
Demand Side Management of Photovoltaic-Battery

Hybrid System

Zhou Wu, Henerica Tazvinga, and Xiaohua Xia

Department of Electrical Electronic and Computer Engineering, University of Pretoria,

Pretoria, South Africa e-mail: wuzhsky@gmail.com, henerica.tazvinga, xxia@up.ac.za

Abstract

In the electricity market, customers have many choices to reduce electricity
cost if they can economically schedule their power consumption. Renew-
able hybrid system, which can explore solar or wind sources at low cost, is a
popular choice for this purpose nowadays. In this paper optimal energy man-
agement for a grid-connected photovoltaic-battery hybrid system is proposed
to sufficiently explore solar energy and to benefit customers at demand side.
The management of power flow aims to minimize electricity cost subject
to a number of constraints, such as power balance, solar output and bat-
tery capacity. With respect to demand side management, an optimal control
method (open loop) is developed to schedule the power flow of hybrid system
over 24 hours, and model predictive control is used as a closed-loop method
to dispatch the power flow in real-time when uncertain disturbances occur.
In these two kinds of applications, optimal energy management solutions can
be obtained with great cost savings and robust control performance.

Keywords: solar energy, renewable hybrid system, distributed generation,
demand side management, optimal control

1. Introduction

Renewable energy (RE) sources, including wind, solar and their hybrid
systems, have become attractive options of providing energy globally for rea-
sons such as low cost, no pollutant emission, energy security, easy accessabil-
ity and reduction fossil fuel consumption [1, 2, 3, 4]. Photovoltaic (PV) array,
which is the main technology to convert solar energy into electric power, can
be stand-alone installed for providing electricity in some remote areas or be
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connected to the grid for selling power generated. Because of instantaneous
and unstable nature of solar energy, PV usually works with battery storage
to provide continuous and stable power, i.e., the PV-battery hybrid system.
Battery storage can reduce the risk of PV’s intermittent power supply, and
always ensure demand satisfaction. Generally, grid-connected PV systems
without battery storage do not require sophisticated management strategies.
Prioritizing use of PV power is the only rule when the PV power is less
than the load demand. In contrast, battery storage brings more challenges
to energy management, as more complicated scenarios must be considered,
such as charging the battery from the grid or PV and discharging when nec-
essary. As a result, controllers are required for hybrid PV-battery systems,
such that the performance of solar usage can be significantly enhanced and
the grid regulation can be improved in terms of safety and efficiency.

For grid-connected hybrid PV-battery systems, the changing electricity
price, the timing of power transaction, and the mismatch between solar power
generation and load demand are main challenges in application [5, 6]. From
the perspective of demand side management (DSM), solar energy or grid
power may be stored when the PV can generate surplus power or when
the grid electricity is inexpensive. The stored energy can be managed for
economic usage in future when the electricity price is high over peak load
periods, or when the PV power is unavailable [7]. The grid-connected hybrid
system with DSM can help customers to reduce electricity cost, and also can
help utility to regulate the grid in terms of security and efficiency issues, such
as peak shaving, direct load control (DLC), and capacity market programs
[8]. Therefore, at both sides of electricity market hybrid systems may intro-
duce new opportunities to smart grid but also cause many challenges in the
following DSM programs.

(1) Peak shaving: it is necessary to decide when and how much to charge
the battery from the grid or PV before peak hours, so that power consumed
from the grid at peak hours can be reduced to satisfy the requirement of
shaving.

(2) Direct load control (in which a utility operator remotely shuts down or
cycles a customer’s electrical equipment at short notice to address system or
local reliability): customers have to control the operation of hybrid system to
ensure their demand is satisfied at the shutting time based on the frequency
and time of shutting at DLC.

(3) Capacity market programs (in which customers commit to respond
pre-specified load reduction when system contingencies arise and are subject
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to penalties if they do not curtail power consumption when directed): such
programs involve issues such as how to decide on the amount of power stored
in the battery, how to use the instantaneous and stored power cooperatively
to complete the pre-specified load reduction, and how to minimize the penalty
if the customer demand exceeds the pre-specified demand.

(4) Time-of-use (TOU, where the electricity price is high in the peak
load time and low in the off-peak time): scheduling problems arise, such as
determining how to optimally operate the hybrid system in peak and off-peak
periods for minimizing electricity cost and satisfying the customer demand
as well.

It must be noted that the hybrid systems with battery storage may have
potential to take part in every DSM program or combined programs, which
can help the utility to regulate the grid and help customers to reduce en-
ergy cost. For simplicity, this paper will mainly focus on evaluating a grid-
connected PV-battery system under the TOU program with contracted sell-
ing as an example. It will be answered how customers optimally schedule the
hybrid system to earn cost savings with varying prices in the TOU program,
and how they manage their consumption to sell surplus power to the grid
over peak period.

Although storage systems are not common in large generation farms, for
residential and small-scale power producers many storage systems (battery,
ultra-capacitor and so on) have been incorporated in energy supply systems.
Nair and Garimella [9] argued that battery storage systems will have a sig-
nificant impact on the small-scale integration of renewable sources into the
commercial and residential sectors. For hybrid systems with battery storage,
energy management is a vital and difficult issue that has attracted great in-
terest among researchers [7, 10]. Many energy management systems (EMS)
have been developed for the utility to regulate microgrids and reduce gener-
ation cost. Some rule-based strategies were designed for energy management
of hybrid systems [11, 12, 13], which can obtain promising but not optimal
solutions to ensure practical constraints are satisfied. In [14], a determin-
istic planning method was proposed to perform robustly day-ahead power
flow scheduling for conventional and renewable generators. To improve the
performance of EMS, optimal control is a useful method to schedule power
flows of hybrid systems with minimum cost and maximum benefit [15, 16].
In [17], an EMS for a virtual power plant was proposed to minimize the elec-
tricity generation cost and to utilize renewable energy sufficiently. Authors
in [18] presented a dynamic optimal power flow control for power and heat
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generation scheduling while considering PV generations coupled with storage
systems. A flexible battery management system was developed to optimize
the duration (hours) of charging and discharging battery for optimal power
flow control in distribution networks [19].

Beyond existing work, more emphasis should be made on two important
issues of renewable hybrid systems. Firstly, most researchers have consid-
ered energy management and demand response for large-scale integration of
renewable energy at the utility side [20, 21]. There is lack of comprehensive
work in consideration of optimal planning and DSM for small-scale hybrid
systems at the demand side, because many customers install hybrid systems
for stand-alone or back-up usage without any participation of DSM program.
DSM can be studied more in appliance scheduling of household [22] than in
scheduling of small-scale hybrid system. Secondly, uncertainties within fore-
cast errors of renewable energy and demand have been studied for large-scale
integration of renewable energy [23], but uncertainties at the demand side
are not well evaluated. Most related optimal scheduling methods cannot
handle complicated cases when hybrid systems experience external distur-
bances; only a few closed-loop control methods have been designed [7, 24].
Therefor, it is necessary to model the small-scale hybrid system, to compre-
hensively study optimal schedule with DSM over different seasons, and to
analyze uncertainty and robustness for the closed-loop control. This paper
will be organized to respond to the above two issues.

Some remote areas, where customers used to rely on stand-alone hybrid
systems for generating power, are being connected to the grid as part of
network upgrade. Now a new problem is how to use such installed small-
scale system efficiently. Based on our previous work [16], we consider DSM,
scheduling and uncertainty handling of the grid-connected hybrid system in
this paper. The diesel generator is now excluded, as the power its power
generation is less green and more costly than the grid. DSM of the hybrid
system is expected to help customers earn some payback and reduce electric-
ity cost. Another by-product advantage of DSM is the reduction of emissions
by utilization of clean PV technologies.

The main contributions of this paper are listed below. Firstly, as an
example of DSM, the hybrid system under TOU with power selling is modeled
to minimize the electricity cost while matching the customer demand and the
PV output. Secondly, optimal control is developed as an open loop method
to dispatch power flows of the hybrid system stably and economically. A
comprehensive study has been conducted to evaluate different situations over
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weekend and weekday of winter and summer. Thirdly, in case of uncertainties
in the PV output and the customer demand, model predictive control (MPC)
is applied as the closed-loop control to ensure economic, robust and safe
operation of the hybrid system. MPC is a feedback control strategy that uses
an explicit model of plant to predict the future response of the plant over a
finite horizon. Only “the first part” of the sequence is applied to control at
the next state [25, 26]. MPC has been widely used in the closed-loop control
for adaptively changing control variables according to external disturbances
[26, 27, 28]. MPC is applied in this work because of its capability to explicitly
handle constraints and to adjust the power flows when disturbances occur.

In this paper, an optimal power flow management algorithm of a grid-
connected PV-battery hybrid system is developed. The objective is to min-
imize the electricity cost within the DSM framework by optimal power flow
control. Literature review is conducted on energy management of stand-alone
and grid-connected systems in Section 2. The structure of the grid-connected
PV-battery system and its sub-models are described in Section 3. The math-
ematic DSM model of the hybrid system is given in Section 4. Some results
of the optimal control are discussed in Section 5. In Section 6 based on the
steady state model an MPC approach is proposed as the closed-loop control,
while the last section is the conclusion.

2. Literature review

Hybrid renewable energy systems (HRES) have been studied in recent
years on both bottom and up levels, such as system design, installation,
operation and maintenance. The related studies mainly include issues of
modeling, control and optimization at each level. In [29], various sectors
in designing and implementation of HRES were comprehensively reviewed,
including configurations, criteria selection, sizing methodologies and control
& energy management. For stand-alone and grid-connected applications,
many control systems have been designed into three main categories, i.e.,
centralized [16, 30], distributed [31], and hybrid control paradigms [32]. Due
to scope of this paper, energy management methods (planning, scheduling
and control) are introduced in this section. Energy management for smart
grids have received considerable attention to achieve several targets, such as
balancing of generation and load, minimizing the generation cost, minimizing
transmission and distribution losses, preventing grid congestion, provision of
ancillary services.
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For the stand-alone application, a rule-based power management strat-
egy was designed to manage power flows among different energy sources and
storage units [33]. A renewable micro-grid including a wind turbine, a solar
panel, a fuel cell and a storage battery was studied on the issue of optimal
scheduling [34], in which mixed-integer linear programming is used to solve
their proposed minimization model of generation costs subject to all opera-
tion technical constraints. A priority local control algorithm was developed
to gain optimal energy management of system loads and battery storage,
and therefore provided better energy efficiency and guarantee energy supply
for critical loads [35]. In [16], daily energy consumption variations between
winter and summer was considered into scheduling stand-alone HRES. The
authors had evaluated operational efficiency of the hybrid system over a 24-
hour period and optimal solutions can be found to reduce the corresponding
fuel costs. Finally 73% to 77% fuel savings in winter and 80.5% to 82% fuel
savings in summer can be achieved by the optimal control method. In [30],
a switched MPC method was designed for energy dispatching of the same
HRES.

For the grid-connected application at the utility side, storage manage-
ment, economic load dispatch and operation optimization of distributed gen-
erations was simplified into a single-objective optimization problem to design
a smart energy management system of micro-grid [36], which was solved by
a matrix real-coded genetic algorithm. A methodology capable of evaluating
the impact of wind generation and load uncertainties, as well as unexpected
generation outages was developed [23], in which an EMS integration frame-
work was proposed for power system operation, dispatch, and unit commit-
ment. A hybrid power generation system consisting of PV arrays and fuel
cells was studied by a model-based optimal approach [24], in which the power
generation cost is minimized. A dynamic supervisory control was proposed
to regulate a grid-connected hybrid generation system with versatile power
transfer for flexible operation and improvement of power quality [37].

For the grid-connected application considering DSM, energy management
strategies from both the demand side and utility side were developed to meet
the electricity demand while minimizing the overall operating and environ-
mental costs [38]. By integrating DSM and active management schemes,
an EMS was developed for optimizing the smart grid’s operation to better
explore renewable energy sources and reduce the customer’s electricity cost
[39]. DSM of distributed generation and storage system was studied as a
day-ahead optimization problem by a game theory approach in which each
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active user at the demand side selfishly pursues minimal monetary expense
for buying/producing electricity [40]. Different demand response programs
were studied in DSM of hybrid systems [41, 42]. Optimal power management
was studied on grid-connected PV-battery system for joining peak shaving
service base on the dynamic programming method [41]. A heuristic-based
Evolutionary Algorithm was developed in smart grid for finding a general-
ized DSM strategy based on load shifting [42]. Many other computational
methods were studied in relative applications. A multi-objective method was
applied on a hybrid renewable system for maximizing its contribution to the
peak load and minimizing its overall intermittence cost, in which large-scale
DSM and DR technologies are also considered [20]. Neural networks were
applied to schedule and coordinate distributed generations for active DSM
[43].

Especially, an interesting application of HRES and DSM is smart build-
ing. The impact of DSM strategies in the penetration of HRES is analyzed
at some regional buildings [44]. HRES was studied for DSM and an energy
production management strategy was designed for building automation [45].
HERS was considered in an optimal residential load management strategy for
real time pricing demand response programs [46]. A smart home controller
strategy was designed to enable consumer economic saving and automated
demand side management in domestic environment [47]. The event driven
controller was designed for optimally scheduling household appliances by bi-
nary linear programming. An autonomous appliance scheduling strategy was
designed for household energy management based on HRES and DSM [22].
An optimization framework was proposed for integrated analysis of demand
response programs with high penetration of plug-in hybrid electric vehicles
(PHEVs) and PV from residential customer’s perspective as well as utility
company’s perspective [48].

3. Description of PV-battery system

The hybrid system evaluated in this paper consists of PV arrays and
battery bank that are both connected to the grid. The output power of the
PV array feeds customers’ demand directly. If the demand is less than the
PV’s output, the surplus PV power will be charged into the battery bank.
If the demand is larger than the PV’s output, the deficient power will be
covered by the battery or the grid. The grid plays an important role in the
hybrid system for charging the battery and directly supplying customers with
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electricity. The battery can be charged by the grid in the off-peak period, and
then discharged in the peak period to save electricity cost. The grid provides
electricity directly when the customer demand cannot be satisfied by the PV
and the battery. The schematic of this hybrid system is shown in Figure 1, in
which arrows represent directions of power flows in the system. P1 is the solar
generation for charging the battery; P2 is the discharging power of battery
for load demand; P3 is the grid power for charging the battery; P4 is the grid
power for load demand; P5 is the solar generation for load demand; P6 is the
battery discharge for selling power to the grid. In the hybrid system, several
converters such as direct current/alternating current (DC/AC) and DC/DC
are required for voltage and current matching.

PV Battery Load

Grid

P1 P2

P3 P4

P5

P6

Figure 1: Schematic of the hybrid system

3.1. PV array

Each solar array consists of several solar cells to convert sunlight into DC
power. The hourly power output of a given area can be simply formulated
as:

Ppv = ηpvIpvAc, (1)

where Ppv is the hourly power output from the PV array; Ac is the size of
PV array; ηpv is the efficiency of power generation; Ipv is the hourly solar
irradiation incident on the PV array (kWh/m2).

The hourly solar irradiation incident on the PV array is closely related
to time of a day, season of the year, tilt, location, global irradiation, diffuse

8



fraction etc. In this study, the simplified isotropic diffuse formula [16, 49] is
used as

Ipv = (IB + ID)RB + ID, (2)

where IB is the beam component of the hourly global irradiation and ID is the
hourly diffuse irradiation respectively. RB is a geometric ratio of the actual
irradiation on the tilted plane to the standard irradiation on the horizontal
plane.

The efficiency of power generation can be modeled in a complicated for-
mula, which can be expressed as a function of the hourly irradiation Ipv and
the ambient temperature TA as

ηpv = ηR

[

1−
0.9βIpv(TC0 − TA0)

Ipv0
− β(TA − TR)

]

, (3)

where ηR is the PV generator efficiency that is measured at the referenced
cell temperature TR (25◦C); β is the temperature coefficient for cell efficiency
(typically 0.004-0.005 /◦C); TC0 (typically 45◦C) and TA0 (typically 20◦C)
are the cell and ambient temperatures at nominal operating cell temperature
(NOCT) test conditions; Ipv0 is the average solar irradiation on the array at
the NOCT conditions.

3.2. Battery bank

Being constrained in battery capacity, the state of charge (SOC) changes
dynamically owing to possible charge by the PV and grid or possible discharge
for customer usage. For a given profile of power generation, customers’ de-
mand will mostly affect the SOC of battery. Let t denote time of day (hourly),
and Pb(t) denote the SOC of battery at the tth hour. Based on the SOC at
the previous hour, the dynamic change of SOC can be formulated as

S(t+ 1) = S(t) + ηC [P1(t) + P3(t)]−
1

ηD
[P2(t) + P6(t)], (4)

where S(t) is the SOC at the tth hour; S(t+1) is the SOC at the next hour.
ηC ≤ 1 and ηD ≤ 1 are the coefficients of charging and discharging efficiency.
According to Eq. (4), the current SOC S(t) can be expressed by the initial
SOC S(0) of a day as

S(t) = S(0) + ηC

t−1
∑

τ=0

[P1(τ) + P3(τ)]−
1

ηD

t−1
∑

τ=0

[P2(τ) + P6(τ)]. (5)
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The SOC of a battery has several constraints, such as the maximal allow-
able capacity and the depth of discharge (DOD). The lower bound of SOC
Smincan be expressed by the DOD as

Smin = (1−DOD)Smax, (6)

where DOD is the depth of discharge; Smax is the maximum capacity of the
battery; Smin is the minimum allowable SOC of the battery. The SOC must
be bounded within the scale [Smin, Smax].

4. DSM Model of PV-battery system

Optimal schedule of the evaluated hybrid system aims to minimize elec-
tricity cost within the framework of DSM. In this paper, the TOU program
is a typical program of DSM for consideration, in which the electricity price
changes over different periods according to the electricity supply cost, for ex-
ample a high price for peak load periods, medium price for standard periods
and low price for off-peak periods. In our study, the daily electricity price at
the target region can be given as

ρ(t) =







ρk, t ∈ Tk, Tk = [7, 10)
⋃

[18, 20)
ρo, t ∈ To, To = [0, 6)

⋃

[22, 24)
ρs, t ∈ Ts, Ts = [6, 7)

⋃

[10, 18)
⋃

[20, 22)
, (7)

where rhok = 0.20538$/kWh is the price for the peak load period; ρo =
0.03558$/kWh is the price for the off-peak period; ρs = 0.05948$/kWh is the
price for the standard period.

The proposed DSM model includes three parts. The first part is the cost
of buying electricity from the grid, which is used to afford the load demand
and charge the battery. The second part is the income of selling electricity
to the grid. The third part is the wearing cost of hybrid system. The total
cost can be formulated as,

J =

23
∑

t=0

ρ(t) [P3(t) + P4(t)]−
∑

t∈Tk

rkρkP6(t) + Ch, (8)

where rk = 0.65 is the contracted ratio of the peak price ρk for selling power
during the peak load period. Ch is he wearing cost of system during the
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control period, which is formulated as

Ch =

23
∑

t=0

a [P2(t) + P6(t)] + 24b, (9)

where a is the coefficient of battery wearing cost and b is the hourly wear-
ing cost of other components (a = 0.001, b = 0.002 in this paper). In the
objective function, control variables Pi(t) (i = 1, 2, ..., 6, 0 ≤ t < 24) have to
satisfy several constraints:

(1) PV’s output constraint: The PV’s power for charging the battery and
for customers’ instantaneous usage must be less than the PV’s output power
generated, which is mainly related to irradiation and ambient temperature.

P1(t) + P5(t) ≤ Ppv(t). (10)

(2) Power balance constraint: The load demand of customers must be
exactly satisfied by the total power of PV array, the grid and the battery as

P2(t) + P4(t) + P5(t) = PL(t), (11)

where PL(t) is the load demand over the period [t, t + 1).
(3) SOC boundary constraint: The SOC of the battery must be less than

the battery’s capacity Smax and larger than the minimal allowable value Smin

as
Smin ≤ S(t) ≤ Smax. (12)

(4) Power flow constraint: For safety and other physical reasons, power
flow from each source must be non-negative and less than the maximum
allowable value as

0 ≤ Pi(t) ≤ Pmax
i , (i = 1, 2, ..., 6), (13)

where Pmax
i is the defined maximum power delivered per hour.

(5) SOC terminate state constraint: For the convenience of dispatching
power over continuous days, the battery should not be used till the initial
SOC value is reached. In this model, the termination SOC of the battery
must be no less than the initial as SOC

S(0) ≤ S(24). (14)
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It can be noticed that the installation cost is not considered in the model,
as the scope is restricted to a discussion of how to control the installed hybrid
system in the operational step. Therefore, some important issues related
to installation, such as economic analysis and optimal sizing of the hybrid
system [50, 51], are neglected in our model. The operational costs of the PV
and battery are taken as negligible values for the evaluating period, so they
are not incorporated in the model.

5. Optimal control method

An open-loop optimal control method is used to dispatch the hourly power
Pi(i = 1, ..., 6) over a day to minimize the daily electricity cost, Eq. (8),
subject to constraints, Eq. (10-14). Because the objective function and
constraints are linear, this power flow control problem can be expressed as a
linear programming problem as

min f(x), s.t.







Ax ≤ b
Aeqx = beq
lb ≤ x ≤ ub

, (15)

where f(x) represents the objective function; Aeq and beq are the coefficients
related with equality constraints; A and b are the coefficients related with
inequality constraints; lb and ub are the lower and upper bounds of variables.
These coefficients can be easily deduced according to the proposed model, so
the explicit details are omitted here.

5.1. Control system settings

The system evaluated is originally installed as the PV-diesel-battery hy-
brid system for off-grid consumers [16]. Because of enlarged coverage of the
grid, the target region is now connected to the grid. The diesel generator
has been excluded from the current system, because buying electricity from
the grid is cheaper and greener than using the diesel generator for power
generation. The sizing of PV and battery bank is based on a sizing model
in [2]. The parameters of this system are listed in Table 1. The maximum
power delivered on each flow is defined as 5 kW.

As customers’ daily demand changes between summer and winter as well
as between weekdays and weekends, four cases are evaluated, i.e., weekdays of
summer and winter and weekends of summer and winter, to find the optimal
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Table 1: Parameters of the PV-battery system

Nominal battery capacity 28.8 kWh
Battery charge efficiency 85%
Battery discharge efficiency 100%
Battery’s depth of discharge 50%
Initial state of charge 16 kWh
PV array’s capacity 7 kW

dispatch solution for each case. The load profiles of customers in the summer
and winter are calculated based on survey data, as given in Table 2 [16].

In this study, we have evaluated meteorological data, global irradiation,
diffuse irradiation and ambient temperature over the past few years in the
target region. For simplicity, the average output profiles in summer and
winter are predicted respectively, as plotted in Figure 2. It can be noticed
that power output in summer is larger than in winter over the daytime.

0 5 10 15 20 25
0

1

2

3

4

5

6

7

Time(hour)

P
o
w
e
r(
k
W
)

winter

summer

Figure 2: Profiles of hourly power output of the PV array

5.2. Results of optimal control

On a winter weekday, without the hybrid system the daily electricity
cost would be $4.27. When optimally operating the hybrid system the daily
electricity cost is reduced to $1.68. The income of selling electricity is $
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Table 2: Demand profiles of four cases

Time
Winter Load (kW) Summer Load (kW)
Weekend Weekday Weekend Weekday

00:30 1.5 1.5 1.5 1.5
01:30 1.5 1.5 1.5 1.5
02:30 1.5 1.5 1.85 1.85
03:30 1.5 1.5 1.95 1.95
04:30 1.5 1.5 1.85 1.85
05:30 1.95 1.65 1.5 1.5
06:30 1.95 1.65 1.65 1.15
07:30 1.65 1.35 1.65 1.25
08:30 1.35 1.35 1.7 1.3
09:30 3.25 3.0 1.75 1.32
10:30 3.25 3.0 1.75 1.35
11:30 2.15 1.95 1.75 1.32
12:30 2.15 1.95 1.25 1.25
13:30 2.15 1.95 1.32 1.32
14:30 2.15 1.95 1.35 1.35
15:30 2.15 1.95 1.35 1.35
16:30 2.15 1.65 1.45 1.45
17:30 1.8 1.65 2.1 2.15
18:30 2.31 3.25 2.4 2.31
19:30 3.81 3.25 3.8 3.25
20:30 2.31 2.31 3.8 3.25
21:30 2.31 2.15 2.0 2.0
22:30 2.31 2.15 1.95 1.95
23:30 1.35 1.35 1.65 1.65

3.06. In other words, customers can earn $1.38. In Figure 3(a), the optimal
power flows at the customer side are plotted for the winter weekday. The
customer side power flows include power flows from battery P2, grid P4 and
PV P5. During the off-peak period [0,6) and [22,24), only the grid provides
power owing to low electricity price. When the PV’s output is sufficient,
the highest priority is given to the usage of the PV power as shown in the
period [8,16). During the peak load period, the power stored in the battery
is used to satisfy the load demand. In Figure 3(b), the power flows at the
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battery side are plotted. The battery side power flows include charging flows
from PV P1 and grid P3, and discharging flows to load P2 and grid P6. The
battery is mainly charged from grid during the off-peak periods. When the
PV’s output is larger than the load demand, the excessive power is stored
in the battery. Most battery storage is sold to the grid over the peak load
period, and the remaining is used to supply the demand over [18,20). It
can be noticed that the SOC increases during the off-peak period and the
high irradiation period, and decreases during the peak period. The SOC’s
boundary constraint and terminate constraint are satisfied.

On a winter weekend, without the hybrid system the daily electricity
cost is $4.47. When optimally operating the hybrid system, the daily cost of
electricity is reduced to $1.88, and the income of selling electricity is $3.11.
The net value earned is $1.23. For the winter weekend, the power flows at the
customer side are shown in Figure 3(c). It can be noticed that the result is
similar to that for the winter weekday. During the off-peak period, customers
use the grid power owing to the low electricity price. During certain standard
period, although the PV generation can fully satisfy the load demand, the
grid power has been used. To store enough power for sale, the battery is
not discharged during the standard and off-peak periods. In Figure 3(d),
the power flows at the battery side are plotted. Similarly, the battery is
charged sufficiently during the off-peak period and this stored power is used
during the peak period. During the sufficient irradiation period, the battery
is mainly charged by the PV. In this case, constraints related to the SOC are
satisfied during the charging and discharging processes.

On a summer weekday, without the hybrid system the daily electricity
cost is $3.49. When optimally operating the hybrid system, the electricity
cost is reduced to $1.32, but the income of selling electricity is $3.18. This
means customers can eventually earn $1.83. For the summer weekday, the
profiles of power flow at the demand side and the battery side have been
given in Figure 4(a) and (b). Because in this case the total demand is the
lowest among the evaluated four cases, during the standard period more PV
power can be stored in the battery and no grid power is required for charging
the battery. Most grid power is used during the off-peak period for satisfying
the load demand and charging the battery.

On a summer weekend, without the hybrid system the daily electricity
cost is $3.99. When optimally operating the hybrid system, the electricity
cost is reduced to $1.41. The income of selling electricity is $3.10, which
means customers can earn $1.69. As shown in Figure 4(c), the grid power
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Figure 3: Power flows during winter weekend and weekday: (a) customer side power flows,
i.e., from battery, grid and PV to load, for a winter weekday; (b) battery side power flows,
i.e., charging flows from grid and PV and discharging flows to load and grid, for a winter
weekday; (c) customer side power flows for a winter weekend; (d) battery side power flows
for a winter weekday.

is consumed during the off-peak period on the summer weekend. The power
flows at the battery side are also shown in Figure 4(d), in which the battery is
discharged in the off-peak and standard periods. The results for the summer
weekend are almost the same as those for a summer weekday, and their
demand profiles are close to each other.

In sum, it is observed that by optimal control the hybrid system the
monthly income in winter is $40.20, which saves $170.60 for customers. The
monthly income in summer is $51.82, which saves $167.52 for the customers.
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Figure 4: Power flows during summer weekend and weekday: (a) customer side power
flows, i.e., from battery, grid and PV to load, for a summer weekday; (b) battery side
power flows, i.e., charging flows from grid and PV and discharging flows to load and grid,
for a summer weekday; (c) customer side power flows for a summer weekend; (d) battery
side power flows for a summer weekday.

Because load demand in winter is larger than that in summer, the monthly
earn in winter is less than that in summer, but the total cost savings are
almost the same after optimally scheduling.

Over a year period study, load demand and PV output can be forecast
requently on daily or weekly basis, as during a year they are varying largely
due to weather and human factors. Different load demand and PV output
have significant effects on operation hours and cost saving. Although we
have not given actual statistics for a whole year, based on the summer and
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winter results the total income of selling electricity is approximately $552.12
and the total cost saving is approximately $2028.72. For a newly installed
PV-battery hybrid system, the capital cost of installation is $12500, and its
yearly operation and maintenance cost is $135. The payback period is about
6.6 years. For an existing PV-battery hybrid system, the capital cost of
installation is omitted and the payback period of modification must be less
than 1 year.

6. Model predictive control method

In the optimal control, customer demand loads during weekdays and
weekends are forecast as the average values for winter or summer; the profile
of PV output is also forecast as the average values for winter and summer.
In fact, the customer demand and the PV output may be disturbed from the
forecast values. In this section, such divergence is evaluated as system dis-
turbances on the demand and the PV output. The linear state-space model
will be deduced from the hybrid system model. From Eq. (11), the following
equation can be obtained

P4(t) = PL(t)− P2(t)− P5(t) (16)

Then denote the control input as u(t) , [P1(t), P2(t), P3(t), P5(t), P6(t)]
T ,

the system state as x(t) , S(t) and the output as y(t) , P4(t). From Eq.
(5), the linear state-space model with disturbances can be expressed as

{

x(t + 1) = Ax(t) + Bu(t) + Bw(t)
y(t) = Cx(t) +Du(t) +Dw(t) + PL(t) + wL(t)

, (17)

where A = I, C = 0, B = [ηC ,−ηD, ηC , 0,−ηD], D = [0,−1, 0, 0,−1, 0]; w(t)
and wL(t) are disturbances of input and output respectively. Although w(t)
is caused by differences of predicted and actual values in terms of the cus-
tomer load and the PV output, it is uneasy to determine w(t) according
to these differences. If the customer demand experiences disturbance wL(t)
and the PV output experiences disturbance wpv(t) respectively, the adjusted
disturbance w(t) is determined using the following proposed rules, in which
Pi(t), i = 1, 2, ..., 6 are pre-scheduled power flows without consideration of
disturbance.

(a) If wpv(t) is negative, reduce P1(t) firstly to satisfy the PV’s output
constraint. If P1(t) = 0, then reduce P5(t) till the constraint is satisfied.
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(b) For a positive wpv(t), increase P1(t) as P1(t) = P1(t)+wpv(t) if wL(t) ≤
0; else increase P5(t) as P5(t) = P5(t) + wpv(t).

(c) If P2(t) + P5(t) > PL(t) + wL(t), reduce P2(t) firstly to satisfy the
power balance constraint. If P2(t) = 0, then reduce P5(t) till the power
balance constraint is satisfied.

(d) If P2(t)+P5(t) < PL(t)+wL(t), increase P2(t) by α [wL(t)−∆P2(t)−∆P5(t)],
where ∆P2(t) and ∆P5(t) denote increments of P2(t) and P5(t) during steps
(a-c).

(e) Bound Pi(t)(i = 1, 2, 5) within [0, Pmax
i ]. If S(t − 1) + ηCP1(t) −

P2(t)/ηD − P6(t)/ηD ≤ Smax is not satisfied, reduce P1(t) firstly to satisfy
this condition, then if P1(t) = 0 continue to increase P2(t) till the condition is
satisfied. If S(t−1)+ηCP1(t)+ηCP

max
3 −P2(t)/ηD−P6(t)/ηD ≥ Smin is not

satisfied, reduce P2(t) to satisfy this condition. If the SOC cannot satisfy
the boundary constraint, reduce P3(t) if S(t) > Smax(t); increase P3(t) if
S(t) < Smin(t).

(f) The actual output is calculated according to Eq. (16).
Note that in (a) and (b), P5(t) has higher priority of usage than P1(t)

because the charging or discharging processes cause loss of energy. In (c), the
battery is seldom employed if P5(t) is sufficient to provide power. In (d), when
the power balance at the customer side is broken, the battery takes some
responsibility for covering the disturbed load demand. The responsibility
rate α is an ad-hoc parameter. In this paper, α = 35% is used during the
standard period, α = 50% is used during the peak period, α = 20% is used
during the off-peak period. In (e), P1(t), P2(t), P3(t) are re-adjusted when
the SOC boundary constraint is violated. At the last step, the output is
determined by the actual load demand and the system input. The rational
behind the rule is that PV power for customer usage has higher efficiency that
PV power for storage, and that load demand balance is mainly satisfied by
the grid power supply and then by the battery discharge. When the demand
increases, the battery will discharge more over the off-peak period than the
peak period for the price concern

MPC is developed for the closed-loop control, in which the objective func-
tion of DSM model is optimized over the receded prediction horizon. Com-
bining Eq. (8) and (16), the objective function over the prediction horizon
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TN = [k, k +Np) (k ≥ 0 is an integer) is obtained as follows:

Jc =

k+Np−1
∑

t=k

ρ(t) [PL(t) + P3(t)− P2(t)− P5(t)]

−
∑

t∈Tk∩TN

rkρkP6(t) + Ch.

(18)

where Np is hours over the prediction horizon, and the wearing cost of battery

over the prediction horizon is CB =
∑k+Np−1

t=k a[P2(t) + P6(t)] + Npb. As in
Eq. (10-15), the constraints of MPC can be expressed as























P1(t) + P5(t) ≤ Ppv(t)
Smin ≤ S(t) ≤ Smax

0 ≤ Pi(t) ≤ Pmax
i , i = 1, 2, 3, 5, 6

0 ≤ PL(t)− P2(t)− P5(t) ≤ Pmax
4

S(0) ≤ S(N)

, (19)

where N is hours over the overall scheduling period. Note that S(0) ≤ S(N)
is only valid in the MPC approach when k ≥ N −Np + 1.

MPC is employed to solve this optimal control problem at each sampling
period. In the proposed MPC approach, an optimal control problem over
the prediction horizon is repeatedly solved (k = 0, . . . , N−Np). The optimal
control problem, including the objective function and the set of constraints,
has been defined in Eq. (18) and (19). The optimization variable is the
power flow sequence at each sampling period. At the kth sample, an optimal
solution [u(k), u(k + 1), . . . , u(k + Np − 1)]T can be obtained after solving
the optimal problem. Only the first part of solution, i.e., u(k), is used in
the current period. According to our proposed rules, the disturbance of the
input w(k) applied to the system in the period [k, k+1) can be determined.
When the planning horizon gets shorter than the prediction horizon Np, i.e.
k > N−Np+1, the prediction period will be decreased by 1 after each sample.
The procedure of the MPC approach can be illustrated as in Algorithm 1.
The schematic of MPC is illustrated in Figure 5. At the kth sampling instant,
the feedback state is firstly measured, and the control input u(k) is computed
as Algorithm 1. Then control input is implemented on the open loop plant
for system operation. Note that the main difference between the open loop
control and MPC is that the open loop control does not have the feedback
and the control input is pre-designed off-line, but MPC has the feedback and
real time control mechanisms.
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1 Set k = 0;
2 while k ≤ N −Np do

3 Measure the state value x(k);
4 Solve the optimal control problem Eq. (18) subject to Eq. (19);
5 For the solution [u(k), u(k + 1), . . . , u(k +Np − 1)]T , apply u(k) to

the system at the period [k, k + 1);
6 According to disturbances wL(k) and wpv(k), determine the input

disturbance w(k) based on the proposed rules;
7 k = k + 1;

8 end

9 Np = Np − 1;
10 while k < N do

11 Measure the state value x(k);
12 Solve the optimal control problem Eq. (18) subject to Eq. (19);
13 For the solution [u(k), u(k + 1), . . . , u(N − 1)]T , apply u(k) to the

system at the period [k, k + 1);
14 According to disturbances wL(k) and wpv(k), determine the input

disturbance w(k) based on the proposed rules;
15 k = k + 1; Np = Np − 1;

16 end

Algorithm 1: Pseudo-code of the proposed MPC approach
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Figure 5: Schematic of the MPC approach

To verify the performance of MPC, three experiments with various dis-
turbances are evaluated. The sampling period is one hour. The scheduling
period is five workdays in winter, and the prediction period is 24 hours. This
closed-loop control is compared with the open loop control (as illustrated in
the previous section) regarding cost saving. For simplification, a distribu-
tion fitting method [23] is used as our uncertainty model of disturbance in
this paper. The distribution fitting method includes a hypothesis regarding
a standard probability distribution of the forecast error (solar generation or
load) and a fitting procedure used to find its parameters. Load and solar
forecast errors are assumed to follow truncated normal distribution (TND).
Probability density function (PDF) of TND is

PDFTND(x) =
1

σ
PDFN(

x−µ

σ
)

CDFN(
b−µ

σ
)− CDFN(

a−µ

σ
)
, (20)

where µ is the mean value of non-truncated normal distribution; σ is stan-
dard deviation of non-truncated normal distribution; a and b are upper and
lower limits of TND, i.e., x ∈ (a, b), a < b; PDFN is the PDF of standard nor-
mal distribution; and CDFN is cumulative distribution function of standard
normal distribution.

(1) Positive disturbance on PV output: In this experiment, the solar
irradiation is assumed to be larger than the predicted irradiation. Then
the PV output experiences positive disturbance. For an hour, the positive
disturbance is assumed to follow TND with parameters µ = 0, σ = 0.4, a =
0, b = 1.5, which are obtained by analyzing historical data.
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In the MPC approach, it is desired that the additional PV output distur-
bance can be used to charge the battery, so that the customer will use less
power from the grid. The resulted profiles of P2 and P4 are plotted in Figure
6(a) and (b). It can be noticed that more solar power is used to charge the
battery in the closed-loop than in the open loop control. It is also observed
that the customer needs less power from the grid in the closed-loop. The net
ncome for five days is $1.02 for open-loop control and $1.14 for MPC. The
earning has increased about 27 % after using MPC.
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Figure 6: Power flows in Experiment 1 and 2: (a) P1 of Experiment 1; (b) P4 of Experiment
1; (c) P2 of Experiment 2; (d) P3 of Experiment 2

(2) Positive disturbance on customer demand:
In the second experiment, customers are assumed to demand more power
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than the predicted value. Then the customer demand experiences positive
disturbance. For an hour, the positive disturbance is assumed follow TND
with parameters µ = 0, σ = 0.6, a = 0, b = 1.5, which are obtained by
analyzing historical data. For the open-loop control, the amount of additional
demand asks for the same amount of additional power from the grid, i.e.,
increasing P4.

In the closed-loop control, the battery takes predefined responsibility to
provide power to satisfy the additional disturbance on demand. To achieve
this task, the battery must be charged sufficiently by the grid power over
the off-peak period to reduce the electricity cost. The power loss during the
charging process must be considered in the cost at the same time. Figure
6(c) and (d) show the profiles of P2 and P3 for both MPC and open-loop
control. An interesting observation is that the battery discharges more in
the peak and standard periods (as shown in (c)) and more grid power is used
to charge the battery over the off-peak time (22, 24] (as shown in (d)). As
a result, the net income for five days is $7.89 for MPC compared with $6.01
for open-loop control. It can be noticed that the earning increases around
31% after using MPC.

(3) Random disturbances on PV output and demand: In the third exper-
iment, the disturbances are random numbers, which can be positive or neg-
ative. The random disturbances follow TND with parameters µ1 = 0, σ1 =
0.4, a1 = −1.5, b1 = 1.5 for solar forecast error and µ2 = 0, σ2 = 0.6, a2 =
−1.5, b2 = 1.5 for load forecast error.

It is obvious that open-loop control cannot handle such a complicated
case because the PV output and the load balance constraints are not satis-
fied. However, by using the MPC approach, all constraints can be satisfied
and the electricity cost is also optimized. To compare effects of disturbances,
the MPC approach is also implemented on the hybrid system without con-
sideration of disturbance, in which the obtained results are called nominal
values. The profiles of SOC obtained by MPC during five days are given in
Figure 7, in which the profile under disturbances is compared with the nom-
inal profile under no disturbance. By using the MPC approach, the battery
SOC is maintained within a safe range, and the SOC under random distur-
bances converges to the nominal value. The robustness of MPC is achieved
owing to its closed-loop mechanism. The net income in this case is still
promising as $4.83.
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Figure 7: Profile of SOC for Experiment 3

7. Conclusion

Demand side management has been considered in the optimal scheduling
of small-scale PV-battery hybrid system on the behalf of customers. An
example of DR program, i.e., TOU with power selling over peak period, has
been studied for energy management in this paper. A model for reducing
electricity cost has been developed, which is much practical at the customer
side. The results have shown that the optimal solution to the operation of
hybrid system achieves the maximal use of solar energy and battery storage.
It can be observed that the battery plays a significant role in storing grid
power during off-peak periods and supplying power to customers during peak
periods. As a result, by scheduling the hybrid system, customers consume
minimal amount of power from the grid and reduce their monthly cost. It
has been shown that optimal control is a useful open-loop control method
for power flow control in DSM.

As that open loop control cannot handle the control task when the hybrid
system experiences disturbances in PV output and load demand, MPC has
been developed for controlling such a hybrid system when disturbances occur.
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For this closed-loop control method, the linear state-space model has been
formulated. The proposed MPC approach has been employed to schedule the
disturbed hybrid system. Closed-loop control has been compared with open
loop control in the presented simulation study. Any disturbance experienced
in the system can be detected before the next control period, and the control
variable can be corrected accordingly for the next period by employing the
MPC approach. For a highly disturbed system that cannot be handled by
open loop control, MPC can achieve great control performance in terms of
accuracy and robustness. Furthermore, more cost savings can be obtained
by using the closed-loop control.

In this work, only TOU is evaluated in the small-scale hybrid system as
an example of DSM. Future work include considering other DSM programs
and extending the model to incorporate more renewable energy sources such
as wind power, biomass power, hydro power and so on.
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