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Geometric Steady States of Nonlinear Systems

Xiaohua Xia, Fellow, IEEE, and Jiangfeng Zhang

Abstract—The analytic concept of steady states for nonlinear systems was
introduced by Isidori and Byrnes, and its geometric properties were also
given implicitly mixed with the solvability of the output regulation problem
for nonlinear systems with neutrally stable exogenous signals. In this tech-
nical note, a geometric definition of steady states for nonlinear systems,
which is named as geometric steady state, is formulated independent of the
output regulation problem so that it can be applied to many problems other
than output regulation and the exogenous system can be unstable too. Some
sufficient conditions for the existence of geometric steady states and a prac-
tical application in robotics are also provided.

Index Terms—Attractiveness, controlled invariance, output regulation,
steady state, Sylvester equation.

I. INTRODUCTION

S TEADY state analysis of linear systems comes from linear circuit
theory. The concept was soon found very useful in general linear

and nonlinear systems. A formal analytic definition of steady states for
nonlinear systems was introduced by Isidori and Byrnes in 1990 in their
work on output regulation problems [7]. Although this analytic defini-
tion of nonlinear steady states is quite general, the main attention of
[7] is the output regulation problem and therefore the results of [7] are
limited to nonlinear systems with neutrally stable exogenous systems.
Geometric characterizations on the solvability of this kind of output
regulation problem are given in [7] and [6], and the inherent geometric
properties of steady states are implied and given mixed together with
the solvability of output regulation problem. It is also noted by Chen
and Huang [2] that the neutral stability of the exogenous system is re-
stricted sometimes even for the output regulation problem. Therefore
this technical note devotes to give a general geometric definition of
steady states so that it is able to be applied in more problems other
than output regulation and this new definition can cover the case of
unstable exogenous signals too. This geometric definition is named
as geometric steady states to indicate the difference with usual under-
standing of steady states. In fact, a geometric steady state may not be a
constant state, and it can be a manifold with dimension greater than 0.

For a general nonlinear system �� � ���� ��, with � � � and
� � �, assume that ���� �� � � and ���� ��� ����� is the value of the
state � at time � under initial value �� and input ����. Then [6] defines a
(local) steady state of this nonlinear system to be a state ���� ��� ������
where �� is an initial state, ����� is a specific input, and ���� ��� ������
satisfies

���
����

����� ��� ������ ���� ��� ������� � � (1)

for every �� in some neighborhood �� of ��.
Note that the above concept of steady state is independent of the

output regulation problem.
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In an attempt to solve the output regulation problem, Isidori and
Byrnes [7] considered the (local) steady state for nonlinear control
systems

����� � ������� ����� ����� (2)

����� �������� (3)

under the assumption that the exogenous signal ���� comes from a
system (3) satisfying that all eigenvalues of �����	�� have zero real
parts. By invoking the Centre Manifold Theorem [1], it is proven [7],
[6] that a local steady state of (2) with exponential convergence in the
corresponding relation (1) exists if and only if: i) �
��� is a stabiliz-
able pair, where 
 � ����� �� ��	��, � � ����� �� ��	��, and, ii)
the regulator equation is solvable for smooth functions ���� and ���

�����

��
���� � ������� ���� ��� (4)

In differential geometric terms, the solvability of (4) is equivalent to
the existence of ���� such that � � ���� �� � �� ���� � �� is a lo-
cally controlled invariant submanifold [6] of (2) and (3). Reference [7]
further showed, among other things, that the output regulation problem
of the system (2) and (3) with an output � � ������� ����� is locally
solvable via a static state feedback if and only if a steady state of the
form ������ � ������� exists for the function �, and the controlled in-
variant submanifold � is output-zeroing, i.e., ��������������� � �.

Note that in the above nonlinear definition of steady states, it is re-
quired that a steady state solutions exist for each and all ���� gener-
ated by (3) through assigning freely the initial conditions. The non-
linear steady state concept is meaningful if steady state solutions exist
for the whole class of exogenous signals. This requirement probably
stems from the output regulation problem in which the system output
should emulate all (not just one) signals from a whole class.

In this technical note we direct our attention to the definition and ex-
istence of geometric steady states of nonlinear systems with exogenous
signals. This geometric formulation is obtained by a thorough study on
the mixed properties of steady states and solvability of output regula-
tion problem obtained in [7] and [6]. The new definition of geometric
steady states covers the case of unstable exogenous systems too. We
start with some easy characterizations of the linear cases. Sufficient
conditions are given for the existence of geometric steady states of non-
linear systems. Applications of the geometric steady states theory can
be made to nonlinear observer design and the output regulation of non-
linear systems with unstable exogenous signals. The new definition of
nonlinear geometric steady states is based on the following observation.

For neutrally stable exogenous signals, the center manifold theory
can be applied and a geometric description on the existence of steady
states can be formulated as the controlled invariance and attractiveness
of the solution manifold of the center manifold equation. Such a for-
mulation tells more geometric information about steady states than the
analytic definition which uses the existence of a suitable input function
and an initial state.

For unstable exogenous signals where the center manifold theory is
not applicable, the above geometric description is adopted as a defini-
tion for nonlinear geometric steady states in this technical note. As the
same as Isidori and Byrnes’ approach, the exogenous system has not
been assigned any initial value so that a class of exogenous signals are
considered simultaneously. Furthermore, the obtained definition gives
both the local and global version of geometric steady states in a uni-
fied way which enables one to give the existence criteria for local and
global geometric steady states in some unified way too.

Examples from forced and unforced systems are also included to
show that the above geometric definition is reasonable for the corre-
sponding systems.

After the derivation of the definition of nonlinear geometric steady
states, the attention of the technical note is then to find a good ex-
istence criterion for nonlinear geometric steady states. Note that the
newly formed Definition 4 requires both the controlled invariance and
the attractiveness of some manifold. The controlled invariance can be
characterized as the solvability of Sylvester equation ��	������ �
������� ����� ��, which can be simplified by our recent approach for
the solvability of regulator equation and the parametrization of friend
sets (see [10]). Therefore the main theorems of this technical note fo-
cusses on the conditions that ensure the attractiveness.

The layout of the technical note is as follows. Section II gives the
definition and existence of geometric steady states. Both unforced and
forced linear and nonlinear systems are discussed. A practical applica-
tion on a single-link flexible joint robot is also presented. Section III
is some concluding remarks. The Appendix lists some frequently cited
results from [3] and [1].

II. EXISTENCE OF GEOMETRIC STEADY STATES

A. Unforced Systems

1) Linear Systems: Consider first a unforced linear system

�� � 
� � ���

�� � ��
(5)

where � � �, � � �, and 
� � and � are matrices of proper sizes.
Different concepts of geometric steady states can be defined for (5).
Note that in (5), the � part is autonomous. An initial condition ��

corresponds to a solution ���� ���, or an exogenous signal. A solution
������ to

�� � 
� � ����� ��� (6)

is called a geometric steady state of (5) with respect the exogenous
signal ���� ���, if it is an attracting solution to (6).

It is easy to see and left to the reader to verify that for a linear system
such as (5), if a geometric steady state exists for one initial condition
��, then geometric steady states exist for all initial conditions, and a
necessary and sufficient condition for the existence is the stability of
the matrix 
, or �� � 
� is a stable system.

However, this is not the concept needed to deal with the output reg-
ulation problem.

Definition 1: A linear subspace of the form � � ���� �� � � �
���, for an �� � matrix is called a geometric steady state to (5) if

i) it is invariant with respect to (5);
ii) it is attracting: denote as ����� ��� ���� ���� ���� the solution of

(5) initialized at ���� ���, then for all initial conditions �� and
��

�	

���

����� ��� ���� ����� ���� � �� (7)

The system (5) is said to have a unique geometric steady state if
the corresponding � is unique.

For simplicity, we sometimes say that � � �� is a geometric steady
state.

Lemma 1: Let � be an � � � matrix, then
i) � � �� is a geometric steady state of (5) if and only if 
 is a

Hurwitz matrix, and

�� � 
� � �� (8)

ii) � � �� is a unique geometric steady state of (5) if and only
if the conditions in i) hold and, furthermore, � and 
 have no
eigenvalues in common.
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Proof:
(i) Let � � �� be a geometric steady state with initial value

����� ���, then the subspace � � ���� ��� � � ���
is invariant, which is equivalent to the condition that
���� ������ � � along the dynamics of the system (5).
However ���� ������ � ��� � � � �	��, therefore � is
a invariant if and only if �� � � � �	 � �.
Now let � be a solution of (5) with initial condition ���� ���, and

 � � � ��, then �
 � �
, therefore � is attractive if and only
if � is Hurwitz.

(ii) This follows from i) and Lemma 2.7 of [11].

Example 1: Consider the following four systems:

	� 

�� � ��� ��

�� � ���
	� 


�� � �� ���

�� � ���

	� 

�� � ���

�� � ���
	� 


�� � ��� ���

�� � ���

It is easily seen that a geometric steady state exists for any exogenous
signal for 	�. For example, ������ � � is a geometric steady state with
respect to ���� � �; ������ � � ������ is a geometric steady state
with respect to ���� � ������. However, no geometric steady states
exist in the sense of Definition 1, because there is no solution to the
(8). 	� has no geometric steady states, even though � � � is invariant
or � � � satisfies the (8). Subspaces defined by � � � and � � ��
respectively are two geometric steady states for 	�. While 	� has a
unique geometric steady state defined by � � �.

2) Nonlinear Systems: Consider a nonlinear, unforced system

�� � ���� �� � �� � �� � ��� ���

�� � 	��� � 	�� � �����
(9)

in which, it is assumed that � � �, � � �, ���� �� � �, 	��� � �,
and

� �
����� ��

��
� � �

����� ��

��
� 	� �

�	���

��

and ��� �� and���� �� are higher order terms. Let� be a given open
neighborhood of 0 in �, and� a given open neighborhood of 0 in �.
The notations � and � will be fixed throughout the technical note,
and the notations �� and �� are used to denote some smaller open
neighborhoods of the origins contained in � and � respectively. A
result holding on � �� is said to be held globally on � �� , while
a result holding on �� ��� for some �� � � and �� � � is
referred to be held locally in � �� .

Definition 2: The system (9) is said to admit a (local) geometric
steady state if

i) there is a �� �� �� function ���� such that a submanifold
defined by � � ���� �� � � � ���� � �� is (locally) invariant
with respect to the closed-loop system (9): for all � � � (� �
��, �� is some open subset of � )

��

��
	��� � ������� ��� (10)

That is, the Sylvester (10) is solvable.
ii) � is (locally) attracting: for each �� � � (�� � ��, �� is

some open subset of � ) and �� � � (�� � ��, �� is some
open subset of � ), there exist a �	 function ��
� 
� and a tra-
jectory of (9) starting from ���� ��� which satisfy the following
inequality for all � � �����:

����� ��� ���� ������ ����� � ����� � ������� ��� (11)

The following example illustrates the difference between a local
geometric steady state and a global geometric steady state.

Example 2: Consider the system

�� � � � � ���

�� ���

The solution can be found as ���� � ���� ������ � �������. The
solution � � � is a local geometric steady state, but not a global one,
because ���� tends to infinity when ���� � �.

Another example was given in [2] when �� � 	��� is unstable.
Implicitly implied in the definition of geometric steady states are the

following three conditions:
A1) the Sylvester (10) is (locally) solvable for a�� function����;
A2) the system (9) admits global solutions on � � ����� for all
initial conditions (in �� ���);
A3) the attracting property (11).

Let �� �� �� denote the Banach space of all �� functions whose
derivatives up to the �-th order are uniformedly bounded on � and
� 
 �� denotes the norm in �� �� ��. Let � � � and �

�
� �� �� �

�� � �� �� �� 
 ���� � ��. In case of no confusion, we also
use �

�
when the domains and ranges are distinct, and clear from the

context.
There are some situations when A1) is guaranteed.
Proposition 1: Suppose that all eigenvalues of � have nonzero real

parts, and all eigenvalues of 	� have zero real parts.
If for the system (9)

��� �� � ������� ������ �� ���� ��� � ��

���� � ������� �� ��� � � (12)

then there is a � and a �� function ���� defined for ��� � � such that
���� � �, �������� � �, and

�����

��
	��� � ������� ��� (13)

Proof: When � � � in (9), the result is a special form of The-
orem A in the Appendix (see also [3]). When � �� �, note that one
needs only to let � � � � � in the corresponding Theorem A from
the Appendix , and substitute ��� �� in Theorem A by ��� �� for our
problem. Therefore the cut-off function ���� in the proof of Theorem
A is replaced by ����, where � 
 ������ �� is �� with

���� �
�� ��� ��

�� ��� ��

Let � ����� � �� � ��� ��, and  ����� � � ����������� �
��������� ��� ��������. Then � can be chosen sufficiently small
so that  ��� �� � �

�
� ��

�
for some ! � �. And one can perform

exactly the same as the rest of the proof of Theorem A to obtain the
result. This ends the proof.

Proposition 1 is obviously different from Theorem A although
its proof relies largely on Theorem A (see the Appendix for a
comparison).

Proposition 2: Suppose that all the eigenvalues of � have negative
real parts, and all the eigenvalues of 	� have nonnegative real parts. If
for the system (9), (12) holds, then there is a � and a �� function ����
defined for ��� � � such that ���� � �, and (13) is satisfied.

Proof: By the proof of Proposition 1, the assumptions of The-
orem B in the Appendix (see also [3]) are fulfilled, therefore the result
follows from Theorem B.

Proposition 2 is actually a combination of Proposition 1 and The-
orem B, which is tailored to the need of geometric steady state.

Obviously, these two propositions do not provide a complete solution
to the solvability of (13). The following example is not covered by the
two propositions.

Example 3: Consider the system

�� � �� ��� �� � ��
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Then � � �� is invariant with respect to the dynamics of the system,
and solves the Sylvester (10) for the system.

The condition (12) does not imply the existence of global solutions
on ����� to the system (9). In fact, Example 2 is such an example by
noting the fact ������������ � ������� ��� � �.

The maximal interval of existence of solutions, and global solution in
particular, of ordinary differential equations have been classical prob-
lems [4]. The following result from Theorem C in the Appendix (see
also [3]) gives conditions for both the global existence of solutions A2)
and the attracting property A3).

Proposition 3: ([3]): Suppose that all the eigenvalues of � have
negative real parts, and all the eigenvalues of �� have nonnegative real
parts. If for an � � � such that 	� 
 � ��� , then:

i) there exists a � � � such that solutions to (9) exist globally on
����� for all initial conditions in ��	���� ��	��� � �;

ii) there exist a unique � function �	��, positive constant � � �
and � � � with � depending on 	�	��� �	��� such that

��	��� �	�	���� ������ � �� (14)

Though the conditions of Proposition 3 seem to be strong, there are
examples which do not satisfy the attracting property when some of the
conditions of the proposition are violated. The following is an example
in which the condition 	 � ��� is violated and thus (14) does not hold.

Example 4:


� � ��� ��� 
� � ��

It is easily seen that � � �	�� � � is a solution to the Sylvester (10).
Let �	�� � �	�� � �	�� � �	��, we have 
�	�� � ��	�� � �	���	��,
�	�� � � ��	��� �	�� ��	���, and �	�� diverges for any � �� �
and �	�� � �. Therefore the system has no a geometric steady state in
this case.

Proposition 4: (Centre Manifold Theorem, [1], [6]): Suppose that
all the eigenvalues of� have negative real parts, and all the eigenvalues
of �� have zero real parts. If for an � � � such that 	� 
 � ��� , then

i) there exists a � � � such that solutions to (9) exist globally on
����� for all initial conditions in ��	���� ��	��� � �;

ii) there exist a unique � function �	�� defined for ��� � �,
positive constant � � � and � � � with � depending on
	�	��� �	��� such that (14) holds as long as ��	��� � � for
� �.

Proposition 4 is a combination of the Centre Manifold Theorems
from [1] and [6] (c.f Theorem D in the Appendix ). The boundedness
of �	�� is crucial for the attracting property in this proposition.

Example 5:


� � ��� ���� 
�� � ��� 
�� � ��

It can be found that � � �	�� � � is a solution to the Sylvester
(10), and ��	�� � ��	��, ��	�� � ��	��� � ��	��. Then �	�� �
�	����	�	��� �  �� 	��	��� ���� 	��	������

� , and it tends
to infinity for any  �� � and ��	�� � �. Therefore the system has
no geometric steady states when  �� � and ��	�� � �. Note that this
example satisfies all the requirements in Proposition 4 except for the
boundedness of �	��.

Example 6:


� � ���� 
�� � ��� 
�� � ����

Again � � �	�� � � is a solution to the Sylvester (10), ��	�� �
��	�� ���	�� � ��	�� ���	��, ��	�� � ���	�� ���	�� � ��	�� ���	��,
and �	�� � �	�� � �	�	��� �  ��	��	�� ���	�� � ��	�� ���	���
which has no limit when � tends to infinity for  �� � and ��	��� �
��	��

� �� �. Thus the system has no geometric steady states. In this
example, all the conditions in Proposition 4 are satisfied except that the
matrix � � � violates the requirement.

Example 7:


� � ���� 
� � ���

This system has a geometric steady state � � � by Definition 2. How-
ever this system does not satisfy the conditions in any of Proposition
1, 2, 3, or 4, nor does it satisfy the stabilizability of 	���� in (2)–(4)
in the definition of Isidori and Byrnes. Note that the stabilizability of
	���� as obtained in [7] and [6] is a typical first order approximation
property superimposed by the requirement of exponential convergence
in the output regulation problem.

Now consider the following assumptions which are essentially the
conditions A1), A2) and A3). The above Examples 4, 5 and 6 show that
even though both the system (9) and the Sylvester (10) admit global
solutions, that is, conditions A1) and A2) are fulfilled, the attracting
property A3) may still not hold. One needs to give more conditions
to guarantee attractiveness. Therefore the following hypothesis A3’) is
added.

A1’) The Sylvester (10) admits solution �	�� for all � � �� �
� .
A2’) The system (9) admits global solutions on � � ����� for all
initial conditions 	��� ��� � �� 	�� � � 	� .
A3’) There is a � � � such that for all 	�� �� � �� 	��

�		�� �	��� ��� 		�	������ � �����

Theorem 1: Assume that A1’), A2’), and A3’) hold for some open
subsets �� 
 � and �� 
 � . Let � be Hurwitz, and � and �
are symmetric and positive definite matrices satisfying the following
Lyapunov equation

������ � ���

If � � ����	������	
	��, where ����	�� is the minimal eigen-
value of �, and ��	
	�� is the maximal eigenvalue of �, then a local
geometric steady state exists for the system (9). If �� � � and
�� � � , then a global geometric steady state exists.

Proof: It suffices to show the attractiveness of the solution �	��
of (9), which corresponds to an initial condition 	�	���� ���, for the
sets 	������ (or 	���� for the global version). Let �	�� ��� ���
be a solution of (9) for the initial condition 	��� ���, � � � � �	��,
and � � 		�� �� � 		�� ��, then 
� � �� � �. Let � � ����, it
suffices to show � is a Lyapunov function, or equivalently, 
� � �.
By the assumption A3’) and Theorem 1 of [8] (see also [9]), 
� � �,
������� � � �. The result follows.

Theorem 2: Assume that A1’), A2’), and A3’) hold for some open
subsets �� 
 � and �� 
 � , and � is Hurwitz. If there is an
� � � such that the following Algebraic Riccati Equation (ARE) has a
symmetric, positive definite matrix solution �

�� ���� � ���� � 	� � ��� � � (15)

then the system (9) has a local geometric steady state. If �� � � and
�� � � , then a global geometric steady state exists.

Proof: The proof is similar as that of Theorem 2 in [8]. Take
�	�� and � as that in the proof of Theorem 1. Since � � �, one has
������ ������� � �. By Lemma 1 of [8], there exists a positive
definite, symmetric matrix�� such that�������������

��� � �.
Let � � �����, where � � � � �	��. Then 
� � �� � �, � �
		�� �� � 		�� ��, and


� �	���� � �� ����� ����	��� ��

� �� 	���� ������� ������

�� 	���� ������� �������� �� �

� �� 	���� � ��� � ���� � ��� � �
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where the first inequality follows from Lemma 2 of [8]. Therefore
������� � � �, and ���� is a geometric steady state.

The condition in A3’) looks like the Lipschitz condition in ��, and
in fact, it is implied by such a Lipschitz condition. That is, if ���� ��
is Lipschitz on ��, then there exists a constant 	 
 � such that for
all ��� ��� � ��� � � ��, the inequality ������ ��� ������ ��� �
	��� � ���� holds; and thus A3’) holds which can also be illustrated
by the following example.

Example 8: Consider

�� � �	�
 �������� �� � �

Then ���� �� � �������, ����� ��� ���� ��� ��� ��, and A3’)
is satisfied. Obviously � � ���� � � solves the Sylvester (10). Let
� � ��� � �, then �� � �	�
�������, where ���� � ���� ������.
Let � � ��, then �� � 	����	 
 ������� � � for any nonzero
�, therefore � is a Lyapunov function and ������� ���� � �. Thus
� � ���� � � is a geometric steady state.

The condition in A3’) is in fact weaker than the above Lipschitz
condition on �� as shown by the following example.

Example 9:

�� � �	�
 ��� ��� ��� �
 ���� �� � �

It is easy to see that this system does not satisfy the Lipschitz condition
on ��. However, it can be found that the Sylvester (10) has a solution
���� � ��. And ���� �� � �� � ��� ���� 
 ��� satisfies ��� 

����� ������������ � � �����
���. That is, A3’) holds for 	 � �.
Let � � � � ���� � � � �� and � � ��, then �� � ���	 
 �����

����, and �� � 	����	 
 ����� 
 ���� � � for � �� �. Therefore
������� ���� � �, and � � ���� � �� is a geometric steady state.

B. Forced Systems

Now consider a forced linear system

�� � �� 
��
 ���

�� � ���
(16)

where � � �, � � �, � � �, and �� �� � and � are matrices of
proper sizes.

Definition 3: A subspace � � ���� �� � � � ��� for an � 	 �
matrix �, or simply � � ��, is called a controlled geometric steady
state of the system (16) if there is a state feedback

� � ��
�� (17)

for matrices � and � of proper sizes, such that the closed-loop system

�� � ��
����
 ���
 � ���

�� � ��
(18)

has the geometric steady state � � ��.
Lemma 2: The system (16) admits a geometric steady state if and

only if ����� is stabilizable and there exist matrices� and � of proper
sizes such that

�� � �� 
�� 
 � (19)

Proof: The manifold � � ���� ��� � � ��� is a geometric
steady state if and only if it is both controlled invariant and attractive.
Similar as the proof of Lemma 1, � is attractive if and only if the
solution of the differential ����� � �� 
 ���� tends to zero when
� tends to infinity, where � � � � ��, � is a solution of (16), � is
determined by a controller � � ��
��. Therefore � is attractive if
and only if �
�� is Hurwitz, or equivalently, ����� is stabilizable.

By Lemma 1, � is controlled invariant with respect to the system
(18) if and only if there exists a controller � � ��
�� such that the
equation �� 
 ���� 
 ���
 � � � �� � � has a solution � for
the given �����.

Since ��
���� 
 ���
 � ���� � �� 
�� 
 � ���,
where � � �� 
 �, it is obvious that � is a geometric steady state
if and only if there exists � , � and � such that � 
 �� is Hurwitz,
and �� 
�� 
 � � �� � �. This ends the proof.

Remark 1: For a unforced linear system, the geometric steady state
is unique if condition (ii) of Lemma 1 holds. For a forced system, it
is meaningless to discuss the uniqueness of geometric steady state be-
cause the admissible controller � � �� 
 �� may not be unique,
and the resulting matrix � may not be unique. Therefore the geometric
steady state � � �� will be dependent on ����� and may not be
unique.

Consider a nonlinear control system

�� � ���� �� ���

�� � ����
(20)

where � � � � �, � � � � �, and � and � are smooth.
Recall [6] that a (local) regular submanifold � � ���� �� �

���� �� � ��, or simply ���� �� � �, is controlled invariant if
there is a (locally defined) feedback � � ���� �� such that for all
��� �� � �

��

��
���� ���� ��� �� 


��

��
���� � � (21)

By the definition of controlled invariant manifold it is obvious that
system (20) admits a controlled invariant submanifold of the form ��
���� � � if and only if the following Sylvester equation holds for
some ���� �� function  ���:

��

��
���� � �������  ���� �� (22)

Definition 4: The system (20) is said to admit a (local) geometric
steady state if

i) there is a ���� �� function ���� such that a submanifold
defined by � � ���� �� � ������ � �� is (locally) controlled
invariant, that is, there is a feedback � � ���� �� such that � is
invariant with respect to the closed-loop system

�� � ���� ���� ��� ���

�� � ����
(23)

ii) � is (locally) attracting: for each �� � � (�� � ��, �� is
some open subset of � ) and �� � � (�� � ��, �� is some
open subset of � ), there exist a
� function !��� �� and a trajec-
tory of (23) starting from ���� ��� which satisfy the following
inequality for all � � ����:

����� ��� ���� ����������� � !���� � ������� �� (24)

Denote � � ����� �� �����, � � ����� �� �����, � �
����� �� �����, �� � ��������, and rewrite the system (20) as

�� � �� 
��
 �� 
 ���� �� ���

�� � ��� 
 "���
(25)

in which ���� �� �� and "��� are higher order terms.
Similar to the unforced case, the following hypotheses are made to

give some sufficient results on the existence of geometric steady state
for forced nonlinear systems.

A1’’) There exists a controller � � ���� �� � ��� 
 ��� 

����� �� such that �� � ����� �����, �� � ����� �����, and
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the Sylvester (22) admits solution ���� for all � � ��, where
���� � ������� ��.
A2’’) For the same controller � � ���� �� in A1’’) the system
(20) admits global solutions on 	 � ����� for all initial conditions
���� ��� � 
� ��� � 
 �� .
A3’’) For the same controller � � ���� �� in A1’’), there is a
� � � such that for all ��� �� � 
� ���

� ������ ����� ��� �������� ����

����� ����� ������� ��� ��� �������������� ��� ����

� �����

Remark 2: The hypothesis A1’’) guarantees the controlled invari-
ance of some manifold. By the analytic method in [5] or the geometric
approach for the solvability of regulator equation and the parametriza-
tion of friend sets in [10], one can simplify the computation of the fea-
sible controllers (i.e., friends) which ensure the controlled invariance.
Note that such feasible controllers may not be unique, therefore the re-
sults in [10] will be helpful to find all the possible friends. Now one
can try to find, among all the possible friends, a controller � which sat-
isfies furthermore hypotheses A2’’) and A3’’). Since A2’’) can often
be satisfied in a lot of cases, this technical note aims to find, under hy-
potheses A1’’) and A2’’), conditions for which the attractiveness con-
dition A3’’) holds.

Theorem 4: Assume that A1’’), A2’’) and A3’’) hold for some open
subsets 
� � 
 and �� � � . Let �� �� � � �� be Hurwitz,
and � and � are symmetric and positive definite matrices satisfying
the following Lyapunov equation:

������ �� � ���

If � � ��������	�������, where ������� is the minimal eigen-
value of �, and ������� is the maximal eigenvalue of �, then a local
geometric steady state exists for the system (20). If 
� � 
 and
�� � � , then a global geometric steady state exists.

Proof: Fix the controller � � ���� �� in A1’’), and let ����
be a geometric steady state corresponding to the initial condition
������� ���, and � the solution of (20) corresponding to the initial
condition ���� ���. Then by letting � � � � ����, one has the
following equation:


� � ���������� ��� ����� ���

����� ���� ��� ��� ���� ���� ��� ��� (26)

Then by the proof of Theorem 1, the result follows.
Theorem 4: Assume that A1’’), A2’’) and A3’’) hold for some open

subsets 
� � 
 and �� � � , and �� �� � � �� is Hurwitz. If
there is an � � � such that the following ARE has a symmetric, positive
definite matrix solution �

����� ��� � ���� � �� � ��� � � (27)

then the system (20) has a local geometric steady state. If 
� � 

and �� � � , then a global geometric steady state exists.

Proof: Since (26) still holds, the result follows from a similar
procedure in the proof of Theorem 2.

Example 10: Consider the system


��

��

�
� �

	 �

��
��

�
��
��

�
���� � �	�

���
�


� ���

Fig. 1. Schematic of an elastic robot.

Let �� � �	�� � 	�� � �	�� �� � �	�� � ���, then


��

��

� ��
��
��

�
����

�
�

�� �
�� �	

	 ��

and �� is Hurwitz since its eigenvalues are���	� and���	�. Clearly,
�� � ��� and �� � 	�� solve the Sylvester (22). The above equation
is an ordinary differential system with constant coefficients and has a
solution on 	 � ����� for any given domain of initial values.

Let � � �� � � 	� , where � is the 2� 2 identity matrix, then
���� � � �� � ��. It is obvious that � in A3’’) equals 0 for this ex-

ample, and therefore the conditions in Theorem 4 hold and the system
has a geometric steady state.

Example 11: Fig. 1 is taken from [8] to show the schematic of a
laboratory model of a single-link flexible joint robot, in which �� is the
inertial of the DC motor, �� is the inertia of the controlled link. Let ��
and �	 be the angular rotations of the motor and the link respectively,
and�� and�
 are their angular velocities. Assume that � is the torsional
compliance,  is the viscous friction coefficient, �� is the amplifier
gain, � is the pointer mass, and 	� is the link length. Then the system
is modeled as


�� ����


�� �
�

��
��	 � ����



��
�� �

��

��
��


�	 ��
�


�
 ��
�

��
��	 � ����

� !

��
����	�� (28)

Take the same system parameter as [8], then the above system is in
the form


�� ����


�� �������	 � ���� ��	��� � 	�����


�	 ��
�


�
 � � ������	 � ���� ���� ����	�� (29)

Since a geometric steady state is determined by the corresponding
input, the following two subsections consider two kinds of input
functions respectively.

(i) Constant Input
Let the input be a constant determined by � � �� � � and 
� �
�, where � is an exogenous signal. Now consider the following
two problems.
Let � � ���� ��� �	� �
�

� , then (29) is rewritten as


� ��� � "� � ���� ���


� �� (30)
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where

� �

� � � �

����� ����� ���� �

� � � �

�	�� � �����
 �

�

� �

�

����

�

�

�

���� �� � ��� �� �� 
�

��� � ��������
� � (31)

Then all the conditions of Proposition 2 are satisfied, therefore
there exists a local geometric steady state. The geometric steady
state can be further computed by the solution of the Sylvester
equation � � �	
��� � �	 � �� � ��	���, which gives
	� � 	� � �, 	� � ����������
			��, 	� � 	� � �
	� �
����������
			�� � �
	�.

(ii) Sinusoidal Input
Assume that the input is some sinusoidal function determined by
� � ��� ��� � ��, and ��� � ���, where �� and �� denote
exogenous signals. Now take the same � as that of case (i) in this
example, then

�� ��� � �� � ���� ���

��� ���� ��� � ��� (32)

where � and � are the same as (31), and

� �

� �

���� �

� �

� �

�

Then the conditions of Proposition 2 are satisfied, and there exists
a local geometric steady state.

III. CONCLUSION

This technical note gives a geometric definition of nonlinear steady
states which is consistent with the linear definition and furthermore ap-
plicable to nonlinear exogenous systems which are not neutrally stable.
Sufficient results are given for the existence of nonlinear geometric
steady states. Note that the theorems obtained in this technical note
are limited to the attractiveness condition in the definition. Fine results
could be obtained when considering results for the existence of global
solution for � � �����, the conditions of controlled invariance, and
the existence of friends. As a further work, the application of this geo-
metric steady states definition to observer design and output regulation
will be conducted.

APPENDIX

For the readers’ convenience, some results from [3] and [1] which
are frequently cited in this technical note are recalled.

Theorem A: Theorem 2.2 of Chapter 9 in [3]): Consider the
system

�� � �� � ����� � ��� � � � � ����� � �� (33)

where � � �,  � �, all eigenvalues of � have zero real parts,
and all eigenvalues of � have nonzero real parts. Suppose that ��, ��
are �� , �, � � �, � is a Banach space, and ����� � ��, ����� � �� �
����� � ��� as ��� � ���� �. If � � is given, then there exist
� � ���� � � and a�� function  � ���� �� ��, ����������� � �,
such that

(i) ���� �� �� � �, ������ �� �� � �;

(ii) for fixed � and �, ��� � ���� � �  � ���� �� ��� ��� �
��� � ��� � ��, called the (local) centre manifold, is a ��

manifold and is locally invariant with respect to (33); i.e., for
every ���� �� � ��� there exists �� � ������ �� � � such
that the unique solution ������ ���� of (33) with ������ ���� �
���� �� satisfies ������ ���� � ���� 	�	 � ��.

Theorem B: (Theorem 2.11 of Chapter 9, [3]): Consider the
system

�� � �� � ���� �� � � � � ���� � (34)

where � � �,  � �. Assume that all the eigenvalues of � have
nonnegative real parts; all the eigenvalues of � have negative real parts.
For any integer � � � and � � �, there exists �� � ����� �� �� �� � �
such that, for every � � � � �� and �, � � 
�� � 


�
�, there exists a

unique function ���� �� � 
� with the following properties:
(i) ���� �� � �;

(ii) for fixed � and �, the set, ��	 � ���� � �  � ���� �������
called the centre unstable manifold, is an invariant manifold of
(34);

(iii) ��	 contains exactly those solutions ������ ���� of (34) with
��
 �

����� � �. Moreover, ��	 is unique with respect to
properties (i), (ii) and (iii).

Theorem C: (Theorem 2.13 of Chapter 9, [3]): Let the assump-
tions of Theorem B be fulfilled. If ������ ���� is a solution of (34) and
� defines the centre unstable manifold ��	 as in Theorem B, then there
exists �� � � and �� � � with �� depending on ������ ���� such
that ����� �������� �� 

�� 
� � �.
Now the Centre Manifold Theorem from [1] is recalled here.
Consider the following system:

�� � �� � !��� �� � � � ������ � (35)

where � � �,  � �, the eigenvalues of � have zero real parts, the
eigenvalues of � have negative real parts and ! and � are �� functions
which vanish together with their derivatives at the origin.

Theorem D: (Theorem 1, Section 2.3 of [1]): Equation (35) has a
local centre manifold  � ����� ��� � �, where � is ��.
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