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Abstract Austral summer rainfall over the period 1991/1992 to 2010/2011 was dynamically downscaled by the weather

research and forecasting (WRF) model at 9 km resolution for South Africa. Lateral boundary conditions for WRF were

provided from the European Centre for medium-range weather (ECMWF) reanalysis (ERA) interim data. The model biases

for the rainfall were eval-uated over the South Africa as a whole and its nine prov-inces separately by employing three

different convective parameterization schemes, namely the (1) Kain–Fritsch (KF), (2) Betts–Miller–Janjic (BMJ) and (3)

Grell–Devenyi ensemble (GDE) schemes. All three schemes have gener-ated positive rainfall biases over South Africa,

with the KF scheme producing the largest biases and mean absolute errors. Only the BMJ scheme could reproduce the

intensity of rainfall anomalies, and also exhibited the highest cor-relation with observed interannual summer rainfall vari-

ability. In the KF scheme, a significantly high amount of moisture was transported from the tropics into South Africa. The 
vertical thermodynamic profiles show that the KF scheme has caused low level moisture convergence, due to the highly 
unstable atmosphere, and hence con-tributed to the widespread positive biases of rainfall. The negative bias in moisture, 
along with a stable atmosphere and negative biases of vertical velocity simulated by the GDE scheme resulted in negative 
rainfall biases, especially over the Limpopo Province. In terms of rain rate, the KF scheme generated the lowest number of 
low rain rates and the maximum number of moderate to high rain rates associated with more convective unstable 
environment. KF and GDE schemes overestimated the convective rain and underestimated the stratiform rain. However, 
the simulated convective and stratiform rain with BMJ scheme is in more agreement with the observations. This study also 
docu-ments the performance of regional model in downscaling the large scale climate mode such as El Nin˜o Southern 
Oscillation (ENSO) and subtropical dipole modes. The correlations between the simulated area averaged rainfalls over 
South Africa and Nino3.4 index were -0.66, -0.69 and -0.49 with KF, BMJ and GDE scheme respectively as compared to the 
observed correlation of -0.57. The model could reproduce the observed ENSO-South Africa rainfall relationship and could 
successfully simulate three wet (dry) years that are associated with La Nin˜a (El Ni˜no) and the BMJ scheme is closest to 
the observed variability. Also, the model showed good skill in simulating the excess rainfall over South Africa that is 
associated with positive sub-tropical Indian Ocean Dipole for the DJF season 2005/2006.
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1 Introduction

South Africa is characterized by complex topographical 
features and marked gradients in vegetation and land cover, 
and receives most of its rainfall during the austral summer 
season (December–January–February: DJF), when tropical 
temperate troughs (TTTs), westerly troughs, cut off low 
pressure systems and thunderstorms (van Heerden and 
Taljaard 1998) dominate. The country is located in the dry 
subtropics of the Southern Hemisphere, meaning that 
rainfall exhibits large spatio-temporal variability modu-

lated by both tropical and mid-latitudinal dynamics. 
Because of its influence on social society, the economy (in 
particular agriculture) and water resource planning, the 
understanding and prediction of summer rainfall variability 
is regarded as a high priority.

As part of global rainfall-sea surface temperature (SST) 
teleconnection (e.g. arising from the El Nin˜o Southern 
Oscillation (ENSO), the Indian Ocean Dipole (IOD), the 
subtropical dipoles in Indian and Atlantic Oceans), South 
African rainfall is influenced through ocean–atmosphere 
boundary forcing on synoptic-scale atmospheric dynamics 
(Mutemi et al. 2007; Ratna et al. 2013). The complexity of 
these teleconnection often makes it difficult to produce 
reliable seasonal rainfall predictions.

Despite of the development of many global general 
circulation model (GCM) systems for long-term seasonal 
rainfall predictions, the skill still remains a challenge. The 
improvement of rainfall simulations by GCMs therefore 
remains an imperative topic of research. An important 
aspect of improving rainfall output from GCM simulations 
is to resolve the regional heterogeneity of rain contributing 
variables on higher resolutions (Giorgi and Mearns 1999), 
but this often requires abundant computer resources. A 
more applicable approach is to dynamically downscale 
rainfall from GCMs by the nesting of higher resolution 
regional climate models (RCMs) into GCM simulations 
(Leung et al. 2003). Since the mid-1990s many RCM 
sensitivity studies on domain location and size, initial and 
lateral boundary conditions, horizontal and vertical grid 
resolutions and model physics have been conducted. It was 
found that the use of RCMs could result in improved 
atmospheric simulations since their dynamics and physics 
were capable to desegregate climate data at higher reso-

lutions, although simulation uncertainties related to, for 
example, physical parameterization schemes, still remain.

Before applying a RCM for seasonal prediction for a 
given region, the accuracy of the model in reproducing the 
observed regional climate should be assessed in order to 
establish the model’s strengths and weaknesses. This could 
be achieved by using historically observed data as lateral 
boundary forcing to the RCM (Giorgi and Mearns 1999). It 
is known that convective rainfall is more dominant over

South Africa during summer months, implying that the 
evaluation of convective parameterization schemes applied 
to specific spatial resolutions in a RCM is pertinent. As a 
matter of fact, many studies emphasized the strong sensi-

tivity of simulated regional climate to physical parame-

terization schemes used in RCMs (e.g. Cre´tat et al. 2011). 
Despite of this, the evaluation of RCM convective 
parameterization schemes for simulations over southern 
Africa is still very limited.

RCMs have previously been used as dynamical down-

scaling aids for studying regional climates over southern 
Africa (Joubert et al. 1999; Engelbrecht et al. 2002; Hud-son 
and Jones 2002; Tadross et al. 2006; Kgatuke et al. 2008; 
Landman et al. 2009). The weather research and forecasting 
(WRF) model (Skamarock et al. 2008) i s  increasingly 
being used as RCM for downscaling studies over southern 
Africa (Cre´tat et al. 2011, 2012; Ratnam et al. 2012, 2013; 
Cre´tat and Pohl 2012; Boulard et al. 2012; Vigaud et al. 
2012). However, previous WRF sim-ulations aimed at 
studying summer rainfall over southern Africa consist of 
either relatively coarse grid resolutions, or addressed only a 
few seasons. Furthermore, none of the studies addressed 
rainfall distribution on a subregional scale over the different 
provinces of South Africa and its sensitivity to different 
convective schemes. It was found that horizontal resolutions 
of between 25 and 50 km are insufficient to represent 
fundamental and persistent atmo-spheric process associated 
with the convective boundary layer or irregular coastlines and 
topography (Kanamaru and Kanamitsu 2007; Kanamitsu and 
Kanamaru 2007; Caldwell et al. 2009; Barstad et al. 2009; 
Heikkila et al. 2011). Soares et al. (2012) also found that a 
higher grid resolution allowed for improved simulations of 
extreme rainfall events.

The main aim of this study is to evaluate the WRF

model in simulating the summer rainfall over South Africa

and also to evaluate the fidelity of the model in simulating

the interannual variability in the summer rainfall. To

achieve the goal, WRF model was run for twenty austral

summer seasons (DJF; 1991/1992–2010/2011) using two

way nested domains at a horizontal resolution of 27 and

9 km. As the model simulations are sensitive to the

cumulus parameterization schemes used in the model, we

made the model run with three convective schemes for all

the 20 years. The 9 km domain simulated model precipi-

tation biases and the causes of the biases are presented in

the following sections.

2 Model, experimental design and data

Weather research and forecasting (WRF) model (Advanced

Research WRF (ARW); version 3.4) developed by the
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national centre for atmospheric research (NCAR)

(Skamarock et al. 2008), is used in this study. WRF model 
is a non-hydrostatic, fully compressible and terrain-fol-

lowing sigma coordinate model. In this study WRF simu-

lations over South Africa are performed using a two way 
nested domain with horizontal resolutions of 27 and 9 km 
(Fig. 1). Both the domains have 28 sigma levels in the 
vertical with upper boundary at 10 hPa. The WRF domain 
with 27 km horizontal resolution covers southern Africa as 
well as parts of the surrounding Atlantic and Indian Oceans 
(0.6�E–60.3�E, 8.4�S–44.6�S) with 215 grid points in the 
east–west and 150 grid points in north–south directions. 
The nested inner domain with a 9 km horizontal resolution 
covers South Africa its neighboring countries (10.9�E–

38.0�E, 19.4�S–36.5�S) with 292 grid points in the east–

west and 211 grid points in north–south directions.

Physical parameterization schemes considered include 
the microphysics scheme of the WSM 3-class simple ice 
scheme (Hong et al. 2004), the Unified NOAH scheme for 
land surface processes (Chen and Dudhia 2001), the Yonsei 
University scheme for the planetary boundary layer (PBL)

(Noh et al. 2003), the rapid radiative transfer model 
(RRTM) scheme for long waves (Mlawer et al. 1997) and 
the Dudhia scheme for short waves (Dudhia 1989). The 
choice of these physics packages is consistent with what Cre

´tat et al. (2011) and Ratnam et al. (2012) previously used 
for simulation of the climate of southern Africa.

This study aims at investigating the skill of different 
convective parameterization schemes in reproducing sum-

mer rainfall over South Africa and its provinces. For this 
purpose, three convective parameterization schemes were 
considered, namely: (1) the Kain–Fritsch (KF) (Kain 2004); 
(2) the Betts–Miller–Janjic (BMJ) (Betts and Miller 1986; 
Janjic 1994); and (3) the Grell–Devenyi ensemble (GDE) 
(Grell and De´ve´nyi 2002) scheme. The KF scheme 
describes both deep and shallow sub-grid convection using a 
mass flux approach with downdrafts and a convective 
available potential energy (CAPE) removal timescale. Its 
trigger is based on the grid resolved vertical motion (Kain 
and Fritsch 1993). The BM scheme is exclusively driven by 
the thermodynamics at a given model grid point, in which 
conditional instability is removed by adjusting the tem-

peratures and specific humidities toward a reference profile 
(approximately a moist adiabat) within a specified time-

scale (Betts and Miller 1986). The GDE scheme employs a 
multi-closure, multi-parameter, ensemble method with 
typically 144 sub-grid members (Grell and De´ve´nyi 2002).

The 6 hourly, 0.75� 9 0.75� grid European Centre for 
medium-range weather (ECMWF) reanalysis (ERA) interim 
data (Dee et al. 2011) was used as the initial and boundary 
conditions for the simulations. The main advantage of the 
ERA interim data, compared to the pre-vious ERA-40 data, 
is that it has been constructed in a high horizontal resolution 
with a four dimensional variational analysis, it has an 
improved formulation of background error constraint, it was 
the result of a new humidity anal-ysis with improved model 
physics, it underwent a varia-tional bias correction using 
satellite radiance data and it included an improved fast 
radiative transfer model (Uppala et al. 2008). SSTs from 
ERA Interim fields were interpo-lated to the WRF model 
grid resolution and were also used as slowly varying lower 
boundary input. Surface topogra-phy data and 24 category 
land-use index data based on climatological averages, both 
at a 100 and 3000 resolution, were obtained from the United 
States Geological Survey (USGS) database and were used 
for both the 27 and 9 km WRF domains.

Weather research and forecasting model was initialized

using the 00 UTC 1 November data and was integrated up

Fig. 1 Weather research and forecasting (WRF) model domains

considered in this study with a 27 km (D1) and 9 km (D2) horizontal

grid resolution (top). Topography (expressed in meters above mean

sea level) is shaded. At the bottom are the nine Provinces of South

Africa (LP Limpopo, NW North West, NC Northern Cape, FS Free

State, GT Gauteng, ML Mpumalanga, KN KwaZulu-Natal, EC

Eastern Cape and WC Western Cape Provinces)
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to 00 UTC at the end of February for all the 20 DJF seasons 
(DJF 1991/1992 to DJF 2010/2011) considered in this study. 
The additional 1 month simulation (November) served as a 
model spin up, following the finding that a 1 month spin up 
period is sufficient for obtaining dynam-ical equilibrium 
between the lateral forcing and the internal physical 
dynamics of the model (Anthes et al. 1989). The model 
output data were saved in 6-h intervals.

Weather research and forecasting model results (from 
only the 9 km resolution domain) of the mean climatology 
as well as the interannual rainfall variability were com-

pared to 0.5� gridded daily observational rainfall data 
obtained from the South African weather service (SAWS) 
rain gauge network. The rainfall station data that have been 
quality controlled by the Climate Services of the organi-

zation and interpolated to a regular grid of 0.5� 9 0.5� 
resolution (Dyson 2009; Engelbrecht et al. 2013). The 
average rainfall amounts in each grid box are obtained 
using a weighted average. A rainfall station in any partic-

ular grid box which is geographically distant to other sta-

tions will have a larger weight factor and will therefore 
contribute more to the calculation of the average rainfall. 
Only grid boxes containing two or more rainfall stations 
(e.g. Engelbrecht et al. 2013) are used to produce the 
gridded rainfall data. The model simulated convective and 
stratiform rainfall are compared with respective TRMM

3A25 (Version 7) satellite derived monthly rainfall data

available at 0.5� resolution. Large scale model simulated

parameters are compared with ERA-interim data by inter-

polating the model data to ERA interim grid. The signifi-

cance of the model simulated biases is calculated using

Student’s t test.

3 Spatial rainfall climatology and sources of model bias

3.1 Mean rainfall

The spatial distribution of the SAWS observed DJF rainfall 
averaged over the 20-year period (DJF 1991/1992–DJF 
2010/2011; Fig. 2) shows most of the rainfall to be confined 
to east of South Africa, with KN, ML, LP, NW, GT, FS and 
east EC provinces experiencing rainfall ranging between 3 
and 5 mm day-1 with maxi-mum rainfall between 5 and 8 
mm day-1 over parts of Limpopo province. North Cape, 
West Cape and parts of East Cape provinces experience 
scanty rainfall during DJF season with less than 2 mm 
day-1 rainfall. It is interesting to note the large differences 
in the spatial distribution of rainfall simulated by the three 
cumulus parameterization schemes. In general, the WRF 
model succeeded in capturing the generally observed west-

east

Fig. 2 Spatial patterns of mean rainfall climatology (mm day-1) from 20-year December–January–February (DJF) simulations by the weather 
research and forecasting (WRF) model driven by the Kain–Fritsch (KF), Betts–Miller–Janjic(BMJ) and Grell–Devenyi ensemble (GDE) 
convective parameterization schemes. South Africa weather services (SAWS) observational rainfall data were used for verification
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rainfall gradient over South Africa (Jury 2012). KF sim-

ulated mean rainfall exceeds 5 mm day-1 over the entire 
eastern South Africa with BM and GDE simulating 
rainfall comparable to SAWS observed rainfall. However, 
the rainfall over the western South Africa is well simu-

lated by all the three cumulus schemes. Comparing 
the area averaged rainfall over the South Africa 
landmass simulated by KF (4.28 mm day-1), BMJ 
(2.69 mm day-1) and GDE (2.73 mm day-1) with SAWS 
rainfall (2.11 mm day-1), it is seen clearly that KF 
scheme overestimated the mean rainfall over South Africa 
during the DJF season with BMJ simulating closest to 
SAWS observed rainfall.

Overestimation of rainfall by the KF scheme is clearly 
brought out in Fig. 3 which shows the spatial distribution of 
significant biases in the rainfall simulation when com-pared 
with SAWS observed rainfall. KF simulated bias ranges 
from 1 mm day-1 in the West to 4 mm day-1 in the East. 
BMJ simulated significant biases are negative (about 1 mm 
day-1) over the coastal region of Western Cape and Eastern 
Cape provinces of South Africa, while GDE sim-ulated dry 
biases over the north-eastern interior and some pockets of 
the east coast of South Africa. Nevertheless, wet or positive 
biases appear over most parts of the country in both the 
BMJ and GDE simulations though less in mag-nitude 
compared to KF simulated biases. All the three

Fig. 3 Spatial patterns of mean rainfall climatology biases (mm day-1) from the same simulations as defined in Fig. 2—relative to the South 
Africa weather services (SAWS) observational data. The shaded values are significant at the 99 % level using a student t test

Table 1 Quantitative mean rainfall climatology (mm day-1) verifi-cation of spatial variability in 20-year weather research and forecast-ing 
(WRF) model simulations for December–January–February (DJF) driven by the Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ) and Grell–
Devenyi ensemble (GDE) convective parameterization schemes

Spatial correlation coefficient (R) Mean spatial bias Mean absolute error (MAE) Root mean square error (RMSE)

KF 0.91 2.17 2.18 2.77

BMJ 0.90 0.57 0.70 1.09

GDE 0.87 0.61 0.77 1.14

The South Africa weather services (SAWS) data serve as observations for verification
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simulations show high wet biases near the Drakensberg

Mountains, possibly related to a too strong topography

effect on convection triggering.

To get a quantitative estimate of the biases simulated by

the three cumulus parameterization schemes in the WRF

model, we calculated the spatial correlation coefficient,

mean spatial bias, mean absolute error (MAE) and root 
mean square error (RMSE) and the results presented in 
Table 1. From Table 1, it is seen that the simulated rain-

falls for KF and BMJ convective parameterization schemes 
have high spatial correlations of R = 0.91 and R = 0.90, 
respectively, with SAWS observed rainfall. The GDE

(a) (b)

(c) (d)

(e)

(f)

(f)

Fig. 4 Spatial patterns of the 
mean climatology of vertically 
integrated (from 1,000 to
300 hPa) moisture convergence 
and convergence biases

(multiplied by 1 9 10-4 s-1)
(shaded) and moisture fluxes

(Kg m-1 s-1) ( arrows) from the 
same simulations as defined in 
Fig. 2—Biases are calculated 
with respect to ERA interim 
data. The shaded values are 
significant at the 99 % level 
using a student t test
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simulated rainfall has a slightly less correlation coefficient

of 0.87. Although the KF scheme has a high spatial cor-

relation, it also has a significantly higher mean spatial bias

(2.17 mm day-1), high MAE (2.18 mm day-1) and a high

RMSE (2.77 mm day-1), compared to the other two

schemes (BMJ scheme: mean spatial bias = 0.57 mm

day-1, MAE = 0.70 mm day-1, RMSE = 1.09 mm

day-1/GDE scheme: mean spatial bias = 0.61 mm day-1,

MAE = 0.77 mm day-1, RMSE = 1.14 mm day-1).

Hence, the above analysis indicates that the BMJ convec-

tive parameterization scheme outperforms KF and GDE

schemes in simulating the mean DJF rainfall over South

Africa.

3.2 Thermodynamical characteristics

The above analysis shows quantitative differences in the

performance of the three convection schemes in simulating

the summer rainfall over South Africa. In this section we

try to understand the causes of the differences in the per-

formance by analyzing the moisture fluxes and various

thermodynamic parameters simulated by the model.

Analysis of rainfall distribution over South Africa due to

the three cumulus parameterization schemes showed that,

KF scheme has a tendency to simulate significant wet bias

over all the provinces of South Africa. BMJ and GDE

schemes also tend to simulate significantly higher rainfall

over some provinces of South Africa with biases less than

that simulated by KF scheme. However GDE scheme tends

to simulate significantly less rainfall over parts of Limpopo

province, the province vulnerable to droughts. To under-

stand the causes of the differences in the rainfall simulated

by the schemes, we plot significant biases in the vertically

integrated (from 1,000 to 300 hPa) WRF model simulated

moisture flux and its convergence. Vertical profiles of

moisture, vertical velocity, temperature and equivalent

potential temperature are also plotted. The biases are

generated with respect to ERA interim data.

The mean, average of DJF 1991/1992 to DJF 2010/2011,

vertically integrated moisture flux shows moisture being

transported into southern Africa from the southwest Indian

Ocean. Regions of significant moisture convergence are

seen over parts of Namibia, Botswana and South Africa in
the ERA Interim estimates and also in the model simulation

with all the cumulus schemes (Fig. 4a–d). Moisture is also

seen being transported into South Africa from the south

Fig. 5 Vertical profiles of area averaged mean (top panel) and biases (bottom panel) of moisture, vertical velocity, temperature and equivalent 
potential temperature over the Limpopo Province of South Africa from the same simulations as defined in Fig. 2. The bias is generated relative to 
ERA interim data
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Atlantic Ocean. Regions of moisture divergence are seen 
over Zimbabwe and parts of Mozambique. Moisture 
divergence is also seen over the southwest Indian Ocean and 
south Atlantic Ocean in both the ERA Interim esti-mates 
and also in the model simulations. However, the three 
cumulus parameterization schemes show quantitative 
differences in both the moisture flux and its convergence. 
Mean biases in vertically integrated moisture from the KF 
scheme (Fig. 4e) with respect to the ERA Interim esti-

mates, shows significant enhanced moisture being trans-

ported into the entire South Africa from the tropics. 
Moisture flux convergence biases (shaded red in Fig. 4e) are 
also significantly higher compared to biases simulated by 
the BMJ scheme (Fig. 4f) and the GDE scheme (Fig. 4g), 
over the entire South Africa. The regions of positive biases 
in vertically integrated moisture conver-gence (Fig. 4) 
correspond well to the regions of positive rainfall biases 
(Fig. 3) simulated by the KF scheme. Ver-tically integrated 
moisture convergence simulated by the BMJ scheme (Fig. 
4f) is positive over parts of South Africa. The moisture flux 
bias shows large flux being transported from the tropical 
regions into Limpopo, Mpumalanga and KwaZulu-Natal 
provinces (towards the north-eastern parts) of South Africa, 
creating areas of higher rainfall biases. However, unlike the 
KF simulated moisture flux bias, the moisture flux bias 
simulated by the BMJ scheme is seen transporting moisture 
out of the southern Africa landmass resulting in a lesser bias 
in moisture flux convergence compared to the KF 
simulation. The biases in the GDE simulated moisture 
fluxes (Fig. 4g) are directed towards the tropical regions and 
this generates negative biases in the moisture convergence 
over regions of southern Africa. However, the GDE 
scheme simulated moisture flux biases are directed towards 

South Africa from the South West Indian Ocean, creating 
regions of significant positive moisture convergence over 
the Mpumalanga, East Cape and Free State provinces. In 
general it is found that biases in the moisture fluxes and 
their convergence (divergence) as seen in Fig. 4 explain the 
biases in the spatial distribution of the rainfall.

To further find reasons for the rainfall biases over South 
Africa, vertical profiles of area averaged biases in moisture, 
vertical velocity, temperature and equivalent potential 
temperature were plotted over the Limpopo province, a 
region prone to droughts. Similar profiles were also pro-

duced for the other eight provinces (Figures not shown). 
The vertical profiles of the mean moisture (Fig. 5 top 
panels) show GDE scheme underestimating moisture in the 
middle levels compared to the ERA Interim estimates. The 
KF and BMJ schemes simulated vertical moisture profile is 
comparable to the ERA Interim estimates. The vertical 
velocity is overestimated by the KF scheme compared to the 
ERA Interim estimates and underestimated by GDE 
scheme. All the schemes show decrease in temperature and 
equivalent potential temperature with height similar to the 
ERA Interim estimates. To understand the biases in the 
simulated precipitation we plot the biases in the above 
model simulated parameters with respect to the ERA 
Interim estimates (Fig. 5 bottom panels). Vertical profiles of 
biases in equivalent potential temperature give an indi-

cation of the stability of the vertical atmospheric column 
simulated by the different convective schemes. The profile 
of equivalent potential temperature bias that becomes more 
negative with height indicates an unstable simulated profile 
than that of the observed, and vice versa (Gochis et al. 2002; 
Ratnam and Kumar 2005). Figure 5 depicts these area 

Fig. 6 Area averaged mean bias of (a) specific humidity (kg kg-1) and (b) vertical velocity (m s-1) over South Africa from the same 
simulations as defined in Fig. 2
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average biases over the Limpopo province; the GDE 
scheme simulated moisture shows large negative bias 
throughout the troposphere, which is in agreement with the 
negative rainfall bias over Limpopo in the GDE simulation 
(Fig. 3) and the associated vertically integrated moisture 
flux biases in Fig. 4 that are mostly directed away from the 
South Africa in the GDE simulation. The profile of 
equivalent potential temperature biases indicates that the KF 
and BMJ schemes simulated a more unstable atmo-sphere in 
the mid-levels. The unstable atmosphere in the mid-level 
results from a positive bias in vertical velocities (Fig. 5). 
The unstable atmosphere simulated in the KF simulation 
can contribute to the large positive biases in rainfall over the 
Limpopo region (Fig. 3). The negative bias in moisture, 
along with a stable atmosphere and neg-ative biases of 
vertical velocity simulated by GDE resulted in the 
predominantly negative rainfall bias (Fig. 3) over the 
Limpopo province. In general vertical profiles of atmo-

spheric variables over all other provinces (Figures not 
shown) also provide a good explanation for the associated 
rainfall biases depicted in Fig. 3.

Convective parameterization schemes in atmospheric

models generate rainfall according to the availability of

moisture and the stability/instability of the atmosphere,

which in turn, could affect the general simulation of sea-

sonal circulation. It is, therefore, important to understand

the liquid water content and the thermodynamic structure

of the atmosphere under consideration. The vertical profile 
of the mean bias of domain averaged specific humidity (kg 
kg-1) and vertical velocity (m s-1) over South Africa is 
presented in Fig. 6. Model simulated fields were inter-

polated to ERA interim data fields from where the area 
averaged bias was calculated. Figure 6 illustrates wetter 
low-level conditions (up to 700 hPa) with dryer mid-level 
conditions (600–500 hPa) returning to normal at higher 
levels for the KF scheme, dry low level conditions with 
wetter mid to high level conditions for the BMJ scheme, and 
dry to very dry conditions from low to mid-levels returning 
to normal at higher levels for the GDE scheme. The profiles 
of vertical velocity in Fig. 6 shows that all simulations 
overestimated these velocities compared to observations, 
where the KF scheme had a maximum bias with strong 
upward motion from the 700 to 200 hPa level, compared to 
the BMJ and GDE schemes. The BMJ scheme appears to be 
close to what had been observed. The moist atmosphere and 
strong upward motion in the KF scheme proof to be the 
result of a moister unstable atmosphere, from where the 
largest positive bias in seasonal rainfall (Fig. 3) developed.

To establish convective instability in the three convec-

tive parameterization schemes, mean CAPE values were 
calculated, and are presented in Fig. 7. ERA interim esti-

mated CAPE has values between 300 and 400 J/Kg over 
Botswana and parts of South Africa and values between

Fig. 7 ERA interim estimated and model simulated December–January–February (DJF) mean climatology of convective available potential 
energy (CAPE) (J kg-1), as compared to the Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ) and Grell–Devenyi ensemble (GDE) convective 
parameterization scheme experiments
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400 and 500 J/Kg over the eastern parts of South Africa 
with a peak over KN and EC provinces. KF scheme gen-

erated the highest level of instability, which seems to 
produce a highly convective unstable atmosphere and that 
triggered the simulation of the largest positive rainfall 
biases over South Africa (Fig. 3). Between the BMJ and 
GDE schemes, the GDE scheme has a more convective 
unstable environment, which also explains its relatively 
high positive rainfall bias (Fig. 3). As a matter of fact the 
KF and GDE schemes generated more convective rainfall 
compared to stratiform rainfall (Fig. 8). The smallest 
CAPE values in the BMJ scheme (Fig. 7) generated less 
convective rainfall (Fig. 8) compared to the KF and GDE 
schemes. As satellite derived rainfall from the tropical 
rainfall measuring mission (TRMM) became available 
from December 1997, the TRMM observed convective and 
stratiform rainfall was compared to the associated model 
simulations over a 14-year DJF period (1997/1998–2010/

2011) (Fig. 9). Rainfall observations show that convective 
rainfall is higher than stratiform rainfall over South Africa 
during this 14-year period. Although the combined (con-

vective and stratiform) mean rainfall simulated by the BMJ 
scheme is closer to observe, there are a difference in per-

formance if the two components of rainfall are separately 
compared to observations. It can be clearly seen from 
Fig. 9 that the convective and stratiform rainfall simulated 
with BMJ scheme was close to the TRMM estimates. The 
KF and GDE scheme overestimated the convective rain 
and underestimated the stratiform rain.

4 Interannual variability

Southern Africa is often regarded as being a predominantly 
semiarid region with a high degree of interannual rainfall 
variability (Richard et al. 2000; Reason et al. 2000;

Fig. 8 Model simulated DJF mean climatology (1991/1992–2010/2011) of total rainfall (mm/day, left panel), convective rainfall (%, middle

panel) and stratiform rainfall (%, right panel)
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Washington and Preston 2006; Fauchereau et al. 2009). In 
any attempt to employ a RCM for short and longer-term 
prediction, it is important to determine if the RCM is 
capable of capturing the observed interannual variability. 
In this section we investigated if the WRF model can 
realistically capture the interannual variability in the sim-

ulated rainfall over the study period. The model simulated 
summer rainfall anomalies for each of the three schemes 
calculated from its own climatology.

Figure 10 illustrates the standardized anomaly of area 
averaged model simulated rainfall over South African 
continental grid points from the 20-year DJF simulations by 
the WRF model driven by the KF, BMJ and GDE 
convective parameterization schemes, as compared to 
SAWS observations. The Coefficient of Variability (CV = 
[standard deviation/mean] 9 100) in SAWS rain-fall 
observations over the 20-year study period is found to be 
28.27 %. The associated CVs in WRF model

Fig. 9 December–January–February (DJF) mean climatology (1997/ 1998–2010/2011) of total rainfall (mm/day), convective rainfall (%) 
and stratiform rainfall (%) from the Kain–Fritsch (KF), Betts–Miller–Janjic (BMJ) and Grell–Devenyi ensemble (GDE) convective 
parameterization schemes—compared to the TRMM estimates
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simulations driven by the KF, BMJ and GDE convective

parameterization schemes were 20.99, 21.28 and 21.94 %,

respectively, indicating a lower degree of variability in

model simulated rainfall which are relatively close to each

other, compared to observations. In order to find the

cumulus parameterization scheme closest to observed

variability, correlation coefficients were calculated

between model simulated and observed seasonal anomalies

for the 20 year period. The BMJ with a high correlation

(R = 0.81) with the SAWS observed rainfall outperforms

the KF (R = 0.73) and GDE (R = 0.64) schemes in the

simulation of the variability of rainfall anomalies over

South Africa during the austral summer season.

4.1 ENSO response

The interannual variability of rainfall over southern Africa 
is dominated by the influence of ENSO (Lindesay 1988; 
Reason et al. 2000; Cook 2000, 2001; Reason and Rouault 
2002; Richard et al. 2000, 2001; Misra 2003; Rouault and 
Richard 2005; Reason and Jagadheesha 2005; Washington 
and Preston 2006; Cre´tat et al. 2010 and Ratna et al. 2013 
among others). ENSO effects on southern Africa rainfall are 
non-linear with wet (dry) anomalies during La Nin˜a (El 
Nin˜o) years. The physical mechanism through which 
ENSO influences southern Africa climate variability is 
reported some of the earlier study. Ratna et al. (2013) 
reported that low level divergence (convergence) is 
observed over southern Africa due to change in the Walker 
circulation during El Nin˜o (La Nin˜a) events. The anoma-

lous lower level divergence over the landmass during El 
Nin˜o season prevents maritime moisture transport to 
southern Africa, thereby reducing the number of synoptic 
disturbances and the seasonal rainfall. Ratna et al. (2013) 
also found that during La Nin˜a (El Nin˜o), there is an

anomalous high (low) just south of South Africa and this 
anomalous anticyclonic (cyclonic) circulation favors (dis-

favors) mid-latitude winds flow towards continental 
southern Africa and hence causes enhanced (reduced) 
rainfall. Cook (2001) indicated that in the Southern 
Hemisphere ENSO generates atmospheric Rossby waves, 
which could be responsible for an eastward shift of the 
convergence zone where most of the synoptic scale rains 
bearing systems like TTTs occur. However, Nicholson and 
Kim (1997) suggested that the SST anomalies over the India 
Ocean could shift atmospheric convection and rain-fall 
eastward during El Nin˜o events.

The correlation coefficient between observed rainfall 
over South Africa and Nino3.4 SSTs over the 20-year DJF 
period is -0.57. The correlation between simulated rainfall 
and the Nino3.4 is -0.66, -0.69 and -0.49 for the KF, 
BMJ and GDE convective parameterization schemes, 
respectively. In order to investigate the influence of ENSO 
on WRF simulated seasonal rainfall, results from Fig. 10 
were further classified into dry, normal and wet categories. 
The normalized SAWS rainfall anomaly (Fig. 10) also helps 
in identifying extreme wet and dry years in the study period. 
If we take extremely wet (dry) year to be the year with 
normalized rainfall to be greater (less) than 1 (-1), then we 
find four (three) extreme wet (dry) years in the 20 year 
period considered in the study. Interestingly, all the 
observed very dry years correspond to El Nino years and 
very wet years correspond to the La Nina years. Observed 
and model simulated dry, normal and wet DJF rainfall 
seasons, as compared to the corresponding El Ni˜no, neutral 
and La Nin˜a episodes are given in Table 2.

In observations (SAWS in Table 2), three seasons were 
identified as being dry—1991/1992, 1994/1995 and 
2006/2007 associated with El Nin˜o conditions in the 
Pacific. All convective parameterization schemes generated

Fig. 10 Standardized rainfall anomalies for the South African domain from the same simulations as defined in Fig. 2, relative to the South 
African weather service (SAWS) observational data. The ±1 standardized anomaly values are indicated by solid black lines in order to define 
dry (\-1), normal (between -1 and ?1) and wet ([?1) rainfall categories
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dry conditions for the seasons 1991/1992 and 2006/2007,

although the model simulated dry is stronger in magnitude.

Although still negative, all schemes failed in reproducing

the extreme dry conditions experienced in 1994/1995. The

BMJ scheme was the closest to observations though it

couldn’t simulate the drought.

Of the four extreme wet years, DJF 1995/1996, 
1999/1900, 2005/2006 and 2010/2011, except DJF 
2005/2006 all the years are associated with La 
Nin˜a e v e n t s i n t h e  P a c i fi c . D J F  o f  2005/2006 was 
associated with the weaker La Nin˜a t y p e o f  cooling in 
the central Pacific but there was a positive sub-tropical IOD 
(Behera and Yamagata 2001) with positive SST anomalies 
near the east coast of southern Africa and negative SST 
anomalies near the west coast of Australia. A positive 
subtropical dipole helps moisture transports from the Indian 
Ocean to southern Africa. From Fig. 10 i t 
c a n b e s e e n t h a t  a l l  the convective schemes get 
correct sign of the rainfall anomalies though they simulate 
less amplitude rainfall anomalies compared to the SAWS 
normalized rainfall anomalies. All convective 
parameterization simulations generated wet conditions for 
the two seasons 1995/1996 and 1999/1900, although rainfall 
totals were less than observed. For the 2005/2006 season 
both the KF and BMJ schemes yielded wet conditions, while 
the GDE could not generate wet conditions. For the 
2010/2011 season, the KF and GDE schemes fail to generate 
wet conditions, while the BMJ scheme generated wet 
conditions. In general, the BMJ scheme was superior to the 
other two schemes in generating wet conditions, but like the 
other schemes, could not capture the observed extreme 
values in magnitude.

A total of 13 observed summer seasons fell in the nor-

mal category. Amongst these seasons, 1998/1999, 
2000/2001 and 2007/2008 were associated with La Nin˜a 
conditions. For the La Nin˜a year 1998/1999, all the 
schemes simulated wet to near-wet rainfall. In the year 
2007/2008, all schemes generated normal rainfall condi-

tions. Surprisingly, even though 2000/2001 was a La Nin˜a 
year, near drought conditions were observed over South 
Africa. Though the performance of GDE scheme is poor for 
most of the year, this scheme could simulate the dry 
condition over South Africa for the year 2000/2001. Sim-

ilarly, the year 1997/1998, 2002/2003, 2004/2005 and 
2009/2010 were associated with El Nin˜o conditions but 
South Africa experienced normal rainfall. Even though the 
1997/1998 is known to be strongest El Nin˜o of the year, 
South Africa hasn’t experienced a severe drought though the 
seasonal rainfall was below normal. All the three schemes 
could successfully simulate the below normal seasonal 
rainfall. All the simulations could simulate the normal 
rainfall over South Africa for 2002/2003, 2004/2005 and 
2009/2010.

The above analysis shows that the regional model

responds well to the major climatic forcings such as ENSO

and subtropical IOD with BMJ performing the best in

simulating the interannual variability.

4.2 Dry and wet seasons

To look at the reasons for the model’s performance in

simulating the rainfall anomalies of amplitudes comparable

Table 2 Observed and model simulated dry, normal and wet rainfall seasons (as defined in Fig. 10), compared to El Nin˜o, neutral and La Nin˜a 
events

El Niño Neutral La Niña

Dry SAWS 1991/1992, 1994/1995, 2006/2007

KF 1991/1992, 2006/2007 1992/1993

BMJ 1991/1992, 2006/2007 1992/1993

GDE 1991/1992, 2006/2007 2000/2001

Normal SAWS 1997/1998, 2002/2003, 2004/2005,

2009/2010

1992/1993, 1993/1994, 1996/1997, 2001/2002,

2003/2004, 2008/2009

1998/1999, 2000/2001,

2007/2008

KF 1994/1995, 1997/1998, 2002/2003,

2004/2005, 2009/2010

1993/94, 2001/2002, 2003/2004, 2008/2009 1995/1996, 2000/2001,

2007/2008, 2010/2011

BMJ 1994/1995, 1997/1998, 2002/2003,

2004/2005, 2009/2010

1996/1997, 2001/2002, 2003/2004, 2008/2009 1998/1999, 2000/2001,

2007/2008, 2010/2011

GDE 1994/1995, 1997/1998, 2002/2003,

2004/2005, 2009/2010

1992/1993, 1996/1997, 2001/2002, 2003/2004,

2005/2006, 2008/2009

2007/2008, 2010/2011

Wet SAWS 2005/2006 1995/1996, 1999/2000,

2010/2011

KF 1996/1997, 2005/2006 1998/1999, 1999/2000

BMJ 1993/1994, 2005/2006 1995/1996, 1999/2000

GDE 1993/1994 1995/1996, 1998/1999,

1999/2000
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to SAWS rainfall anomalies, we composited the rainfall of

the four extreme wet seasons (1995/1996, 1999/2000,

2005/2006 and 2010/2011) and three dry seasons (1991/

1992, 1994/1995, and 2006/2007) for the SAWS observed 
anomalies and the model simulated anomalies and pre-

sented in Fig. 11.

Fig. 11 Composite anomalies of observed and model simulated rainfall during three dry seasons (1991/1992, 1994/1995, and 2006/2007)
(right) and four wet seasons (1995/1996, 1999/2000, 2005/2006 and 2010/2011) (left) from the same simulations as defined in Fig. 2 and South 
Africa weather service (SAWS) observational data
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Observed anomaly during the wet (dry) season (Fig. 11) 
shows that the rainfall is above (below) normal over most 
parts of the country. Rainfall is very high (low) over the east 
Limpopo and north Mpumalanga provinces compared to the 
other regions during the wet (dry) seasons. All the three 
cumulus schemes could simulate the excess and deficient 
rainfall over the country similar to the SAWS observed 
anomalies but with variations in intensity and location. The 
spatial distribution of the KF simulated

rainfall shows three peaks in rainfall over eastern Limpopo, 
northeast region of Northwest province and Kwazulu-Natal 
during the excess rainfall season. These regions also cor-

respond to deficient rainfall during the extreme dry sea-

sons. The intensity of high (low) rainfall during the wet 
(dry) years in the KF simulation is high compared to the 
SAWS observed rainfall anomalies (Fig. 11). The spatial 
pattern of BMJ simulated rainfall during the very wet 
season shows weaker rainfall anomalies compared to

Fig. 12 Composite dry (right) and wet (left) season patterns of anomalies in vertically integrated (from 1,000 to
300 hPa) moisture divergence (multiplied by 1 9 105 s-1) (shaded) and moisture fluxes (kg kg-1 M s -1) ( arrows) from the same 
simulations as defined in Fig. 2—relative to ERA interim data. The shaded values are significant at the 99 % level using a student t test
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SAWS observed anomalies. However, the rainfall anoma-

lies simulated by BMJ during dry years agree well with the

SAWS observed anomalies. GDE scheme on the other

hand had problems in simulating both the wet and dry

conditions.

In order to find a reason for the composite dry and wet 
anomalies in Fig. 11, composite anomalies of vertically 
integrated moisture divergence and fluxes were calculated 
from WRF simulated and ERA interim data (Fig. 12). 
During very high rainfall years anomalous convergence of 
moisture is seen throughout South Africa except over parts 
of East Cape, with moisture anomalies being transported 
cyclonically from the tropical regions (Fig. 12). During dry 
years, anomalous divergence is seen over most parts of 
South Africa with moisture being transported from the sub-

tropical south Atlantic towards the tropics. The anomalous 
convergence over South Africa in the KF and BMJ is 
weaker than ERA-Interim estimated convergence. Also, the 
anomalous transfer of moisture into South Africa is weaker 
compared to ERA-Interim estimates, resulting in weaker 
than observed rainfall anomalies during the observed very 
high rainfall years. However, during drought years 
anomalous divergence is stronger than ERA-interim 
estimates in both the KF and BMJ simulations results in 
intense droughts compared to SAWS observed droughts. 
GDE scheme on the other hand simulated weak transport 
into South Africa during excess rainfall years and also weak 
divergence during drought years showing the limi-tations in 
using GDE scheme over South Africa for simu-lating 
seasonal rainfall during austral summer months.

5 Provincial rainfall variability

Figure 2 shows that there is a high degree of spatial vari-

ation in rainfall across South Africa. In order to verify the 
WRF model performance at smaller spatial scales the 
interannual variability of standardized mean seasonal 
rainfall anomalies, relative to the 20-year study period’s 
climatology, were calculated over the nine provinces of 
South Africa (see Fig. 1) and presented in Fig. 13.

Apart from the area averaged (or means) illustrated in 
Fig. 13, the mean, CV and the correlation coefficient 
between the simulated and observed anomalies are calcu-

lated and shown in Table 3.

In accordance with the climatology of the South Africa 
rainfall (Fig. 2), the eastern provinces receive higher 
rainfall compared to the western provinces. Observed 
provincial mean seasonal rainfall values (Table 3) over the 
east are: Kwazulu-Natal (3.97 mm day-1), followed by 
Mpumalanga (3.88 mm day-1) and Gauteng (3.76 mm 
day-1). Note that these three provinces are located across 
the eastern escarpment mountains, where the KwaZulu-

Natal Province is on the windward side of the mountain

ranges. Drier provinces are: Limpopo (2.92 mm day-1),

the Free State (2.91 mm day-1) and North-West

(2.79 mm day-1). The most western province is the Wes-

tern Cape (0.67 mm day-1), which receives very little rain

during the austral summer.

With the exception of the Limpopo province, mean area 
averaged rainfall is generally overestimated by all there 
convective parameterization schemes (Table 3), which is 
consistent with the rainfall biases over South Africa 
(Fig. 3). CVs in Table 3 indicating that the observed 
interannual variability is highest over the Northern Cape 
province, and the lowest over the Eastern Cape province. 
Amongst the provinces that has the highest mean observed 
rainfall (mostly over the east), Limpopo province experi-

ence the highest rainfall variability (according to the CV in 
Table 3). It can be seen from Table 3 that the magnitude of 
interannual variability is generally underestimated by all 
the WRF convective parameterization schemes—except 
for the Western Cape Province.

To check the relationship between the model and 
observed rainfall, we calculated the correlation coefficient 
between two series of data. The GDE scheme has the lowest 
correlation coefficients with observations for all provinces 
although it’s simulated CV is slightly closer to the observed 
CV. The correlation coefficient of the BMJ simulated 
rainfall with SAWS rainfall over the provinces shows high 
values for most of the provinces, except for the Limpopo 
and KwaZulu-Natal provinces. The rainfall sim-ulated by 
KF shows the higher correlation coefficient only for the two 
provinces but the CV is low compared to the BMJ and GDE 
schemes. Note that all the schemes failed to reproduce the 
observed interannual variability over the Limpopo Province. 
Interannual variability by the BMJ scheme was better than 
that of the KF and GDE schemes for most of the provinces, 
as reflected in the high CC and CV values (Table 3). 
Rainfall biases are also listed in Table 3, which correspond 
well with the standardized anomalies (Fig. 13). Overall, Fig. 
13 and Table 3 both indicate that, except for a few cases 
where the GDE scheme performed better, the BMJ scheme 
performed the best in capturing the observed anomalies/

biases, as well as the magnitude of interannual variability.

6 Rainy days and rainfall categories

As discussed in previous sections, KF scheme overestimates

the rainfall over South Africa during the austral summer and

the GDE underestimates rainfall. Rainfall simulation by

BMJ scheme outscores both the KF and GDE scores. In this

section we further analyze the performance of the schemes

in simulating the rainfall over South Africa in terms of the
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number of rain days and in terms of the various categories

of rainfall based on rainfall intensity. The term ‘‘rainy days’’

refer to a day on which the amount of rainfall recorded or

simulated at any grid point was more than 1 mm.

It was firstly noted from SAWS observations (Fig. 14)

that a high spatial variability in number of rainy days

occurred during the summer rainfall season. The eastern

parts of South Africa experienced the maximum number of

Fig. 13 Interannual variability of standardized area averaged mean seasonal rainfall anomalies for each of the nine South African provinces

from the same simulations as defined in Fig. 2—relative to the South Africa weather service (SAWS) observational data
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averaged rainy days (40–60 days), followed by the central 
and northern parts (20–50 days). The western parts received 
the least number of rainy days (less than 10 days). The 
region east of Lesotho, which lies on the windward side of 
the escarpment mountains (Fig. 1), experiences the maxi-

mum number of rainy days (50–70 days) in the country.

In general the model could reproduce the spatial distri-

bution of the number of rainy days over the country, but

with overestimated values. The overestimation of the

number of rainy days is higher in KF scheme simulations

(more than 70 days), followed by BMJ and GDE scheme

simulations (60–70 days). However, rainy days generated

by the BMJ scheme are spread over a larger area compared

to GDE scheme. All convective parameterization schemes

captured the area of the maximum number of rainy days

east of Lesotho, but with various intensities. Interesting is

that all schemes overestimated the number of rainy days to

a higher degree over high orography, compared to lower

lying areas, which indicates that the model has a bias in

generating orography induced rainfall. The orography

related rainfall bias is higher in KF scheme simulations

compared to BMJ and GDE simulations. The performance

by both the BMJ and GDE schemes seems to be superior,

although the BMJ scheme has a slight advantage.

In order to investigate rainfall intensity of the daily

rainfall that occurs over South Africa is divided into three

rainfall categories (1) \10 mm day-1 (low rainfall) (2)

10–30 mm day-1 (moderate rainfall) and (3) [30

mm day-1 (high rainfall).

The spatial distribution of the DJF averaged (1991/ 
1992–2010/2011) number of rainy days was analyzed 
according to these three categories (Fig. 15). It was found 
that areas with the maximum number of rainy days are 
predominantly associated with low intensities (low rainfall 
category). For example, the eastern parts of South Africa 
experienced 25–50 days in the low rainfall category, 6–12 
days in the moderate rainfall category, and 1–2 days in the 
high rainfall category. The spatial distribution of the 
different intensities in rainfall is well captured by the model 
simulations, but mostly overestimated. This cer-tainly 
contributes to the overestimation of model simulated 
seasonal rainfall as illustrated in Fig. 3. However, some 
difference in rainfall category frequencies appears amongst 
the three cumulus parameterization schemes. Throughout 
the study it became evident that KF scheme simulations 
overestimated the amount and spatial distribution of rain-

fall compared to both observations and BMJ and GDE 
scheme simulations. However, KF scheme generated less 
rainy days in the low rain category compared to the GDE 
and BMJ schemes. The BMJ scheme yielded the highest 
number of rainy days in the low rainfall category with more 
than 55 days over a large part of the country, while the 
region of low rainfall for the KF and GDE schemes are 
more confined with values of 45–50 days. The KF scheme, 
however, generated patterns and rainy day values (more 
than 12 days and wide spread) similar to the BMJ and GDE 
schemes (about 12 days and more confined) in the mod-

erate rainfall category. The BMJ scheme has better simu-

lations in moderate rain rate category in terms of the spatial 
distribution, compared to the other two schemes. The 
intensity and spatial distribution of the number of rainy

Table 3 Mean, coefficient of variability (CV), correlation coefficient 
and bias of the inter-annual variability in standardized area averaged 
mean seasonal rainfall anomalies for each of the nine South African 
provinces from the same simulations as defined in Fig. 2, relative to 
the South Africa weather service (SAWS) observational data

SAWS KF BMJ GDE

LP Mean 2.92 5.57 3.68 2.70

CV 43.71 33.77 29.10 36.79

CC 0.50 0.28 0.29

Bias 2.64 0.76 -0.23

NW Mean 2.79 5.39 3.61 3.26

CV 30.11 29.36 27.61 31.12

CC 0.71 0.84 0.50

Bias 2.60 0.82 0.47

NC Mean 0.84 1.89 1.12 1.24

CV 51.09 36.32 30.38 40.91

CC 0.63 0.69 0.45

Bias 1.05 0.28 0.40

FS Mean 2.91 5.86 3.74 4.13

CV 31.03 21.03 24.63 23.89

CC 0.50 0.77 0.67

Bias 2.96 0.84 1.22

GT Mean 3.76 7.34 5.18 4.67

CV 30.52 19.95 24.01 20.47

CC 0.55 0.57 0.15

Bias 3.58 1.42 0.91

ML Mean 3.88 8.14 5.72 5.42

CV 31.39 19.56 22.00 14.54

CC 0.38 0.31 0.17

Bias 4.26 1.83 1.54

KN Mean 3.97 8.27 5.04 5.15

CV 27.58 21.71 23.26 19.74

CC 0.66 0.52 0.54

Bias 4.29 1.07 1.18

EC Mean 2.39 4.85 2.65 3.28

CV 23.29 19.69 25.31 23.48

CC 0.77 0.84 0.71

Bias 2.46 0.27 0.89

WC Mean 0.67 1.10 0.63 0.85

CV 33.60 37.26 37.05 45.74

CC 0.76 0.83 0.80

Bias 0.43 -0.04 0.18
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days in the high rainfall category for the KF scheme are

similar to its moderate rain values, although the number of

rainy days is very high compared to the BMJ and GDE

schemes, and mostly located over the east. The intensity

and distribution of the number of rainy days in the high

rainfall category are similar in both the BMJ and GDE

schemes, with the highest values over the eastern coastal

regions.

Despite of the fact that the model simulated rainy days 
with different rain rate categories is predominantly over-

estimated by all convective parameterization schemes, 
some interesting result appears when comparing the three 
simulations. The overestimation of seasonal rainfall over 
South Africa by the KF scheme (Fig. 3) (compared to the 
BMJ and GDE schemes) is mostly generated due to a 
higher number of rainy days in the moderate to high 
rainfall categories, especially over the eastern parts of the 
country, and in particular over the windward side of the 
eastern escarpment mountains. The smallest positive rain-

fall biases of the BMJ and GDE schemes could also be 
attributed to the higher number of rainy days in the mod-

erate to high rainfall categories over the eastern parts of the 
country. Though there are differences in the number of 
rainy days between the BMJ and GDE schemes with dif-

ferent rainfall categories, both schemes generated similar 
mean seasonal rainfall (Fig. 2). This is due to

compensation of rainfall between the low to moderate

rainfall categories. More (less) rainy days from the low

rainfall category compensates with less (more) rainy days

from the moderate rainfall category in the BMJ scheme

(GDE scheme) simulation. This indicates that the model

simulations, although equal in climatology, might still not

be uniform in terms of the number of rain days and rainfall

categories generated.

7 Summary

In this study the performance of a high resolution (9 km)

WRF model being driven by 0.75� ERA interim data over a

period of 20 DJF seasons (1991/1992–2010/2011) is eval-

uated and its sensitivity to KF, BMJ and GDE convective

schemes is studied. Comparing the model simulated rain-

fall with the SAWS observed rainfall, it is seen that the

model could capture the east–west rainfall gradient over

South Africa with all three schemes. However, the model

simulated rainfall showed positive bias in simulating the

rainfall with a maximum bias over the eastern high topo-

graphical region. Of the three cumulus schemes, KF sim-

ulated large positive biases over South Africa with BMJ

simulating a more realistic climatology. The GDE scheme

simulated dry bias over Limpopo region, though GDE

Fig. 14 Spatial patterns of the average number of rainy days from the same simulations as defined in Fig. 2. South Africa weather services 
(SAWS) observations were used for verification
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simulated higher rainfall over parts of South Africa similar

to BMJ scheme. The spatial correlation of rainfall between

the model and simulations was the highest in both the KF

and BMJ schemes, although statistical errors were higher in

the KF scheme. Among the three schemes, the BMJ

scheme appeared to generate rainfall that is closest to

observations.

The biases in the spatial distribution of the rainfall were

related to the biases in the vertically integrated moisture

flux and its convergence. In the KF simulation, the mois-

ture flux bias transports large moisture from the tropical

region into South Africa causing a large area of moisture

convergence and hence positive bias in rainfall over South

Africa. In the BMJ simulation, the moisture flux bias from

tropical region is such as to transport moisture out of the

South Africa landmass. This leads to less moisture

convergence compared to the KF simulation and hence less

rainfall. The GDE simulated moisture flux is also in

agreement with the rainfall distribution. The rainfall biases

simulated by the different schemes are also in agreement

with the stability of the atmosphere as simulated by the

model.

The interannual variability in rainfall over southern 
Africa associated with ENSO was captured in the simula-

tions accurately. This is an important outcome of the present 
study since some of the previous studies (Joubert et al. 
1999; Engelbrecht et al. 2002; Hudson and Jones 2002; 
Boulard et al. 2012) had difficulties to reproduce the 
observed ENSO-southern Africa rainfall relationship in 
their regional climate modeling experiments. The present 
study has successfully reproduced the strength of observed 
ENSO–South Africa rainfall relationship over the period

Fig. 15 Spatial patterns of the average number of rainy days from the same simulations as defined in Fig. 2, according to three rainfall intensity 
categories: (1) \10 mm day-1 = low rainfall (top), (2) 10–30 mm day-1 = moderate rainfall (middle) and (3) [30 mm day-1 = high rainfall 
(bottom). South Africa weather services (SAWS) observations were used for verification
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1991/1992–2010/2011. The correlations among simulated

rainfalls and Nino3.4 index were -0.66, -0.69 and -0.49

with KF, BMJ and GDE scheme respectively as compared

to the observed correlation of -0.57. This study also suc-

cessfully simulated most of the wet (dry) years that are

associated with La Niña (El Niño). The improved simula-

tion result in this study may be attributed to the high-res-

olution model configuration with 9 km resolution besides

the role of better lateral boundary conditions taken from the

reanalysis data. The model also showed good skill in

simulating the excess rainfall over South Africa that is

associated with positive subtropical IOD for the DJF sea-

son 2005/2006. A positive subtropical dipole helps mois-

ture transports from Indian Ocean to southern Africa.

The excess and drought seasons simulated by KF

scheme are stronger compared to the observations. The

BMJ simulated the weaker wet season but the dry season is

reasonably well simulated. GDE scheme simulated weak

excess and drought season compared to the observations. In

the case of drought season, widespread moisture diver-

gence is seen in the observation. Moisture is transported

away from the country towards the north. All the three

schemes could simulate the similar pattern of moisture

divergence and transport as observed. For the excess

rainfall seasons, in observations, moisture convergence is

usually seen over most part of the South Africa and

moisture is mainly transported from the north. However,

KF and BMJ show moisture transports, which are slightly

weaker than the observations, from the north as well as

southwest. GDE scheme doesn’t show any moisture

transport from the north but the only contribution is found

from the southwest and simulated moisture convergence is

weaker than the other two schemes. Among the nine

provinces of South Africa, observed variability of rainfall

is high over the NC but the variability is low over EC. LP

receives a considerable amount of rainfall during the aus-

tral summer but has high interannual variability. It was

noticed that the model has underestimated the magnitude of

interannual variability for all the provinces except for WC

province, where maximum rainfall occurs during the winter

season.

A maximum number of rainy days are observed over the

eastern region of the country followed by central and

western regions. KF, BMJ and GDE could reproduce the

spatial variability of number of rainy days accurately but

overestimated the amplitude. The more number of rainy

days compared to the observed rainy days in a season

contributed to the positive bias of seasonal rainfall. The

bias associated with KF is higher than the BMJ and GDE.

Also, it was noted that the bias was higher in the high

orography regions. This means that the model overesti-

mated the orographic-related strong winds and instability

of the atmosphere.

It is found that the stronger CAPE in KF and GDE has

generated more convective rainfall and less stratiform

rainfall. The weaker CAPE in BMJ produced less con-

vective rainfall compared to the KF and GDE scheme. It

was also interesting to note that the more convective

unstable environment in KF and GDE produces more

number of rainy days in moderate and high rain rate cat-

egory. However, the less convective unstable environment

in BMJ produces the maximum number of rainy days in

low rain rate category compared to the KF and GDE. It was

observed that the convective and stratiform rainfall simu-

lated by BMJ scheme was close to the TRMM estimates.

The KF and GDE scheme overestimated the convective

rain and underestimated the stratiform rain.

A significant improvement in the simulation of the

seasonal rainfall climatology and variability in climate

models is crucial for making any further progress toward

high-resolution seasonal predictions of summer rainfall

over South Africa. This study has attempted to verify the

fidelity of high resolution WRF model with three different

cumulus parameterization schemes in terms of spatial dis-

tribution of rainfall and its variability over each province of

the country. This is a hindcast study using the reanalysis

data as a boundary condition, which will help us to know

the merits/demerits over the model skill in reproducing the

rainfall. However, real prediction from climate prediction

models will be used as boundary conditions to produce the

seasonal prediction of rainfall in a future study.
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