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Executive Summary

Waste management forms an essential part of any municipality’s service towards the public.
This includes the collection, transport and disposal of solid waste. This project aims at
improving the transportation side of waste management by reducing the distance run by
waste collection vehicles. Several models in the literature exist that can be used to improve
the collection routes that the waste collection vehicles travel on. The contribution of this
project is the creation of a model that is able the handle several extensions:

1. Turn penalties e.g. right turns at a busy intersection.

2. Forbidden turns e.g. U-turns.

3. Several dumping sites.

4. Windy edges, whose cost depends on the direction of travel e.g. a sloping street.

A generic Tabu Search Algorithm is proposed for the design of this model. The results
obtained from testing the model on several benchmark problems as well as a set of problems
that were created specifically for this model indicates the models capability to improve waste
collection routes. This document can be viewed as a step toward solving more general real
live waste collection problems that include the extensions mentioned above, as is often the
case in practice.
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Chapter 1

Introduction

Waste management forms an essential part of any municipality’s service towards the public.
This includes the collection, transport and disposal of solid waste. In recent years waste
management has become an area of concern for municipalities world wide due to population
growth (especially in urban areas), environmental concerns and the progressive increase
in waste management cost. These factors force municipalities to asses their solid waste
management to identify improvement opportunities like the optimal location of dumping
sites, location of waste bins, the number of vehicles required and the optimal routing of
waste collection vehicles.

Toth and Vigo (2002) classify waste into three major categories: commercial waste; res-
idential waste and roll-on-roll-off waste. These three categories bring about three different
waste collection strategies.

Commercial waste is found at small businesses, restaurants and apartment flats that
place their waste in large containers that are scattered throughout the city’s geo-
graphic area. Waste collection involves point-to-point collection as service is only
required at selected points.

Residential waste is found at houses along street networks in small containers or garbage
bags. Waste collection is required at nearly all locations along the given street net-
work. Residential waste forms the biggest percentage of waste collection area that
need to be collected by municipalities.

Roll-on-Roll-off waste collection involves the pickup, transportation, unloading and drop-
off of large containers typically found at construction sites, industrial areas and other
high volume locations. The roll-on-roll-off waste collection vehicle can usually only
carry one container and follow one of two methods, round trip or exchange trip. For a
round trip the vehicle picks up a full container at a site, transport it to the landfill for
emptying and then returns the empty container to the site. Whereas, for exchange
trip the vehicle picks up an empty container at the landfill, transport it to a site to
exchange it with a full container and then returns the full container to the landfill.
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The context of this project is to focus on residential waste collection which can be described
as follows: Residential waste is located in containers along the streets of a defined urban
area. All the containers must be collected by a fleet of vehicles whose capacity cannot be
exceeded. Each vehicle starts the day from a depot and can serve several streets before its
capacity is reached. Once the vehicle’s capacity is reached it travels to a landfill located
outside the city to unload. The vehicle then returns to the city to start its second trip.
This process is repeated until all of the streets and containers assigned to the vehicle
have been serviced. The vehicle completes its final trip by proceeding to the landfill to
unload for the last time, and then returns to the depot. The vehicle fleet and the service
demand are considered a given and the problem will only address the improvement of
current waste collection routes and will from here on be referred to as the Waste Collection
Problem (WCP).

1.1 Research Question

Waste collection can be considered as a logistical activity where municipalities must collect
waste at residents in the most cost effective way as possible. This is usually done by
subdividing the municipality’s service area into collection quarters and then assigning a
vehicle to each quarter. However, the astonishing rate at which the countries urban areas
are expanding and the ever increasing fuel price may lead to insufficient solutions in terms
of cost and time constraints. This has forced municipalities to critically re-evaluate their
waste management systems and identify improvement opportunities that can reduce their
operational cost. This gave birth to the following research question:

How should waste collection vehicles be routed to ensure quality efficient service
at a minimum cost by reducing the total distance travelled by the collection
vehicles within each day?

1.2 Research design

The foremost goal of this project is to develop a model capable of computing optimal
collection routes for a municipalitys service area. The model should be able to accurately
represent this service area by including turn penalties and Intermediate Facilities (IFs).
Comprehensive research is performed with the intent to discover possible techniques to
solve the routing problem. The developed model addresses the need to improve the routing
of waste collection vehicles to reduce the cost associated with waste collection. Several
benchmark problems created by various authors are available in the literature to be used as
experimental data to verify and evaluate the quality of the results obtained by the designed
model.
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1.3 Research methodology

Research was done with the aim of developing a generic model that can be used to design or
redesign any municipalities waste collection network. In order to achieve this, the Operation
Research process adapted from Rardin (1998) will be followed:

Problem The first and most important phase of the research process is to ensure correct
understanding of the problem. The problem should be scoped in such a matter that
the solution will represent and address the core problem of waste collection.

Model The creation of the model will be based upon the problem definition and relative
literature study to present an accurate representation of the waste collection envi-
ronment. The model consists out of decision variables that will guide the solution
strategy developed, constraints that limit the problem according to certain decisions,
assumptions and facts and an objective function that indicates the output choices.

Solution This phase entails the identification of appropriate solution techniques, either
exact or approximate, to design optimal or near optimal waste collection routes.

Decision This phase entails interpreting the numerical results found in the solution phase
that should be used as a decision support tool to solve the problem. A detailed
analysis should be done to assess whether or not the impact of the decisions will
address the core objective of the problem. The implemented changes may either
address the core objective of the problem or bring about new problems that should
undergo the operational research process of modelling, solving and decision making.
This will ensure that the best solution to the WCP is found.

1.4 Document structure

Chapter 2 provides insight into various literature about the different solutions strategies,
both exact and approximate, that are available to solve the WCP. A detailed description
of the development of the metaheuristic used to optimise the routes for the WCP is given
in Chapter 3. The metaheuristic is tested on a set of benchmark problems, followed by the
computational results for the implementation on a real network. Final conclusions are made
in Chapter 5, indicating possible improvements and opportunities for future research.
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Chapter 2

Literature review

Various studies on the WCP have been documented in literature including several ideas
as well as modelling approaches that can be followed. The WCP is generally modelled as
either a node routing problem or an arc routing problem. The approach used depends on
whether service is required at selected points throughout the geographical area, as in the
case of commercial waste, or if service is required at almost all locations in a street segment,
such as residential waste.

This project will focus on the latter, since it requires the optimal routing of waste
collection vehicles within an urban area that must collect all of the waste, along the given
street network. As a result, the WCP is defined as an Arc Routing Problem (ARP)

2.1 Arc Routing Problem

ARPs are constrained to traverse and service certain arcs within a graph, instead of just
visiting certain nodes. The arcs typically represent streets that require service along most
or the entire street segment.

Eiselt and Laporte (1995) formulate the ARP as follows: let G = (V,A) be a connected
graph without loops where V = {υ1,. . . ,υn} is the vertex set (or node set), and A = {(υi,υj)
: υi,υj ∈ V and i 6= j} is the arc set. With every arc (υi,υj) is associated a nonnegative
cost, distance or length cij , assume that cij = ∞ if (υi,υj) is not defined. The matrix C =
(cij) is symmetric if and only if cij = cji for all i , j . When C is symmetric, it is common
to associate an edge (or undirected arc) with every vertex pair. Hence, depending whether
A is a set of arcs, edges or a combination of both, the associated graph will be termed
directed, undirected or mixed (Figure 2.1). The aim of an ARP is to determine a least cost
traversal of a specified arc subset of a graph, with or without constraints.
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Undirected Directed Mixed

Depot

Non required 

road
Edge

Arc

Figure 2.1: Different graph representations

More generally for the WCP, a vertex set represents street crossings or dead-ends. An
edge represents small two way streets whose sides can be collected in parallel and in any
direction. Arcs represent one way streets or larger two way streets whose sides is collected
independently and in the direction of the arc (Figure 2.2). The aim is to find the least cost
traversal of all the given streets within the network

A) Edge

Waste containers

Direction of travel

B) Arc – 2 way C) Arc – 1 way

Figure 2.2: Difference between edge and arc

Two important ARPs can be derived from general routing problems, the Chinese Post-
man Problem (CPP) and the Rural Postman Problem (RPP). The CPP is commonly
associated with mail delivery in urban settings that seeks the least cost traversal of all the
streets. In turn, the RPP is associated with rural settings and can be described as follows:
There are a number of villages whose set R of streets has to be serviced by a postman,
and a set A \ R of links between the villages that do not have to be served, but may be
used for travelling between villages. It seeks the least cost traversal of the subset R ⊆ A

of required streets (Eiselt and Laporte, 1995). Hence, the RPP can more accurately model
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real life arc routing applications such as the WCP. The WCP consist of various streets that
may not have to be serviced as they have no waste and will just be used to travel to streets
that require services. However, the WCP involve additional characteristics such as capacity
constraints and multiple vehicles and for this reasons can not be modelled as a pure RPP
but rather be modelled as a Capacitated Arc Routing Problem (CARP).

2.2 Capacitated Arc Routing Problem

The CARP is closely related to the RPP and was first introduced by Golden and Wong
(1981). It is an important problem in the area of arc routing since it considers the capacity
restrictions of the vehicles involved, which make it more applicable for real life applications.
The routing of waste collection vehicles, snow removal vehicles and street sweepers are good
examples of CARPs.

Golden and Wong (1981) describes the CARP as follows: consider an undirected graph
G = (V,E) with a vertex set V, a edge set E and a set of required edges R ⊆ E. A fleet
of k homogeneous vehicles of capacity W are based at a designated depot vertex υ0. Each
edge of the graph (υi,υj) incurs a cost cij and has a demand qij associated with it. The
subset R of edges must be serviced by a vehicle and the remaining edges of E may be
traversed any number of times. The CARP consists of determining a set of vehicle routes
of minimum total cost, such that each trip starts and ends at the depot, each required edge
is serviced by a single trip and during one traversal and the total demand for each trip does
not exceed vehicle capacity W . The graph or network on which the CARP is based may
be undirected, directed or mixed depending on the road network topology and operating
policies involved.

Eiselt and Laporte (1995) proposed an integer linear programming formulation for the
undirected CARP by replacing eah edge with two arcs creating a directed formulation of
the CARP that is presented as follows:

xijk ,


1 if edge (υi, υj) ∈ A is traversed from υi to υj by vehicle k,

where k = {1,. . . ,m}, i 6= j

0 otherwise

yijk ,


1 if edge (υi, υj) ∈ A is serviced by vehicle k while traveling

from υi to υj , where k = {1, . . . ,m}, i 6= j

0 otherwise

cij , The cost or distance of edge (υi, υj)

qij , The demand of edge (υi, υj)

W , Capacity of the vehicles

S , A given vertex set.
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min
m∑
k=1

∑
(υi,υj)∈A

cijxijk (2.1)

s.t.

∑
(υi,υj)∈A

xjik −
∑

(υi,υj)∈A

xijk = 0 ∀ υi ∈ V, k = 1, . . . ,m (2.2)

m∑
k=1

(yijk + yjik) =

{
0 if qij = 0
1 if qij > 0

∀ (υi, υj) ∈ A (2.3)

xijk ≥ yijk ∀ (υi, υj) ∈ A, k = 1, . . . ,m (2.4)

∑
(υi,υj)∈A

qijyijk ≤W ∀ k = 1, . . . ,m (2.5)

∑
υi,υj∈S

xijk ≤ |S| − 1 + n2uSk ∀ S ⊆ V \{υ1};S 6= ∅; k = 1, . . . ,m (2.6)

∑
υi∈S

∑
υj /∈S

xijk ≥ 1− wsk ∀ S ⊆ V \{υ1};S 6= ∅; k = 1, . . . ,m (2.7)

usk + wsk ≤ 1 ∀ S ⊆ V \{υ1};S 6= ∅; k = 1, . . . ,m (2.8)

usk, w
s
k ∈ {0, 1} ∀ S ⊆ V \{υ1};S 6= ∅; k = 1, . . . ,m (2.9)

xijk, yijk ∈ {0, 1} ∀ (υi, υj) ∈ A; k = 1, . . . ,m (2.10)

In this formulation, the objective function (2.1) minimises the total cost induced by the k ve-
hicles. Constraints (2.2) are flow conservation equations for each vehicle. Constraints (2.3)
ensure that service arcs correspond to those with a positive demand. Constraints (2.4)
state that an arc is serviced by a vehicle only if it is traversed by the same vehicle. Con-
straints (2.5) enforce capacity restrictions of vehicle k. Constraints (2.6) to (2.9) ensure
that the solution does not contain any illegal subtours.

The basic CARP can sometimes be too simplistic to model accurate representations of
real world instances, leading to various variants of the CARP.

Capacitated Arc Routing Problem with Intermediate Facilities(CARPIF)

The CARPIF, first introduced by Ghiani et al. (2001), requires that a vehicle need to unload
or replenish at Intermediate Facilities (IFs). For the WCP, a vehicle starts in the morning
at an assigned depot. Waste is collected along the streets until the vehicle’s capacity is
reached, after which the vehicle needs to dump the waste at the nearest dumping site (IF),
which may or may not include the depot.

Ghiani et al. (2001) and Polacek et al. (2007) solve this problem by adding a subset I

of intermediate facilities to the CARP. Constraints are added such that the waste collected
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between the depot and first IF, or between two IFs may never exceed the vehicle’s capacity
W .

Capacitated Arc Routing Problem with turn penalties (CARPTP)

The basic CARP assumes that all turns are allowed and are not time consuming, but this
may not by the case when routes have to be operated within a city. Some turns can be
considered forbidden, others more time consuming or dangerous, especially for large waste
collection vehicles. U-turns may be impossible to make due to narrow streets or forbid by
traffic rules. Even right turns at robots or busy intersections may be more time consuming
and should therefore be penalized.

Belenguer et al. (2006) provides a method for including turn penalties in the CARP
based on the work of Benavent and Solver (1999). This method allows the solving of the
problem by adding a penalty cost associated with each turn to the objective function.

Stochastic Capacitated Arc Routing Problem (SCARP)

The SCARP can be defined as a problem having some element of uncertainty. The uncer-
tainty can for instance be the demand of the customer or the travel times of the vehicles.
In the waste collection problem the stochastic component refers to the demand of the cus-
tomers and is treated as a decision variable in the problem (Chu et al., 2006).

Periodic Capacitated Arc Routing Problem (PCARP)

In waste collection problems it is not uncommon for municipalities to schedule service only
on certain days for instance only twice a week. This period can vary for area to area
depending on the population and demand of the given areas. Daily removal may be too
expensive and trips will rather be planned over a multi-period time frame (Chu et al.,
2006).

In order to make our model for the WCP more realistic, the problem formulation will
be extended to include IFs and turn penalties.

2.3 Solution Approaches

According to Winston and Venkataramanan (2004) problems that can be solved in polyno-
mial time are typically solved to optimality using efficient algorithms and exact methods.

Golden and Wong (1981) demonstrated that even finding a near optimum (within 50%)
solution to a approximate, restricted version of the CARP of a cost less than 1.5 times
the optimal is NP-hard. Given that the CARP is NP-hard it becomes necessary to use
heuristics or metaheuristics to solve the CARP. However literature indicates several exact
solution approaches for the CARP. Hirabayashi and Nishida (1992) proposed a Branch and
Bound algorithm and Belenguer and Benavent (2003) proposed a Cutting Plane algorithm.
Belenguer et al. (2006) extended the cutting plane algorithm for the mixed CARP. However,
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exact method are still limited to small instances of the CARP and can seldom cope with
additional characteristics of real world waste collection problems. This again emphasises
the importance of using heuristics or metaheuristics to solve larger instances of the CARP.

2.3.1 Heuristics

Heuristics are approximate techniques used to determine good feasible solutions for prob-
lems that are difficult or impossible to solve to optimallity. Winston and Venkataramanan
(2004) state that heuristic are characterized by using a greedy approach to obtain good
solution in efficient time.heuristics make incremental improvements to an exiting solution
by neighbourhood changes or local searches. Heuristics only allow movements that will
improve the objective function (increase for a maximize, decrease for a minimize). As a
result they tend to get trapped in a local optima and fail to find a global. optimum1

Figure 2.3 indicates how a problem can have many different local optima’s which may
or may not be the global optimum. Depending on where the heuristic starts different solu-
tions can be obtained. Starting at a it can only improve until local optimum 1 is reached.
Whereas, starting at b will result in improvements up to the global optimum, indicating
that heuristics can not guarantee certainty about how close the solutions is to the global
optimum.

Global optimum

Local optimum 1

O
b
je
c
ti
v
e
 f
u
n
c
ti
o
n
 v
a
lu
e

Solution, X

a

b

Local optimum 2

Figure 2.3: Local vs Global optimum

2.3.2 Metaheuristics

Metaheuristics are a subset of heuristics that are based on intelligent search techniques
which can over-come the problem of being trapped in a local optimum. This is achieved by

1A global optimum is a feasible solution such that no other solution has a superior objective function
value.
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accepting solutions that may not be an improvement or by considering several solutions at
a time (Winston and Venkataramanan, 2004).

Metaheuristics search through the entire solution space, not simply excepting the first
local optimum. They keep on searching for an improved solution, increasing the probability
of finding a global optimum. Referring back to Figure 2.3 starting at point a it can reach
the global optimum by excepting worse solutions.

The four metaheuristics that will be investigated further are Simulated Annealing (SA),
Genetic Algorithms (GAs), Tabu Search (TS) and Variable Neighborhood Search (VNS).

Simulated Annealing (SA)

First introduces as a technique to solve complex non-linear optimisations problems, SA
emulates the physical process of aggregating particles in a system as it is cooled. By slowly
lowering temperature, the energy exchange allows true equilibrium in each stage until the
global minimum energy level is reached (Winston and Venkataramanan, 2004).

SA randomly generates feasible moves and calculates the net objective function im-
provement that these changes will bring about. Since the WCP is a minimization problem
a decrease in the objective function will result in the acceptance of the move. An increase
in the objective function will result in the acceptance of the move according to a certain
probability function, whice may result in a worse solution. This ensures that the algorithm
does not get stuck in local optima but searches through the entire solution space in the
pursuit of a better solution.

Genetic Algorithms (GAs)

GAs utilizes ideas from biology such as a population of chromosomes, natural selection
for mating, offspring production using crossover and mutation for diversity. GAs begin
by randomly generating an initial population of strings of chromosomes. These strings
represent possible solutions to the given problem. Each solution is evaluated by measurable
criteria that result in a fitness (usually the objective function value) being associated with
each string. The selection of parents is probabilistically chosen from the current solution by
the principle of survival of the fittest: the most fit has the greatest chance of being chosen.
Reproduction of parents occurs such that the offspring consist out of a recognisable portion
of both parents. The offspring undergoes mutation to randomly alter its genetic makeup to
avoid being trapped in a local optima. The offspring becomes part of the new generation
of solutions (Winston and Venkataramanan, 2004).

Lacomme et al. (2006) use a Memetic Algorithm (MA) to solve the CARP. This Memetic
Algorithm is a genetic algorithm hybridised with a local search. Moreover, the MA ddresses
several extensions of the CARP like mixed networks, parallel arcs and turn penalties. It
provide excellent performance results on three sets of bench mark problems. Belenguer
et al. (2006) further extended this MA to also address problems with several dumping sites.
Prins et al. (2003) use a GA with population management to solve the CARP. Result

10



obtained by the authors suggests that the GA is highly successful for solving the CARP
and its extensions.

Tabu Search (TS)

The TS emulates heuristic rules people use in day-to-day decision making by making use of
short term and long term memory. The short term memory prevents cycling around a local
neighbourhood in the solutions space. Long term memory allows searches to be conducted
in the most promising neighbourhoods. It moves away from a local optima by temporarily
classifying some moves tabu or forbidden (Winston and Venkataramanan, 2004). The TS
algorithm keeps track of the best solution found far and when the search stops it is reported
as an approximate optima for the problem.

Hertz et al. (2000) use a TS algorithm called CARPET to solve the CARP; Greistorfer
(2003) uses a Tabu Scatter Search metaheuristic; and Brandao and Eglese (2008) a deter-
ministic TS algorithm. Ghiani et al. (2001) use the TS algorithm to solve the CARPIF.
All of the authors were able to provide high quality solution for benchmark problems.

Variable Neighborhood Search (VNS)

Hansen and Mladenovic (2001) describes the VNS as a metaheuristic that proceeds to a
systematic change of neighborhoods within a possibly randomised local search algorithm.
A local search proceeds from an initial solution by a sequence of local changes.Each local
change improves the value of the objective function until a local optima is found. The VNS
avoids being trapped in a local optima through the systematic changes of neighborhoods.

VNS does not follow a trajectory but explores increasingly distant neighborhoods of the
current incumbent (best feasible solution so far), and jumps from this solution to a new one,
if and only if, an improvement has been made. In this way often favourable characteristic
of the incumbent solution, e.g. the many variables that are already at their optimum value,
will be kept and used to obtain promising neighbouring solutions.

Hertz et al. (2001) describe an adaptation of a variant of the VNS, called Variable
Neighborhood Descent (VND) algorithm for the CARP. The VND algorithm proved highly
successful for solving three sets of benchmark problems. On large instances the VND tend
to perform better than the TS algorithm CARPET, proposed by Hertz et al. (2000), in
terms of computational time and solution quality. Polacek et al. (2007) use the VNS to
solve the CARP and extended it to solve the CARPIF. Excellent results were obtained on
four sets of benchmark problems of which two included the extension of IFs. Again the VNS
showed slightly better performance results for the CARPIF compared to the results that
Ghiani et al. (2001) obtained through the use of a TS algorithm. Another major advantage
of VNS is that high quality final solutions can be achieved independently from the quality
of the initial solution. As a result of the highly successful results obtained on benchmark
problems for the CARP, a VNS solution strategy will be used to solve the WCP.

11



2.4 Conclusion

The WCP was identified as being an ARP but due to additional characteristics such as
capacity constraints and multiple vehicles, rather be classified as a CARP. Various variant
on the CARP were investigated to be more able to model a real world representation
of the WCP that adhere to traffic rules and allows dumping at multiple IFs. Multiple
solution strategies were identified, where the TS proved to be the most appropriate. The
TS algorithm in conjunction with various heuristic algorithms will be used in the following
chapter to solve the WCP.
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Chapter 3

Model formulation

In the previous chapter we have taken an in depth look at the Waste Collection Problem
(WCP) and the various solution approaches that are available to solve the problem at
hand. Drawing on the knowledge gained, this chapter focuses on the development of the
Tabu Search (TS) algorithm, which will be designed to solve the WCP with the following
extensions:

A) Mixed multigraph that presents edges, arcs and/or parallel edges and arcs.

B) Turn penalties and forbidden turns.

C) Several dumping sites(Intermediate facilities).

D) Windy edges, whose service cost, c, depends on the direction of travel.

To give a quick recap the WCP consists of a depot (which may or may not be a dumping
site); several dumping sites; and a fix fleet of k homogeneous vehicles that must collect waste
along the required streets of a defined network. The aim of the WCP is to determine a set
of vehicle routes of minimum total cost, such that each route starts at the depot, all the
required streets are serviced and the routes never exceed the vehicles’ capacity.

For the sake of clarity the following section present the WCP and the extended modelling
notations and techniques used to solve the problem. The high level structure of the TS
algorithm is presented in Section 3.3, with the lower level imbedded algorithms presented
in Section 3.4 and 3.5.

3.1 Graph Transformation and Notations

All graph transformations and notations within this chapter were adapted from the work
of Belenguer et al. (2006) and Lacomme et al. (2006).

To ease algorithmic design, the mixed multigraph G = (V, E, A, R) is transformed
into a fully directed multigraph G∗ = (V, A∗, R∗), by replacing each edge by two opposite
arcs and by adding one dummy loop for the depot and one for each of the dumping sites.
We define V as the set of n nodes which includes the depot node V0 , as well as all the
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dumping nodes. The transformed A∗ is defined as a set of m arcs, identified by indexes
from 1 to m, instead of pairs of nodes to avoid ambiguities for parallel arcs. Each arc
u ∈ A∗ begins at node b(u), ends at node e(u) and has a service cost c(u). The R required
tasks in G, comprising of ‖E‖ required edges and ‖A‖ required arcs, given by R∗ ⊆ A∗

with R∗ = 2‖E‖ + ‖A‖ tasks. Only one of the two arcs that represent an edge has to be
collected in any feasible solution. To ensure this, both arcs u and v are linked by a pointer
variable, inv(u) and inv(v), which ensures that when the algorithm selects one direction,
both arcs can be marked “collected”. This is done by coding an arc task in G as one arc
u with inv(u) = 0 in G∗, while each edge task in G gives two opposite arcs, u and v, such
that inv(u) = v, inv(v) = u, q(u) = q(v) and c(u) = c(v), possibly with distinct cost
if the edge is windy (c(u) 6= c(v)). Each arc u ∈ R∗ has a demand q(u) and a pointer
inv(v). From now on all algorithms will work according to the directed encoding of the
mixed multigraph.

3.1.1 Forbidden Turns, Turn Penalties and Distance Matrix

Forbidden turns and turn penalties are made transparent by including a set of permitted
turns turn(u, v), with associated turn penalties, pen(u, v), into G∗. A set of allowed
successor arcs for arc u, suc(u), is created, such that arc v ∈ suc(u) if e(u) = b(v) and
turn(u, v) is allowed. Following the work of Lacomme et al. (2006) for the Capacitated
Arc Routing Problem (CARP) with turn penalties, a feasible path from arc u to arc v is
defined as a sequence of arcs µ = (µ = u1, u2 . . . uk = v), such that ui+1 ∈ suc(ui) for
i = 1, . . . , k − 1. The cost of µ is defined by equation (3.1). Note that the cost of u and v

is not included.

c(µ) = pen(u1, u2) +
k−1∑
i=2

(
c(ui) + pen(ui, ui+1)

)
(3.1)

Using an adaptation of Dijksta’s shortest path algorithm, forbidden turns and turn penalties
are included by pre-computing two m-by-m arc-to-arc matrices D and P. D(u, v) is the
cost/distance of the shortest path found from arc u to arc v and P(u, v) is the predecessor of
v on this shortest path. The full structure of the adapted Dijkstra’s shortest path algorithm
is presented in Algorithm 1.

The adapted Dijkstra’s algorithm computes arc u of D and P. It is called m times
with u = 1,2,. . . ,m to calculate the arc-to-arc matrix D and predecessor matrix P. The
algorithm starts of by setting all arcs’ fixed value to false and distance value to infinite.
After each iteration the algorithm determines the next arc v that is closest to arc u. Once
a shortest path between arcs u and v is obtained, arc v is fixed by setting Fix(v) = true.
This ensures that arc v cannot be selected again and determines each succesessor-arc z of
arc v to see if the current shortest distance from arc u to arc z can be improved. The
output of the algorithm is matrices D and P, which includes turn penalties and forbidden
turns. Matrices D and P are used as input for the TS algorithm to solve the WCP.
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Algorithm 1: Adapted Dijkstra’s Shortest Path algorithm

Input : Begin nodes b(u)
End nodes e(u)
Distance/Service Cost c(u)
turn(u, v) and pen(u, v)

Output : Shortest Path Matrix D(u, v)
Predecessor Matrix P(u, v)

Generate suc(u), the set of allowed successor-arcs for arc; u
for i ← 1 to m do

D(u, v) = ∞;
Fix(v) = False;

end

Find all successor arcs of arc u;
for i ← 1 to m do

Set for each v in suc(u) :
D(u, v) = pen(u, v) and
P(u, v) = u;

end

Update matrices D and P with shortest path;
for i ← 1 to m and Fix(v) = False do

Chose min v and set Fix(v) = True;
for each z in suc(v) with D(u, v) + c(v) + pen(v, z) ≤ D(u, z) do

D(u, z)← D(u, v) + c(v) + pen(v, z);
P(u, z)← v;

end

end

3.1.2 Multiple Dumping Sites

In order to effectively handle multiple dumping sites a set I of all allowable dumping nodes
is created. The distances between arc u ∈ R∗ and all other dumping nodes from set I, is
tackled by including in A∗ one fictitious loop σ = (s, s), where s is an element of I, for
each dumping node. This method is also followed to include the depot, V0 in A∗. Thus
R∗ = 2‖E‖+ ‖A‖+ ‖I‖+ ‖V0‖ . After each arc u has been serviced the shortest distance
to the closest dumping loop can be pre-computed for every arc-task A∗ ∈ R∗ by using
equation (3.2).

dump(u) = min
s∈I
{D(u, s) ∀ u} (3.2)
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3.2 WCP Algorithm Terminology

The basic terminology introduced in Section 3.1 and summarized in Table 3.1, will be used
by the WCP algorithm, with the addition of certain algorithm specific terms. The input
to the WCP include: a fully directed mixed multigraph G∗ = (V,A∗,R∗); a distance
matrix D; a set of dumping nodes I which includes the depot node V0; the number of waste
collection vehicles k; and the capacity of the waste collection vehicles W .

A feasible solution consists out of a set T of k routes, with T = {R1, . . . ,Rk} such that
each route Ri with i = 1,. . .,k consist of a list of sub routes, Ri = {SR1, . . . ,SRx} and
each sub route consist out of a sequence of required arc-task A∗ ∈ R∗. The purpose of the
sub routes is to indicate the capacity feasible trips that exist within route Ri such that each
sub routes is either a trip between the depot and the first IF; between two successive IFs
and\or the last IF and the depot. Meaning only streets that require service are included
within a feasible solution T. Implicitly, Ri starts and ends at the depot, allows dumping at
IFs and shortest feasible paths are assumed between two arc-tasks and between one arc-task
and the closest dumping loop s, where s ∈ I. Each required arc-task appears once in T and
each required edge-task occurs as one of its two opposite arcs in T. The objective function
value of the entire solution T or route Ri is calculated through Obj(X).

3.3 Tabu Search Algorithm

In order to solve the WCP, two TS algorithms were designed. Algorithm 2 indicates the
generic high level representation of the TS algorithm used to create the TS algorithms for
the WCP. Algorithm 2 consists out seven basic steps, starting at Step 0 where the initial
feasible solution is generated and the stopping criteria are set. At each iteration the best
possible non-tabu feasible move from a set M of allowable neighbourhood moves is chosen
(Step 2), and applied to the current solution (Step 3). To prevent the algorithm form
cycling back to recently visited solutions, Step 5 records the collection of moves made in
Step 3 within a tabu list. This forbids moves from being made for a certain number of
iterations, after which it is removed from the list and made available for selection. Since
a move may either improve or degrade the objective function value, Step 4 will keep track
of the best feasible solution (incumbent solution) found so far. The algorithm stops when
either no more feasible moves are possible or when the user-specified stopping criteria such
as iteration limit, tmax, is reached (Step 1). Upon termination the incumbent solution T̂

from Step 4 will be reported as the approximate optimum.
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Table 3.1: Glossary of mathematical symbols.

Term Description

G Connected mix graph with G = (V, A, R).

G∗ Transformed fully directed graph with G∗ = (V, A∗, R∗).

V Vertex set representing a streets intersection or dead ends

A∗ Set of m arcs.

R∗ Set of required arcs.

n number of nodes in V, calculated as n = ‖V ‖

m number of arcs in A∗, calculated as m =A∗

b(u) begin node of arc u.

e(u) end node of arc u.

q(u) demand of arc u.

c(u) service cost of arc u.

inv(u) pointer to indicate whether arc u is an edge or arc task in G.

suc(u) set of possible successor arcs for arc u.

V0 depot node.

I set of allowable dumping nodes.

k number of vehicles.

W vehicle’s capacity.

D m-by-m arc-to-arc distance matrix.

P m-by-m arc-to-arc predecessor matrix.

pen(u, v) penalty for turn(u, v).

T a given solution of the WCP.

T̂ incumbent solution.

T̃ solution returned by lower level algorithms.

17



Algorithm 2: Generic Tabu Search algorithm

Step 0: Initialisation. Choose a high quality starting feasible solution T (0) and

an iteration limit tmax. Set incumbent solution T̂ ← T (0) and solution index

t← 0. No moves are tabu.

Step 1: Stopping. If no non-tabu move ∆T in move set M leads to a feasible

neighbor of current solution T (t), or if t = tmax, then stop. Incumbent solution

T̂ is an approximate optimum.

Step 2: Move. Choose some none-tabu feasible move ∆T ∈M as ∆T (t=1).

Step 3: Step. Update T t+1 ← T (t) + ∆T t+1.

Step 4: Incumbent Solution. If the objective function value of T t+1 is

superior to that of incumbent solution T̂ , replace T̂ ← T t+1.

Step 5: Tabu List. Remove from the list of tabu or forbidden moves any move

that has been on the list for a suffiecient number of iterations, and add a collection

of moves that includes any returning immediately from T t+1 to T t.

Step 6: Increment. Increment t← t+ 1, and retun to step 1.

Algorithm 2 is used as the basis to create both WCP TS algorithms which is presented
in Algorithm 3 & 4, as well as its specific lower level algorithms. All the steps within
Algorithm 3 & 4 are exactly the same except for Step 2 & 4. The differences within these
two steps will be made apparent later on in the chapter. The remainder of this chapter
will provide a detailed explanation of how the main steps of the general TS algorithm were
used, implemented and formulated within the two WCP TS algorithms.

3.4 Initialisation

The first step of the WCP TS algorithm is to generate any feasible solution from where the
search can begin. The quality of the initial solution has been known to affect the final solu-
tion and creating a high quality initial solution can significantly improve the performance of
the TS algorithm. This is achieved through the algorithm Construct-Initial-Solution

with an imbedded algorithm Improve-Solution that calls the Reduce-Route-Length

algorithm for every route Ra in solution T.

3.4.1 CONSTRUCT-INITIAL-SOLUTION

The Construct-Initial-Solution algorithm is based on the path-scanning Heuristic of
Golden and Wong (1981). The algorithm is extended to handle turn penalties as well as
multiple dumping sites. The algorithm builds k routes for each vehicle, one at a time. In
constructing each route, the sequence of arc-tasks is extended by joining the tasks looking
most promising. For a route ending at task u, the algorithm determines a set L of tasks
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Algorithm 3: Complete TS Algorithm 1

Input : Mix Multigraph G∗ = (V,A∗,R∗)

Distance Matrix D

Number of vehicles k

Capacity of vehicles W

Iteration limit tmax

Output : Incumbent solution T̂ = {R1,. . . ,Rk}

Construct-Initial-Solution(k;T (0),Obj (T̃
(0 )

));

T̂ ← T̃
(0)

;

Objincumbent ← Obj (T (0 ));

t← 0;

SelectionNumber ← 1;

NonImprovementCounter ← 0;

while t ≤ tmax do

Call one of the two move algorithms according to SelectionNumber:

(1) Arc-Exchange(T (t);T̃
(t+1)

, Objcurrent);

(2) Random-Two-Arc-Exchange(T (t);T̃ (t+1), Objcurrent);

Check if solution objective value is superior ;

if Objcurrent < Objincumbent then

Objincumbent ← Objcurrent;

T̂ ← T̃
(t+1)

;

NonImprovementCounter ← 0;

SelectionNumber ← 1;

else

NonImprovementCounter ← NonImprovementCounter + 1;

end

if NonImprovementCounter ≥ limit then

SelectionNumber ← 2;

NonImprovementCounter ← 0;

else

SelectionNumber ← 1;

end

Update Tabu List;

t← t+ 1;

end
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Algorithm 4: Complete TS Algorithm 2

Input : Mix Multigraph G∗ = (V,A∗,R∗)

Distance Matrix D

Number of vehicles k

Capacity of vehicles W

Iteration limit tmax

Output : Incumbent solution T̂ = {R1,. . . ,Rk}

Construct-Initial-Solution(k;T (0),Obj (T̃ (0)));

T̂ ← T̃ (0);

Objincumbent ← Obj (T (0));

t← 0;

Convert sub routes of T into one long route boldsymbolT̃ ;

while t ≤ tmax do

Call Improve-Solution and return best Objective value found:

Improve-Solution(T (t);T̃ (t+1), Objcurrent);

if Objcurrent < Objincumbent then

Objincumbent ← Objcurrent;

T̂ ← T̃ (t+1);

end

Update Tabu List;

t← t+ 1;

end
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closest to u, not yet collected and feasible for vehicle capacity W . It uses one of the following
five rules to select the next task v in L:

1. Maximize the distance D(v,dump(v)) to the closest dumping node.

2. Minimize the distance D(v,dump(v)) to the closest dumping node.

3. Maximize the yield q(u)/c(u).

4. Minimize the yield q(u)/c(u).

5. Use rule 1 if the vehicle is less than half-full, else use rule 2.

By selecting task v it is flagged as collected and if v belongs to an edge-task, inv(v) is also
flagged to ensure it is not reselected in subsequent iterations. Once vehicle capacity W is
reached, it returns to the closest dumping node and then continues to construct the route
until the maximum number of allowable dumps, θ, by a vehicle is reached. The maximum
number of allowable dumps θ is calculated by dividing the total demand of all required
arc-tasks in T, by vehicle capacity W , rounded to the nearest integer. Once this number
is reached, the algorithm will proceed to construct the next route until all k routes have
been constructed. The algorithm builds one solution for each selection rule and returns the
most promising one.

3.5 Move & Step

The critical element of a TS algorithm is its move set M. If it were possible, we should
consider constructing every possible neighbourhood solution for the current solution T.
Then the search would yield promising solutions with a high possibility of finding the global
optima because all possible neighbourhoods would have been visited and the search will stop
with no solution superior and feasible in objective value to the current solution. However,
in practice this is not possible due to the complexity and large number of neigbourhood
solutions that exist. If the move set is too large it may take a very long time to find good
solutions and on the other hand, if it is too restrictive, very few solutions will be considered
at each iteration, resulting in poor quality solutions. This necessitates the importance of
considerating a move set that is compact enough to check at each iteration for promising and
feasible neighbourhoods. The WCP TS algorithm 1 is confined to a move set where only two
routes are modified through one of two algorithms: Arc-Exchange and Random-Two-

Arc-Exchange. The first algorithm generates neighbourhood solutions that attempt to
reduce the total distance of solution T, while the second algorithm diversifies the search
space. The WCP TS algorithm 2 only use the Reduce-Route-Length algorithm to make
a move to the best objective function value found for each iteration t.
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3.5.1 ARC-EXCHANGE

The objective of the WCP is to design waste collection routes that service all required arcs in
the shortest possible distance, while taking turn penalties and IFs into consideration. This
is achieved through the algorithm Arc-Exchange. The algorithm attempts to reduce the
distance of solution T, by finding the critical arc u, for each route Ra that is the furthest
away from its preceding and succeeding required arcs. For the first and last arc within a sub
route, only 1.5 times the distance to the preceding or succeeding arc will be considered, and
not the distance to or from the nearest dumping node. This arc is then removed from its
current route Ra by calling the Remove-Arc algorithm. Once the arc u has been removed
it is added to any of the other vehicle routes Rs that will result in the least increase of
route length. This is achieved by calling the Add-Arc algorithm. The new sequence of
arcs within solution T is recorded as T temp

(l) , where l ∈ {1, . . . , k}. The arc exchange from
all routes that leads to the best decrease, in total solution distance, is made permanent by
the Arc-Exchange algorithm. The complete structure of this algorithm is presented in
Algorithm 5.

3.5.2 RANDOM-TWO-ARC-EXCHANGE

As stated before the purpose of this algorithm is to diversify the search space by forcing
the search into previously unexplored areas that differ from those visited before. This is
accomplished through the Random-Two-Arc-Exchange algorithm, which is called after
β number of non consecutive improvement moves have been made. The algorithm takes
any random arc u from any of the vehicle routes Ra and exchange this arc u with a random
arc v from any other vehicle route Rs. The complete structure of the RANDOM-TWO-
ARC-EXCHNGE algorithm is presented in Algorithm 6.

3.5.3 Adding & Removing Arcs

Two simple algorithms, Add-Arc and Remove-Arc are used by the two previous men-
tioned algorithms. Algorithm Remove-Arc removes arc u from route Ri, and then calls
the algorithm, Reduce-Route-Length to ensure that the sequence in which the arcs are
serviced without arc u minimizes the distance travelled. Algorithm Add-Arc works in the
opposite way by adding arc u to route Rj and also calls algorithm Reduce-Route-Length

for the same purpose.
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Algorithm 5: Arc-Exchange

Input : Solution T (t)

Output : Neigborhood Solution T̃
(t+1)

k ← number of Routes R

for l← 1 to k do

ρ← number of task in Rl

for t← 2 to k − 1 do

if arc t ∈ I

L(t) = 0

else if arc t− 1 ∈ I

L(t) = 1.5×D(t, t+ 1)

else if arc t+ 1 ∈ I

L(t) = 1.5×D(t− 1, t)

else

L(t) = D(t− 1, t) + D(t, t+ 1)

end

end

Find arc ttemp where arc t← max(L(t))

Set arc t← arc ttemp

Remove-Arc(Ra,t; R̃a)

Choose Rs such that adding arc t will result in minimal tour length increase

Add-Arc(Rs,t; R̃s)

Update T̃ temp(l) with R̃a and R̃s

end

Find min T̃
temp

(l)

T̃
(t+1) ← T̃

temp
(l)
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Algorithm 6: Random-Two-Arc-Exchange

Input : Current Solution T (t)

Output : Neigborhood Solution T̃
(t+1)

Randomly choose two routes RiandRj such that i 6= j

Randomly select an arc u from Ri and

Randomly select an arc v from Rj by calling:

Remove-Arc(Ri,arc u; R̃
(1)
i )

Remove-Arc(Rj ,arc u; R̃
(1)
j )

then

Add arc u to Rj and

Add arc v to Ri:

Add-Arc(R̃
(1)
i ,u; R̃

(2)
i )

Add-Arc(R̃
(1)
j ,u; R̃

(2)
j )

Update T̃
(t+1)

3.5.4 REDUCE ROUTE LENGTH

Before any of the moves are made the Reduce-Route-Length algorithm first creates
a giant infeasible route Ga by removing all the intermediate dumping nodes from route
Ra.It is a local search improvement algorithm that performs successive phases on all arc-
task within the giant infeasible route Ga. Its main purpose is to reduce the length of a
vehicle route Ra by trying the following moves from each of the three phases.

P1: Invert arc-task u, if it is an edge task i.e. replace u by inv(u).

P2: Move arc-task u after arc-task v, or before v if v is the first arc-task of the route.

P3: Perform a pairwise exchange between task u and v.

Once a move is made the algorithm calls the Split algorithm to create a feasible route
R̃a, and computes the new objective function value of the proposed move. If the new
objective function is better than that of the best one found so far, the algorithm moves to
this solution. Each phase ends by performing the first improving move detected.When no
more moves can be made the algorithm proceeds to the next phase. The algorithm stops
the search process when all phases report no improvements. However, when moving an
edge-task in P2 and P3, its service direction may be inverted or not. Meaning a move in
P3 consist of four swapping cases: u and v may be replaced by v and u, inv(v) and u, v
and inv(u), inv(v) and inv(u). The structure of the Reduce-Route-Length algorithm
is presented in Algorithms 7.
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Algorithm 7: Reduce-Route-Length

Input : Route Ra

Output : Improved Route R̂a

R̂a ← Ra

Objbest ← Obj(Ra)

Create giant infeasible route Ga by removing intermediate dumping nodes

while total length of Ra can be reduced do

Perform phase move

Create feasible route

Split(Ga;R̃
temp
a )

if Obj(R̃
temp
a ) < Objbest then

R̂a ← R̃
temp
a

Objbest ← Obj(R̃
temp
a )

end

end

3.5.5 SPLIT

The main purpose of the Split algorithm is to receive a giant infeasible route Ga as
input, and perform the split procedure that will produce capacity feasible sub routes. The
sub routes are then merged together to form a feasible route R̃a. The Split procedure
determines the shortest path to service all tasks in the sequence (Si, . . . , Sj) received, while
taking capacity constraints into account by enforcing dumping at the nearest dumping
node when vehicle capacity is reached. The complete structure of the Split procedure is
presented in Algorithm 8.

3.6 Incumbent Solution

During each iteration the objective value, resulting from the move just made, is calculated
and compared to that of the incumbent solution. If the current solution improves on the
incumbent solution it becomes the new incumbent solution until a better solution is found
or no more feasible moves are possible. Once the stopping criteria is met, the incumbent
solution is reported as the final solution.

3.7 Tabu List

The WCP TS algorithm 1 Tabu list consists of multiple Tabu lists, one for each vehicle
route. Each list records all the arcs recently added to the vehicle routes and forbid these
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Algorithm 8: Split

Input : Giant infeasible route Ga

Output : Improved Route R̃
temp
a

τ ← number of tasks in Ga

Set V(1),N(1) = 0

for i← 2 to τ do

V(i)←∞

end

for i← 2 to τ do

Reset load and cost variables

load, cost ← 0

for j ← i to τ do

Check if vehicle has sufficient capacity load > W

if load > W

break

end

Update load of vehicle

load ← load + q(S(j))

if i = j then

cost ← cost - D(dump(S(i− 1)),S(i)) + c(i) + D(S(i),dump(S(i)))

else

cost ← cost - D(S(j − 1),dump(S(j − 1)))

end

if load ≤W then

Vnew = V(i−1)+ cost

if Vnew < Vj

Vj ← Vnew

Nj ←N(i−1) + 1

end

end

end

end

R̃
temp
a ← Vτ
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arcs from being removed for x iterations. For the WCP TS algorithm 2 only one Tabu list
is kept since there is only one giant route within solution T. The Tabu list fix either the
arc-task u that is inverted or the first of each two arcs that is interchanged through the
pairwise exchange move. Only the move that results in the best objective function value
will be recorded with the appropriate TB list. It is important that a robust tabu tenure is
selected as the incorrect tenure may negatively influence the search process. If the tenure
is too long, the TS may not find good solutions, whereas if it is to short, cycling between
previous solutions can occur.

3.8 Conclusion

In this chapter the complete TS algorithms developed to solve the WCP with turn penalties
and IFs have been presented. The next chapter will focus on testing the algorithms on
several benchmark problems, comparing results with those found in literature, and finally,
concluding on their ability to solve real world waste collection problems.
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Chapter 4

Computational Evaluation

In this chapter the Tabu Search (TS) Algorithms designed to solve the Waste Collec-
tion Problem (WCP) will be analyzed. The performance of the algorithms on the basic
Capacitated Arc Routing Problem (CARP) as well as its extensions will be compared to
that of the best found results in literature. For the computational evaluation various prob-
lems from four different sets of benchmark problems1 were selected. However, these bench-
mark problems can only be used to evaluate the TS algorithms effectiveness on the basic
CARP and does not include the extensions to evaluate the CARP with forbidden turns,
turn penalties and Intermediate Facilities (IFs). For this reason a set of test problems that
can be used to evaluate these extensions were created. The TS algorithms were coded in
Matlab and run on a 2.66 GHz dual core Pentium-4 processor under Windows XP.

4.1 Test Instances

Several benchmark problems were used, each varying the vehicle capacity W ; the number
of vehicles available; and the number and percentage of required edges and arcs within the
road network. The benchmark problems were divided into four categories, each evaluating
a different extension of the CARP. The categories are as follows:

The Basic CARP: In this category all the problems contain only required edges, no arcs
and one dumping site. This category consist of 10 of the 34 val files designed by
Belenguer and Benavent (2003) to evaluate a cutting plane algorithm for the CARP.
The problems have 24–50 nodes and 34–97 edges of which all have to be serviced.

The Mixed CARP: The 10 problems within this category were selected from the mval
files designed by Belenguer et al. (2006). The authors converted the val files of Be-
lenguer and Benavent (2003) into 34 mval files by keeping each edge with probability
0.4, replacing an edge with two opposite arcs with probability 0.4 or with one arc
with probability 0.2. As a result the problems contain 24–50 nodes and 43–138 tasks
(edges & arcs) of which all have to be serviced.

1The benchmark problems used in this project can be downloaded from
http://www.uv.es/belenque/carp.html and http://www.uv.es/belengue/mcarp/index.html.
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Required/Non Required CARP: With the above two categories all tasks require ser-
vice. However, within the real world some streets may not require service and are only
used to travel between streets that require service. Therefore to model and evaluate a
network with required as well as non required streets, five problems from the following
benchmark sets were selected for evaluation. The first four problems were selected
from the 24 egl files designed by Belenguer and Benavent (2003) and the fifth problem
from the lpr files designed by Belenguer et al. (2006). The first four problems contain
77–144 nodes, 98–190 edges and no arcs. The fifth problem consists of 366 nodes; 388
required edges; 416 required arcs; and 38 non required arcs.

The CARP with turn penalties and Ifs: As mentioned before no test problems with
in the literature provide best solution for problems that contain both turn penalties
and IFs. However, Chaini et al created a set of test problems that can be used to eval-
uate the Capacitated Arc Routing Problem with Intermediate Facilities (CARPIF).
These test problems can be used to evaluate the CARP with turn penalties and IFs by
setting all turn penalties to zero and thus reducing the CARP with turn penalties and
IFs to a CARPIF. However, it was decided to rather create six problems that can be
used to evaluate the effect of both turn penalties and Ifs, than to use the benchmark
problems for the CARPIF. This was done by selecting six of the val files in category
1 and then transforming them into cval files by applying the following procedure. To
include IFs, two IFs were added at nodes b|V |/2c and 2b|V |/2c. The demand Q of
each edge was doubled to ensure that each vehicle must al least visited two IFs within
its designed route. The depot node V0 was also selected to be a dumping site. All ve-
hicles return to the depot once they have serviced all the required streets within their
designed route. To address turn penalties, al U-turns were forbidden by setting the
penalty to infinity, meaning no vehicle can return on the same route it just travelled
on, which were allowed in all of the above categories. The cval problems consist of
24–34 nodes;34–65 edges of which all have to be service and three dumping sites.

4.2 Computational Results

All the benchmark problems were tested on both TS algorithms 1 & 2. TS algorithm 1 was
run for 10000 iterations with a Tabu list length of 7 and TS algorithm 2 was run for 1000
iterations with a Tabu list length of 18.

Table 4.2 to 4.5 summarises the results for all four categories. The various column
headings are presented in Table 4.1.
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Table 4.1: Column headings for results.

Term Description

File the instance number as in the benchmark problems.

n number of nodes in V, calculated as n = ‖V ‖

m number of arcs in A∗, calculated as m =‖A∗‖

E number of required edges.

A number of required arcs.

W vehicle’ capacity.

Best found best solution values within the literature.

PS initial solution value produced with the path-scanning heuristic.

TS Algorithm 1 Results from TS algorithm 1.

TS Algorithm 2 Results from TS algorithm 2.

% Deviation percentage deviation of the best solution from either TS algorithm

1 & 2 against the best found solution value in the literature.

% Improvement percentage with which the best solution value from either TS

algorithm 1 & 2 have improved from the PS solution value.

The computational results presented in Table 4.2 to 4.5 indicate that a high quality ini-
tial solution is obtain through the path scanning heuristic, as the five selection criteria used
to calculate the initial solution, are never simultaneously bad. TS algorithm 1 outperforms
TS algorithm 2 in most of the test problems but it should be noted that it was run for more
iterations. The average deviation from the best found objective function value for category
1 to 3 is 8.8%, with a worst deviation of 15.9%. Good solutions were obtained on most
of the problems. However, no best found results were match with either TS algorithms,
indicating the need for future improvement and refinement of the algorithms.

The results in Table 4.5 for the six cval instances in category 4, indicate an average
improvement of 16.8% over the initial solution, with a best improvement of 23.5%. Both
algorithms were specifically designed to handle this class of WCPs that include turn penal-
ties and Ifs. With the results obtained it can be seen that the algorithms have the ability
to improve on the high quality initial solutions and thus have the potential to improve this
type of problems in the real world.
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Table 4.2: Computational results for Category 1.

File n m E A W Number of Best PS TS TS %
Vehicles Found Algorithm 1 Algorithm 2 Deviation

val1a 24 79 39 0 200 2 173 186 185 186 6.9
val2a 24 69 34 0 180 2 227 259 244 249 7.5
val3a 24 71 35 0 80 2 81 88 86 87 6.2
val4a 41 139 69 0 225 3 400 451 451 410 2.5
val5a 34 131 65 0 220 3 423 476 468 440 4.0
val6a 31 101 50 0 170 3 223 271 245 243 9.0
val7a 40 133 66 0 200 3 279 326 307 311 10.0
val8a 30 127 63 0 200 3 386 433 418 432 8.3
val9a 50 184 92 0 235 3 323 358 358 344 6.5
val10a 50 195 97 0 250 3 428 453 453 439 2.6
Average deviation

Table 4.3: Computational results for Category 2.

File n m E A W Number of Best PS TS TS %
Vehicles Found Algorithm 1 Algorithm 2 Deviation

mval1a 24 76 20 35 200 2 230 257 238 245 3.5
mval2a 24 61 16 28 180 2 324 430 345 346 6.5
mval3a 24 64 15 33 80 2 115 143 124 136 7.8
mval4a 41 122 26 69 225 3 580 702 655 630 8.6
mval5a 34 119 22 74 220 3 597 375 346 349 12.4
mval6a 31 92 22 47 170 3 326 707 671 688 6.1
mval7a 40 123 36 50 200 3 364 592 398 381 4.7
mval8a 30 117 20 76 200 3 581 677 637 645 9.6
mval9a 50 165 32 100 235 3 458 523 507 495 8.1
mval10a 50 165 32 106 250 3 634 739 706 706 11.4
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Table 4.4: Computational results for Category 3.

File n m E Non Required A Non Required W # of Best PS TS 1 TS 2 %
Edges Arcs Vehicles Found Deviation

egle1A 77 197 51 47 0 0 305 5 3515 4115 3943 3889 9.6
egle2A 77 197 72 26 0 0 280 7 4994 6458 5815 6327 15.9
egle3A 77 197 87 11 0 0 280 8 5869 7454 6837 6975 15.9
egls1A 140 381 75 115 0 0 210 7 4992 6382 5799 5919 15.6
lprc05 369 1229 387 0 416 38 10000 23 257890 268012 266763 267232 3.4

Table 4.5: Computational results for Category 4.

File n m E W Number of PS TS TS %
Vehicles Algorithm 1 Algorithm 2 Improvement

cval1a 24 81 39 200 2 210 170 187 23.5
cval2a 24 71 34 180 2 273 238 254 14.7
cval3a 24 73 35 80 2 91 79 84 15.2
cval4a 41 141 69 225 3 529 445 439 12.8
cval5a 34 133 65 220 3 529 449 447 17.9
cval6a 31 103 50 170 3 311 267 268 16.5
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4.3 Conclusion

In Chapter 4 the WCP TS algorithms created in this project were tested against various
benchmark problems. The results obtained were used to verify the quality of WCP TS
algorithms solutions against the best found solutions within the literature. It was concluded
that even though the WCP TS algorithms improve on the quality of the PS heuristic initial
solution, room for further improvement exist.

A set of six additional problems were derived from the val files, designed by Belenguer
and Benavent (2003) to test the algorithms ability to solve the extended WCP that include
turn penalties and IFs. Good results were obtained in terms of the algorithms capability to
improve on the initial solution, indicating its readiness to be tested on a real world problem.

The next Chapter will look at possible areas for improvement and further research that
can be undertaken to further improve the quality of solutions obtained with the WCP TS
algorithms.
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Chapter 5

Opportunities for Future Research

This project was tested on benchmark problems to evaluate its effectiveness of being able
to solve a WCP that includes the following:

1. Mixed multigraph that presents:

a. Two way streets that requires service in only one of the two directions of travel
(zigzag collection of both sides of the road).

b. Two way streets that requires service in both directions of travel (Each side of
the road collected separately).

c. One way streets (zigzag collection of both sides of the road).

d. Large one way streets ( Each side of the road collected separately).

2. Turn penalties e.g. right turns at a busy intersection.

3. Forbidden turns e.g. U-turns.

4. Several dumping sites.

5. Windy edges, whose cost depends on the direction of travel e.g. a sloping street.

All result from benchmark problems were verified and validated against the best found
result in the literature, but these benchmark problems only represent small, relative simple
WCPs that do not include turn penalties and IFs. To test these extensions, a set of six
problem instances were created to evaluate the models’ capability to solve these extensions
efficiently. Since no best result were available, the answers could not be verified but the
assumption were made if the model is verifiable for the basic CARP instances by setting
the turn penalties to zero and the number of IF to zero it should be sufficient to verify the
models’ capability to solve the WCP with turn penalties and IFs as well.

During the development phases of the models, it became evident that one can improve on
the models’ accuracy with which it represents reality. By making simplifying assumptions,
ones model can compute good results but will in fact be impractical in real life. Therefore
to address and effectively solve a real problem that will obtain good result, it is very import
to create a model that represents reality.
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Future research should be done to implement this project on a real WCP for a given
municipality that could be used to support decisions regarding the problems they experience
in reality with optimal routing of waste collection vehicles.

This Chapter present several opportunities for improvement that can be pursued in
future research before implementing this project on a real WCP.

5.1 Geographic Information System (GIS)

This project only included test problems for which all the input date were a given. If this
project would be implemented on a real problem, input data regarding the distances between
nodes need to be calculated. One way of gathering the distances would be to obtain accurate
distance through physical measurement of roads but this will be very time consuming for
large networks. An improved method would be to investigate the incorporation of a GIS
system with the current model. The advantage of this method is that GIS can create an
accurate distance matrix, efficiently in a short period of time. Additional benefits of GIS is
that it provides the ability to attach distinctive information to each road that can be used
to calculate an improved cost matrix rather than basing the cost entirely on the distance
between nodes. Such information may include the slope of the road, speed limits as well as
traffic flow which will all influence the optimal route selected.

5.2 Multiple Vehicle Types with Different Capacities

The model created for this project only allowed the use of a homogeneous fleet of vehicles.
There may however exist situation were a heterogeneous fleet are required such as when a
municipality use trucks that differ in their capacity. Further research should be aimed at
the possibility of including a heterogeneous fleet in the model to more accurately reflect
reality.

5.3 Using Distribution for Uncertain Input Data

There exist the opportunity to be able to more accurately represents uncertain input data
with distributions. For example waste quantities may very from week to week and this will
affect how quickly the vehicle’s capacity is reached. Meaning a vehicle may need to return
to the closest dumping site before the designed route is finished as a direct result of higher
waste quantities experienced. By using distributions the results obtained from the model
will be able to incorporate the effect that uncertain demand will have on the creation of
optimal collection routes.
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5.4 Further Improving the Search

Out of the result obtained improvements on the initial solution were found but the per-
centage deviation from the best found result in literature is still relative large indicating
that the algorithm have the potential for future improvement to be even more capable of
providing a improved answer to real world problems.

This document can be viewed as a step toward solving more general real live WCPs
that include turn penalties an IF, as is often the case in practice.
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