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Abstract: Rising atmospheric CO2 concentrations affect climate directly through radiative 

effects and indirectly by changing plant water-use efficiency. Under global warming 

scenarios these widely reported changes will have a substantial impact on future bush 

encroachment, crop yields, river flow and climate feedbacks. Tree-ring intrinsic water use 

efficiency (iWUE) records for Africa show a 24.6% increase over the twentieth century. As 

high iWUE can partly counterbalance projected decreases in regional precipitation, this 

research has important implications for those involved in water resource management and 

highlights the need for climate models to take physiological forcing into account. 
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Introduction: Most C3 plants have responded to anthropogenic increases in the concentration 

of atmospheric CO2 with enhanced assimilation and/or decreased stomatal conductance 

resulting in an increase in water use efficiency (van der Sleen et al., 2015; Saurer et al., 2014; 

Waterhouse et al., 2004). Although leaf gas exchange measurements provide a measure of the 

instantaneous water use efficiency of a plant (instWUE: ratio of assimilation to transpiration), 

the intrinsic water use efficiency (iWUE: ratio of assimilation to stomatal conductance), 

inferred from δ
13

C values, integrates temporal changes in ecophysiological processes and

represents the most appropriate long-term measure. During the latter Anthropocene (post-AD 

1850), iWUE has been shown to increase for trees growing under a wide range of 

environments (Andreu-Hayles et al., 2011; Brienen et al., 2010; Frank et al., 2015; Saurer et 

al., 2004, 2014). Until now evidence of long-term changes in iWUE has been limited for 

trees growing on the African continent (van der Sleen et al., 2015; Swanborough et al., 

2003). This is remarkable, as increases in iWUE have been modelled to partly mitigate the 

effects of increased temperature, declining precipitation and increasing drought frequency in 

semi-arid and sub-humid environments, effectively offsetting losses in crop yield (Long et 

al., 2006). Physiological forcing of the hydrological cycle may also increase continental river 

runoff as plants reduce stomatal conductance to decrease evapotranspiration (Gedney et al., 

2006; Betts et al., 2007; Cao et al., 2010). In Africa, this concerns major rivers basins, such 

as those of the Congo, Nile, Niger, Chad, and Zambezi upon which 44% of the African 

population are reliant for sustenance (Desanker et al., 2001). Understanding of trends in 

iWUE is also important to assess to what extent the terrestrial biosphere will be able to act as 

a net carbon sink and what climate feedbacks can be expected from the interactions between 

terrestrial biosphere and atmosphere (Heimann and Reichstein, 2008). 

Methods:  Five Juniperus procera trees were cored at the compound of Kuskuam church in 

Gondar, Ethiopia (12°37’N, 37°27’E) (Wils et al., 2010). One Juniperus procera tree was 

cored in Hugumburda forest on the north-western escarpment of the Ethiopian Rift Valley 

(12°15’N, 39°30’E). Discs were obtained for a Mimusops caffra growing in KwaZulu-Natal 

in South Africa (29°43’S, 31°05’E) (Hall et al., 2009) and an Acacia erioloba growing in the 

Koichab Valley in Namibia (26°13’S, 15°52’E) (Figure 1). Cross-dating of the Juniperus 
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Fig. 1. Location of the trees sampled throughout Africa from Gondar in the north-western
Ethiopian Highlands, the Hugumburda State Forest on the north-western escarpment of the
Ethiopian Rift Valley in Ethiopia, the Koichab Valley in Namibia and KwaZulu-Natal in
South Africa.
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procera trees to ensure absolute dates was achieved using skeleton plotting and the computer 

program COFECHA (Wils et al., 2011; Grissino-Mayer, 2001; Stokes and Smiley, 1968). 

Dating of Juniperus procera tree rings from Gondar (Wils et al., 2010), the Mimusops caffra 

(Hall et al., 2009) and the Acacia erioloba was confirmed using high precision ‘bomb’ 

radiocarbon dating. In this case, juvenile rings from approximately the first forty years of 

growth were excluded from the study (Hall et al., 2009; Gagen et al., 2007).  

Annual δ
13

C values were measured on resin-extracted ground Acacia erioloba and Mimusops

caffra wholewood samples using a Thermoquest EA1110 elemental analyser inferfaced to a 

VG Isogas SIRA 24 stable isotope mass spectrometer with an average precision of 0.2‰ 

(CSIR, Pretoria). Annual δ
13

C values were measured on absolutely-dated ground Juniperus

procera wholewood (Gondar) and homogenised α-cellulose (Hugumburda Forest) (Loader et 

al., 1997) using a PDZ Europa 20-20 mass spectrometer interfaced to an ANCA elemental 

analyser with a precision of ± 0.09‰ (Swansea University). δ
13

C values were expressed

relative to the VPDB standard (Coplen et al., 1995). To ensure consistency, δ
13

C values

measured on annually-resolved α-cellulose (Juniperus procera from Hugumburda forest) 

were transformed into wholewood values. For Anthropocene samples that have been 

subjected to minimal diagenesis, this pragmatic approach is based upon the premise that 

although the major wood constituents may have different absolute isotopic values, they 

exhibit similar trends (Wils, 2012; Robertson et al., 2004; Loader et al., 2003; Borella et al., 

1999). Values of intrinsic water-use efficiency (iWUE) were calculated from the tree-ring 

δ
13

C values using the following equations describing fractionation during plant CO2 uptake

and iWUE: 

(Farquhar et al., 1982), (2) 

and 

(Ehleringer et al., 1993), (3) 

where 

δ
13

Ctree = observed δ
 13

C in a tree ring;

δ
13

Catm = atmospheric δ
13

C value (records from McCarroll and Loader, 2004);

a = discrimination against 
13

CO2 during diffusion through stomata (≈ 4.4‰);

))/()((1313

aiatmtree ccabaCC ⋅−+−≈ δδ

6.1

ia cc
iWUE

−
≈
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b = net discrimination against 
13

CO2 due to carboxylation (≈ 27‰);

ci = intercellular CO2 concentration; 

ca = atmospheric CO2 concentration (records from McCarroll and Loader, 2004); 

iWUE = intrinsic water-use efficiency. 

Results 

In Africa, long, high-resolution tree ring records are scarce due to a lack of trees that produce 

distinct annual growth rings (De Ridder et al., 2013; Therrell et al., 2006; Dunwiddie PW and 

LaMarche VC Jr., 1980).  Here, we present annually-resolved iWUE records for African trees 

inferred from tree-ring δ
13

C values (Figure 2). Over the common period (1909-2003), the

mean iWUE was calculated by taking the 5-year average centred upon the midpoint. The 

mean iWUE for African trees was found to increase: 22.9% for Juniperus procera from 

Gondar, Ethiopia (106.2 to 130.5µmol.mol
-1

); 29.9% for Juniperus procera from

Hugumburda, Ethiopia (117.3 to 152.3µmol.mol
-1

), and 21.0% for Mimusops caffra growing

in KwaZulu-Natal, South Africa (74.3 to 89.9µmol.mol
-1

). The Acacia erioloba from the

Koichab Valley in Namibia showed a small increase in iWUE (97.5 to 99.9µmol.mol
-1

).

Excluding this latter sample, the overall increase in iWUE for African trees over the common 

period 1909-2003 was 24.6%. 

Discussion 

In the late nineteenth century, the Swedish scientist Svante Arrhenius showed remarkable 

vision when he determined that an increase in the concentration of atmospheric CO2 could 

increase the Earth’s temperature (Arrhenius, 1896). It is now a well-established fact that 

increasing atmospheric CO2 concentrations will affect climate directly through radiative 

effects but the indirect influences upon climate, through biological influences, such as 

changes of the water use efficiency of plants are less well understood. Under global warming 

scenarios, models show that increased atmospheric greenhouse gas concentrations have a 

substantial impact on climate, hydrological cycles, future bush encroachment, crop yields and 

river flow. However, the influence of carbon dioxide influenced physiological forcing is not 

adequately taken into consideration in most models; partly because long-term physiological 

effects are difficult to quantify. 

5



Fig. 2. Annual intrinsic water-use efficiency (iWUE) from eight African eight trees calculated over the period 
1755-2006. (A) Mean iWUE from five Juniperus procera individual trees growing in a church compound at 
Gondar in the north-western Ethiopian Highlands (B) iWUE from Juniperus procera growing at Hugumburda 
on the north-western escarpment of the Ethiopian Rift Valley (C) iWUE from Acacia erioloba growing in the 
Koichab Valley in Namibia and (D) iWUE from Mimusops caffra growing in KwaZulu-Natal in South Africa. 
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Although iWUE-values derived from tree-ring could be overestimated (Silva et al., 2013), 

there is general agreement that the effective ratio of assimilation to stomatal conductance 

increases as atmospheric CO2 concentrations increases. Elevated atmospheric CO2 levels 

could increase assimilation (La Marche et al., 1984) but there is generally little direct 

evidence for this under natural conditions (Jacoby and D’Arrigo, 1997) even if there is an 

increase in iWUE (Andreu-Hayles et al., 2011; Peñuelas et al., 2011). The magnitude of the 

increase in African iWUE values is similar to that reported elsewhere (Frank et al., 2015; 

Saurer et al., 2015; Wang and Feng, 2012; Loader et al., 2011). The overall 24.6% increase 

in iWUE over the period 1909-2003 suggests that these species are initially adopting a 

homeostatically active response to increasing atmospheric CO2 concentration with a 

relatively constant ci /ca (intercellular CO2 concentration /atmospheric CO2 concentration) 

resulting in higher iWUE values. However, the complex nature of iWUE trends (Wang and 

Feng, 2012) is confirmed by the uncorrected tree-ring δ
13

C values (Wils et al., 2010; Hall et

al., 2009). Over shorter timescales, Keenan et al. (2013) used eddy-covariance techniques to 

determine carbon uptake and water use from 21 flux towers across northern temperate and 

boreal forest ecosystems. They found that for almost two decades, forest water-use efficiency 

increased but as the observed trend was larger than that predicted by theory, coupled 

vegetation-climate models may need re-evaluation. 

In response to increasing atmospheric CO2 concentrations, species-specific differences in 

iWUE were found (Figure 2) in a similar manner to those reported under natural conditions 

(Soulé and Knapp, 2015) and at Free-Air CO2 Enrichment (FACE) sites (Battipaglia et al., 

2012). The Acacia erioloba from the Koichab Valley in Namibia showed a small increase in 

iWUE which is a passive response to increasing ca caused by a general resilience to changes 

in water availability as a result of its extraordinarily deep tap root with access to groundwater 

(Barnes et al., 2007).  

The 24.6% increase in iWUE over the twentieth century highlights the importance of taking 

indirect physiological forcing, such as CO2 fertilisation, into account when modelling 

anthropogenic changes to the climate system as coupled global atmosphere-land surface 

models that only incorporate radiative forcing may underestimate future environmental 

impacts (Andrews et al., 2011; Cao et al., 2010). However, the inability of several stomatal 

conductance models to replicate stomatal response to increased atmospheric CO2 levels 

makes the quantification of physiological forcing far from a trivial task (Boden et al., 2013). 

Climate models that include radiative and physiological forcing have generally reported an 

increase in surface temperatures and a complex change to the hydrological cycle as increased 

runoff partly compensates for reduced precipitation. The effects of physiological forcing are 

widespread with the forest of central Africa being modelled as one of the regions of greatest 

change (Andrews et al., 2011).  
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Intensification of the global water cycle generally results in “dry areas becoming drier 

(generally throughout the subtropics) and wet areas becoming wetter, especially in the mid- 

to high latitudes” (Trenberth, 2011).  However, the system is complex and it is difficult to 

identify the contributions of individual factors. In particular, is it possible to detect if the 

reported increase in iWUE from physiological forcing could have a direct influence upon 

runoff? Globally, there is some evidence that increased atmospheric CO2 concentration have 

caused a small increase in river discharge (Gedney et al., 2006) even if vegetation changes 

weren’t fully considered (Kundzewicz and Gerten, 2014).  Although future modelled 

scenarios with increased temperatures and reduced precipitation show a general increase in 

evapotranspiration (Pan et al., 2015) that may subsequently be reduced through physiological 

forcing with a net increase in runoff, the attribution of these modifications to physiological 

forcing is controversial (Huntington, 2008). Consequently, other factors influencing runoff 

should also be taken into account. When the effects on nitrogen limitation and atmospheric 

ozone exposure were also taken into account together with physiological forcing, it was 

found that modelled runoff could be underestimated by as much as 17% for forests in the 

eastern United States (Felzer et al., 2009). In the northern extra-tropics, as air quality 

improves future runoff may actually decrease as solar dimming from aerosols may have 

increased historical river flows as reduced sunlight limited surface evaporation (Gedney et 

al., 2014). 

Conclusion 

The presented iWUE records originate from semi-arid to sub-humid regions in Africa (Figure 

2). The 24.6% increase in mean iWUE confirms that African trees are already adapting to 

increasing atmospheric CO2 concentrations. Compared to the size of the continent, the spatial 

coverage is low. In Africa, long, high-resolution tree ring records are scarce, as the 

abundance of trees that produce annual growth rings is limited (Woodborne et al., 2015). 

These results indicate that more work is required to develop a network of tree ring records in 

Africa and to understand the as yet uncertain effects of increasing iWUE on crop yield, river 

flow and to constrain global climate models. 
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