynomial corresponding to & (see[20]).
Furthermore
plr=1) T2 i—1 (p—1)
Dy (a.r) = 725 T[T (Hr - T) @@, B> k)@
i=1

and the generalized hypergeometric coefficient (a)y is given by (a), = [] (e — 3 (i — 1)), where (a), =
ala—1)...(a+k—1), (a)y=1. -

—

Proof:
From (1) and the definition of the hypergeometric function of matrix argument (see[13]) it follows that
o]
tr(—39 n
= 52 Qm)) U, gt ey (s do(r, - 1)) au
p\27 72

SR L wt | - uE e e, (jaa, - v) v
p\27 2 *\72

®o<u<I,

Let Q = (I, — U), applying Muirhead [26, pp. 254, equation (57)] in the above expression and then
simplifying it, we obtain

E {|U|h/_1} - etr Z Z k'F n+mF_|_(hﬂ_+1hH—) 1) C"i (%Q) .

From (4), the density of |U]| is uniquely determined by the inverse Mellin transform (see [24, pp. 60]).0
Remarks

1. If Q = 0, then the distribution of the Wilks’s statistic under the null hypothesis follows, see [31, 25].
2. For p =1, result (3) simplifies to

nt+m
2

n_1

-1 ), O<u<l1




with A the noncentrality parameter. Now, using [24, pp. 131], then the above density can be expressed
as

D240 (3 0 -w!
> EIT (2 + k) ’

O<u<l,

which is the density of the noncentral beta distribution of type II (see [27]).
3. Figure 1 illustrates the shape of density (3) for p = 2, n = 8, m = 12 and specific values of €2.
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Figure 1: Density function of A for
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3. RATIO (R) OF MATRIX VARIATE BETA TYPE I VARIATES

In this section we propose densities for the ratio and its determinant of two independent components,
where one component has the matrix variate beta type I distribution and the other the nonsymmetrised
matrix variate beta type I density. Pham-Gia [31] gave a complete explanation for the density of the ratio
and product of two independent Wilks’s statistics, but this paper considers the one component having
the nonsymmetrised matrix variate beta type I distribution.

THEOREM 2

Let U; ~ B; (n1,my) and Uy ~ BZI) (ng, m2, Q) be independently distributed, n;,m; > p, i =1,2.

1 1
Define R = U, U, U, ?, then the densities of R and r = |R| = |Uy||U,| ™" are respectively given by
the following equations:

(a) ForO< R < I,

n (p+1)
etr(—LQ)|R|7 T X & J
J(R) ==/ D020 >4
105, (5, 557)  F=0s=0 n T oewd (5)
(_%L + (p—gl))ﬂ ("2—;m2)J Fp (7l1—5n2 1) K) FP (%27 J) C:ZJ (R’ %Q)

R, (g, ) (432)



ng (p+
etr(—3Q)|R|" 2 2
R = >3y v oy (1)
18, (5. %)  F=0s=0 = T oaUesn =y
i=1
_mg  (p+1) na+mo
(3 + ), (=5 )Jef;% T e gteone Callp)Cor ) (6)
k'-] (mT)J OCER-P-A CU(IP)
Dy (52.0) Ty (15)

T, (g,
where C’g"] (+) denotes the invariant polynomials defined in Davis [8], see also Chikuse [4] and € € k..

(b) For 0 < r < o0,

T n1+m1
pir) = ) 557 L, (225,0) i (40) G (0

2
I =
—%7% ,’izl,...,p %*(Hél) 7i:17"'7p
where ¢; = nid+m (i—p+1) . di = (n2+ma2) (i—p—1) ;
%—T ,Z=p+1,...,2p _f_kz_’_T 7’L:p+1?"'72p'

Proof:

(a) From (1) and [26, pp. 259, equation (4)] it follows that for 0 < R < I,

1 1 1
fR) =K [l fo, (U3 RUD) 0, (U0, (see [23))
0<U2<Ip
n (p+1) nitn m
— K|R|_2l7 = etr(—%ﬂ) / |U2|—12—2*§(P+1) I, — U2|—22*§(P+1) I, — RU, | —3(p+1)
0<U2<I,
1 h ((n2+2m2)§m7 % I, - UQ)) dUy
(8)
e (—15 + P+1)) mEne 1(py1) M2 (p+1)
= K|R|™ etr(— ZZ U~z 2 I, - Uy = 2
k=0 r 0<Us<1I,
. C.(RUy) 1Fy (Mm 101, UQ)) AU,
ny _ (p+1)
= K|RZ 7 etr(-19) - g(R, Q)
9)

-1

where K = { I8, (”21, 5 )} . Then expanding the hypergeometric function ;1 F (-) in terms of zonal

polynomial and applymg the same argument as [28], follows that for any H € O(p), the orthogonal group,
it can be easily seen that g(R,Q) = g(HRH', HQH'). Thus



RO oo (nz-ng)J U 7L]~§n27%(p+1) I_-U %(erl)
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o
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(2252), Co (R, 59)

N J
"L ), G0,

nj +n2 (p+1 ‘

U, | I, Uy = 20 08 (Uy, I, — Uy)dU,

0<U:<1I,
using the fundamental property from Davis [7, equation (1.2)], and (dH) is the normalized invariant

Haar measure over the group O(p) ( [26], pp. 72). Applying [7, equatlon (3.4)] to the above intergral,
substituting it in (9), then (9) simplifies to the desired result (5) with 92 as defined in [7,4].

For R > I,,, we have

1) nitng
2

ny _ (p+
f(R) = K [R|F " cir(—10) / U,

—3(p+1) I, — Uﬂ%*é(wl) I, — RU2|%*§(1>+1)

5 -1

where K = {H By (%, %)} . By performing the transformation W = R? UQR% with Jacobian
i=1

J(Uy — W) = |R|_%(P+1) it follows that

n (p+1) nitn m m2 1
FR) = KIRTF TS gy [ WSRO w0 |, Rt

0<w<I,

lFl(M, 19(1 _Riw ))dw

p+1 ) n2+m2 )
J

— K|R™F 5 et (- ZZZZ( ki (52) 2

k=0j=0 &k 2

2

WSRO, - w B o (R W) ¢ (39 (1, - REWR ) ) aw

0<W<I,

(_%2+ (p+1)> natma)

_n2_ (pt 2 2 J
— K|R|™ " etr(— ZZZZ k!j!(%:)J -g(S%, R)

k=0j=0 ~ J

(10)

Using the binomial expansion for Cy (%Q (Ip ~R? WR_%>> (see [7, equation (2.13)]), it follows that

g(Q,R) B Z Z ( >0?;)\ f0<W<Ip |W|n ;n *1(p+1)|1' - W|%L % p+1)
S A(JTEPN) J'=JT

Co(RTW)CI (10, ~1oR T WR 1) aW

(11)



From Chikuse [4, equation (3.11)], we have that

1 1 7 I
Co (R W) %> (%Q,—%QR*EWR*E) = Y gpthbe oo Cellp)Crdp) (cf))(?)( v)
cCR-bA aATP (12)

Mot (R—lw, 10, -loR? WR—%) .

Substituting (12) in (11), using a similar approach as Chikuse [4, equations (3.28) and(3.29], ¢ € K.\, we
have that

A k(1,1 k), p,N;o0 Cp (I,)C 5/ (I
TCREED VD o G T S -

$ATESN) I= (13)
( (m1:+n2).)Cp (31) o 6.0 (R‘1 10, - Q%R_IQ%) .
Tp(L(nitna)+dmae)
From (10) and (13) the desired result (6) follows.
(b) For 0 < r < o0,
E(R["
=K / U, \_
0<U:1<I,
my _ (pt1)
U,|" I =l etr(—38) 1 Fy (—(n2§m2)§%§ I, — U2)> dUs
0<Us<1,
2
Hrp (nHrQﬂh) Fp (% +h— 1) n2+m2)

:etT(*%Q) 2 — ZZ ﬂéz Kl
=0 K

ITr (3)7 ()T, (22 4=

‘U2|"72—h+1—%(p+1) I, — U2|m72—% (+1) o (1Q(I, - Uy)) dU,

0<U2<1I,
with K as defined before. By performing the transformation Q = I,, — Uz , using [26, pp. 254, equation
(57)] and (4), the above equation simplifies to

B[R
[Tren]]
ni+m T'(di+h) I'(1—c;—h)
=D O ) > Y AT, (2242, O (30)
Hl“p (%) k=0 H C(cith) H T(1—d;—h)

i=p+1 i=p+1

with ¢; and d; as defined. The density of r is uniquely determined by the inverse Mellin formula. (Note
that the G-function does not need to have its definition domain split into 0 < r < 1 and r > 1.) g

Remarks
1. If @ = 0, then for 0 < R < I, it follows that

2
Hl—‘p(nrg'mi)l—‘p(nlﬁz»nQ>‘R‘ﬁ2]_7 P;l
f(R) _ 7‘,:12 o Fy (m;nz’_% + (P;rl);%;l?) (14)

)Fp< nj +7122 +7712 )

-
]
—
S—

=
ki
s
g



and for R > I,

2
H itmy + _ng _ (pt1)
FP(%)FP<¥)|R| 5 ) )
i 1
o Fy (n1;n27777;2 + (P; ); 7L1+n22+m1;R ) (15)

f(R)= ==
[T o (3 )r, (22 )r, (mtngtms )
i=1
is the Gauss hypergeometric function of matrix argument. Now, for the proof of the above
3(p+1) |Ip _ RU2|E2L7§(P+1) dU>.

where 2 F7 ()
densities, equation (8) is as follows
ny  (ptl) ny+n m
f(R) = KR L I
0<U2<Ip
and by applying [17, pp. 36, equation (1.6.8)], equation (14) follows. Similarly (15) is obtained. (See [2].)
2. The density of r = |[R| = |Ui||U;"| where Uy and U, both matriz variate beta type I distributed
(2 = 0) is given by [2].
3. For p=1, in (5)-(7), we have for 0 <r < 1,
r(2fmp(2tee lam 1 K&T m24m2 1k)(3 i ni+n ni. nitno+m
fry = (2 7 )(Hs )6 2172 1k:O k!g(ni+n§+")1£j_l) F (_1; 2,1 — 1+ 22+ 2 +k;’r)
[Irsres)
i=1
and for r > 1,
S F(ﬂyzdrk)(%)k 2F1 (nl—gng’l _ % _ ki; n1+n22+m1;,r71)

F(n]-;m,] )F(nlg—nz) 7A 712.71
€ 2r 2 m
= KT (52 +k)

i=1
4. For p = 2, Figure 2 shows the density of r = |R| (see (7)) with ny = n2 = 8m1 = mg = 12 and

selected values of €.
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4. PRODUCT (P) OF MATRIX VARIATE BETA TYPE I VARIATES

In this section we derived densities for the product and its determinant of these two independent com-
ponents.

THEOREM 3
Let U; ~ BII) (n1,mq) and Uy ~ BII) (ng, mo, Q) be independently distributed, n;, m; > p, ¢ =1,2.
Define P = UQ% U, UQ% , then the densities of P and v = |P| are respectively given by the following

equations:

(a) For 0 < P < I,

F oL 7lQ n I3 m m » oo o0
fp) = L) ppsp i g et
H ﬂp (%L’ﬂQL) k=03j=0 k J ¢€r.J
T (16)
n1+m1 nz) (nz—gmz)er (m7¢)

2
), Ty (P50

(b) For 0 < v <1,

ZZ EFP (#2572, 1) Cr (592

l\:)|)—t

\_/

o)

TY

o ©

bS]
/\

mtmy _ (45) i=1,3,...,2p—1 w08 =13, .2p—1
WhereciZ{nEm ! (i+2) D " 7di:{ > (ziQ) DU
—22—2'4-]6%—7 ,122,4,...,2]9 %2— 1 , 1= ,47 ,2p.
Proof:
(a)
f(P)
_ —3(p+1) —3
—K [0 f, (U 2P, ), (U U, (see [23])

n1 _ (p+1)
=K|P|Z2 "7 etr(—39Q)

P<U2<Ip

m —1q
—5(p+1) I, — U2|TQ—%(1’+1) }I - PU; 1’ 2P

. Fl ((n2+m2)’ ma. IQ(I U2)> dU2

-1
where K = {H B, (%, % )} . Perform the transformation T = (I, — P)f% (I,—Uy) (I, - P)fé

with Jacobian |I, — P|? 5(+D)  then we have that

f(P)
n (p+1) m1+m2 no—mnqi—m m
= K|P|7 2 etr(—5Q)|I, — P| —3(P+1) \Ip—(Ip—P)T|_2_2%_L|T|_22’5(p+1)
0<T<I,
AL — T3+ (n2fma), my. 1 _p\3 _ p\:
1y — T 1 5 %032, —P)? T(I, —P)? ) dT

Consider the a transformation from T — HTH', H € O(p), then expanding the hypergeometric func-
tion 1 Fy (+) in terms of zonal polynomial it follows that the above integral equals



[eSINe'S) nit+mi—no na+mso m m
ZZZ( - ()7,;_() ), / A LARNN) SO TR
j=0 J 2/J

k=05=0 « 0<T<I,
: / C«((I,—P)HTH') C, (% (I, - P):Q(I, - P)? HTH’) dHAT

ow) nitmi—no natmo
)n ( )J

:iizz Z ( 2k!j!(%)J2 / ‘T|T2_% 41 |1, T\_“ p+1)

k=0j=0 ~ J ¢€r.J

0<T<I,
¢’ (4,-P) 3@, - PP aa, - P} ey’ (T D)
: dT (use [7, equation (1.2)])
Co (Ip) J ) )
o0 00 nit+m;—n nao4+m K, — 1 _ 2 _ 2
Sy g g, (s, € (P 0, P, )
k=0j=0 r J $€r.J ¢ klj! (%)J Cy (Ip)
‘T|727% (p1) I, — T|%7%(p+1) Cy (T)dT (use[7, equation (2.1)]
0<T<I,
Applying [26, pp.254, equation (57)], expression (16) is obtained.
(b)
E(P)"!
= Ketr(—10Q) / Uy [T gy TR g,
0<U1<Ip
2 -1-1 =21 no+m mo
|Us | +h—1—5(p+1) \Ip —U,|™> 3(p+1) ) (( 2-2 2);T %Q(Ip _ Ug)) dU,
0<U2<1I,
2
[Irs (252) Ty (5 + 0 — 1) ((n2+m2)>

= etr(—39) 5 =1 227%2)

[IT ()0 (3) T (B2 +h = 1) P20 0

o

i=1
Uy F 130D Ty F ) o, (1 (I, - Uy)) dU
0<U2<I,
where K is defined as in part(a). Following the same method as in theorem 2(b), the desired result (17)
is obtained. O

Remarks

1. If @ = 0, then result (16) simplifies to the form obtained by [17, pp 298], known as the hypergeometric
function distribution of type 1. The density of v = |P] is given by [2].

2.For p =1 and using [24, pp. 131], (16) and (17) simplify to the following;:

r ((mgml)
ORI CS)

(mit+mg) , T ngtma + k
e & D aa- )
S kT (e 1)
C ol (feta—m g g omu a4 ge] —p) L 0<wv <L
3. Figure 3 illustrates the density of v = |P| (see (17))for p = 2,n1 = na = 8, m; = my = 12 and selected

4 2
valuesofﬂ-lQ[2 1]

v (1 —0)
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5. CONCLUSION

In this paper we give an exact expression in terms of Meijer’s G-function for the nonnull distribution of
the Wilks’s statistic based on the nonsymmetrised density of the noncentral matrix variate beta type I
distribution. We establish exact expressions for the densities of the ratio (R) and product (P) of two
independent matrix variates where one has the matrix variate beta type I density and the other has the
nonsymmetrised matrix variate beta type I density. The densities of |R| and |P| are also derived for
these cases. Diaz-Garzia and Gutiérrez-Jdmez [9] gave further classifications of the beta matrix. When
using these, other definitions of noncentral matrix variate beta type distribution, the derivation of the
corresponding results will be in an analogous fashion. The availability of these expressions in this paper

will stimulate research and applications.
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