
Exact nonnull distribution of wilks’s Statistic : Ratio and
Product of independent Components

A BEKKER, JJJ ROUX AND M ARASHI*

Department of Statistics,

Faculty of Natural and Agricultural Sciences,

University of Pretoria, Pretoria, 0002, South Africa

*Faculty of Mathematics,

Shahrood University of Technology,

P. O. Box 316-3619995161,

Shahrood, Iran.

Corresponding author: E-mail: andriette.bekker@up.ac.za;Fax:+27 12 420 3440;Tel:+27 12 420 3562

Abstract

The study of the noncentral matrix variate beta type distributions has been sidelined because the

final expressions of the densities depend on an integral that has not been resolved in an explicit way. We

derive an exact expression for the nonnull distribution of the Wilks’s statistic and precise expressions for

the densities of ratio and product of two independent components of matrix variates where one matrix

variate has the noncentral matrix variate beta type I distribution and the other has the matrix variate

beta type I distribution. We provide the expressions for the densities of the determinant of the ratio

and product of these two components. These distributions play a fundamental role in various areas of

statistics for example in the criteria proposed by Wilks.

Mathematical subject classification: 62H10; 62H15
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1. INTRODUCTION

LetA andB be two independent (× )Wishart matrices, i.e. A ∼ (Σ) andB ∼ (ΣΩ),

and  ≥ . The noncentral beta matrix U can be defined as U = (A+B)
− 1
2 A (A+B)

− 1
2 , denoted

as U ∼ B
 (Ω) . The Wilks’s statistic is defined as Λ =

|A|
|A+B| = |U |. It is known that the

Wilks’s statistic plays the same role in multivariate analysis as the  statistic plays in univariate analysis.

In a recent paper, Pham-Gia [31] established the exact expression of the density of the generalized Wilks’s

statistic, and those of the product and ratio of two independent such statistics. However, the noncentral

case was not attended to. The study of the noncentral matrix variate beta type distributions has been

sidelined because the final expressions of the densities depend on an integral that has not been resolved

in an explicit way. Diaz-Garzia and Gutiérrez-Jamez [9, 10] defined the nonsymmetrised matrix variate

beta density, by using a procedure equivalent to finding the symmetrized density defined by Greenacre

[14] (see also [3] and [12]). In this paper, we propose an exact expression for the nonnull distribution of

the Wilks’s statistic by using this nonsymmetrised density function of the noncentral matrix variate beta

type I distribution. The nonnull distribution of Λ will be useful in investigating the power of the Wilks’s

test.

Furthermore, Pham-Gia [30] and Pham-Gia and Turkkan [32] pioneered the study of products and

ratios of independent beta random variables, while Nadarajah [27] extended these results to the noncentral

beta distribution. Those papers, however, have focussed on the univariate case and Bekker et al [2]

examined operations on matrix variate beta type I variates. We will in this paper extend these ideas to

the case using the nonsymmetrised matrix variate beta type I density. Therefore, this paper deals with

exact expressions for the densities of the ratio (R) and product (P ) of two independent matrix variates

where one has the matrix variate beta type I density and the other has the nonsymmetrised matrix variate

beta type I density. As well as the latter, we provide expressions for the densities of the determinant of the

ratio and product of these two independent components. These density functions of the aforementioned

determinants are derived in terms of Meijer’s G-functions by inverse Mellin transforms.
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The uniqueness property of the Mellin transform, for statistical distributions with bounded domain,

arises from the fact that for a given density function (·) if
Z
Ω1

() = 1 and

Z
Ω2

() = 1 then

Z
S=Ω1∩Ω2

() = 1 and  ≡ 0 a.s. for other strips, note that S should be bounded. See Zemanian [34]

for the uniqueness theorem in general frameworks.

The expressions are expressed in terms of Meijer’s G-function, zonal polynomials, hypergeometric

functions with matrix argument, or homogeneous invariant polynomials with two or more matrix argu-

ments. The reader is referred to the papers [4, 5, 6, 7, 8, 11, 19, 20, 21] on these functions; as well

as the reference books [17, 24, 26]. There are some algorithms available for calculating such functions

and facilitating the use of these distributions (see [18] and [22]). Currently, there are also mathematical

packages, such as MAPLE or MATHEMATICA for the computing and drawing of densities in terms of

Meijer’s G-function.

We find the nonnull distribution of the Wilks’s statistic in section 2. In section 3 the results are

presented for the densities of the ratio and its determinant of two independent matrix variates, one being

matrix variate beta type I distributed and the other component has the nonsymmetrised matrix variate

beta type I density; while the outcome of the product case is dealt with in section 4. Several numerical

examples show that the densities can now be computed.

2. THE NONNULL DISTRIBUTION OF Λ

Let the columns of a  ×  matrix X and a  ×  matrix Y be distributed independently in a -

variate normal distribution with a common positive definite covariance matrix Σ and let (X) = M 

(Y ) = 0 The presented Wilks’s statistic Λ =

¯̄
Y Y 0 ¯̄¯̄

XX 0+Y Y 0¯̄ = |A|
|A+B| (see Theorem 1) can be

used as a likelihood ratio criterion for testing whether the matrix mean M is equal to zero or not (see

[29, 33]). In this regard, deriving the non-null distribution plays an important role in determining the

power of the test. There is a vast variety work concerning this phenomenon in the literature. Asoh and

Okamoto [1] and Gupta [15, 16] derived the nonnull distribution proposed in Theorem 1 as a product of

noncentral beta variates for some special cases. None of the mentioned references derived an analytically

exact density function. The present work proposes the distribution of Wilks’s statistic based on Meijers’

G-function in a numerical feasible form.

To derive the nonnull distribution of the Wilks’s statistic we need the definition of the nonsymmetrised

density of the noncentral matrix variate beta type I distribution (see [9]).

IfA ∼ (Σ) andB ∼ (Σ,Ω) are independent,  ≥  thenU = (A+B)
− 1
2 A (A+B)

− 1
2

is said to have a noncentral beta type I distribution, denoted as U ∼ B
 (Ω)  with nonsymmetrised

density function given by
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where 11 (·) is the confluent hypergeometric function of matrix argument,  ( ) =
Γ ()Γ ()

Γ (+ )
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notes the multivariate beta function and Γ () is the multivariate gamma function, defined as Γ () =R
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(Here C D means that the matrixD− C is positive definite; C
1
2 is the unique positive definite square

root of C)

If Ω = 0, then U has the well known matrix variate beta type I distribution.

THEOREM 1

Let A ∼ (Σ) and B ∼ (Σ,Ω) be independently distributed,  ≥ , and

U = (A+B)
− 1
2 A (A+B)

− 1
2 ∼ B

 (Ω) .

Then the density of Λ = |U | = |A|
|A+B| is given by
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where  =
+
2
+  − 1

2
(+ 1),  = 1      and  =


2
− 1

2
(+ 1),  = 1     ,  (·) denotes Meijer’s

G-function (see [24]) and  (·) is the zonal polynomial corresponding to  (see[20]).
Furthermore
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and the generalized hypergeometric coefficient () is given by () =
Q
=1

¡
− 1

2
(− 1)¢


where () =

(− 1)    (+  − 1) ()0 = 1

Proof:

From (1) and the definition of the hypergeometric function of matrix argument (see[13]) it follows that
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Let Q = (I − U) applying Muirhead [26, pp. 254, equation (57)] in the above expression and then
simplifying it, we obtain
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From (4), the density of |U | is uniquely determined by the inverse Mellin transform (see [24, pp. 60]).¤
Remarks

1. If Ω = 0 then the distribution of the Wilks’s statistic under the null hypothesis follows, see [31, 25].
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with  the noncentrality parameter. Now, using [24, pp. 131], then the above density can be expressed

as

() =
−


2

Γ
¡

2

¢
2
−1 (1− )


2
−1
∞X
=0

Γ
¡
+
2
+ 

¢ ¡

2

¢
(1− )



!Γ
¡

2
+ 

¢  0    1

which is the density of the noncentral beta distribution of type II (see [27]).

3. Figure 1 illustrates the shape of density (3) for  = 2  = 8 = 12 and specific values of Ω.
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Figure 1: Density function of Λ for

(a) Ω = 0;(b) Ω1 = 12
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3. RATIO (R) OF MATRIX VARIATE BETA TYPE I VARIATES

In this section we propose densities for the ratio and its determinant of two independent components,

where one component has the matrix variate beta type I distribution and the other the nonsymmetrised

matrix variate beta type I density. Pham-Gia [31] gave a complete explanation for the density of the ratio

and product of two independent Wilks’s statistics, but this paper considers the one component having

the nonsymmetrised matrix variate beta type I distribution.

THEOREM 2

Let U1 ∼ B
 (11) and U2 ∼ B

 (22Ω) be independently distributed,  ≥ ,  = 1 2

Define R = U
− 1
2

2 U1U
− 1
2

2  then the densities of R and  = |R| = |U1| |U2|−1 are respectively given by
the following equations:
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For R > I
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Proof:

(a) From (1) and [26, pp. 259, equation (4)] it follows that for 0  R < I
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using the fundamental property from Davis [7, equation (1.2)], and (H) is the normalized invariant

Haar measure over the group () ( [26], pp. 72). Applying [7, equation (3.4)] to the above intergral,

substituting it in (9), then (9) simplifies to the desired result (5) with 

 as defined in [7,4].
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From Chikuse [4, equation (3.11)], we have that
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From (10) and (13) the desired result (6) follows.
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with  and  as defined. The density of  is uniquely determined by the inverse Mellin formula. (Note

that the G-function does not need to have its definition domain split into 0    1 and   1) ¤
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and for R  I
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where 21 () is the Gauss hypergeometric function of matrix argument. Now, for the proof of the above

densities, equation (8) is as follows
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4. For  = 2, Figure 2 shows the density of  = |R| (see (7)) with 1 = 2 = 8;1 = 2 = 12 and

selected values of Ω
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4. PRODUCT (P) OF MATRIX VARIATE BETA TYPE I VARIATES

In this section we derived densities for the product and its determinant of these two independent com-

ponents.

THEOREM 3

Let U1 ∼ B
 (11) and U2 ∼ B

 (22Ω) be independently distributed,  ≥ ,  = 1 2

Define P = U
1
2

2U1U
1
2

2  then the densities of P and  = |P | are respectively given by the following
equations:

(a) For 0 < P < I

(P ) =
Γ
¡
1

2

¢
(−1

2
Ω)

2Q
=1


¡

2
 

2

¢ |P |
1
2
− (+1)

2 |I −P |
1+2

2
− (+1)

2

∞X
=0

∞X
=0

X


X


X
∈







¡
1+1−2

2

¢


¡
2+2

2

¢

Γ
¡
2

2
 
¢

!!
¡
2

2

¢

Γ
¡
1+2

2
 
¢ 




³
(I −P )  12 (I − P )

1
2 Ω (I −P )

1
2

´


(16)

(b) For 0    1

() =
Γ
¡
1+1

2

¢
(−1

2
Ω)

Γ
¡
1
2

¢
Γ
¡
1

2

¢ ∞X
=0

X


1

!
Γ
¡
2+2

2
 
¢


¡
1
2
Ω
¢

20
22

µ


¯̄̄̄
1     2
1     2

¶
(17)

where  =

(
1+1

2
− (+3)

4
  = 1 3     2− 1

2+2

2
+  

2
− (+2)

4
  = 2 4     2

,  =

(
1
2
− (+3)

4
  = 1 3     2− 1

2
2
− (+2)

4
  = 2 4     2

Proof:

(a)

(P )

= 

Z
2

|U2|−
1
2
(+1)

1
(U
− 1
2

2 PU
− 1
2

2 )2
(U2)U2 (see [23])

=  |P |
1
2
− (+1)

2 (−1
2
Ω)

Z
2

|U2|
2−1

2
− 1
2
(+1) |I −U2|

2
2
− 1
2
(+1)

¯̄
I −PU−12

¯̄1
2
− 1
2
(+1)

·1 1
³
(2+2)

2
; 2

2
; 1
2
Ω(I − U2

)
´
U2

where  =

½
2Q

=1


¡

2
 

2

¢¾−1
 Perform the transformation T = (I −P )−

1
2 (I −U2) (I −P )−

1
2 

with Jacobian |I −P |
1
2
(+1)

 then we have that

(P )

=  |P |
1
2
− (+1)

2 (−1
2
Ω) |I −P |

(1+2)

2
− 1
2
(+1)

Z
0

|I − (I −P )T |
2−1−1

2 |T |
2
2
− 1
2
(+1)

· |I − T |
1
2
− 1
2
(+1)

11

³
(2+2)

2
; 2

2
; 1
2
Ω (I −P )

1
2 T (I −P )

1
2

´
T

Consider the a transformation from T → HTH 0, H ∈ () then expanding the hypergeometric func-

tion 11 (·) in terms of zonal polynomial it follows that the above integral equals

9



∞X
=0

∞X
=0

X


X


¡
1+1−2

2

¢


¡
2+2

2

¢


!!
¡
2

2

¢


Z
0

|T |
2
2
− 1
2
(+1) |I − T |

1
2
− 1
2
(+1)

·
Z

()

((I −P )HTH 0) 

³
1
2
(I −P )

1
2 Ω (I −P )

1
2 HTH

0´
HT

=

∞X
=0

∞X
=0

X


X


X
∈

¡
1+1−2

2

¢


¡
2+2

2

¢


!!
¡
2

2

¢


Z
0

|T |
2
2
− 1
2
(+1) |I − T |

1
2
− 1
2
(+1)

·




³
(I −P )  12 (I −P )

1
2 Ω (I −P )

1
2

´


 (T T )

 (I)
T (use [7, equation (1.2)])

=

∞X
=0

∞X
=0

X


X


X
∈





¡
1+1−2

2

¢


¡
2+2

2

¢


!!
¡
2

2

¢






³
(I −P )  12 (I −P )

1
2 Ω (I −P )

1
2

´
 (I)

·
Z

0

|T |
2
2
− 1
2
(+1) |I − T |

1
2
− 1
2
(+1)

 (T ) T (use[7, equation (2.1)]

Applying [26, pp.254, equation (57)], expression (16) is obtained.

(b)

 [|P |]−1

= (−1
2
Ω)

Z
01

|U1|
1
2
+−1− 1

2
(+1) |I −U1|

1
2
− 1
2
(+1)

U1

·
Z

02

|U2|
2
2
+−1− 1

2
(+1) |I −U2|

2
2
− 1
2
(+1)

11

³
(2+2)

2
; 2

2
; 1
2
Ω(I −U2)

´
U2

= (−1
2
Ω)

2Y
=1

Γ
¡
+

2

¢
Γ
¡
1
2
+ − 1¢

2Y
=1

Γ
¡

2

¢
Γ
¡
2

2

¢
Γ
¡
1+1

2
+ − 1¢

∞X
=0

X


³
(2+2)

2

´


!
¡
2

2

¢


·
Z

02

|U2|
2
2
+−1− 1

2
(+1) |I −U2|

2
2
− 1
2
(+1)



¡
1
2
Ω (I −U2)

¢
U

where  is defined as in part(a). Following the same method as in theorem 2(b), the desired result (17)

is obtained. ¤
Remarks

1. If Ω = 0 then result (16) simplifies to the form obtained by [17, pp 298], known as the hypergeometric

function distribution of type I. The density of  = |P | is given by [2].
2.For  = 1 and using [24, pp. 131], (16) and (17) simplify to the following:

() =
Γ
³
(1+1)

2

´
Γ
¡
1
2

¢
Γ
¡
1

2

¢−
2 

2
2
−1 (1− )

(1+2)

2
−1 ∞P

=0

Γ
¡
2+2

2
+ 

¢
!Γ

¡
1+2

2
+ 

¢ ¡1
2
 (1− )

¢
· 21

¡
2+2−1

2
+  1

2
; 1+2

2
+ ; 1− 

¢
, 0    1

3. Figure 3 illustrates the density of  = |P | (see (17))for  = 2 1 = 2 = 81 = 2 = 12 and selected

values of Ω = 12

∙
4 2

2 1

¸
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Figure 3: Density function of |P | for  = 2 and
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∙
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∙
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5. CONCLUSION

In this paper we give an exact expression in terms of Meijer’s G-function for the nonnull distribution of

the Wilks’s statistic based on the nonsymmetrised density of the noncentral matrix variate beta type I

distribution. We establish exact expressions for the densities of the ratio (R) and product (P ) of two

independent matrix variates where one has the matrix variate beta type I density and the other has the

nonsymmetrised matrix variate beta type I density. The densities of |R| and |P | are also derived for
these cases. Diaz-Garzia and Gutiérrez-Jámez [9] gave further classifications of the beta matrix. When

using these, other definitions of noncentral matrix variate beta type distribution, the derivation of the

corresponding results will be in an analogous fashion. The availability of these expressions in this paper

will stimulate research and applications.
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